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ABSTRACT
In this paper, we investigate the conditions under which minority

groups get underrepresented (suppressed) in rankings produced

by link analysis ranking algorithms, leading to biased rankings.

As recent work shows that link analysis algorithms often prevent

minority groups from reaching high rankings, we take a step fur-

ther in analyzing when do such algorithms amplify pre-existing

bias and when can they alleviate it. We find that the most common

algorithms using link analysis to create rankings based on nodes’

centralities, such as Pagerank and HITS, produce vastly different

outcomes: compared to the bias encoded in the degree distribution

of a network with multiple communities, Pagerank often mirrors

the degree distribution for most of the ranking positions and it can

equalize representation of minorities among the top ranked nodes;

on the other hand, we find that HITS amplifies pre-existing bias in

homophilic networks through a novel theoretical analysis. We find

the root cause of bias amplification to be the level of homophily,

as well as inequality in the degree distribution. We characterize

fundamental differences in how common algorithms may be af-

fected by bias, and explore a series of algorithmic variations in

the search for fairness. We find that randomization is a promising

tool in debiasing deep inequities encoded in link structures. This

work paves the way towards a deep understanding on the difficulty

of fixing feature bias in ranking, as the scores that link analysis

algorithms output are often used as features in learning-to-rank al-

gorithms, implying that biased features will have a lasting effect on

the fairness of many ranking schemes. We illustrate our theoretical

analysis on both synthetic and real datasets.

CCS CONCEPTS
• Information systems → Information retrieval diversity;
Page and site ranking; • Theory of computation → Graph
algorithms analysis; Theory of randomized search heuristics; Ran-
dom network models; Random walks and Markov chains.
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1 INTRODUCTION
Ranking algorithms govern the space of information retrieval, with

a plethora of research in online search algorithms that can identify

relevant and credible sources of information [19, 30]. In the myriad

of information sources permeating the web space, filtering through

noise in the search for relevant data sources is a difficult task.

A recent line of work has pointed out the potential of such

ranking algorithms in amplifying the perceived credibility of infor-

mation sources, particularly when behind the sources are people,

groups, or ideologies pertaining to different sensitive attributes

(e.g., searching for restaurants owned by minority demographics

on Yelp, gender representation on Google search). Whether the

bias was reproduced against demographic minority groups [16, 37]

or against newer agents that enter the system [13, 25], empirical

evidence amounts to a convincing argument that interaction data

can amplify popularity among those who are already central in the

network. For example, Vlasceanu and Amodio [37] show that even

gender neutral queries create disparate representation between

men and women on Google search, as searching for the word ‘per-

son’ shows a disproportionate amount of men in the top results

in Google images; in addition, the bias against women in search

results correlates with the gender gap index of the country in which

the experiment was run from. Another recent example shows that

scientific mentorship networks have a vanishing number of women

among those with high centrality, much lower than their general

proportion [4]; thus, a ranking based on degree would amplify the

underrepresentation of women in the field. Thus, ranking heuristics

do not necessarily create inequality between different demographic

groups in the output ranking, but they may reproduce and even

amplify existing societal inequality.

In this paper, we formally investigate structural causes for which

link analysis ranking algorithms amplify, mirror, or reduce inequal-

ity between different social groups. We focus on algorithms such

as Pagerank [30] and HITS [19] and their variations, and formally

study their behavior on a simple yet subtle evolving network model

with multiple communities. Our model encapsulates intrinsic in-

equality through preferential attachment dynamics and homophily,

reproducing often observed inequality between the degree distri-

bution of different communities. Such a generative model provides

us with a tool for studying the true impact of algorithms on pre-

existing inequality. As link analysis ranking algorithms have been

developed as alternatives to the degree ranking, we use the degree

distribution of different communities in our network as a bench-

mark, asking the question: if the degree ranking is a baseline for
social capital inequality, when and why do link analysis algorithms
induce an even more unequal distribution in the ranking scores, and
when do they correct degree bias?

The answer to these questions reveals subtle dynamics: different

algorithmic choices and levels of inequality have a drastically differ-

ent impact on the fairness of outcome rankings. We show that the

interplay of high homophily and unequal degree distribution plays

a central role in amplifying bias in rankings produced by HITS,
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using a novel theoretical analysis based on a model of evolving

networks with multiple communities and bias in the degree distri-

bution, and validating it on real-world data. On the other hand, we

find that Pagerank corrects the degree bias for top ranked nodes,

confirming a recent theory [3]; for most other nodes, we show that

it closely follows the bias in the degree distribution in both syn-

thetic and real data, illustrating limitations of recent theories on its

impact on fairness. Our analysis paves the way for understanding

fundamental differences in the impact of algorithmic choices on

bias amplification. Indeed, we find that our results provide a first

theoretical explanation: on the one hand, the difference between

Pagerank and HITS can be explained through a theory of random

walks, showing that it is the reinforcing effect of backward-forward

paths that HITS employs (as opposed to just forward walks in Pager-

ank) that greatly amplifies bias in an already clustered network;

on the other hand, random restarts in the random walks together

with normalizing the influence of high indegree nodes provide a

limited help in theory, as we show that it brings a ranking closer

to the degree ranking (and therefore mirroring the degree bias); in

practice, we find randomization to improve fairness to a greater

extent, as we show on real data.

Our contributions:
• Using a model of network growth that encodes bias in

the degree distribution, we find evidence that Pagerank

reproduces the bias in the degree distribution, except for

the top ranked nodes, for which it alleviates it. (Section 3)

• Inspired by this finding, we develop theory that predicts

conditions for which bias is alleviated, reproduced, or ampli-

fied in link analysis algorithms. Through a novel theoretical

argument, we find that homophily is the main predictor

in amplifying degree bias in HITS, deriving a closed-form

condition showing that the level of bias amplification di-

rectly depends on how homophilic the network is—more

clustered networks lead to a more biased ranking. To our

knowledge, our results are the first to highlight, based on a

theory of random walks, fundamental differences between

the impact on fairness of these two algorithms. (Section 3)

• We find evidence to support our findings in real-world

datasets with varying levels of homophily. In practice, we

find that Pagerank can be less fair than predicted by theory.

(Section 4)

• We characterize the role of randomization in improving

fairness, providing empirical and theoretical evidence that

randomization in HITS improves fairness in HITS, essen-

tially mirroring the degree bias or even improving upon

it. We experiment with other variations of HITS based on

multiple eigendirections, finding that fairness very much

depends on the number of dimensions used and on the

specific data. (Section 5)

These results open several avenues of research, as we find fun-

damental differences among different algorithms that use network

structures. We conclude by highlighting a series of proposals in

how to progress in fair ranking using algorithmic design choices

sensitive to the root cause of bias—whether that be structural (in the

form of centrality differences) or social (in the form of homophilic

behavior).

2 BACKGROUND AND RELATEDWORK
2.1 Background and modeling choices

Link analysis algorithms. Ranking algorithms that leverage the

connections formed between different information sources (web-

sites, blogs, etc) were developed on the assumption that a link is

equal to an endorsement. Popular sources gain their credibility

through many links pointing towards them, weighted by different

functions that capture how important downstream paths are. In

this paper, we focus on two main algorithms, Pagerank [30] and

Hyperlink-Induced Topic Search (HITS) [19], described below:

The Pagerank algorithmwas developed to leverage randomwalks

on graphs, with the intuition that the more these walks land on

a node, the more important or central that node is [30]. Closely

related to the use of degree centrality, the asymptotic behavior of

these random walks governs their ranking position. Indeed, for

undirected graphs, the stationary distribution exists and is propor-

tional to the degree distribution. For directed graphs, the stationary

distribution does not necessarily exist without a small modification,

that of adding a random re-start, giving us the Pagerank equation:

x𝑡+1 = 𝜂 · 𝑃 · x𝑡 + (1 − 𝜂) · v, (1)

where 𝑃 is the transition matrix, 1 − 𝜂 is the restart probability,

and v is the vector of teleportation (taken to have all coordinates

equal to 1/𝑛, where 𝑛 is the number of nodes in the network). For

a graph 𝐺 (𝑉 , 𝐸) with a set of nodes 𝑉 and a set of edges 𝐸, denote

its adjacency matrix by 𝐴 and note that 𝑃𝑖 𝑗 =
𝐴𝑖 𝑗∑
𝑖 𝐴𝑖 𝑗

(

∑
𝑖 𝐴𝑖 𝑗 is the

outdegree of a node 𝑗 ). Equation 1 is proven to have a stationary

distribution 𝑥𝑡+1 →𝑡 𝑥
∗
, which is the coefficient vector denoting

the importance of each node.

The HITS algorithm was developed to account not only for those

of high indegree [19], but also to provide a sense of credibility by

accounting for ‘hubs’ (nodes of large outdegree). In doing so, what

matters most in the HITS algorithm is whether one’s neighbors

are trusted sources of information. This trust is formalized through

being a ‘hub’ where information aggregates, contrasted with an

‘authority’ to which many hubs point to. The algorithm formalizes

this through a bipartite transformation of a graph, where each node

𝑢 ∈ 𝑉 has now a hub score ℎ(𝑢) and an authority score 𝑎(𝑢) that re-
inforce each other at every time step 𝑡 through the update equations:

𝑎 (𝑡+1) (𝑢) =
∑︁

𝑣,(𝑢,𝑣) ∈𝐸
ℎ (𝑡 ) (𝑣) and ℎ (𝑡 ) (𝑢) =

∑︁
𝑣,(𝑢,𝑣) ∈𝐸

𝑎 (𝑡 ) (𝑣)
(2)

This set of equations is proved to converge to 𝑎∗ andℎ∗, respectively,
and in fact, to show that the hub and authority scores are the

principal eigenvectors of a variant of the adjacency:

Theorem 2.1 (Kleinberg, 1999). 𝑎∗ is the principal eigenvector
of 𝐴𝑇𝐴 and ℎ∗ is the principal eigenvector of 𝐴𝐴𝑇 .

In theoretically analyzing these algorithms, we employ a network

model, called the Biased Preferential Attachment Model (BPAM),

that reproduces commonly observed characteristics of biased net-

works: multiple communities, homophily, and a skewed degree

distribution that induces a power-law distribution with different
coefficients for different communities. In such a model, the degree

ranking is inherently unequal: as we move towards higher ranks,
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the proportion of a minority group (with a lower coefficient in

the power law degree distribution) effectively vanishes, creating a

so-called ‘glass ceiling effect’ as measured through social capital [4].

We employ this terminology to investigate when a glass ceiling ef-

fect gets reduced or amplified in the ranking produced by link rank

analysis algorithms, i.e. when does a minority get better or worse ac-

cess to higher rankings. We find a continuous relationship between

increased homophily and bias amplification in HITS in the BPAM

through a mean-field analysis employing a theory of random walks.

2.2 Related work in fairness in ranking
Fairness in link analysis ranking. The question of fairness in

link analysis algorithms has only recently started to gain atten-

tion. Espín-Noboa et al. [16] analyze Pagerank under network mod-

els similar to ours, yet they only define fairness with respect to

statistical parity, without comparing to the degree distribution. Our

work brings a novel analysis by characterizing when bias is am-
plified as compared to pre-existing inequality. Antunes et al. [3]

theoretically show that, in network models with homophily and a

power-law degree distribution with different coefficients among dif-

ferent groups, the Pagerank score distribution for top nodes follows

a power lawwith the same coefficient for different communities; yet,

this result does not capture the distribution of any other node that is

not in tail of the degree distribution to begin with. In our work, we

find new evidence that Pagerank only improves the ranking of mi-

norities as compared to degree for the very top at best in synthetic

data (Section 3), and may in fact entirely mirror the degree bias

in real data (Section 4). This result motivates us to understand the

fundamental ways in which structural bias permeates link analysis.

