
Under review as a conference paper at ICLR 2021

ACDC: WEIGHT SHARING IN ATOM-COEFFICIENT DE-
COMPOSED CONVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional Neural Networks (CNNs) are known to be significantly over-
parametrized, and difficult to interpret, train, and adapt. In this work, we introduce
a structural regularization across convolutional kernels in a CNN. In our approach,
each convolution kernel is first decomposed into 2D dictionary atoms linearly
combined by coefficients. The widely observed correlation and redundancy in
a CNN hint a common low-rank structure among the decomposed coefficients,
which is here further supported by our empirical observations. We then explicitly
regularize CNN kernels by enforcing decomposed coefficients to be shared across
sub-structures, while leaving each sub-structure with only its own dictionary atoms,
a few hundreds of parameters typically, which leads to dramatic model reductions.
We explore models with sharing across different sub-structures to cover a wide
range of trade-offs between parameter reduction and expressiveness. Our proposed
regularized network structures open the door to better interpreting, training, and
adapting deep models. We validate the flexibility and compatibility of our method
by image classification experiments on multiple datasets and underlying network
structures, and show that CNNs now maintain performance with dramatic reduction
in parameters and computations, e.g., only 5% parameters are used in a ResNet-18
to achieve comparable performance. Further experiments on few-shot classification
show that faster and more robust task adaptation is obtained in comparison with
models with standard convolutions.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved remarkable progresses on solving challenging
tasks. The successes stimulate research directions that further improve CNNs from various angles,
including network structures (He et al., 2016; Howard et al., 2017; Ma et al., 2018; Simonyan
& Zisserman, 2014; Zagoruyko & Komodakis, 2016; Zhang et al., 2018), fast adaptations (Finn
et al., 2017; Lopez-Paz & Ranzato, 2017; Shin et al., 2017), parameter efficiency (Cheng et al.,
2017; Han et al., 2015a; Luo et al., 2017; Savarese & Maire, 2019; Yang et al., 2019; Wang et al.,
2018b), and interpretability (Selvaraju et al., 2017; Zhou et al., 2016). With the trend of deeper and
wider network structures with hundreds of millions of parameters, such investigations become even
more pressing. The aforementioned challenges can be partially attributed to the under-regularized
structures of convolutional kernels in a CNN, which are typically of very high dimensions and trained
independently from random initialization. While recent works on efficient convolution operations
(Chollet, 2017; Howard et al., 2017) alleviate the long recognized over-parametrization problem of
deep CNNs, kernels across different convolutional layers are still modeled as isolated and independent
groups of parameters, among which interactions only happen during feature and gradient propagation.
Modeling kernels by shared structures has been empirically studied (Ha et al., 2016; Savarese &
Maire, 2019), which sheds the light on explicitly modeling the underlying common structures across
kernels, and confirms the widely observed redundancies in deep network parameters (Michel et al.,
2019; Raghu et al., 2017). Studies on deep representations (Kornblith et al., 2019; Morcos et al.,
2018; Raghu et al., 2017) suggest that, under certain linear transforms, deep features across layers
are actually highly correlated. Such observations, together with the well recognized redundancies in
parameters, motivate us to further exploit such correlation to enforce explicit structural regularizations
over kernels. The work here presented provides a fundamental plug-and-play framework to introduce
structure in convolution kernels via coefficient sharing within layers, resulting in significantly smaller
and more interpretable networks with maintained or even improved performance.

1

Under review as a conference paper at ICLR 2021

We first perform atom-coefficient decomposition to convolution kernels, in which each kernel is
decomposed as 2D dictionary atoms linearly combined by coefficients. A standard convolution layer
can now be decomposed into two: a dictionary atom sub-layer involving spatial-only convolution
with the dictionary atoms, followed by a coefficient sub-layer that linearly combines feature channels
from the atom layer. Due to the underlying cross-layer correlations, after we properly align the
outputs of both sub-layers across the network’s multiple layers through canonical correlation analysis
(CCA), we obtain a low rank structure for those dictionary coefficients. This observation hints
us to enforce shared coefficients across sub-structures, e.g., layers. By sharing coefficients, each
sub-structure is now left with only dictionary atoms, which typically include only a few hundreds of
parameters and lead to dramatic model reduction. The focus of the paper is to introduce, derive, and
fully explore such atom-coefficient decomposed convolution (ACDC) as a structural regularization to
convolution kernels. The easily constructed variants, e.g., with different numbers of dictionary atoms
and coefficients sharing across different substructures, enable a wide coverage of trade-offs between
parameter reduction and model expressiveness. The explicitly regularized structures open the door to
better interpreting, training, and adapting deep models.

