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Abstract
When launching a new product, historical sales
data is often not available, leaving price as a cru-
cial experimental instrument for sellers to gauge
market response. When designing pricing experi-
ments, there are three fundamental objectives: es-
timating the causal effect of price (i.e., price elas-
ticity), maximizing the expected revenue through
the experiment, and controlling the tail risk suf-
fering from a very huge loss. In this paper, we re-
veal the relationship among such three objectives.
Under a linear structural model, we investigate
the trade-offs between causal inference and ex-
pected revenue maximization, as well as between
expected revenue maximization and tail risk con-
trol. Furthermore, we propose an optimal pricing
experimental design, which can flexibly adapt to
different desired levels of trade-offs. Through the
optimal design, we also explore the relationship
between causal inference and tail risk control.

1. Introduction
The importance of understanding the market response to
new products or services cannot be overstated for today’s
online platforms. In the absence of informative historical
data, price always serves as the primary or even sole experi-
mental instrument that sellers can use to gain insights into
market demand. The seller can use adaptive pricing strate-
gies during experimental periods such as a product launch.
As a result, designing efficient and reliable pricing exper-
iments is becoming increasingly crucial (Xu et al. 2019;
Bastani et al. 2022). However, in real world, the objectives
of the pricing experiments could be very different.

Without a doubt, like most experiments on online platforms
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(see, e.g., Xiong et al. 2019; Bojinov et al. 2022), one of the
primary objectives of pricing experiments is to estimate the
casual effect of price, which in our context is also known
as price elasticity. This objective has been a central focus
in both experimental design literature and fields such as
marketing (see, e.g., Tellis 1988; Bijmolt et al. 2005) and
operations management (see, e.g., Chintagunta et al. 2002;
Kocabıyıkoğlu & Popescu 2011) for the past decades. Esti-
mating price elasticity not only enhances understanding of
the market, but also provides valuable long-term rewards
for the seller. For example, it can inform decisions such
as settling on a fixed and permanent price for the future,
or adjusting pricing in response to inventory backlogs or
upcoming promotions, or even designing new products or
services that align with consumer preferences.

Recently, there has been growing attention paid to the in-
experiment performance, which refers to the revenue that
the seller can collect during the experimental period. This
short-term reward is also essential and needs to be carefully
considered in many cases, particularly for products with
relatively short life cycles (Ferreira et al. 2016), limited in-
ventory (Xu et al. 2019) or in the online service economy
(Scott 2015). Recent advances in dynamic pricing have been
found to be effective in earning short-term rewards, particu-
larly when the price-dependent demand models are not fully
known. To achieve optimal in-experiment performance,
sellers must strike a delicate balance between exploring
(learning about the demand) and exploiting (charging es-
timated optimal prices) (see, e.g., Keskin & Zeevi 2014;
Qiang & Bayati 2016; Ban & Keskin 2021).

There is a trade-off between the long-term and the short-
term rewards. Gaining a very accurate understanding of
price elasticity through experimentation could disrupt the
balance between exploration and exploitation that is neces-
sary for achieving optimal short-term revenue, because it
may require more investment in learning demand models.
As a result, the pursuit of long-term rewards may come at
the expense of short-term rewards. Additionally, the deci-
sions that optimize short-term rewards may not necessarily
be the best for long-term rewards. This can result in a “short-
sighted” policy, particularly if after-experiment revenues are
given more weight than in-experiment revenues. Further-
more, having a high-quality estimator of price elasticity is
beneficial for both long-term and short-term rewards. A
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high-quality estimator is one that can provide accurate and
precise estimates, reducing the randomness in estimating the
treatment effect. Such a reduction in turn can help reduce
uncertainty in the in-experiment rewards the seller can ex-
pect. Therefore, one of the central questions in this research
is how to systematically and statistically understand the
relationship between long-term rewards after experiments
and short-term rewards within experiments.

For the after-experiment learning, we will focus on the
quality of the price elasticity estimator which is measured
by the commonly-used squared error between the estimated
and real values. For in-experiment learning, the primary
metric of importance is the expected revenue loss, also
known as the expected regret. This is the expected difference
between the optimal pricing decisions made by a clairvoyant
policy and the policy we design. In many cases, it may
not be possible to repeat experiments multiple times for
online platforms due to resource constraints or other factors,
and the experiment can be run only once. In such cases,
the expected value of the regret may not be informative
enough to make a good decision. Therefore, we will also
consider the distribution of the regret, specifically the tail
of the distribution, which captures the risk of large revenue
losses. In summary, the fundamental objectives of pricing
experiments that we consider include estimating the causal
effect of price, managing the expected within-experiment
revenue, and controlling the tail risk. This research aims
to reveal the close relationship among these objectives and
how to design optimal pricing experiments accordingly.

1.1. Main results and contribution

The main contribution of this work lies in the statistical
and systematical understanding of the fundamental relation-
ship among causal effect, expected revenue and tail risk in
pricing experimental designs. We also propose an optimal
pricing experimental design that can flexibly adapt to differ-
ent objectives. To our best knowledge, this work is the first
to jointly consider the in-experiment and after-experiment
revenues in the dynamic pricing literature. We next summa-
rize our main results and highlight our contributions.
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Figure 1. An overview of the main results.

Between causal inference and expected revenue manage-
ment. We first statistically establish the trade-off between

the accuracy of causal estimators and the expected regret in
revenue. More specifically, for any given admissible pricing
policy and causal estimator, we derive a lower bound de-
scribing that the product of the squared error of the estimator
and the expected regret can always be lower bounded by
a constant independent of the horizon T in the worst case.
This means that there is always a trade-off between the two
objectives and it is not possible to achieve high accuracy and
low regret at the same time. To the best of our knowledge,
this is the first result in current literature that captures this
trade-off between causal inference and expected revenue
management. In addition to this, we have also proposed an
optimal experimental design, RSD, which adopts the idea
of random shock pricing from (Nambiar et al., 2019). Our
results show that RSD can achieve the lower bound that we
derived, indicating that the lower bound is achievable and
that RSD is optimal in this sense. Furthermore, our RSD
design is flexible and can be adapted to different desired
levels of trade-off between the two objectives, providing a
useful tool for practitioners in the field.