On the other hand, HITS has received much less scrutiny with

regard to general fairness questions, however with significant re-

search done on its effectiveness (e.g. Najork et al. [27] showing that

it can outperform Pagerank on the Web in terms of the NDCG score

and the mean average precision). Previous empirical evidence has

shown that completely disconnected components will have an odd

effect on HITS, with larger groups being promoted [9, 22, 29]—an

effect known as the tightly knit community (TKC) effect. Our results

present a formal and more in-depth analysis of the TKC effect: we

find that groups do not have to be completely disconnected for

minorities to suffer in the ranking; instead, there is a continuous

link between homophily and minority underrepresentation in HITS.

We explain this link through a theory of random walks, noting that

high indegree nodes reinforce each other’s authority scores. We

show that renormalizing the influence of high indegree nodes and

adding a random restart (equivalent to randomized HITS [29] and

conceptually similar to the SALSA algorithm [22]) alleviates the

bias amplification, but only inasmuch as following the degree dis-

tribution. In previous work, randomized HITS [29] and SALSA [22]

show an empirical diversity-enhancing effect, but only for the top

5 − 10 ranks. We investigate in the potential of such variations in

improving fairness at all ranks—as opposed to just the first few—

in Section 5. To our knowledge, our work is the first to explain

a generalized theory of bias in link analysis ranking algorithms,

finding fundamental differences between algorithmic choices on

the impact of bias amplification. We conclude with an empirical

analysis of other variations of HITS that use multiple dimensions

in the eigenspace, motivated by stability results on the use of mul-

tiple eigenvectors [29] and by recent work showing that one extra

dimension can improve fairness in data representations through

PCA [31]. We find that, empirically, using multiple eigenvectors

does not present a consistent path for fairness improvement, as it

very much depends on number of eigenvectors and the data used.

This analysis opens an avenue of research for finding a systematic

pattern in which lower dimensions may improve fairness by better

representing minorities in a higher-dimensional embedding.

Fairness in learning-to-rank andmachine learning. Fairness issues
pertaining to the representation of minority groups in rankings be-

come particularly important when centrality metrics (such as Pager-

ank centrality and HITS authorities) are used as features in learning-

to-rank algorithms [1, 14, 24, 36]. Drawing from a vast literature on

fairness in supervised machine learning [2, 15, 17, 18, 20, 38], fair-

ness constraints in the form of statistical parity have been proposed

in different learning-to-rank procedures [7, 8, 11, 32, 39, 40]. Such

constrains often come as a post- or in-processing technique, with-

out modeling the generative process of feature distribution (for an

extensive survey on fairness in learning-to-rank and related tasks,

see [41] and [42]). In this work, we tackle the way bias permeates

the feature space, with a focus on link analysis ranking algorithms

whose outcomes often get used as relevance features. On its own,

the problem of fairness in link analysis is current and presents sub-

tle challenges; beyond that, it has repercussions on the impact of

feature bias on machine learning algorithms used in rankings. We

argue that using evolving network models in link analysis ranking

presents us with a unique opportunity, absent in the learning-to-

rank literature: modeling bias created through evolving network

models can give us a unique tool to understand the particular struc-

tures that contribute to it, such as group inter-connectivity, dynam-

ics of connections that create unequal degree distributions etc.

3 A THEORY OF BIAS IN HITS
3.1 Model description and preliminaries
We first start by analyzing the Pagerank and HITS algorithms on

synthetic data generated from a model of network evolution that

encodes pre-existing bias in the degree distribution, which we de-

scribe below. We follow with a theory predicting the conditions

in which bias gets overly amplified in HITS, finding a closed-form

relation involving homophily.

The Biased Preferential Attachment Model. is a variant of the

Preferential Attachment Model that has been recently proposed [4],

leading to the creation of multiple communities and a clustering

effect. For the simple case of two communities (a community here

might mean a political affiliation, a demographic associated to the

search items etc), we assume that each node has a label, blue (B) or

red (R), and at each point in time the network grows as:

• Minority-majority partition: a new node 𝑢 enters the net-

work and receives the label 𝑅 with probability 𝑟 and the

label 𝐵 with probability 1 − 𝑟 . We assume that the red com-

munity is in minority, with 0 ≤ 𝑟 ≤ 1/2.
• Preferential attachment (rich-get-richer): 𝑢 chooses a node

uniformly at random and copies one of its edges. This is
equivalent to the newnode connecting proportionally to the

3
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ending node’s degree, P(𝑣 is chosen) = 𝑑𝑡 (𝑣)/
∑

𝑢∈𝑉𝑡
𝑑𝑡 (𝑢),

where 𝑑𝑡 (𝑥) denotes the degree of node 𝑥 at time 𝑡 , and

𝑉𝑡 is the set of nodes in the graph at time 𝑡 . Preferential

attachment is what leads to a rich-get-richer effect, where
a few nodes are very well-connected and most nodes have

very few connections—an effect observed in many online

networks, such as the Web structure [5, 6].

• Homophily: if the new node has a different label than the

node it chooses to connect to, the connection is accepted

with probability 𝜌 and the process is repeated until an edge

is formed. A value of 𝜌 closer to 0means a more homophilic

(and therefore segregated) network, while a value of 𝜌 closer

to 1 means a more integrated network. The homophily pa-

rameter 0 ≤ 𝜌 ≤ 1 captures the fact that a person less simi-

lar is less likely to be eventually chosen than one of the same

kind. Homophilic behavior has been observed in many real

networks among different attributes (e.g., demographics, lo-

cation, interest groups, professional collaborations) [10, 26].

Thus, as the network grows according to this model, exactly

one node and one directed edge are added at each timestep. In this

model, everyone has an out-degree of 1 and a different in-degree.

We repeat this model 𝑑 times until everyone has an out-degree of 𝑑 ,

for a choice of 𝑑 . Just as in the Preferential Attachment Model, this

model asymptotically leads to a power law distribution for each of

the groups, with a different coefficient for each community [4]:

Theorem 3.1 (Avin et al, 2015). A graph sequence 𝐺 (𝑛) gen-
erated through the Biased Preferential Attachment Model exhibits a
power law degree distribution asymptotically:

top𝑘 (𝐵) ∼ 𝑘−𝛽 (𝐵) ,

top𝑘 (𝑅) ∼ 𝑘−𝛽 (𝑅) ,
(3)

with 𝛽 (𝐵) < 3 < 𝛽 (𝑅), where top𝑘 (𝑅) and top𝑘 (𝐵) denote the num-
ber of red and blue nodes with a degree of at least 𝑘 , respectively.

These coefficients can be analytically computed from the model.

When there is no homophily (the network is completely integrated),

complete homophily (the network is completely segregated), or the

two subgroups are equal in proportion, the coefficients of the power

law for the degree distribution are also equal. For intermediate val-

ues of homophily and in the presence of a minority group, the

coefficients will indeed be different, leading to a so-called ‘glass

ceiling effect’ [4]: minority nodes have a vanishing fraction in the

top degrees.

3.2 Synthetic data analysis using BPAM
We simulate the BPAM for𝑛 = 1, 000 nodes and outdegree𝑑 = 6. For

each network instance simulated from this model, we compute the

degree distribution, the Pagerank, and the HITS authority scores

and we plot the ratio of minority members among those in the

top 𝑥 percentange of ranking and above on the 𝑥-axis (plotted in

log-scale), and adding a dashed horizontal line for the population

minority ratio. All simulations are averaged over 1, 000 iterations.

For example, the leftmost plotted point in Figure 1 is the ratio of

minority members among the entire population, top 100% (so, top

1, 000 people). In a sense, the dashed line is our fair baseline, also

equivalent to achieving statistical parity: the further away the mi-

nority ratio plotted is from the dashed (often smaller), the less fair

the ranking becomes. We know from Theorem 3.1 that the propor-

tion of minority members among top ranked people by degree goes

to 0, an illustration of what a glass ceiling effect may look like in

practice. We note that for 𝑟 = 0.5 or 𝜌 = 1, the degree distribution

is the same among the two communities, and then the Pagerank

and HITS distributions are also fair (as in, are equal to or very close

to the proportion of minority nodes in the population represented

by the black dashed line). The closest 𝜌 gets to 0 (Figure 1 a), the

two communities are getting increasingly disconnected, and we

note that HITS becomes progressively more unfair, while degree

and Pagerank become more fair. For example, while we have 30% of

minority proportion in the population, there are under 20% among

those in top 10% and all above ranks in HITS. For moderate ho-

mophily (e.g. 𝜌 equal to 0.3 and 0.5 in panels b and c), HITS and

degree ranking are quite similar, both leading to a vanishing mi-

nority fraction among the top ranked. For Pagerank, while finding

novel evidence that it is similar to the degree ranking for most of the

ranking, we also find improvement in the minority ratio for the very

top ranked nodes (note that Antunes et al. [3] proves that Pagerank

is fair only for the very top nodes). This shows that Pagerank and

HITS do not generally introduce bias when the degree is unbiased,

but rather reproduce the bias that is already existing. Yet, they

differ in how much of that bias they reproduce, with HITS being

particularly sensitive to the level of homophily in the network.

3.3 Bias in HITS: a Mean-Field Analysis
We complement our experimental results with a theoretical analysis

of the HITS algorithm to elucidate the structural reasons behind

the amplification of bias in the rankings that HITS produces. Specif-

ically, the BPAM helps accurately expound the role of homophilyAs

noted in Section 2, Borodin et al. [9], Lempel and Moran [22], Ng

et al. [29] argue that the TKC effect reduces the diversity of search

results in the top 5 − 10 queries, and conjecture that this effect

emerges when communities are completely disconnected in the

larger network. We find a more subtle effect: even in connected net-

works, HITS can amplify the underrepresentation of minorities in

the ranking outputted as compared to the degree ranking, and more-

over, the more homophilic the network is, the more pronounced

the bias amplification.

Theorem 3.2. For a network𝐺 (𝑉 , 𝐸) drawn from BPAM with 𝑁
nodes, two communities, minority ratio 𝑟 , and homophily parameter
𝜌 , the following hold:

(1) the following inequalities are true for the authority scores
𝑎(·) obtained from the HITS algorithm:

𝑎(𝑅) ≤ 𝑎(𝐵) and 𝑎(𝑅, 𝑘) ≤ 𝑎(𝐵, 𝑘) (4)

for 0 ≤ 𝑟 ≤ 0.5 and 0 ≤ 𝜌 ≤ 1, where 𝑎(𝐶) (and 𝑎(𝐶, 𝑘), re-
spectively) denotes the average authority score of community
of color 𝐶 (and degree class 𝑘 , respectively).

(2) for nodes 𝑢 ∈ 𝑅, 𝑣 ∈ 𝐵 of similar degree , the ratio 𝑎 (𝑡 ) (𝑢∈𝑅)
𝑎 (𝑡 ) (𝑣∈𝐵)

is an increasing function in the homophily parameter 𝜌 for
4
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(c) 𝑟 = 0.3, 𝜌 = 0.5

Figure 1: Representation of the minority group R in the ranking of the nodes based on degree (orange), HITS (purple), and
Pagerank (blue), for directed networks simulated from the BPAM with 𝑛 = 1, 000 nodes and outdegree 𝑑 = 6.

any 𝑡 ≥ 2, where 𝑎 (𝑡 ) (·) denotes the authority score of a node
after 𝑡 iterations of the HITS algorithm.