We perform extensive experiments on standard image classification datasets, and show that, by using
variants of ACDC as plug-and-play replacements to the standard convolution in various off-the-shelf
network architectures, different degrees of model reductions are achieved with comparable or even
better accuracy. Some ACDC variants can substantially reduce the overall computation of a deep
CNN. Further experiments on few-shot classification demonstrate its fast adaptation across tasks.

Our main contributions are summarized as follows:

• We introduce ACDC, a plug-and-play replacement to the standard convolution that achieves a
structural regularization for CNN kernels for better interpretability, training, and adaptations.

• Highlighting the remarkable flexibility, we introduce variants of ACDC constructed easily by
sharing coefficient within different network sub-structures. Such variants lead to significant
parameters reductions at negligent or not at all performance degradation.

• We validate the effectiveness of ACDC by plug-playing them into modern CNN architectures
for various tasks.

2 ATOM-COEFFICIENT DECOMPOSED CONVOLUTION

In this section, we start with a brief introduction of atom-coefficient decomposition motivated by
dictionary learning and recent works on decomposed convolutional kernels. We then introduce the
general idea of ACDC hinted by both the well recognized over-parametrization problem and the
underlying cross-layer correlations of CNNs. Based on the idea of coefficients sharing enforced
across network sub-structures, we describe in details how variants of ACDC are constructed as
plug-and-play replacements to the standard convolution.

2.1 CONVOLUTIONAL KERNEL DECOMPOSITION

Previous works have shown that a convolutional kernel in a CNN can be decomposed as a linear
combination of pre-fixed basis (Qiu et al., 2018). In ACDC, we adopt a similar decomposition
as shown in Figure 1, in which a convolutional kernel is represented as a linear combination of
trainable 2D dictionary atoms. After decomposition, a convolution layer with c-channel output Y
and c′-channel input X becomes

Y = K ∗X, K = AD, (1)

where * denotes the convolution operation. As illustrated in Figure 1, in (1), a convolutional kernel
K ∈ Rc×c′×l×l, which can be seen as a stack of c × c′ 2D convolutional filters with the size of
l × l, is reconstructed by multiplying m 2D dictionary atoms D ∈ Rm×l×l with the corresponding
linear coefficients A ∈ Rc×c′m. Note that square kernels are assumed here for simplicity, while all
kernel shapes are supported. Since both convolution and tensor multiplication are commutative, a
convolutional layer can now be decomposed into two:

• A dictionary atom sub-layer where each atom involves spatial-only convolution with the
dictionary atoms, i.e., Z ∈ Rc′m×h×w = D ∗X;

2

Under review as a conference paper at ICLR 2021

l

l

c′

c
× = …
m

c
c′

D KA

l

l

m

Figure 1: Illustration of the atom-coefficient de-
composition. A convolutional kernel K with
c× c′ filters is reconstructed by multiplying m
2D dictionary Atoms with sizes l × l and coeffi-
cients A ∈ Rc×c′×m.

Conv 1
𝐊" ∈ ℝ$	×$'×(×(

Conv 2
𝐊) ∈ ℝ$	×$'×(×(

Conv 3
𝐊* ∈ ℝ$	×$'×(×(

Input

…

Output

Atoms 3
𝐃* ∈ ℝ,×(×(

Atoms 2
𝐃) ∈ ℝ,×(×(

Atoms 1
𝐃" ∈ ℝ,×(×(

Shared Coefficients
𝐀	∈ℝ$×$'×, ⨂

Figure 2: Illustration of ACDC-net deployed in
a simple CNN. ⊗ denotes matrix multiplication.
Intermediate features are omitted.

• A linear coefficient sub-layer that linearly combines feature channels from the atom sub-
layer: Y ∈ Rc×h×w = AZ. Note that Z here denotes atom sub-layer outputs, and stride 1
and same padding are assumed for the sake of discussion.