Between expected revenue management and tail risk con-
trol. We also study the relationship between the expected
regret and the tail probability that the realized empirical
regret is very large. We discover that it is possible to re-
duce the tail probability of RSD by sacrificing some of the
expected regret, when the horizon T is sufficiently large.
In other words, while the expected value of the regret may
increase, the tail of the distribution of the regret becomes
lighter. Furthermore, we derive an information-theoretical
lower bound that shows that the tail probability of RSD is
the best achievable in terms of the dependence on T, up
to logarithm factors. This implies that our RSD design is
not only optimal in terms of the trade-off between accuracy
and regret, but also in terms of tail risk. To the best of our
knowledge, we are the first to study this important aspect of
tail risk in revenue management literature and to explicitly
reveal the essential trade-off between revenue management
and risk control in dynamic pricing literature.

Between causal inference and tail risk control. Under
the structural model where the demand is linear with the
price and exogenous features, we disclose that the tail risk
mainly comes from the uncertainty in the estimation of
the price elasticity within the experiment. This means that
the bottleneck of reducing tail risk is the quality of the
causal inference of the price, rather than the estimation
of the influence of exogenous features. Intuitively, if the
estimation of the causal effect is more accurate and closer to
the real value, the distribution of the regret will also be more
likely to be concentrated around its expectation, resulting
in lighter tail risk. This illustrates that if we can design a
strong causal estimator through the experiment, the tail risk
can be further reduced. As far as we know, we are the first
to reveal the relationship between the causal inference and
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risk control in the dynamic pricing literature.

1.2. Literature Review

Dynamic pricing with unknown demand model. There is
a rich body of literature on dynamic pricing with unknown
demand models, with the main objective being to maximize
in-experiment revenues. This area includes works without
contextual information (see, e.g., Broder & Rusmevichien-
tong 2012; Keskin & Zeevi 2014; Besbes & Zeevi 2009;
2012; Wang et al. 2014; Miao & Wang 2021; Wang et al.
2021b) and more recently, literature on context-based dy-
namic pricing (e.g., Javanmard & Nazerzadeh 2019; Cohen
et al. 2020; Wang et al. 2021a; Chen & Gallego 2021; Ke-
skin et al. 2022; Miao et al. 2022; Xu & Wang 2021; Fan
et al. 2021). We refer to (Ban & Keskin, 2021) for a care-
ful review. Relevant to our work, (Qiang & Bayati, 2016)
consider the same linear demand model as us, but in an
incumbent-price setting. (Cheung et al., 2017) design pric-
ing experiment to identify the real demand model from a
finite function class. (Nambiar et al., 2019) study a partially
linear structure demand model with model misspecification.
Our design also follows the idea of the random price shock
algorithm proposed by (Nambiar et al., 2019) which con-
sider maximizing expected in-experiment revenue but do not
cover two other objectives. (Bastani et al., 2022) recently
propose a novel transfer learning approach to learn across
different pricing experiments.

Adaptive experimental design. The benefits of experimen-
tation for online platforms have been widely recognized by
academia (e.g., Athey et al. 2018; Xiong et al. 2019; Wager
& Xu 2021b; Johari et al. 2022; Farias et al. 2022b; Boji-
nov et al. 2022) and industry (see, e.g., Bakshy et al. 2014;
Azevedo et al. 2020; Kohavi et al. 2020). Our pricing ex-
perimental design is most relevant to adaptive experimental
design, which often uses the Multi-armed bandit (MAB) tool
for its efficiency (Lai et al. 1985). Relevant works include
those by (Wager & Xu, 2021a) on diffusion-asymptotic anal-
ysis for sequentially randomized experiments, (Adusumilli,
2021) on asymptotic Bayes and minimax risk for bandit
experiments, (Kasy & Sautmann, 2021) on experiments to
identify the best arm with batched data, (Dimakopoulou
et al., 2021) on adaptive inference on the true mean of each
arm at each step, (Offer-Westort et al., 2021) on adaptive
experiments in political science, (Farias et al., 2022a) on the
combination of synthetic control and MAB, (Qin & Russo,
2022) on bandit experiments with potentially nonstationary
contexts, and (Simchi-Levi & Wang, 2022) on the trade-off
between with-experiment rewards and after-experiment in-
ference. There are also a large number of works that do not
integrate MAB, such as (Hahn et al., 2011) on two-stage
design for estimating average treatment effect, (Kato et al.,
2020) on estimators constructed from dependent samples,
(Glynn et al., 2020) on optimal experimental design for

temporal interference, and (Bhat et al., 2020) on optimal
allocation of test subjects for precision of treatment effect es-
timation in A/B test. These works mostly focus on discrete
treatments rather than continuous treatments like price.

After-experiment inference with adaptively collected
data. There is a body of literature on after-experiment
inference from adaptively collected data. One area of in-
terest is evaluating new policies using observational data
that cannot be treated as i.i.d. samples (Dudı́k et al. 2014;
Swaminathan & Joachims 2015; Li et al. 2015; Wang et al.
2017; Farajtabar et al. 2018; Zhan et al. 2021). Researchers
also begin to optimize decision rules based on non-i.i.d.
data (Kallus & Zhou 2018; Athey & Wager 2021; Zhou et al.
2022; Jin et al. 2022). More relevant works include (Barein-
boim et al., 2015) on the unobserved confounding issue,
(Hadad et al., 2021) on constructing confidence intervals for
after-experiment evaluations, (Dimakopoulou et al., 2017;
2019) on estimating heterogeneous treatment effect, and
(Chen et al., 2022) on a bootstrap mechanism for debiasing
sample means without knowledge of the reward distribution.