The proof of this theorem relies on the properties of the Biased

Preferential Attachment Model as well as on being able to interpret

HITS in terms of random walks on graphs through a mean-field

analysis. We provide a sketch of the proof in this section, with full

proofs for all intermediate steps found in the Appendix 7.2.

The crux of the proof relies on using the model to compute an

approximation for the the authority score of nodes as a product of

the nodes’ indegree and an additional factor, termed here as a mul-

tiplicative factor. By analyzing the behavior of the multiplicative

factor as a function of the model parameters, we can investigate

how the authority score distribution compares to the degree dis-

tribution. First, we note that the authority score of the nodes after

𝑡 iterations of the HITS algorithm is proportional to the number

of paths that alternate between backward and forward direction

of the edges, starting from each node [9] (initializing with hub

scores equal to 1, then performing a first update on the authority

scores as per equation (2)). We can then approximate the number of

backward-forward paths for nodes belonging to each community

using the properties of the model. We detail our approximation in

the Appendix, noting that it boils down to identifying a dominant

term in a recurrent equation over the iterations 𝑡 . We denote the

approximation of the HITS at iteration 𝑡 by:

𝑎 (𝑡 ) (𝑣 ∈ 𝑅) ≈ 𝑑𝑖𝑛 (𝑣) · (𝑑 − 1) ·𝑀𝐹 (𝑡 ) (𝑅),

𝑎 (𝑡 ) (𝑣 ∈ 𝐵) ≈ 𝑑𝑖𝑛 (𝑣) · (𝑑 − 1) ·𝑀𝐹 (𝑡 ) (𝐵),
(5)

where 𝑑𝑖𝑛 (𝑣) is the indegree of a vertex 𝑣 (when 𝑑𝑖𝑛 (𝑣)𝑖𝑠𝑂 (1) in
𝑁 ), 𝑑 is the (constant) outdegree of a vertex, and 𝑀𝐹 (𝑡 ) (𝑅) and
𝑀𝐹 (𝑡 ) (𝐵) are the multiplicative factors that allow to compare the

HITS ranking with the degree ranking. For top nodes, a similar

analysis follows (details in the Appendix 7.2). To prove the first (1)

part of the theorem, we show the following results (proof in the

Appendix 7.2):

Proposition 3.3. For any 𝑡 ≥ 2, 𝑀𝐹 (𝑡 ) (𝐵) ≥ 𝑀𝐹 (𝑡 ) (𝑅), for all
0 ≤ 𝑟 ≤ 0.5 and 0 ≤ 𝜌 ≤ 1.

Then, knowing that the average indegree of a red node is lower

or equal to the average indegree of a blue node (Theorem 4.1, part

1 in Avin et al. [4]), we get that by averaging over the set of red and

blue nodes, respectively, 𝑎(𝑅) ≤ 𝑎(𝐵). Similarly, averaging over

degree classes, (all red nodes and all blue nodes of indegree equal

to 𝑘 , respectively, for all 𝑘), we get that 𝑎(𝑅, 𝑘) ≤ 𝑎(𝐵, 𝑘), which
proves the first part of the theorem.

To prove part (2) of the theorem, we consider the multiplica-

tive factors as functions of the homophily parameter 𝜌 and define

𝐹 (𝑡 ) (𝜌) := 𝑀𝐹 (𝑡 ) (𝑅,𝜌 )
𝑀𝐹 (𝑡 ) (𝐵,𝜌 ) (in fact, we detail in the Appendix 7.2 that

𝑀𝐹 (𝑡 ) (𝑅, 𝜌) and𝑀𝐹 (𝑡 ) (𝐵, 𝜌) contain the same term that depends

on 𝑡 , so 𝐹 (𝑡 ) (𝜌) := 𝐹 (𝜌)). We note that for nodes of similar indegree,

the ratio of their authority scores boils down to the ratio of themulti-

plicative factors in the approximation. Thus, we show the following:

Proposition 3.4. Define 𝐹 (𝑥) := 𝑀𝐹 (𝑡 ) (𝑅,𝑥 )
𝑀𝐹 (𝑡 ) (𝐵,𝑥 ) as a function of the ho-

mophily parameter 𝜌 ∈ (0, 1]. Then, 𝐹 (𝑥) is an increasing function

in (0, 1] with 𝐹 (1) = 1.

Intuition: The intuition that stems from this analysis is as fol-

lows: 𝐹 computes the ratio of the multiplicative factor of red and

blue nodes in determining their authority score. When 𝐹 (𝑥) = 1, it

implies that both communities have the same multiplicative factor,

rendering the HITS ranking the same as the degree ranking. That

means that nodes of similar degree will have a similar chance of

showing up in a ranking of 𝑘 nodes regardless of color, and thus, by

aggregation, the ratio of R nodes in the top k in the HITS ranking

will be the same as in the degree ranking. When 𝐹 ≠ 1, that means

that one community is ‘bumped up’ (or ‘bumped down’) more than

the other, which will change the ranking. For example, if the red

community gets a discount factor (𝑀𝐹 (𝑡 ) (𝑅) < 1) and the blue

community gets a boosting factor (𝑀𝐹 (𝑡 ) (𝐵) > 1), that means that

the red community is ‘pushed down’ in the ranking as more blue

nodes are overtaking red nodes that initially had similar or even

better degree in the HITS ranking. If both communities get either a

discount or a boosting factor, whichever factor is higher will ‘boost’

that community upper in the ranking as compared to the original

degree ranking. Thus, if the red community consistently has a lower

multiplication factor than the blue community, that means that they

are consistently ‘pushed down’ in the HITS ranking as compared

to the degree distribution. Proposition 3.4 essentially shows that

more homophilic networks experience exacerbated bias against

minority (red) nodes compared to the initial degree distribution,

5
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while integrated communities will mirror the bias encapsulated by

the degree distribution.

The fundamental difference between HITS and Pagerank lies in

the way nodes aggregate centrality: while for Pagerank, the transi-

tion matrix is equivalent to taking random walks in the ‘forward’

direction starting from a node (following its outdegree), with a

random restart, for HITS, the update equations are equivalent to

taking ‘backward-forward’ paths starting from a node, without any

restart. The outdegree is constant in our model and the random

restart in Pagerank serves in discounting paths with exponential

decay in the restart probability (for a full theoretical analysis of

Pagerank, see Antunes et al. [3]). On the other hand, the backward-

forward paths mean that nodes with high indegree are greatly

advantaged, amplifying their authority from other high indegree

nodes with whom they have a commoon neighbor that points to

both (in branching processes terminology, a common ‘child’). These

paths are not discounted and serve to amplify the scores of already

well-connected nodes, who are likely to connect with others of the

same color due to homophily.

4 EXPERIMENTAL EVIDENCE OF BIAS
We worked with several network datasets that contain directed

edges, varying levels of homophily, and two main communities: a

majority and a minority. In each of these datasets, either the major-

ity or the minority community has the ‘advantage’ in the degree dis-

tribution (meaning that they are over-represented at the top of the

degree distribution, as the glass ceiling definition formalized in Avin

et al. [4]). The datasets are described below, color-coded by which

group has the degree advantage (blue for majority, red for minority).

(1) APS: The APS citation network [21] contains 1, 281 nodes,

representing papers written in two main topics: Classical

Statistical Mechanics (CSM), constituting 37.5% of the pa-

pers, and Quantum Statistical Mechanics (QSM), accounting

for the rest of 62.5% of the papers. As Lee et al. [21] analyze,

the dataset has high homophily, meaning that each subfield

cites more papers in their own field than in the other field.

(2) DBLP: The DBLP citation dataset of computer scientists

was collected from the DBLP platform [23, 33, 35], an online

database that records most publications in computer sci-

ence. We use version V10 of the dataset, using the authors

present in all papers as nodes and associating a perceived

gender of each node through the genderize.io API; we retain

the nodes for which the probability of a gender is over 90%.

A directed edge is created between two authors if a paper

by the first author cites a paper by the second author. We

extract the largest weakly connected component, obtaining

a graph with 1, 224, 996 nodes and two communities, men

(88%) and women (22%). The data has low homophily.

(3) Instagram: An interaction network from Instagram col-

lected by Stoica et al. [34] containing 553, 628 nodes and

652, 931 edges, where everyone has a labeled gender (45.57%

men and 54.43%women). Each edge between two users rep-

resents a ‘like’ or ‘comment’ that one user gave another on

a posted photo. The data has moderate homophily.

Table 1 presents data characteristics, including the number of

nodes, edges, minority percentage, and an estimated homophily

Table 1: Data characteristics.

Nodes % minority Edges HRI

APS 1,281 31.7 % 3,064 0.12

DBLP 1,224,996 22 % 95,160,219 0.74

Instagram 539,023 45.6 % 640,211 0.44

factor. Each network either has an advantaged majority group or

an advantaged minority group, illustrated in Figure 2: when the

complementary cumulative distribution function (CCDF), plotted in

log-log scale, of a group is higher than the other on an interval, then

the representation of that group for the degree classes belonging to

that interval is higher than for the other group. When that interval

includes the top of the degree hierarchy, it is used as evidence to

illustrate a glass ceiling effect against one group.

In order to assess whether a network is homophilic or not, we

use the homophily rarefaction index (HRI) [43], which com-

putes the fraction of cross-community edges over the expected

number of cross-community edges that the BPAM gives, which

is 2 · 𝑟 · (1 − 𝑟 ) · |𝐸 |, where 𝐸 is the set of edges in the network.

Other methods are the Newman assortativity index [28] and the

asymmetric homophily index [21]. An HRI closer to 1means a more

integrated dataset, while a lower HRI indicates higher homophily.

The APS and DBLP datasets both have a majority group that has an

advantage in the degree distribution, with APS being the most ho-

mophilic and DBLP the least. The Instagram dataset has a minority

group that has a degree advantage and moderate homophily.

We tested Pagerank and HITS on all three datasets, illustrating

the ratio of the minority group among each rank in Figure 3. We

notice that the data captures the dynamics predicted by the BPAM:

as APS and DBLP have an advantaged majority group, the minority

group gets underrepresented in the degree, and even more so in

HITS. For APS, HITS (purple) amplifies the under-representation

of the minority the most as compared to the degree distribution (or-

ange), which consistent with the fact that it is the most homophilic

network. DBLP has the least homophily, consistent with HITS

slightly amplifying the bias seen in the degree hierarchy. Instagram,

on the other hand, has an advantaged minority group by degree,

which is also over-represented in the ranking produced by both

Pagerank and HITS for most ranks. Instagram is more homophilic

than DBLP but less than APS, explaining why HITS amplifies more

of the minority advantage in Instagram than it amplifies the ma-

jority advantage in DBLP, and less than in APS.

These experiments show that the BPAM is relatively accurate in

reproducing the data behavior on ranking algorithms. Furthermore,

our experiments reveal the subtle effect of homophily, showing

that in more homophilic networks, HITS amplifies bias against

minorities. We note that while Pagerank is provably fair [3], it

actually reproduces the degree distribution bias on DBLP, while

preserving statistical parity for APS and Instagram for most of the

ranking (except the very top, where it inherits some bias as it departs

from the statistical parity dashed line). This points to a cause of

inequality stemming from the outdegrees this time (as they are the

normalizing factor of Pagerank, and are not constant in the read data

like the BPAM assumes), prompting further future investigations.
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Figure 2: CCDF of the degree distribution of the minority group (red) and the majority group (blue) for the real-world networks.
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Figure 3: Representation of the minority group R in the ranking of the nodes based on degree (orange), HITS (purple), and
Pagerank (blue), for the real-world networks.