2.2 CORRELATION AND REDUNDANCY: THE MOTIVATION BEHIND

Deep CNNs are long recognized to be over-parametrized. The very deep layers in modern CNN
structures (He et al., 2016; Huang et al., 2017; Zagoruyko & Komodakis, 2016) and the high-
dimensional kernels with little structural regularizations lead to hundreds of millions of parameters.
Such over-parametrization problem is also observed in the studies of deep representations (Raghu
et al., 2017), and empirically alleviated by new network structures (Chollet, 2017; Howard et al.,
2017), network compressions, and parameter reduction methods (Ha et al., 2016; Savarese & Maire,
2019).

Meanwhile, recent studies on deep representations (Kornblith et al., 2019; Morcos et al., 2018; Raghu
et al., 2017) have shown that there exists obvious correlations for features across layers within a CNN
after proper linear alignments. Such observations are also supported by the success of deep network
with residual learning (He et al., 2016), which explicitly formulates the layers as learning residual
functions with reference to the layer inputs. The correlation across features motivate us to explore
and exploit correlations across kernels for structural regularizations.

We present here a motivating experiment on MNIST by applying CCA alignments as in (Raghu
et al., 2017) to the atom sub-layer outputs and the coefficient sub-layer outputs of layer i and layer j.
Note that no parameter sharing is imposed here, and the network reports the same testing accuracy
before and after kernel decomposition. Formally, c, m, d, and hw denote the number of channels,
number of dictionary atoms, test set size, and the 2D feature dimensions, respectively. The atom
sub-layer outputs of the i-th and j-th layer, Zi and Zj ∈ Rcm×dhw, are firstly aligned by linear
transformations Pi and Pj ∈ Rcm×cm that maximize the correlation ρz = max

Pi,Pj

corr(PiZi,PjZj).

And similarly, the coefficient sub-layer outputs of both layers, Yi and Yj ∈ Rc×dhw, are aligned
by Qi and Qj ∈ Rc×c that maximize the correlation ρ = max

Qi,Qj

corr(QiYi,QjYj). Omitting the

layer indexes, the feed forwards of both layers can be rewritten as

Y = QAP−1P(D ∗X). (2)

By merging the transform into the coefficients A by Ã = QAP−1, we obtain ‘aligned coefficients’
Ãi and Ãj , that reside in a low rank structure reflected by the very similar effective ranks of Ãi

and [Ãi, Ãj]. For example, in our MNIST experiment using a 4-layer 32-channel CNN, out of the 6
possible (i, j) pairs, the average effective rank of Ãi and [Ãi, Ãj] are 31.98 and 38.56, respectively.
Our observations agree with and further support recent studies on cross-layer feature correlations
(Kornblith et al., 2019; Morcos et al., 2018; Raghu et al., 2017). Motivated by such empirical
observations, we propose to enforce shared dictionary coefficients across layers, and we further
extend the sharing to other network sub-structures, e.g., groups of filters within a layer.

3

Under review as a conference paper at ICLR 2021

m

m

m

c1′
c1

c2
c2′

c3′

c3

Figure 3: Illustration on how coefficients
are shared across three layers with increas-
ing numbers of channels. The shared coeffi-
cients are initialized with the largest dimen-
sions required.

Atoms n_1
𝐃._"∈ℝ,×(×(

Shared Coefficients
𝐀∈ℝ$ *0 	×$

'
*0 ×1

⨂
Atoms n_3
𝐃._*∈ℝ1×(×(

Atoms n_2
𝐃._)∈ℝ1×(×(

Input Features at layer n X∈ ℝ$×2×3

X1∈ ℝ$
'
*0 ×2×3 X2∈ ℝ$

'
*0 ×2×3 X2∈ℝ

$'
*0 ×2×3

* *

Kernel n_1
𝐊._" ∈ℝ4

5⁄ 	×4
'
50 ×(×(

Kernel n_2
𝐊._) ∈ℝ4

5⁄ 	×4
'
50 ×(×(

Kernel n_3
𝐊._* ∈ℝ4

5⁄ 	×4
'
50 ×(×(

*

Y1∈ ℝ$
'
*0 ×2×3 Y2∈ ℝ$

'
*0 ×2×3 Y3∈ℝ

$'
*0 ×2×3

Channel Shuffle

Output Features at layer n Y∈ ℝ$×2×3

Channel Grouping

Figure 4: ACDC with grouping with three groups at layer n. The
input feature is first equally divided into groups (denoted as boxes with
different grey scales), each of which is convolved with one group of
filters reconstructed by multiplying the corresponding filter dictionary
atoms and the shared coefficients. The output of three groups are
combined by channel shuffle.