Risk-averse decision making. Recently, there is a stream of
works studying the risk-averse MAB problem that is related
to our work (Sani et al. 2012; Galichet et al. 2013; Zimin
et al. 2014; Cassel et al. 2018; Prashanth et al. 2020; Zhu &
Tan 2020; Baudry et al. 2021; Khajonchotpanya et al. 2021;
Chang & Tan 2022). These works refine the optimal arm
based on metrics such as conditional value-at-risk and mean-
variance criteria, instead of expected regret. Different from
them, our work adopts the risk measure in (Fan & Glynn,
2021) and (Simchi-Levi et al., 2022). Risk has also been
attracting attention in revenue management and dynamic
pricing, with early works by (Feng & Xiao, 1999; Levin
et al., 2008) and more recent works by (Gönsch et al., 2018;
Schur et al., 2019). We refer to (Gönsch, 2017) for a survey.

Throughout this paper, we define a ∧ b ≜ min{a, b} and
a ∨ b ≜ max{a, b} for a, b ∈ R, and use [n] to denote the
set {1, 2, · · · , n} for any positive integer n. Throughout
this paper, the notations O(·), Ω(·) and Θ(·) are used to
hide constant factors, and Õ(·), Ω̃(·) and Θ̃(·) are used to
hide both constant and logarithmic factors.

Finally, we remark that the full version of this paper (con-
taining additional theoretical results, computational ex-
periments, and missing proofs) is available at https:
//ssrn.com/abstract=4357543.

2. Formulation
In this paper, we study the pricing experimental design for
a seller trying to figure out the price elasticity (i.e., the
treatment effect of price) of new products without access to
informative historical data. The expected earned revenue
and the risk of suffering from huge loss throughout the ex-

3

https://ssrn.com/abstract=4357543
https://ssrn.com/abstract=4357543


Pricing Experimental Design

periment are also of great interest. Formally, a seller is
allowed to conduct pricing experiments on an online plat-
form over a horizon of T periods. At the beginning of each
period t, the seller observes an exogenous context vector
xt ∈ [0, 1] ∈ Rd encoding the product’s characteristics and
some other confounding factors in period t, e.g., economic
indicator, weather, competitors’ prices. We assume that
{xt}t≥1 are independently and identically distributed (i.i.d.)
random variables (r.v.’s) drawn from some unknown distri-
bution P . Given the context vector xt, customer demand
Dt as a function of price p is generated by the following
linear structural function:

Dt(p) = bp+ θ⊤xt + εt, (1)

where for simplicity, we assume the first dimension of xt

is fixed to be 1. b and θ are both unknown to the seller
and are what need to be learned. {εt}t≥1 are i.i.d. mean-

zero σ2-sub-Gaussian r.v.’s, i.e., E[eλεt ] ≤ e
λ2σ2

2 for any
λ ∈ R. The linear structural model (1) is seen as one of
the most fundamental models in different fields, such as
revenue management (see, e.g., Qiang & Bayati 2016) and
econometrics (see, e.g., Aizer & Doyle Jr 2015). In causal
inference, b can always be interpreted as the treatment effect
of the continuous treatment (i.e., price in this work). b is
also referred to as price elasticity in operations management.
Moreover, we assume the boundedness of parameters and
the positive definite information matrix.

Assumption 1. (i) b ≤ b ≤ b < 0 and θ ∈ [−1, 1]d.

(ii) The minimum eigenvalue of M := E[xx⊤] is lower
bounded by a constant c0, i.e., λmin(M) ≥ c0 > 0.

These two assumptions are relatively mild and commonly
used in current literature (see, e.g., Qiang & Bayati 2016 and
Nambiar et al. 2019). We assume the seller’s awareness of b
and b, which can be seen as some prior information based on
the seller’s past experience. We only ask for the existence of
c0, but not the exact value of c0. The expected revenue under
price p given context xt is p(bp+ θ⊤xt). The optimal price
for period t can be defined to be p∗t := argmaxp∈[p,p] p(bp+

θ⊤xt) = − θ⊤xt

2b . Following the literature, e.g., (Chen &
Gallego, 2021) and (Ban & Keskin, 2021), we assume that
the optimal price p∗t at each time t always falls into [p, p].

Assumption 2. p∗t = − θ⊤xt

2b ∈ [p, p] for any b ∈ [b, b] and
xt ∈ [0, 1]d.

All the instances ν under the structural equation (1) sat-
isfying Assumptions 1 and 2 constitute an instance class
denoted as E0. Given the context xt, the seller charges a
price pt. After observing the demand realization Dt, the
seller collects the revenue ptDt. An admissible pricing ex-
perimental design π is defined as a sequence of functions
{πt}t≥1, where each πt(·) maps the historical information

observed up to the beginning of period t, denoted by vector
Ht = (x1, p1, D1, . . . , xt−1, pt−1, Dt−1, xt), and possibly
some external randomness to a feasible price pt ∈ [p, p]. In
addition, an admissible inference of the treatment effect b is
defined as a sequence of estimators {b̂t}t≥1, mapping Ht to
[b, b]. Now, we are going to define the performance metrics
for a pricing experimental design π and b̂t.

Causality. For any estimator b̂t, we adopt the expected
squared error e2ν(b̂t) := E[(b̂t − b)2] to measure the per-
formance of causal inference. Note that, for an unbiased
estimator, e2ν(b̂t) is equal to its variance V(b̂t). If the esti-
mator is biased, V(b̂t) is a strict lower bound of e2ν(b̂t).