5 RANDOMIZATION: A PATH TO FAIRNESS?
Our findings of the structural differences between Pagerank and

HITS motivate our quest for finding algorithmic variations that can

improve observed bias. We have showed that HITS amplifies the

bias in the degree distribution due to its reinforcement of authority

scores from high indegrees (through the backward-forward path

dynamics). Thus, a natural question arises: can we debias HITS

by normalizing the indegree influence, and would a restart in the

random walk (similar to Pagerank) additionally help? We are in

luck, as such a variation, named randomized HITS [29] has been

shown to have perform well in terms of query relevance, yet has

not been analyzed with respect to fairness to different communities.

Randomized HITS:. we introduce a random restart probability,

similar to the restart probability in Pagerank, where with some

probability 𝜖 a random surfer resets and chooses a node uniformly

at random. Conversely, with probability 1 − 𝜖 , it adheres to the

backward-forward iterations inherent toHITS, yet with a normaliza-

tion. We choose the restart parameter value to be equal to 𝜖 = 0.15,

just like for the implementation of Pagerank in our analysis. We

note that this variation has been proposed in Section 5.1 of Ng et al.

[29], formalized through an iterative process as:

𝑎 (𝑡+1) = 𝜖 · −→1 + (1 − 𝜖) · 𝐴𝑇𝑟𝑜𝑤 · ℎ (𝑡 ) ,

ℎ (𝑡+1) = 𝜖 · −→1 + (1 − 𝜖) · 𝐴𝑐𝑜𝑙 · 𝑎 (𝑡+1) ,
(6)

where

−→
1 is the all-ones vector, 𝐴𝑟𝑜𝑤 and 𝐴𝑐𝑜𝑙 are the row- and

column-stochastic versions of the adjacency matrix 𝐴, respectively.

We note that randomized HITS is conceptually similar to the SALSA

algorithm [22], for we find very similar results, omitted in this ar-

ticle due to space constraints. We show that randomized HITS

essentially reproduced the degree bias in theory, yet, in practice,

it may even alleviate such bias.

Proposition 5.1. For a network 𝐺 (𝑉 , 𝐸) drawn from BPAM with

𝑁 nodes, two communities, minority ratio 𝑟 , and homophily param-

eter 𝜌 , the authority scores produced by randomized HITS can be

approximated by the indegree distribution, scaled by a coefficient:

𝑎 (𝑡 ) ≈ 𝜖 · −→1 + d𝑖𝑛 · 𝐴(𝜖, 𝑑, 𝑡),
where d𝑖𝑛 is the vector of indegrees and𝐴(𝜖, 𝑑, 𝑡) is a constant in 𝑡 .

The proof is found in the Appendix 7.3. Synthetic data generated

from the BPAM with various parameters validate our claim (Fig-

ure 4). Real data shows a more promising story: randomized HITS

is consistently the fairest algorithm, bringing the minority ratio

among those above a certain rank closest to the population minority

ratio, for most ranks (Figure 5). Randomized HITS performs sim-

ilarly to Pagerank, except for DBLP, for which Pagerank is actually

quite similar to the degree ranking, but randomized HITS improves

the minority representation as compared to the degree ranking (for

example, for DBLP, for the top 10% of the ranks, approximately 16%

of them are women in the degree ranking, compared to 21% in ran-

domized HITS, which is close to the population women ratio of 22%).

Subspace HITS:. Finally, we experimentally explore the potential

multiple dimensions in the eigenspace to improve fairness. We com-

bine multiple eigenvectors of the 𝐴𝑇𝐴 matrix for computing the

7
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Figure 4: Representation of theminority groupR in the ranking of the nodes based on degree (orange), HITS (purple), randomized
HITS (olive), and Pagerank (blue), for directed networks simulated from the BPAM with 𝑛 = 1, 000 nodes and outdegree 𝑑 = 6.
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(a) APS, 𝑓 (𝜆) = 1
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(b) DBLP, 𝑓 (𝜆) = 1
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(c) Instagram, 𝑓 (𝜆) = 1

Figure 5: Representation of the minority group R in the ranking of the nodes based on degree (orange), HITS (purple), and
Pagerank (blue), using 6 eigenvectors and 𝑓 (𝜆) = 1, for the APS (a), DBLP (b), and Instagram (c) datasets.

authority score, instead of just using the principal eigenvector. The

intuition is that more information about different communities may

be stored in lower eigenvectors (for example, it has been shown

that one extra dimension in PCA greatly improves the fairness of

representation of minority groups in the dimensions chosen for

projection [31]). We note that this variation has been proposed in

Section 5.1 of Ng et al. [29], formalized as:

(1) Choose the first 𝑘 eigenvectors 𝑣1, 𝑣2, · · · , 𝑣𝑘 of 𝐴𝑇𝐴 with

their corresponding eigenvalues 𝜆1, 𝜆2, · · · , 𝜆𝑘 . We choose

𝑘 between 6 and 10 in experiments.

(2) Compute the authority of node 𝑗 as 𝑎 𝑗 =
𝑘∑
𝑖=1

𝑓 (𝜆𝑖 ) (𝑒𝑇𝑗 𝑣𝑖 )
2
,

where 𝑒 𝑗 is the 𝑗-th basis vector and 𝑓 (·) is a function of

our choice (we experiment with 𝑓 (𝜆𝑖 ) = 1 and 𝑓 (𝜆𝑖 ) = 𝜆2𝑖 ).

However, subspace HITS is not as stable, nor is it as fair, as it

sometimes is less fair than the degree ranking (for APS except the

very top, and Instagram all throughout), and sometimes more fair

the degree ranking (for DBLP), in Figure 5. Synthetic data shows

a similar behavior, with high homophily showing some improve-

ment over degree, whereas moderate degree mostly reproducing

the degree bias (Figure 4). For the interested reader, we experiment

with choosing different number of eigenvectors in the Appendix 7.4,

noting varying levels of fairness. This opens a research path for

investigating the optimal number of dimensions and their choice

in improving bias.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we provide an in-depth analysis of how deeply bias

permeates network algorithms used in link analysis ranking. By

employing a model of biased networks—which encodes bias at the

level of the degree distribution across various communities—we un-

cover profound connections between degree bias, homophily, and

link analysis algorithms. This is the case even when strategies like

randomization or deploying lower dimensions in the eigenspace

embedding of data are applied. As we formally show the role of

homophily in amplifying bias in link analysis ranking algorithms

such as HITS, we find nuance and formalism to the previously

observed empirical effect called tightly knit community effect.

We find several promising directions for future work: first, an

understanding of how randomized HITS may behave on different

models of network, given our optimistic empirical results from real

datasets. Second, a future direction could delve deeper into the the-

ory of network embeddings to comprehend the extent of structural

bias. Specifically, is the HITS authority matrix 𝐴𝑇𝐴 indicative of

potential bias amplification issues in other embedding types, and

are higher dimensional embeddings beneficial in recovering the lost

representation of a minority group? Third, future work should delve

into understanding the impact of interventions on the behavior or

dynamics in subsequent timesteps: how would network dynamics

change in response to users viewing more fair rankings, and thus,

what is the long-term impact of fairness in link analysis ranking?
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7 APPENDIX
7.1 Asymptotic degree distribution in BPAM
We start by computing two types of probabilities, for a node 𝑣 ∈ 𝑉
and a color 𝐶 ∈ {𝑅, 𝐵}:

P(𝑣 connects to a node of color 𝐶) (7)

and

P(𝑣 has connections from a node of color 𝐶). (8)

Note that the probabilities in equations (7) and (8) are different.

We compute these probabilities asymptotically as the size of the

network 𝑁 grows to infinity. Denote by 𝑑𝑁𝑡𝑜𝑡 (𝐶) the total degree of
nodes of color 𝐶 . Recall that the total degree in the network of size

𝑁 , is 2𝑁𝑑 . As in Avin et al. [4], denote by 𝛼𝑁 :=
𝑑𝑡𝑜𝑡 (𝑅)
2𝑁𝑑

. It follows

from Lemmas 4.4 and 4.5 in Avin et al. [4] that lim

𝑁→∞
𝛼𝑁 = 𝛼 < 𝑟 ,

so the fraction of edges with red node as a target is smaller than

the fraction of red nodes. In Avin et al. [4] this is called the power
inequality. Then, compute the probabilities (7) in the asymptotic

regime as:

𝑝𝑜𝑢𝑡𝑅𝑅 := P(𝑣 connects to a node of color 𝑅 |𝑣 ∈ 𝑅) = 𝛼

𝛼 + 𝜌 (1 − 𝛼) ,

𝑝𝑜𝑢𝑡𝑅𝐵 := P(𝑣 connects to a node of color 𝐵 |𝑣 ∈ 𝑅) = 𝜌 (1 − 𝛼)
𝛼 + 𝜌 (1 − 𝛼) ,

𝑝𝑜𝑢𝑡𝐵𝑅 := P(𝑣 connects to a node of color 𝑅 |𝑣 ∈ 𝐵) = 𝜌𝛼

𝜌𝛼 + 1 − 𝛼 ,

𝑝𝑜𝑢𝑡𝐵𝐵 := P(𝑣 connects to a node of color 𝐵 |𝑣 ∈ 𝐵) = 1 − 𝛼
𝜌𝛼 + 1 − 𝛼 ,

(9)

Computing the probabilities in (8) is slightly more complicated:

𝑝𝑖𝑛𝐵𝐵 := P(𝑣 receives connection from a node of color 𝐵 | 𝑣 ∈ 𝐵)

=

(1−𝑟 ) (1−𝛼 )
𝛼𝜌+1−𝛼

𝑟𝜌 (1−𝛼 )
𝛼+𝜌 (1−𝛼 ) +

(1−𝑟 ) (1−𝛼 )
𝛼𝜌+1−𝛼

=

1−𝑟
𝛼𝜌+1−𝛼

𝑟𝜌

𝛼+𝜌 (1−𝛼 ) +
1−𝑟

𝛼𝜌+1−𝛼
,

𝑝𝑖𝑛𝐵𝑅 := P(𝑣 receives connection from a node of color 𝑅 | 𝑣 ∈ 𝐵)

=

𝜌𝑟 (1−𝛼 )
𝛼+𝜌 (1−𝛼 )

𝑟𝜌 (1−𝛼 )
𝛼+𝜌 (1−𝛼 ) +

(1−𝑟 ) (1−𝛼 )
𝛼𝜌+1−𝛼

=

𝜌𝑟

𝛼+𝜌 (1−𝛼 )
𝑟𝜌

𝛼+𝜌 (1−𝛼 ) +
1−𝑟

𝛼𝜌+1−𝛼
,

𝑝𝑖𝑛𝑅𝑅 := P(𝑣 receives connection from a node of color 𝑅 | 𝑣 ∈ 𝑅)

=

𝑟𝛼
𝛼+𝜌 (1−𝛼 )

𝑟𝛼
𝛼+𝜌 (1−𝛼 ) +

𝜌 (1−𝑟 )𝛼
𝛼𝜌+1−𝛼

=

𝑟
𝛼+𝜌 (1−𝛼 )

𝑟
𝛼+𝜌 (1−𝛼 ) +

𝜌 (1−𝑟 )
𝛼𝜌+1−𝛼

,

𝑝𝑖𝑛𝑅𝐵 := P(𝑣 receives connection from a node of color 𝐵 | 𝑣 ∈ 𝑅)

=

𝜌 (1−𝑟 )𝛼
𝛼𝜌+1−𝛼

𝑟𝛼
𝛼+𝜌 (1−𝛼 ) +

𝜌 (1−𝑟 )𝛼
𝛼𝜌+1−𝛼

=

𝜌 (1−𝑟 )
𝛼𝜌+1−𝛼

𝑟
𝛼+𝜌 (1−𝛼 ) +

𝜌 (1−𝑟 )
𝛼𝜌+1−𝛼

.