2.3 COEFFICIENTS SHARING ACROSS LAYERS

Based on the observations above and (1), networks with ACDC are constructed by directly sharing
coefficients A within sub-structures as illustrated in Figure 2. We introduce two variants named
ACDC-net and ACDC-block.

The simplest variant, ACDC-net, is constructed by enforcing common coefficients across all layers in
a CNN. Formally, given a N -layers CNN, the n-th convolutional kernel is constructed by

Kn = ADn,∀n = 1, . . . , N. (3)

Assuming all layers have identical channel number with c′ = c, the amount of parameters is reduced
from c2c2N to c2m+Nkl2. An illustration of the ACDC-net is shown in Figure 2.

ACDC-block is a relaxed version of ACDC-net. Instead of enforcing common coefficients across
all layers, we allow the sharing to happen among a few consecutive layers in a network. We refer
a group of consecutive layers with identical number of output channels and identical feature sizes
as a block in a deep network, and implement ACDC-block by enforcing coefficient sharing in each
block. For example, adopting ACDC-block to a VGG16 network (Simonyan & Zisserman, 2014) is
implemented by sharing coefficients within 5 groups, each of which consists of convolutional layers
with 64, 128, 256, 512, 512 channels, respectively.

In practice, convolution layers within a network can have different numbers of channels. When
sharing coefficients across layers with different channels numbers, we initialize the dimensions
of the shared coefficients to be the largest dimensions needed by the corresponding layers. For
example, given a N -layer CNN with convolutional kernels {Kn ∈ Rcn×c′n×l×l;n = 1, . . . , N},
ACDC-net is constructed by initializing the shared coefficient as A ∈ Rcmax×c′max×m, where
cmax = max{cn;n = 1, . . . , N} and c′max = max{c′n;n = 1, . . . , N}. The kernels with fewer
channels are reconstructed by multiplying the dictionary atoms with a subset of the shared coefficients
Kn = A[1 : cn, 1 : c′n, 1 : m]Dn. A 3-layer illustration with progressively increased channels is
shown in Figure 3. Such a design choice is motivated by multi-scale decomposition (Mallat, 1999),
and proves to be highly effective with our extensive experimental validation.

2.4 COEFFICIENTS SHARING ACROSS FILTER GROUPS

While both ACDC-net and ACDC-block remarkably reduce the number of parameters, the total
number of coefficients largely depends on the highest channel number in a deep network. For
example, a ResNet-18 or a VGG-16 network have up to 512 channels in the last few layers, which
become the bottleneck of parameter efficiency. Meanwhile, observations in (Raghu et al., 2017) show
that the representation learned at a layer is not fully determined by the number of neurons in the layer,
and studies in (Michel et al., 2019) reveal the existence of redundancy within a single layer. Those
observations stimulate us to explore weight sharing within a layer, where redundancy especially in
high-dimensional layers can be further squeezed by sharing parameters within groups of filters in a
convolutional kernel.

By breaking down the smallest sharing unit from a layer to part of a layer, we propose ACDC with
grouping, in which a high-dimensional convolutional layer can now be separated into several groups

4

Under review as a conference paper at ICLR 2021

Table 1: Comparisons on CIFAR-10 with parameter sizes, parameter reduction rates, and test error.
Those with higher than baseline accuracies but fewer parameters are marked in bold.