Revenue. In order to measure the revenue loss of a design
π, we define the empirical regret Rπ

ν (T ) to be the difference
between the T -period revenue generated by the clairvoyant
optimal policy and the revenue collected by π. That is

Rπ
ν (T ) =

T∑
t=1

p∗tDt(p
∗
t )− ptDt(pt). (2)

Because E[
∑T

t=1 p
∗
tDt(p

∗
t )] is a universal constant, our in-

vestigation of the expected revenue during experiment can
be directly transformed to the conventional expected regret
in online learning literature i.e.,Rπ

ν (T ) := E[Rπ
ν (T )]. Intu-

itively,Rπ
ν (T ) is the expectation of the revenue loss a seller

will suffer by conducting the experiment π. If one wants to
maximize the total expected revenue during experiment, it
is equivalent to minimizing the expected regret.

Risk. Following the definition of tail risk of (Fan & Glynn,
2021) and (Simchi-Levi et al., 2022), a policy has β-tailed
risk where β > 0, if for any constant c > 0, there exists a
constant C > 0 and constant k such that

lim sup
T→+∞

ln supν∈E0
P(Rπ

ν (T ) ≥ cT )

T β log(T )k
≤ −C, (3)

where we allow C to be dependent on c. It is also sufficient
to show that for any c > 0, such that

sup
ν∈E0

P(Rπ
ν (T ) ≥ cT ) = exp(−Ω̃(T β)). (4)

Eq. (4) describes that the risk that the pricing experiment
may suffer from a large linear regret decays exponentially
fast. A larger β implies a lighter tail of the empirical regret.

Remark. For revenue maximization and risk control, both
metrics are closely related to the regret. Expected regret is
the commonly used metric to measure the performance of a
policy π in dynamic pricing literature (see, Keskin & Zeevi
2014 and Qiang & Bayati 2016) and bandit literature (see,
Slivkins 2011). β-tailed risk, on the other hand, focuses on
the distribution of the empirical regret. In some situations,
such as when an experiment can only run once or a few
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times, the expectation of the empirical regret may not be
sufficient to secure the risks of the experiment. In (Simchi-
Levi et al., 2022), the regret satisfying Eq. (3) or Eq. (4)
is called light-tailed. Our focus here is on the value of β,
rather than just whether it is light-tailed or not.

3. Between Causal Inference And Expected
Revenue Management

In this section, we are going to explore the relationship be-
tween causal inference and expected revenue maximization.
Specifically, we will investigate the correlation between e2ν
andRπ

ν (T ). First, in Section 3.1, we will establish a lower
bound that statistically captures the trade-off between these
two metrics. Then, in Section 3.2, we will introduce an
optimal pricing experimental design that can be adjusted to
meet different requirements of the trade-off between causal-
ity inference and expected revenue maximization.

3.1. A Lower Bound

The trade-off between exploration and exploitation is a cen-
tral focus in online learning literature (see e.g., Lattimore &
Szepesvári 2020). When considering both causal inference
and expected revenue maximization, this trade-off becomes
even more crucial. The goal of exploration is typically
to gain more information about the underlying structural
model, which is also beneficial for causal inference. How-
ever, excessive exploration can result in large regret. On
the other hand, any policy with a small expected regret will
sacrifice some exploration opportunities in order to exploit
the current information and earn revenue, which may harm
the potential for more accurate inference of price elasticity.
We derive the following theorem that states this trade-off.

Theorem 1. For any admissible design π and causal esti-
mator b̂T , there always exists a hard instance ν ∈ E0 that
e2ν(b̂T )Rπ

ν (T ) is no less than a constant order, i.e.,

inf
π,b̂T

max
ν∈E0

[
e2ν(b̂T )Rπ

ν (T )
]
= Ω(1).

Theorem 1 states that for any admissible π and b̂T , there
always exists an instance ν such that e2ν(b̂T )Rπ

ν (T ) ≳ T p

for some p ≥ 0. Intuitively, Theorem 1 implies that it is not
possible for both e2ν(b̂

T ) andRπ
ν (T ) to be small simultane-

ously. For any π that can ensure Rπ
ν (T ) = O(T k) for all

ν ∈ E0 where k ≥ 0, there must exist an instance ν̃ such
that e2ν̃(b̂T ) ≳

1
Tk . In other words, no one can expect a b̂T

that can uniformly guarantee e2ν(b̂T ) < Θ( 1
Tk ) among all

ν. Based on the results of (Nambiar et al., 2019) and (Bu
et al., 2022), the worst-case optimal expected regret under
the structural model (1) is Θ̃(

√
T ). This means that if rev-

enue maximization is the only objective, there exists π such
thatRπ

ν (T ) = Õ(
√
T ) for any ν, and such a

√
T bound is

unimprovable. Therefore, any design that can achieve the
optimal expected regret can only expect e2ν(b̂T ) = Ω( 1√

T
)

in the worst case. In addition, the following proposition
formally presents the strong statistical power of random
control trails (RCTs) on inferring the price elasticity.

Proposition 1. At any time t ∈ [T ], the seller charges
p or p with equal probability independently from the ob-

served history. Let b̂RCT
t :=

∑t
s=1(ps−(p+p)/2)ds∑t
s=1(ps−(p+p)/2)2

. Then,

e2ν(b̂
RCT
t ) = O( 1t ) for all ν ∈ E0 and t ∈ [T ].