(10)

We continue with the results on the coefficients in the exponents

of the power laws that govern the degree distribution of the BPAM.

It was proved in Avin et al. [4] that in the BPAM with two com-

munities, as 𝑁 → ∞, the limiting degree distribution is a power

law distribution with a different coefficient for each community.

Specifically, denoting by top𝑘 (𝐶) the number of nodes of degree

at least 𝑘 of color 𝐶 , we have:

top𝑘 (𝑅) ∼ 𝑘−𝛽𝑅 ,

top𝑘 (𝑅) ∼ 𝑘−𝛽𝐵 ,

where 𝑎 ∼ 𝑏 means that 𝑎 is proportional to 𝑏. Moreover, Avin et al.

[4] derive the closed-form expression for the power law coefficients:

𝛽𝐵 = 1 + 1

𝐾𝐵
,

𝛽𝑅 = 1 + 1

𝐾𝑅
,

(11)

where

𝐾𝐵 =
1

2

(
𝑟𝜌

𝛼 + 𝜌 (1 − 𝛼) +
1 − 𝑟

𝛼𝜌 + 1 − 𝛼

)
>

1

2

,

𝐾𝑅 =
1

2

(
𝑟

𝛼 + 𝜌 (1 − 𝛼) +
𝜌 (1 − 𝑟 )
𝛼𝜌 + 1 − 𝛼

)
<

1

2

.

(12)

From (11) and (12) it follows that [4]

𝛽𝑅 > 3 > 𝛽𝐵 .

In Section 3, we will also need the next two propositions.

Proposition 7.1. For 𝛽𝐵 defined in (11), (12), it holds that 𝛽𝐵 > 2.

Proof. By (11) we have that 𝛽𝐵 > 2 is equivalent to 𝐾𝐵 < 1,

and by (12), this is equivalent to

𝑟𝜌

𝛼 + 𝜌 (1 − 𝛼) +
1 − 𝑟

𝛼𝜌 + 1 − 𝛼 < 2. (13)

The first fraction in (13) is smaller than one because 𝑟 < 1

2
< 1 − 𝛼 .

The second fraction is smaller than one because 1−𝑟 < 1−𝛼 (recall

the power inequality 𝛼 < 𝑟 ). Hence, the total left-hand side of (13)

is smaller than 2. This proves the proposition. □

Proposition 7.2. We have that

1

𝛽𝑅 − 1

>
2

𝛽𝐵 − 1

− 1, (14)

or, equivalently,

2𝐾𝐵 − 1 < 𝐾𝑅 . (15)

Proof. We will prove that 4𝐾𝐵 − 2𝐾𝑅 < 2. Substituting the

expressions (12) for 𝐾𝐵 and 𝐾𝑅 , we have to prove that

2𝑟𝜌

𝛼 + 𝜌 − 𝛼𝜌 + 2(1 − 𝑟 )
𝛼𝜌 + 1 − 𝛼 − 𝜌 (1 − 𝑟 )

𝛼𝜌 + 1 − 𝛼 − 𝑟

𝛼 + 𝜌 − 𝛼𝜌 < 2

⇔ 𝑟

𝛼 + 𝜌 − 𝛼𝜌 (2𝜌 − 1) + 1 − 𝑟
𝛼𝜌 + 1 − 𝛼 (2 − 𝜌) < 2.

10
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Multiplying both sides of the inequality by (𝛼𝜌 +1−𝛼) (𝛼 +𝜌 −𝛼𝜌),
we get

𝑟 (2𝜌 − 1) (𝛼𝜌 + 1 − 𝛼) + (1 − 𝑟 ) (2 − 𝜌) (𝛼 + 𝜌 − 𝛼𝜌)
< 2(𝛼 + 𝜌 − 𝛼𝜌) (𝛼𝜌 + 1 − 𝛼)
⇔ 2𝑟𝛼𝜌2 + 2𝑟𝜌 − 2𝑟𝛼𝜌 − 𝑟𝛼𝜌 − 𝑟 + 𝑟𝛼 + 2𝛼 + 2𝜌 − 2𝛼𝜌

− 2𝑟𝛼 − 2𝑟𝜌 + 2𝑟𝛼𝜌 − 𝛼𝜌 − 𝜌2 + 𝛼𝜌2 + 𝑟𝛼𝜌 + 𝑟𝜌2 − 𝑟𝛼𝜌2

< 2𝛼2𝜌 + 2𝛼 − 2𝛼2 + 2𝛼𝜌2 + 2𝜌 − 2𝛼𝜌 − 2𝛼2𝜌2 − 2𝛼𝜌 + 2𝛼2𝜌

⇔ 𝑟𝛼𝜌2 − 𝑟 − 𝑟𝛼 − 𝜌2 + 𝑟𝜌2 < 4𝛼2𝜌 − 2𝛼2 + 𝛼𝜌2 − 2𝛼2𝜌2

⇔ 0 < 𝜌2 (1 + 𝛼) + (1 − 𝜌) (𝑟 (1 + 𝛼) (1 + 𝜌) − 2𝛼2 (1 − 𝜌))

Now, we know that 𝜌 and 𝛼 are non-negative, therefore 𝜌2 (1 +
𝛼) ≥ 0. We also know that 𝜌 ≤ 1, so 1 − 𝜌 ≥ 0. We will quickly

show that 𝑟 (1 + 𝛼) (1 + 𝜌) − 2𝛼2 (1 − 𝜌) ≥ 0. First, we know that

1 > 𝑟 > 𝛼 ≥ 0. Therefore, 𝑟 (1+𝛼) ≥ 2𝛼2 ≥ 0. Second, 1+ 𝜌 > 1− 𝜌 .
We are now done. □

7.2 A detailed analysis of HITS
As per equation (2), the HITS update equations are defined as fol-

lows:

𝑎 (𝑡+1) (𝑣) =
∑︁

𝑤:(𝑤,𝑣) ∈𝐸
ℎ (𝑡 ) (𝑤),

ℎ (𝑡+1) (𝑣) =
∑︁

𝑤:(𝑣,𝑤 ) ∈𝐸
𝑎 (𝑡+1) (𝑤), 𝑡 = 0, 1, . . . ,

(16)

starting with ℎ (0) (𝑣) = 1 for all 𝑣 ∈ 𝑉 , and ranking nodes according
to the authority scores 𝑎 (𝑡 ) (𝑣). By iterating equation (16) once, we

obtain a recursion for𝑎 (𝑡+1) (𝑣) in terms of𝑎 (𝑡 ) (𝑧) (see equation (17)
below). This recursion is central to our analysis, and is split in three

terms: 1) from 𝑧 = 𝑣 ; 2) 𝑧 ≠ 𝑣 , 𝑧 ∈ 𝐵; 3) 𝑧 ≠ 𝑣 , 𝑧 ∈ 𝑅. Formally, we

write:

𝑎 (𝑡+1) (𝑣) =
∑︁

𝑤:(𝑤,𝑣) ∈𝐸

∑︁
𝑧:(𝑤,𝑧 ) ∈𝐸

𝑎 (𝑡 ) (𝑧)

= 𝑑𝑖𝑛 (𝑣)𝑎 (𝑡 ) (𝑣)
+

∑︁
𝐶∈{𝑅,𝐵}

∑︁
𝑤 ∈ 𝐶

(𝑤, 𝑣) ∈ 𝐸

∑︁
𝑧 ∈ 𝐵

(𝑤,𝑧 ) ∈ 𝐸
𝑧 ≠ 𝑣

𝑎 (𝑡 ) (𝑧)

+
∑︁

𝐶∈{𝑅,𝐵}

∑︁
𝑤 ∈ 𝐶

(𝑤, 𝑣) ∈ 𝐸

∑︁
𝑧 ∈ 𝑅

(𝑤,𝑧 ) ∈ 𝐸,
𝑧 ≠ 𝑣

𝑎 (𝑡 ) (𝑧), 𝑡 = 1, 2, . . . .

(17)

We will derive a mean-field approximation for (17). We note that

this recursion can also be thought of as path counting for backward-

forward paths that start in 𝑣 (see Borodin et al. [9] for an example).

The first mean-field step is in approximating the fraction of red

and blue in- and out-neighbors of node 𝑤 , by the corresponding

probabilities. Let 𝑞𝐶𝐶′ be the probability that node 𝑣 of color 𝐶 has

in-edge from node𝑤 (of any color), which in turns has out-edge to

node 𝑧 of color 𝐶′
. Then we have

𝑞𝐶𝐶′ = 𝑝𝑖𝑛𝐶𝐵 · 𝑝𝑜𝑢𝑡𝐵𝐶′ + 𝑝𝑖𝑛𝐶𝑅 · 𝑝𝑜𝑢𝑡𝑅𝐶 ′ . (18)

Note that

𝑞𝐶𝐵 + 𝑞𝐶𝑅 = 1. (19)

The secondmean-field step is in replacing𝑎 (𝑡 ) (𝑧) in equation (17)
by the average over all vertices of the same color as 𝑧. This step is

justified because our preferential attachment graph can be approxi-

mated by its so-called local weak limit, which is a continuous-time

branching process (see the precise convergence result in Antunes

et al. [3, Theorem 3.5]). Such processes grow exponentially in time,

thus, vertex𝑤 in equation (17) most likely has arrived at the end of

the graph formation, so it is reasonable to assume that vertex 𝑧, to

which𝑤 connects, has average characteristics. Since the probabil-

ity of connecting to 𝑧 is proportional to its in-degree, we replace

𝑎 (𝑡 ) (𝑧) by its average with respect to the size-biased distribution of

the in-degree. Denote by 𝑑𝑖𝑛 (𝑣) the indegree of 𝑣 . Then we obtain:

𝑎 (𝑡 ) (𝐶) = 1

𝑑𝑖𝑛 (𝐶) |𝐶 |
∑︁
𝑧∈𝐶

𝑑𝑖𝑛 (𝑧) · 𝑎 (𝑡 ) (𝑧), 𝐶 ∈ {𝑅, 𝐵}, (20)

where

𝑑𝑖𝑛 (𝐶) = 1

|𝐶 |
∑︁
𝑢∈𝐶

𝑑𝑖𝑛 (𝑢), 𝐶 ∈ {𝑅, 𝐵}, (21)

is the average indegree of nodes of color 𝐶 . We also denote

˜𝑑𝑖𝑛𝑡 (𝐶) = 1

𝑑𝑖𝑛 (𝐶) |𝐶 |
∑︁
𝑢∈𝐶

(𝑑𝑖𝑛 (𝑢))𝑡 , ∀𝑡 ∈ N∗,𝐶 ∈ {𝑅, 𝐵}. (22)

In computations belowwewill use the well-known results on power

law distribution, namely,

˜𝑑𝑖𝑛𝑡 (𝐶) = 𝑂𝑃 (1), if 𝑡 < 𝛽𝐶 − 1;

˜𝑑𝑖𝑛𝑡 (𝐶) = 𝑂𝑃

(
𝑛

𝑡
𝛽𝐶 −1 −1

)
, if 𝑡 > 𝛽𝐶 − 1,

(23)

where𝑂𝑃 (·)means that the big-O relation holds in probability.With

these notations, the mean-field approximation, that we denote by

≈, of equation (17) becomes

𝑎 (𝑡+1) (𝑣) ≈ 𝑑𝑖𝑛 (𝑣) · 𝑎 (𝑡 ) (𝑣)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝐶𝐵 · 𝑎 (𝑡 ) (𝐵)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝐶𝑅 · 𝑎 (𝑡 ) (𝑅) .