Thus, by designing the estimator based on the data gener-
ated by RCTs, we can obtain a fast decaying speed of the
estimator of price elasticity, i.e., e2ν(b̂

RCT
T ) = O( 1

T ) for all ν.
From the traditional statistics (see, e.g., Wainwright 2019),
the 1

T speed is almost the fastest speed one can expect. Un-
der such a case, Theorem 1 tells that the linear expected
regret of RCTs is generally unavoidable, which is saying
RπRCT

ν (T ) = Ω(T ) in the worst case. Furthermore, the
lower bound is restricting that any design (π, b̂T ) can that
guarantee e2ν(b̂T ) = O( 1

T ) will suffer from linear expected
regret in the worst case. Thus, in this sense, it is almost
impossible to find other designs that are strictly better than
RCTs if the causal inference is the only objective of interest.
In practice, (Fisher et al., 2018) applies RCTs in a field
experiment to gauge the demand model of an online retailer.

3.2. An optimal design

In the preceding, we have shown that RCTs are optimal
when causal inference is the only objective. A natural ques-
tion is how to provide a flexible pricing experimental design
that can be adjusted to different desired levels of trade-off
between causal inference and expected revenue.

If the only objective of the pricing experiment is to maxi-
mize expected revenue, there already exist several pioneer
works in dynamic pricing working on the structural model
(1) (Qiang & Bayati 2016; Bu et al. 2022). (Nambiar et al.,
2019) design a dynamic pricing strategy that can achieve
the optimal Θ̃(

√
T ) regret rate based on an elegant idea

of “random shock”. Our random shock design (RSD for
short) presented in Algorithm 1 follows from such an idea.
Specifically, in each period t, the seller first computes a
greedy price pgt by plugging in the estimators for θ⊤x and
b, since the seller wants to exploit the past information to
maximize revenue. Then, it charges a price pt by adding
an independent random shock ∆t, which takes the value
of δt or −δt with equal probability, to the greedy price pgt .
Note that ∆t is a series of instrument variables. Thus, it is
eligible to apply a two-stage least squares regression, i.e.,
regressing dt directly against the random shock ∆t, and
we get an unbiased estimate of b. That is

∑t
s=1 ∆sds∑t
s=1 ∆2

s
=∑t

s=1 ∆s(bps+θ⊤xs+εs)∑t
s=1 δ2s

= b+
∑t

s=1 ∆s(bp
g
s+θ⊤xs+εs)∑t

s=1 δ2s
. Note
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Algorithm 1 Random Shock Design (RSD)
1: Input: price range [p, p], bounds on the price coefficient

b and b, trade-off control parameter α ∈ [0, 1
4 ]

2: Initialization: b̂RSD
1 = b+b

2 , θ̂1 = 0
3: for t = 1, 2, · · · , T do
4: Set δt ← t−α and observe xt;
5: Set unconstrained greedy price: put ← − θ̂txt

2b̂RSD
t

;

6: Project greedy price: pgt ← Proj(put , [p+ δt, p− δt]);
7: Generate an independent random variable ∆t ← δt

w.p. 1
2 and ∆t ← −δt w.p. 1

2 ;
8: Set price pt ← pgt +∆t;
9: Observe realized demand dt;

10: Update and output b̂RSD
t+1 ← Proj(

∑t
s=1 ∆sds∑t
s=1(∆s)2

, [b, b]);

11: Set θ̂t+1 ← argmin
∑

s = 1t(ds−b̂RSD
t+1ps−θ̂txs)

2;
12: end for

that since for each 1 ≤ s ≤ t, ∆s is independent of
bpgs + θ⊤x+ εs and has zero mean,

∑t
s=1 ∆sds∑t
s=1 ∆2

s
is an unbi-

ased estimate of b. The final estimator that RSD adopts has
an extra projection of

∑t
s=1 ∆sds∑t
s=1 ∆2

s
to [b, b] (line 10). Such a

projection may introduce some undesirable bias to b̂t. How-
ever, it can reduce the variance of the estimator, and it is
also beneficial for the regret analysis. If there exists some
situation where the unbiasedness is crucial, the algorithm
can be modified as using b̂RSD

t = Proj(
∑t

s=1 ∆sds∑t
s=1(∆s)2

, [b, b]) to
calculate the unconstrained greedy price in line 5 and out-
putting

∑t
s=1 ∆sds∑t
s=1(∆s)2

as the inference for b. Such an idea of
random shock is also adopted by (Goyal & Perivier, 2021;
Miao et al., 2022). Additionally, another idea one may have
is to run short regression, which is to regress dt directly on
pt. Such an idea will bring in omitted variable bias because
of the correlation between xs and ps. The long regression
(i.e., regressing dt against pt and xt) also has some key chal-
lenges that need to be solved, for example, the incomplete
learning issue mentioned by (Keskin & Zeevi, 2018).

Our RSD algorithm bears some similarity to the policy pre-
sented in (Nambiar et al., 2019), but with an added trade-off
control parameter α ∈ [0, 1

4 ]. In (Nambiar et al., 2019), α
is carefully chosen as 1

4 to achieve the optimal
√
T -regret

rate. However, in this section, since we are taking into
account both causal inference and expected revenue max-
imization, we will demonstrate the different roles of α in
these two tasks. Additionally, we will provide further theo-
retical results in the following section, despite the similarity
in design. Theorem 2 illustrates the behavior of RSD on
causal inference and expected revenue maximization.

Theorem 2. With the input of α ∈ [0, 1
4 ], under the linear

demand model in Eq. (1), RSD satisfies

(i) there exists a constant c1 independent of T , such that for
all t ∈ [T ] and any ν ∈ E0, e2ν(b̂

RSD
t ) ≤ c1t

2α−1;

(ii)RRSD
ν (T ) = O(T 1−2α) for any ν ∈ E0.

The expected regret bound decreases with an increase in
α, while the expected error bound increases. This shows
the impact of α on the balance between the two objectives.
When α = 1

4 , Theorem 2 recovers Lemma 1 and Theorem
1 of (Nambiar et al., 2019). This implies that no other
designs can strictly outperform RSD with α = 1

4 on the
expected regret in terms of the dependence on T . If α = 0,
e2ν(b̂

RSD
t ) ≤ c1

t and RRSD
ν (T ) = O(T ), which are similar

to RCTs discussed in Proposition 1. Thus, our RSD can
successfully cover the two extreme cases which have been
well established in current literature. We also want to point
out that if we run RSD with α ∈ ( 14 ,

1
2 ], the first result in

Theorem 2 still holds (i.e., e2ν(b̂
RSD
t ) ≤ c1t

2α−1). However,
the expected regret of RSD will become O(T 2α) instead of
O(T 1−2α). This indicates that when α ≥ 1

4 , increasing α
will worsen both the expected regret and the expected error,
and thus there is no incentive to consider α > 1

4 . Moreover,
we can have an immediate corollary.

Corollary 1. For any ν ∈ E0, e2ν(b̂
RSD
T )RRSD

ν (T ) = O(1).

Corollary 1 matches with the lower bound we have estab-
lished in Theorem 1 up to a constant level. This indicates
that our RSD is rate optimal on the metric expected error
times expected regret. Thus, we derive a tight description of
the relationship between causal inference and expected rev-
enue in Corollary 2. Intuitively, e2ν(b̂T ) ≃ 1

Rπ
ν (T ) is roughly

the smallest error one can expect from the best estimator
based on a given policy π. In turn, given an estimator b̂T
and the desired error bound e2ν(b̂T ), the best policy π can
be expected to achieve roughly 1

e2ν(b̂T )
regret.

Corollary 2. infπ,b̂T maxν∈E0
[e2ν(b̂T )Rπ

ν (T )] = Θ(1).

4. Between Expected Revenue Management
and Tail Risk Control

In this section, we study the connection between expected
revenue management and risk control. We begin by analyz-
ing the risk tail of RSD in Section 4.1. By the analysis, we
uncover the relationship between causal inference and tail
risk in Section 4.2. In Section 4.3, we present a lower bound
demonstrating the trade-off between expected regret and
tail risk. Although RSD follows some ideas from (Nambiar
et al., 2019), the results in this section are completely novel.

4.1. Tail Risk of RSD

Here, we analyze the tail risk of RSD. To the best of our
knowledge, this work is the first to examine the tail behavior
of any dynamic pricing algorithm. The main theorem of this
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section states that RSD has (1− 2α)-tailed risk. Formally,

Theorem 3. With the input parameter α ∈ (0, 1
4 ], under the

linear demand model in Eq. (1), RSD has (1− 2α)-tailed
risk. Particularly, for any fixed c > 0 and ν ∈ E0,

P(RRSD
ν (T ) ≥ cT ) = exp

(
−Ω

(
T 1−2α

log log(T )

))
. (5)

Since all the parameters are assumed to be bounded in As-
sumption 1, Eq. (5) holds trivially when c is large. Eq.
(5) becomes informative when c is small. Theorem 3 does
not cover α = 0. The reason is that when α = 0, from
Theorem 2, the expected regretRRSD

ν (T ) is in the order of
T in the worst case. Therefore, it is unreasonable to expect
the probability that the empirical regret is no smaller than
order T can decay with T . Moreover, the RHS of Eq. (5)
increases in terms of T as α decreases. This indicates that
increasing α will reduce the tail of empirical regret when T
is sufficiently large. Note that T 1−2α in the RHS of Eq. (5)
is exactly the order of the expected regret. In other words,
lnP(RRSD

ν (T ) ≥ cT ) decays almost at the same speed as
the expected regret grows. Specifically,

max
ν∈E0

lnP(RRSD
ν (T ) ≥ cT ) ≃ −T 1−2α ≃ −max

ν∈E0

RRSD
ν (T ),

which explicitly establishes a bridge between the expected
revenue management and risk control. When T is suffi-
ciently large, we ignore the log log(T ) term and constants
following the traditions in online learning literature.

Remark. With the established upper bound of the expected
regret in Theorem 2, a straightforward way to derive the
tail bound is by simply applying Markov’s inequality. This
will provide us with an upper bound of O(T−2α), which is
much larger than the exponentially decaying one in Eq. (5).

Recently, a similar trade-off between the expected regret
and the risk tail has also been observed in the traditional
multi-armed bandit setting by (Simchi-Levi et al., 2023).

4.1.1. PROOF SKETCH TO THEOREM 3.

In this subsection, we provide a sketched proof whose
intermediate results may also be of independent interest.
We identify two sources of risk: the possibility that the
prices set by the seller are not optimal, and the inherent
noise present in each time period. As a result, we decom-
pose the empirical regret, RRSD

ν (T ), into two components:
R̃RSD

ν (T ) :=
∑T

t=1 (p
∗
t (bp

∗
t + θxt)− pt(bpt + θxt)) and

MT :=
∑T

t=1(p
∗
t − pt)εt. R̃RSD

ν (T ) is usually referred
to as the pseudo empirical regret in the literature. Then,
by the union bound, we can have P(RRSD

ν (T ) ≥ cT ) ≤
P
(
MT ≥ c

2T
)
+ P(R̃RSD

ν (T ) ≥ c
2T ), where the first term

is related to the independent sub-Gaussian noise. We have
the following lemma to bound the tail of the martingale MT .

Lemma 1. For any ϵ > 0, P (MT ≥ ϵ) ≤ e
− ϵ2

2p2σ2T .

We then know that P
(
MT ≥ c

2T
)
= exp(−Ω(T )). There-

fore, P(R̃RSD
ν (T ) ≥ c

2T ) is the main focus of the remaining
proof. The pseudo empirical regret can be further decom-
posed into three terms as follows.