(24)

Now, in order to investigate the proportion of the majority (the

blue vertices) in the ranking, we will iterate (24) for 𝑡 = 1, 2, . . .,

and approximate its main term when 𝑣 is blue or red. As before,

| (𝐵𝐹 )0 (𝑣) | = 1 for all 𝑣 ∈ 𝑉 . Then,

𝑎 (1) (𝑣) = 𝑑𝑖𝑛 (𝑣), (25)

𝑎 (2) (𝑣 ∈ 𝐵) ≈ (𝑑𝑖𝑛 (𝑣))2 + 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝐵𝐵 · ˜𝑑𝑖𝑛
2
(𝐵)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝐵𝑅 · ˜𝑑𝑖𝑛
2
(𝑅),

(26)

𝑎 (2) (𝑣 ∈ 𝑅) ≈ (𝑑𝑖𝑛 (𝑣))2 + 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛
2
(𝐵)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝑅𝑅 · ˜𝑑𝑖𝑛
2
(𝑅) .

(27)

Equation (25) says that the first iteration of HITS ranks the nodes

according to their indegrees. Interestingly, equations (26) and (27)

show the enhancement of the majority already in the second itera-

tion. Indeed, since 2 > 𝛽𝐵 − 1, equation (23) says that the second

term in equations (26)-(27) — themean-field contribution of the blue

nodes — scales as a positive power of 𝑁 ,
˜𝑑𝑖𝑛
2
(𝐵) = 𝑂𝑃

(
𝑁

2

𝛽𝐵−1 −1
)
,

11
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while
˜𝑑𝑖𝑛
2
(𝑅) = 𝑂𝑃 (1) because 2 < 𝛽𝑅 − 1. When a node has a mod-

erate degree, then its HITS approximated score after 2 iterations is

dominated by the 𝑂𝑃

(
𝑁

2

𝛽𝐵−1 −1
)
term coming from the majority

(blue) nodes. Therefore, for any vertex 𝑣 with bounded indegree (of

the order 𝑂 (1)), we can write

𝑎 (2) (𝑣 ∈ 𝑅) ≈ 𝑑𝑖𝑛 (𝑣) · (𝑑 − 1) ·𝑀𝐹 (2) (𝑅),

𝑎 (2) (𝑣 ∈ 𝐵) ≈ 𝑑𝑖𝑛 (𝑣) · (𝑑 − 1) ·𝑀𝐹 (2) (𝐵),
(28)

where

𝑀𝐹 (2) (𝑅) ≈ 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛
2
(𝐵),

𝑀𝐹 (2) (𝐵) ≈ 𝑞𝐵𝐵 · ˜𝑑𝑖𝑛
2
(𝐵)

(29)

are what we call the multiplicative factors that allow to compare the

HITS ranking with the degree ranking. This give more advantage to

the blue vertices in the ranking than they had in the degree ranking,

as we can show the following two results:

Proposition 7.3. The following hold true:

(1) 𝑀𝐹 (2) (𝐵) ≥ 𝑀𝐹 (2) (𝑅),

(2) The function 𝐹 (2) (𝜌) =
𝑀𝐹 (2) (𝑅,𝜌 )
𝑀𝐹 (2) (𝑅,𝜌 ) is increasing in the

parameter 𝜌 .

Proof. The proof of these two results will be the base case for

the induction-based proof for Propositions 3.3 and 3.4. To prove

the first part, we use equation (29):

𝑀𝐹 (2) (𝐵) ≥ 𝑀𝐹 (2) (𝑅) ⇔ 𝑞𝐵𝐵 ≥ 𝑞𝑅𝐵 ⇔
𝑝𝑖𝑛𝐵𝐵 · 𝑝𝑜𝑢𝑡𝐵𝐵 + 𝑝𝑖𝑛𝐵𝑅 · 𝑝𝑜𝑢𝑡𝑅𝐵 ≥ 𝑝𝑖𝑛𝑅𝐵 · 𝑝𝑜𝑢𝑡𝐵𝐵 + 𝑝𝑖𝑛𝑅𝑅 · 𝑝𝑜𝑢𝑡𝑅𝐵 ⇔(

𝑝𝑖𝑛𝐵𝐵 − 𝑝𝑖𝑛𝑅𝐵
)
· 𝑝𝑜𝑢𝑡𝐵𝐵 +

(
𝑝𝑖𝑛𝐵𝑅 − 𝑝𝑖𝑛𝑅𝑅

)
· 𝑝𝑜𝑢𝑡𝑅𝐵 ≥ 0.

(30)

We know from equation (10) that 𝑝𝑖𝑛
𝐵𝐵

+𝑝𝑖𝑛
𝐵𝑅

= 1 and 𝑝𝑖𝑛
𝑅𝐵

+𝑝𝑖𝑛
𝑅𝑅

=

1, and so equation (30) is equivalent to(
𝑝𝑖𝑛𝐵𝐵 − 𝑝𝑖𝑛𝑅𝐵

)
·
(
𝑝𝑜𝑢𝑡𝐵𝐵 − 𝑝𝑜𝑢𝑡𝑅𝐵

)
≥ 0 (31)

We compute

𝑝𝑜𝑢𝑡𝐵𝐵 − 𝑝𝑜𝑢𝑡𝑅𝐵 =
(1 − 𝜌2)𝛼 (1 − 𝛼)

(𝛼𝜌 + 1 − 𝛼) (𝛼 + 𝜌 (1 − 𝛼))
(32)

and

𝑝𝑖𝑛𝐵𝐵 − 𝑝𝑖𝑛𝑅𝐵 =
𝑟 (1 − 𝑟 ) (𝛼 + 𝜌 (1 − 𝛼)) (1 − 𝜌2)

(𝑟𝜌𝑢𝛼,𝜌 + (1 − 𝑟 )𝑢1−𝛼,𝜌 ) (𝑟𝑢𝛼,𝜌 + 𝜌 (1 − 𝑟 )𝑢1−𝛼,𝜌 )
(33)

where, for space brevity, we denoted by 𝑢𝛼,𝜌 := 𝛼𝜌 + 1 − 𝛼 and by

𝑢1−𝛼,𝜌 := 𝜌 (1 − 𝛼) + 𝛼 .
Therefore, equation (31) is equivalent to

𝑟 (1 − 𝑟 )𝛼 (1 − 𝛼) (1 − 𝜌2)2
(𝑟𝜌𝑢𝛼,𝜌 + (1 − 𝑟 )𝑢1−𝛼,𝜌 ) (𝑟𝑢𝛼,𝜌 + 𝜌 (1 − 𝑟 )𝑢1−𝛼,𝜌 )

(34)

Since 𝛼, 𝑟 , and 𝜌 are smaller than 1, both the numerator and the

denominator are positive.

To prove the second part, we take the expressions 𝑞𝐶𝐶 ′ , 𝑝𝑖𝑛
𝐶𝐶 ′ ,

and 𝑝𝑜𝑢𝑡
𝐶𝐶 ′ for colors 𝐶,𝐶

′ ∈ {𝑅, 𝐵} as functions of 𝜌 , it is enough to

show that
𝑞𝑅𝐵 (𝜌 )
𝑞𝐵𝐵 (𝜌 ) is an increasing function in 𝜌 . Writing out the

closed-form formulas and simplifying, this reduces to showing that

0 0.5 1

1

0.5

Figure 6: Numerical plot of the 𝐹 (𝑡 ) (𝜌) as a function of 𝜌 .

𝛼

1 − 𝛼 · 1 − (2𝛼 − 𝑟 )
2𝛼 − 𝑟 · 𝜌 (1 − 𝑟 ) (𝛼 + 𝜌 − 𝛼𝜌)2 + 𝜌𝑟 (𝛼𝜌 + 1 − 𝛼)2

(1 − 𝑟 ) (𝛼 + 𝜌 − 𝛼𝜌)2 + 𝜌2𝑟 (𝛼𝜌 + 1 − 𝛼)2
(35)

is an increasing function in 𝜌 . This is easily seen by differentiating

with respect to 𝜌 . Note: in simplifying, we have also used the fact

that 𝛼 is the fixed point of a function

𝐴(𝛼) = 1

2

(
𝑟 + 𝑟𝛼

𝛼 + 𝜌 − 𝛼𝜌 + 𝛼𝜌 (1 − 𝑟 )
𝛼𝜌 + 1 − 𝛼

)
(36)

and that 1 − 𝛼 is the fixed point of a function

𝐵(𝛼) = 1

2

(
1 − 𝑟 + (1 − 𝑟 ) (1 − 𝛼)

𝛼𝜌 + 1 − 𝛼 + 𝑟𝜌 (1 − 𝛼)
𝛼 + 𝜌 − 𝛼𝜌

)
. (37)

These fixed points follow from the analysis in Avin et al. [4], know-

ing that asymptotically, the fraction of edges towards the red popu-

lation (which is 𝛼) is at equilibrium (and similarly for the fraction

of edges towards the blue population, which is 1 − 𝛼). A numerical

illustration of the function 𝐹 (2) (𝜌) as a function of 𝜌 can be found

in Figure 6. (As we will see further on, the function 𝐹 (𝑡 ) (𝜌) will be
the same for 𝑡 > 2 as well.) Finally, it is easy to notice that when

𝜌 = 1, most terms simplify and we obtain 𝐹 (2) (1) = 1.

□

Moving on to a short analysis of nodes of top degree, according

to the properties of power laws, the top degrees of red nodes are of

order 𝑂𝑃

(
𝑁

1

𝛽𝑅−1

)
. We know from Proposition (7.2) that

1

𝛽𝑅 − 1

>
2

𝛽𝐵 − 1

− 1, (38)

so after the second iteration, HITS should rank top-degree red nodes

generally higher than mediocre blue nodes.

As we continue with the third iteration of HITS, we are essen-

tially on a length 3 backward-forward path; in aggregating the num-

ber of such paths, we are required to compute 𝑎 (2) (𝐵) and 𝑎 (2) (𝑅),
12
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which are the size-biased averages of equations (26) and (27). We

obtain:

𝑎 (2) (𝐵) = ˜𝑑𝑖𝑛
3
(𝐵) +

(
˜𝑑𝑖𝑛
2
(𝐵)

)
2

(𝑑 − 1) · 𝑞𝐵𝐵

+ ˜𝑑𝑖𝑛
2
(𝐵) · ˜𝑑𝑖𝑛

2
(𝑅) · (𝑑 − 1) · 𝑞𝐵𝑅

= 𝑂𝑃

(
𝑁

3

𝛽𝐵−1 −1
)
+𝑂𝑃

(
𝑁

4

𝛽𝐵−1 −2
)

+𝑂𝑃

(
𝑁

2

𝛽𝐵−1 −1
)
·𝑂𝑃 (1)

= 𝑂𝑃

(
𝑁

3

𝛽𝐵−1 −1
)
,

(39)

𝑎 (2) (𝑅) = ˜𝑑𝑖𝑛
3
(𝑅) + ˜𝑑𝑖𝑛

2
(𝑅) · ˜𝑑𝑖𝑛

2
(𝐵) · (𝑑 − 1) · 𝑞𝑅𝐵

+
(
˜𝑑𝑖𝑛
2
(𝑅)

)
2

𝑑 (𝑑 − 1) · 𝑞𝑅𝑅

= 𝑂𝑃

(
𝑁
max{0, 3

𝛽𝑅−1 −1}
)
+𝑂𝑃 (1) ·𝑂𝑃

(
𝑁

2

𝛽𝐵−1 −1
)

+𝑂𝑃 (1)

= 𝑂𝑃

(
𝑁

3

𝛽𝐵−1 −1
)
.