R̃RSD
ν (T ) ≤ 3|b|∥θ∥2

2b
4

T∑
t=1

(b− b̂RSD
t )2

+
3|b|
2b

2

T∑
t=1

(
θ⊤xt − θ̂⊤t xt

)2
+ 6|b|

T∑
t=1

δ2t , (6)

where the first term captures the regret incurred by the inac-
curacy of causal inference of the pricing effect, the second
term stems from the error of estimating θ, and the third
term is generated by the random shocks. Again, with the
union bound, what we need to bound is the probability that
each of the three terms on the RHS of Eq. (6) is no smaller
than c

6T . Note that since
∑T

t=1 δ
2
t = Θ(T 1−2α), when T

is sufficiently large, the probability that the third term of Eq.
(6) is no less than c

6T is zero. Therefore, we only need to
control the first two terms of Eq. (6). Intuitively, by how
RSD obtains θ̂t, the second term of Eq. (6) is decided by
how well b̂t can perform and the behavior of the least square
estimator. We have the following inequality,

P

(
3|b|
2b

2

T∑
t=1

(
θ⊤xt − θ̂⊤t xt

)2
≥ cT

6

)

≤ P(
T∑

t=1

(b− b̂RSD
t )2 ≥ cr1T ) + exp(−Ω(T 1−2α)), (7)

where cr1 is a universal constant whose value will be speci-
fied in the proof. Eq. (7) decomposes the tail risk incurred
by the estimating error of θ into the tail of inferring b and
the convergence of the least square estimator. The final re-
maining block is how to bound P(

∑T
t=1(b− b̂RSD

t )2 ≥ c2T )
for some fixed c2 > 0. We first have the following lemma
on the tail bound of a single step estimator b̂RSD

t .

Lemma 2. For any t ∈ [T ],

P
(
(b− b̂RSD

t )2 ≥ ϵ
)
≤ 2 exp(−ϵcb1t1−2α), (8)

where cb1 = 1/(4(σ2 + 2b2p2 + 2 ∥θ∥2)).

The last gap we need to bridge is from P((b− b̂RSD
t )2 ≥ ϵ)

to P(
∑T

t=1(b− b̂RSD
t )2 ≥ c2T ). The challenges come from

the fact that {b̂RSD
t }t≥1 are highly correlated. Specifically,

since intuitively (b − b̂RSD
t ) becomes smaller and smaller

as t grows, how to allocate the total c2T “budget” to each
time t to make the union bound provide a desired result is
challenging. We have the following Lemma 3.
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Lemma 3. For any fixed c2 > 0,

P

(
T∑

t=1

(b− b̂t)
2 ≥ c2T

)
= exp

(
−Ω

(
T 1−2α

log log(T )

))
.

Combining Eq. (6), Eq. (7) and Lemmas 1 and 3, we
have P(R̃RSD

ν (T ) ≥ c
2T ) = exp(−Ω( T 1−2α

log log(T ) )). Since
P
(
MT ≥ c

2T
)
= exp(−Ω(T )), we finish the proof.

Remark. Lemma 2 can be used to establish the confidence
interval of our estimator b̂RSD

t . Also, note that Lemma 2
holds for any t ∈ [T ]. This means that we can conduct an
adaptive inference through the whole experimental period
unlike the traditional after-experiment inference where one
can only get a reliable inference at the end of the experiment.

4.2. Between Causal Inference And Tail Risk Control

Based on Eq. (6) and Eq. (7), we can figure out that the
main bottleneck of the tailed risk becomes the tail behavior
of the squared error of estimated b. We now can draw the
following conclusion on the relationship between the causal
inference and risk control under the linear structure model.
Corollary 3. Under the linear structural model (1), the tail
risk of RSD is mainly caused by the uncertainty of causal
inference (i.e., the error of estimating b).

Intuitively, if b̂RSD
t can well concentrate around b, then the

risk that the seller suffers from a large empirical regret can
also be reduced. This can also interpret why decreasing α
can reduce the risk tail (discussed in Theorem 3). When in-
creasing α, from Theorem 2 and Lemma 2, both the squared
error of b̂RSD

t (i.e., e2ν(b̂
RSD
t )) and the tail of b̂RSD

t decrease.
Moreover, roughly speaking,

max
ν∈E0

lnP(RRSD
ν (T ) ≥ cT ) ≃ −T 1−2α ≃ −1/e2ν(b̂RSD

T ).

Note that here we just establish the quantitative relationship
between maxν∈E0

lnP(RRSD
ν (T ) ≥ cT ) and e2ν(b̂

RSD
T ) for

RSD. We do not mean that only the estimation error at the
last time period T influences the tail behavior of the em-
pirical regret. There exists complex dependence between
RRSD

ν (T ) and e2ν(b̂
RSD
T ) through the history HT , which al-

lows us to establish such an explicit numerical relation-
ship. Another important message that Corollary 3 conveys
is about the different roles of b and θ in Eq. (1). Although
b and θ are both coefficients of the linear model, they are
heterogeneous in influencing the performances of RSD. The
reason is that all xt are i.i.d. generated, but the prices pt are
endogenous and adaptively selected. Therefore, estimating
b can become the bottleneck of the linear structural model.

4.3. A Lower Bound

In this section, we are going to show that the (1−2α)-tailed
risk is almost the lightest tail that can be achieved by any

design whose expected regret can be uniformly bounded by
O(T 1−2α). Formally, we define the policy class Π1−2α as

Π1−2α := {π : ∃c0 > 0,∀ν ∈ E0,Rπ
ν (T ) ≤ c0T

1−2α},

which includes all the policies π with the expected regret
upper bound O(T 1−2α). It is straightforwards to verify that
RSD with input α belongs to Π1−2α based on Theorem 2.
Our main theorem in this section is as follows.