(40)

We thus note that the term
˜𝑑𝑖𝑛
3
(𝐵) dominates both 𝑎 (2) (𝐵) and

𝑎 (2) (𝑅). We note that this term has a contribution of 𝑞𝐵𝐵 in 𝑎 (3) (𝐵)
and a contribution of 𝑞𝑅𝐵 in 𝑎 (3) (𝑅). By the proof of Proposition 7.3
we know that 𝑞𝐵𝐵 ≥ 𝑞𝑅𝐵 . To see exactly the closed-form approxi-

mation of this term in the HITS score of the two communities, we

replace equations (39) and (40) in equation (24) for 𝑡 = 3, obtaining

𝑎 (3) (𝑣 ∈ 𝐵) =
(
𝑑𝑖𝑛 (𝑣)

)
3

+
(
𝑑𝑖𝑛 (𝑣)

)
2

(𝑑 − 1) · 𝑞𝐵𝐵 · ˜𝑑𝑖𝑛
2
(𝐵)

+
(
𝑑𝑖𝑛 (𝑣)

)
2

(𝑑 − 1) · 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛
2
(𝑅)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝐵𝐵 · ˜𝑑𝑖𝑛
3
(𝐵) + 𝑑𝑖𝑛 (𝑣) (𝑑 − 1)3 · 𝑞2𝐵𝐵 ·

(
˜𝑑𝑖𝑛
2
(𝐵)

)
2

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1)3 · 𝑞𝐵𝐵 · 𝑞𝐵𝑅 · ˜𝑑𝑖𝑛
2
(𝑅) · ˜𝑑𝑖𝑛

2
(𝐵)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝐵𝑅 · ˜𝑑𝑖𝑛
3
(𝑅)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1)3 · 𝑞𝐵𝑅 · 𝑞𝑅𝑅 ·
(
˜𝑑𝑖𝑛
2
(𝑅)

)
2

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1)3 · 𝑞𝐵𝑅 · 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛
2
(𝑅) · ˜𝑑𝑖𝑛

2
(𝐵),

𝑎 (3) (𝑣 ∈ 𝑅) =
(
𝑑𝑖𝑛 (𝑣)

)
3

𝑑 +
(
𝑑𝑖𝑛 (𝑣)

)
2

(𝑑 − 1) · 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛
2
(𝐵)

+
(
𝑑𝑖𝑛 (𝑣)

)
2

(𝑑 − 1) · 𝑞𝑅𝑅 · ˜𝑑𝑖𝑛
2
(𝑅)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛
3
(𝐵)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1)3 · 𝑞𝑅𝐵 · 𝑞𝐵𝐵 ·
(
˜𝑑𝑖𝑛
2
(𝐵)

)
2

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1)3 · 𝑞𝑅𝐵 · 𝑞𝐵𝑅 · ˜𝑑𝑖𝑛
2
(𝑅) · ˜𝑑𝑖𝑛

2
(𝐵)

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1) · 𝑞𝑅𝑅 · ˜𝑑𝑖𝑛
3
(𝑅) + 𝑑𝑖𝑛 (𝑣) (𝑑 − 1)3 · 𝑞2𝑅𝑅 ·

(
˜𝑑𝑖𝑛
2
(𝑅)

)
2

+ 𝑑𝑖𝑛 (𝑣) (𝑑 − 1)3 · 𝑞𝑅𝑅 · 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛
2
(𝑅) · ˜𝑑𝑖𝑛

2
(𝐵).

Clearly, when 𝑑𝑖𝑛 (𝑣) = 𝑂 (1), the term ˜𝑑𝑖𝑛
3
(𝐵) dominates both

𝑎 (3) (𝑣 ∈ 𝑅) and 𝑎 (3) (𝑣 ∈ 𝐵) |, so we can write

𝑎 (3) (𝑣 ∈ 𝑅) ≈ 𝑑𝑖𝑛 (𝑣) · (𝑑 − 1) ·𝑀𝐹 (3) (𝑅),

𝑎 (3) (𝑣 ∈ 𝐵) ≈ 𝑑𝑖𝑛 (𝑣) · (𝑑 − 1) ·𝑀𝐹 (3) (𝐵),
(41)

where

𝑀𝐹 (3) (𝑅) ≈ 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛
3
(𝐵),

𝑀𝐹 (3) (𝐵) ≈ 𝑞𝐵𝐵 · ˜𝑑𝑖𝑛
3
(𝐵)

(42)

are the multiplicative factors for 𝑡 = 3. Thus, by the exact same

proof, Proposition 7.3 can be proved for 𝑡 = 3. A simple inductive

argument will show that in all subsequent iterations of (17), the

term
˜𝑑𝑖𝑛𝑡 (𝐵) of the order 𝑂𝑃

(
𝑁

𝑡
𝛽𝐵−1 −1

)
, dominates 𝑎 (𝑡 ) (𝑅) and

𝑎 (𝑡 ) (𝐵), and when 𝑑𝑖𝑛 (𝑣) = 𝑂 (1), we can compute its coefficient

in the same way as:

𝑎 (𝑡 ) (𝑣 ∈ 𝑅) ≈ 𝑑𝑖𝑛 (𝑣) · (𝑑 − 1) ·𝑀𝐹 (𝑡 ) (𝑅),

𝑎 (𝑡 ) (𝑣 ∈ 𝐵) ≈ 𝑑𝑖𝑛 (𝑣) · (𝑑 − 1) ·𝑀𝐹 (𝑡 ) (𝐵),
(43)

where

𝑀𝐹 (𝑡 ) (𝑅) ≈ 𝑞𝑅𝐵 · ˜𝑑𝑖𝑛𝑡 (𝐵),

𝑀𝐹 (𝑡 ) (𝐵) ≈ 𝑞𝐵𝐵 · ˜𝑑𝑖𝑛𝑡 (𝐵)
(44)

As we have seen before, it is now no different to generalize Propo-

sition 7.3 for any 𝑡 > 2.

The induction involves a few properties stemming from the re-

cursion equations and the approximation used. We start by looking

at the majority community 𝐵 (arguing that a similar argument goes

through for community 𝑅):

(1) 𝑎 (𝑡 ) (𝑣 ∈ 𝐵) is a polynomial in 𝑑𝑖𝑛 (𝑣) of degree 𝑡 , with a

leading coefficient equal to 𝑑 ;

(2) The term 𝑑𝑖𝑛𝑡 (𝐵) is the dominant term (asymptotically in

𝑁 ) in 𝑎 (𝑡 ) (𝑣 ∈ 𝐵), as a coefficient to 𝑑𝑖𝑛 (𝑣).
The first point is easy to see by induction, knowing our base

case from equations (26) and (27) and the recursion equation (24)

(which is a linear equation in𝑑𝑖𝑛 (𝑣)). For the second point, we’ll use
the mean-field equations and the induction hypothesis (assumed

true for 𝑡 − 1 with the goal of showing it for 𝑡 ). When computing

𝑎 (𝑡−1) (𝐵), we essentially average 𝑎 (𝑡−1) (𝑧) over all 𝑧 ∈ 𝐵. Since
from the induction hypothesis we know that 𝑎 (𝑡−1) (𝑣 ∈ 𝐵) is a
polynomial in 𝑑𝑖𝑛 (𝑣) of degree 𝑡 − 1 with a leading coefficient

equal to 𝑑 , we will show that the dominant term of 𝑎 (𝑡−1) (𝐵) is
𝑑𝑖𝑛𝑡 (𝐵). First of all, clearly this term exists with coefficient 𝑑 from

our previous remark. Secondly, we need to show that it is in fact

the dominant term. Since from the induction hypothesis the term

𝑑𝑖𝑛
𝑡−1 (𝐵) is the dominant term (asymptotically in 𝑁 ) in 𝑎 (𝑡−1) (𝑣 ∈
𝐵), as a coefficient to𝑑𝑖𝑛 (𝑣), this termwill turn into𝑑𝑖𝑛

𝑡−1 (𝐵) ·𝑑
𝑖𝑛
2
(𝐵)

in the averaging process (with some coefficient). Now, in comparing

𝑑𝑖𝑛
𝑡−1 (𝐵) · 𝑑

𝑖𝑛
2
(𝐵) and 𝑑𝑖𝑛𝑡 (𝐵), 𝑑𝑖𝑛𝑡 (𝐵) clearly dominates, since

𝑡

𝛽𝐵 − 1

− 1 >
𝑡 − 1

𝛽𝐵 − 1

− 1 + 2

𝛽𝐵 − 1

− 1 ⇔ 𝛽𝐵 > 2, (45)
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which we know to be true. Finally, no other term in 𝑎 (𝑡−1) (𝐵) is
competitive by the same argument. By a similar argument, 𝑑𝑖𝑛𝑡 (𝑅) is
the dominant term in 𝑎 (𝑡−1) (𝑅). Thus, 𝑑𝑖𝑛𝑡 (𝐵) is the dominant term

in 𝑎 (𝑡 ) (𝑣 ∈ 𝐵), as the summand 𝑎 (𝑡−1) (𝐵) in the approximation

contributes 𝑑𝑖𝑛
𝑡−1 (𝐵) as a dominant term (clearly dominated), the

summand 𝑎 (𝑡−1) (𝐵) contributes𝑑𝑖𝑛𝑡 (𝐵) as a dominant term, and the

summand 𝑎 (𝑡−1) (𝑅) contributes 𝑑𝑖𝑛𝑡 (𝑅) as a dominant term (clearly

dominated as 𝛽𝐵 < 𝛽𝑅 . Thus, this shows the second part, that the

term 𝑑𝑖𝑛𝑡 (𝐵) is the dominant term (asymptotically in 𝑁 ) in 𝑎 (𝑡 ) (𝑣 ∈
𝐵), as a coefficient to 𝑑𝑖𝑛 (𝑣) (coming from 𝑑𝑖𝑛 (𝑣) multiplied by

𝑎 (𝑡−1) (𝐵) in the mean-field approximation).

We finalize our analysis by looking at the top red vertices with de-

gree𝑂𝑃

(
𝑁

1

𝛽𝑅−1

)
. In iteration 𝑡 > 2, the largest contribution of their

degree is 𝑂𝑃

(
𝑁

𝑡
𝛽𝑅−1

)
, while the largest competing term comes

from the mean-field contribution of the blue vertices in 𝑎 (𝑡−1) (𝑣),

so this term is (𝑑𝑖𝑛 (𝑣))2 · 𝑎 (𝑡−2) (𝐵) = 𝑂𝑃

(
𝑁

2

𝛽𝑅−1+
𝑡−1
𝛽𝐵−1 −1

)
. When

𝑡 = 3, the degree term is still of a larger order of magnitude due to

(38). However, in subsequent iterations, since

1

𝛽𝐵 − 1

>
1

𝛽𝑅 − 1

,

the mean-field contribution of the blue vertices grows faster, has an

increasing share of the BF-paths, and at the same time, contributes

with a smaller factor 𝑞𝐵𝑅 ≤ 𝑞𝐵𝐵 . This explains the fact that the ma-

jority vertices are increasingly enhanced in subsequent iterations

of HITS, as the backward-forward paths continue.

7.3 A detailed analysis of randomized HITS
In this section, we detail a short argument for why randomized

HITS closely follows the degree ranking in BPAM. We recall the

iterative processed defining randomized HITS from equation (6),

which we transpose and rewrite for ease of notation (noting that

𝑎(·) and ℎ(·) are row vectors and now

−→
1 defines the row of ones):

𝑎 (𝑡+1) = 𝜖 · −→1 + (1 − 𝜖) · ℎ (𝑡 ) · 𝐴𝑟𝑜𝑤 ,

ℎ (𝑡+1) = 𝜖 · −→1 + (1 − 𝜖) · 𝑎 (𝑡+1) · 𝐴𝑇
𝑐𝑜𝑙
,

(46)

where

−→
1 is the all-ones vector, 𝐴𝑟𝑜𝑤 and 𝐴𝑐𝑜𝑙 are the row- and

column-stochastic versions of the adjacency matrix 𝐴, respectively.

We quickly note that 𝐴𝑟𝑜𝑤 is essentially normalizing the adja-

cency matrix by the constant outdegree of the BPAM. Equivalently,

𝐴𝑟𝑜𝑤 is the transitionmatrix for taking a ‘forward’ step from a node,

following their outdegree. Similarly, 𝐴𝑇
𝑐𝑜𝑙

is essentially normalizing

the adjacency matrix by the indegree of the BPAM, equivalent to

being the transition matrix for taking a ‘backward’ step from a

node, following their indegree. Iterating the recursion of authority

scores from equation (46), we get:

𝑎 (𝑡+1) = 𝜖 · −→1 + 𝜖 (1 − 𝜖) · −→1 · 𝐴𝑟𝑜𝑤 + (1 − 𝜖)2 · 𝑎 (𝑡 ) · 𝐴𝑇
𝑐𝑜𝑙
𝐴𝑟𝑜𝑤

(47)

Equation (47) is similar to the Pagerank equation (1), with transi-

tion matrix 𝐴𝑇
𝑐𝑜𝑙
𝐴𝑟𝑜𝑤 (the backward-forward matrix) and damping

factor (1 − 𝜖)2. We observe that(−→
1 · 𝐴𝑟𝑜𝑤

)
(𝑣) =

𝑁∑︁
𝑤=1

(𝐴𝑟𝑜𝑤)𝑤𝑣 =
∑︁

𝑤:(𝑤,𝑣) ∈𝐸

1

𝑑𝑜𝑢𝑡 (𝑤) . (48)

Notice that in our BPAM with constant out-degree 𝑑 , we get

−→
1 · 𝐴𝑟𝑜𝑤 =

1

𝑑
d𝑖𝑛, (49)

where d𝑖𝑛 is the row vector of indegrees

d𝑖𝑛 =

(
𝑑𝑖𝑛
1
, 𝑑𝑖𝑛

2
, · · · , 𝑑𝑖𝑛𝑁

)
. (50)

Iterating equation (47) over 𝑡 in BPAM, we obtain:

𝑎 (𝑡+1) = (1 − 𝜖)2𝑡 · 𝑎 (1) ·
(
𝐴𝑇
𝑐𝑜𝑙
𝐴𝑟𝑜𝑤

)𝑡
+

(
𝜖 (1 − 𝜖)

𝑑
· d𝑖𝑛 + 𝜖 · −→1

)
·
𝑡−1∑︁
𝑘=0

(1 − 𝜖)2𝑘
(
𝐴𝑇
𝑐𝑜𝑙
𝐴𝑟𝑜𝑤

)𝑘
.

(51)

We note that

𝑎 (1) =
1 − 𝜖
𝑑

· d𝑖𝑛 + 𝜖 · −→1 , (52)

yielding

𝑎 (𝑡+1) = (1 − 𝜖)2𝑡 ·
(
1 − 𝜖
𝑑

· d𝑖𝑛 + 𝜖 · −→1
)
·
(
𝐴𝑇
𝑐𝑜𝑙
𝐴𝑟𝑜𝑤

)𝑡
+𝜖 (1 − 𝜖)

𝑑
· d𝑖𝑛 + 𝜖 · −→1

+
(
𝜖 (1 − 𝜖)

𝑑
· d𝑖𝑛 + 𝜖 · −→1

)
·
𝑡−1∑︁
𝑘=1

(1 − 𝜖)2𝑘
(
𝐴𝑇
𝑐𝑜𝑙
𝐴𝑟𝑜𝑤

)𝑘
.

(53)

To get more insight into further iterations, we compute(
𝐴𝑇
𝑐𝑜𝑙
𝐴𝑟𝑜𝑤

)
𝑧𝑣

=

𝑁∑︁
𝑤=1

𝐴𝑤𝑧

𝑑𝑖𝑛 (𝑧)
· 𝐴𝑤𝑣

𝑑
.

Now, we approximate 𝐴𝑤𝑣 by its average conditioned on degrees:

𝐴𝑤𝑣 ≈
𝑑𝑖𝑛 (𝑣)𝑑
𝑁𝑑

=
𝑑𝑖𝑛 (𝑣)
𝑁

.

Substituting this, we derive(−→
1 · 𝐴𝑇

𝑐𝑜𝑙
𝐴𝑟𝑜𝑤

)
(𝑣) =

𝑁∑︁
𝑧=1

1 ·
(
𝑁∑︁
𝑤=1

𝐴𝑤𝑧

𝑑𝑖𝑛 (𝑧)
· 𝐴𝑤𝑣

𝑑

)
≈

𝑁∑︁
𝑤=1

𝑁∑︁
𝑧=1

𝑑𝑖𝑛 (𝑧)
𝑑𝑖𝑛 (𝑧)𝑁

· 𝑑
𝑖𝑛 (𝑣)
𝑁𝑑

=
𝑑𝑖𝑛 (𝑣)
𝑑

.

Also, we notice that in further iterations,(
d𝑖𝑛 · 𝐴𝑇

𝑐𝑜𝑙
𝐴𝑟𝑜𝑤

)
(𝑣) =

𝑁∑︁
𝑧=1

𝑑𝑖𝑛 (𝑧) ·
(
𝑁∑︁
𝑤=1

𝐴𝑤𝑧

𝑑𝑖𝑛 (𝑧)
· 𝐴𝑤𝑣

𝑑

)
≈

𝑁∑︁
𝑤=1

𝑁∑︁
𝑧=1

𝑑𝑖𝑛 (𝑧) 𝑑𝑖𝑛 (𝑧)
𝑑𝑖𝑛 (𝑧)𝑁

· 𝑑
𝑖𝑛 (𝑣)
𝑁𝑑

= 𝑑𝑖𝑛 (𝑣) .

From this and equation (53), we see that in the mean-field approxi-

mation, 𝑎 (𝑡+1) has the term 𝜖 · −→1 , and the rest of the terms propor-

tional to d𝑖𝑛 . We conclude that in BPAM, randomized HITS ranks

approximately by the indegree.
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In a real-world dataset, the outdegrees are not constant, so, for

instance, 𝑎 (1) (·) ranks nodes by the right-hand side of equation (48),
and all subsequent iterations will have such term as well. Then,

like in PageRank, it is beneficial to receive edges from nodes of

small out-degree, but unlike in PageRank, the contribution of high

in-degree neighbors is counterbalanced thanks to the division by

indegrees in 𝐴𝑇
𝑐𝑜𝑙

. If minority nodes tend to receive edges from

nodes of lower outdegree, then they will benefit in the ranking

produced, achieving higher ranks.

7.4 Subspace HITS: an analysis of various
eigenvectors

We experiment with a various number of eigenvectors and aggre-

gations functions 𝑓 in Figures 7–9. Panels (b) and (c) show the

percentage of minority present at each rank and above, choosing

the first 𝑥 eigenvectors of the𝐴𝑇𝐴matrix, as 𝑥 varies between 1 and

10, and aggregating them using 𝑓 (𝜆) = 1 (b) and 𝑓 (𝜆) = 𝜆2 (c). We

note that for the larger datasets (DBLP and Instagram), the choice

of 𝑓 between 𝑓 (𝜆) = 1 and 𝑓 (𝜆) = 𝜆2 does not change the ranking,
as the gap between different values of the authority scores obtained

is larger than the values of the eigenvalues squared. The trends are

quite different, depending on the number of eigenvectors chosen,

noting that each datasets seems to have a different ‘optimum’ in

terms of fairness. For example, for the DBLP dataset, choosing 5

eigenvectors seems to have the best fairness improvement (and even

better than the degree ranking, as Figure 8 (a) shows); choosing any

other number presents no clear pattern. Cucuringu and Mahoney

[12] present an empirical analysis of when a minority group gets

captured in a lower-order eigenvector, using the inverse participa-
tion ratio as a measure of a score over eigendirections describing

how well-captured a community is in a given eigendirection. They

note that a community may appear well-represented in various

lower-order eigenvectors. We conclude that using subspace HITS

may be in some cases beneficial, but without a stable and consistent

pattern for how many eigenvectors might improve fairness for a

minority group.
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(a) APS, 𝑓 (𝜆) = 1
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(b) APS, 𝑓 (𝜆) = 1, multiple EVs
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(c) APS, 𝑓 (𝜆) = 𝜆2, multiple EVs

Figure 7: Representation of the minority group R in the ranking of the nodes based on degree (orange), HITS (purple), and
Pagerank (blue), for the APS dataset, using 6 eigenvectors and 𝑓 (𝜆) = 1 (a). Figures (b) and (c) show the representation of the
minority group when using a varied number of eigenvectors for 𝑓 (𝜆) = 1 (b) and 𝑓 (𝜆) = 𝜆2 (c).
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(a) DBLP, 𝑓 (𝜆) = 1
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(b) DBLP, 𝑓 (𝜆) = 1, multiple EVs
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(c) DBLP, 𝑓 (𝜆) = 𝜆2, multiple EVs

Figure 8: Representation of the minority group R in the ranking of the nodes based on degree (orange), HITS (purple), and
Pagerank (blue), for the DBLP dataset, using 10 eigenvectors and 𝑓 (𝜆) = 1 (a). Figures (b) and (c) show the representation of the
minority group when using a varied number of eigenvectors for 𝑓 (𝜆) = 1 (b) and 𝑓 (𝜆) = 𝜆2 (c).
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(a) Instagram, 𝑓 (𝜆) = 1
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(b) Instagram, 𝑓 (𝜆) = 1, multiple EVs
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(c) Instagram, 𝑓 (𝜆) = 𝜆2, multiple EVs

Figure 9: Representation of the minority group R in the ranking of the nodes based on degree (orange), HITS (purple), and
Pagerank (blue), for the Instagram dataset, using 6 eigenvectors and 𝑓 (𝜆) = 1 (a). Figures (b) and (c) show the representation of
the minority group when using a varied number of eigenvectors for 𝑓 (𝜆) = 1 (b) and 𝑓 (𝜆) = 𝜆2 (c).
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