Theorem 4. Specify the environment class E0 as p ∈ [ 34 , 2]
and b ∈ [−1,− 1

6 ]. For any π ∈ Π1−2α, there exists a hard
instance ν which makes the risk no lighter than a (1− 2α)-
tailed one, i.e., for any 0 < c ≤ 1

768 ,

inf
π∈Π1−2α

max
ν∈E0

P(Rπ
ν (T ) ≥ cT ) = exp(−O(T 1−2α)). (9)

Like Theorem 3, when c is large, Eq. (9) holds trivially. The
main challenge arises when c is close to 0. Therefore, in
Theorem 4, though 0 < c ≤ 1

768 may not be ideal, it has
already revealed the essence of the problem and is sufficient
for our purpose. The lower bound aligns with the upper
bound we derived in Theorem 3. This allows us to safely
conclude that RSD also possesses optimality in terms of tail
risk, in addition to the established optimality in causal in-
ference and revenue management in Section 3.2. The lower
bound established in Theorem 4, as far as we know, is the
first lower bound of the risk in online learning with continu-
ous action space and in dynamic pricing literature. Together,
Theorems 3 and 4 demonstrate the optimal achievable risk
for Π1−2α is (1− 2α)-tailed.

Corollary 4. For any fixed E0, there exists a universal
constant c3 > 0, such that for any 0 < c ≤ c3,

inf
π∈Π1−2α

max
ν∈E0

P(Rπ
ν (T ) ≥ cT ) = exp(−Θ̃(T 1−2α)).

Corollary 4 indicates that if a seller wishes to implement a
policy with a risk tail that is strictly lighter than a (1− 2α)-
tailed one, they must expand the class of policies under
consideration from Π1−2α to Π1−2α+ϵ for some ϵ > 0. The
seller must sacrifice expected regret in order to achieve a
better risk tail. The trade-off between expected revenue and
tail risk is further highlighted by this result.

5. Discussion
In this section, we discuss the assumptions, limitations, and
future directions of this work. One important assumption is
the prior knowledge of the bounds of the parameters (i.e., b,
b, and θ ∈ [0, 1]d) outlined in Assumption 1. This assump-
tion is commonly made in the dynamic pricing literature
(see, e.g., Keskin & Zeevi 2014; Besbes & Zeevi 2015;
Miao et al. 2022), but admittedly it is a strong one. (Bijmolt
et al., 2005) observe that the distribution of the elasticities
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is strongly peaked across a set of 1851 price elasticities
based on 81 different studies. 50 percent of the observations
are between −1 and −3 and 81 percent between −4 and
0. (Nambiar et al., 2019) has a similar finding that most
of the b for different categories of fashion items lie in the
range [−1,−0.1], at Oracle Retail. Although the seller may
not have informative data on the new products, the data
from other products can be used to provide the bound. An-
other strong assumption of this work is the linear structure
model. When the structure model is nonparametric with
the context x, (Bu et al., 2022) have designed an algorithm
which can achieve the optimal expected regret. The risk
behavior may be different under a nonparametric function,
as the main source of risk may come from the difficulty in
identifying the nonparametric function instead of estimat-
ing b. Thus, the claim in Corollary 3 may not hold under
a semi-parametric model. The linear treatment effect of
price is also strong. Future work includes extending the
results to other parametric forms of treatment effect and
non-parametric forms.

6. Conclusion
In this paper, we statistically investigate the fundamental
relationship among estimating the price elasticity, earning
the revenue through the experiment, and controlling the tail
risk. We first establish the trade-off between the estimating
error and the expected regret, which is no pair of policy
and estimator can make maxν∈E0

[e2ν(b̂T )Rπ
ν (T )] strictly

smaller that a constant. We also reveal the trade-off between
the expected regret and the risk tail, which is the risk tail is
lower bounded by an exponential term which is decreasing
with the expected regret. We propose an optimal design
RSD, which can match with both the lower bounds and are
optimal. For RSD, under the linear structural model, the risk
tail is mainly because of the uncertainty of estimating price
elasticity during the experiment.
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off-policy value estimation. In Artificial Intelligence and
Statistics, pp. 608–616. PMLR, 2015.

Miao, S. and Wang, Y. Network revenue management
with nonparametric demand learning:\sqrt {T}-regret and
polynomial dimension dependency. Available at SSRN
3948140, 2021.

Miao, S., Chen, X., Chao, X., Liu, J., and Zhang, Y. Context-
based dynamic pricing with online clustering. Production
and Operations Management, 31(9):3559–3575, 2022.

Nambiar, M., Simchi-Levi, D., and Wang, H. Dynamic
learning and pricing with model misspecification. Man-
agement Science, 65(11):4980–5000, 2019.

Offer-Westort, M., Coppock, A., and Green, D. P. Adaptive
experimental design: Prospects and applications in politi-
cal science. American Journal of Political Science, 65(4):
826–844, 2021.

Prashanth, L., Jagannathan, K., and Kolla, R. K. Concentra-
tion bounds for cvar estimation: The cases of light-tailed
and heavy-tailed distributions. In Proceedings of the
37th International Conference on Machine Learning, pp.
5577–5586, 2020.

Qiang, S. and Bayati, M. Dynamic pricing with demand
covariates. Available at SSRN 2765257, 2016.

Qin, C. and Russo, D. Adaptivity and confounding
in multi-armed bandit experiments. arXiv preprint
arXiv:2202.09036, 2022.

Sani, A., Lazaric, A., and Munos, R. Risk-aversion in
multi-armed bandits. Advances in Neural Information
Processing Systems, 25, 2012.
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