Architectures m s
VGG16 ResNet18 WRN-40-4

Size Error Size Error Size Error

Baseline - - 14.72M 6.2 11.17M 5.8 8.90M 4.97

ACDC-net 8 - 2.11M (85.7%↓) 5.67 2.28M (79.6%↓) 5.9 0.58M (93.5%↓) 4.85
16 - 4.21M (71.4%↓) 5.44 4.38M (60.8%↓) 5.4 1.11M (87.5%↓) 4.42

ACDC-block 8 - 4.89M (66.8%↓) 5.47 2.96M (73.5%↓) 5.5 0.74M (91.7%↓) 4.46
16 - 9.78M (33.6%↓) 5.40 5.76M (48.4%↓) 4.9 1.43M (83.9%↓) 4.38

ACDC-g-net 8 32 0.03M (99.8%↓) 10.24 0.20M (98.2%↓) 7.3 0.07M (99.2%↓) 8.20
16 64 0.08M (99.5%↓) 9.87 0.26M (97.7%↓) 7.9 0.13M (98.5%↓) 6.85

ACDC-g-block 8 32 0.06M (99.6%↓) 9.71 0.22M (98.0%↓) 5.35 0.09M (99.0%↓) 8.92
16 64 0.35M (97.6%↓) 6.63 0.45M (96.0%↓) 7.2 0.26M (97.1%↓) 6.88

ACDC-g-layer 8 32 0.13M (99.1%↓) 6.68 0.89M (92.0%↓) 5.2 0.36M (96.0%↓) 5.02
16 64 0.80M (94.6%↓) 5.67 0.60M (94.6%↓) 6.2 1.98M (77.8%↓) 4.23

with identical sizes, and sharing coefficient is imposed across groups. Formally, given a convolutional
layer with c′ input channels and c output channels, respectively, we divide input channels into g

identical-sized groups, and each group is convolved with a convolution kernel Kj ∈ R
c
g×

c′
g ×l×l, j =

1, . . . , g. After grouping, we decompose {Kj ; j = 1, . . . , g} into shared coefficients A ∈ R
c
g×

c′
g ×m,

and g independent sets of dictionary atoms {Dj ∈ Rm×l×l; j = 1, . . . , g}. In this way, the number
of shared coefficients is reduced by g2 times, and the number of dictionary atoms is increased by
g times. Since dictionary atoms have orders of magnitude smaller dimension comparing to the
coefficients, applying ACDC with grouping achieves further parameter reduction. And since each Kj

only convolve with a subset of the input feature, this method reduces the overall computations.

However, directly deploying this sharing mechanism breaks the network into several paralleled subnet-
works with no feature passing and gradient propagation among them. To remedy this without adding
any additional parametric components, we utilize channel shuffle (Zhang et al., 2018) that enables
information to be efficiently propagated among groups in a non-parametric way. An illustration of
the proposed ACDC with grouping is presented in Figure 4. Since the size of the shared coefficient
now does not depend on the largest feature dimension of a network but the size of the groups, further
parameter reduction is achieved by ACDC with grouping as shown in Section 3.

3 EXPERIMENTS

In this section, we apply variants of ACDC as plug-and-play replacements to the standard convolution,
and perform extensive experiments to validate the effectiveness of ACDC as a structural regularization
of CNNs. Inspired by dropout (Srivastava et al., 2014), we adopt atom-drop as a regularization to
the dictionary atoms by randomly dropping an atoms with probability p. We set p = 0.1 for all
experiments. Details for implementations can be found in the supplementary material Section A.
ACDC with grouping leads to three variants of ACDC, which are constructed by allowing coefficients
to be shared within the entire network, blocks within a network, and layers within a network, and are
named as ACDC-g-net, ACDC-g-block, and ACDC-g-layer, respectively. We use m and s to denote
number of dictionary atoms and grouping size, respectively

3.1 IMAGE CLASSIFICATION

Self-comparison on CIFAR-10. We first report on CIFAR-10 extensive self-comparison on vari-
ants of ACDC constructed with different numbers of dictionary atoms as well as grouping sizes. We
present performance in terms of both parameter size and classification error in Table 1. VGG16
(Simonyan & Zisserman, 2014), ResNet18 (He et al., 2016), and Wide ResNet (WRN) (Zagoruyko
& Komodakis, 2016) are adopted as the underlying network architectures in order to show the
remarkable compatibility of ACDC. ACDC enhances deep CNNs with great flexibilities reflected by
the wide range of parameter reduction from as low as 98% reduction with comparable performance,
to about 70% reduction with even higher accuracy.

5

Under review as a conference paper at ICLR 2021

Table 2: Classification performances on CIFAR-10, CIFAR-100, and TinyImageNet datasets. Perfor-
mance on state-of-the-art light CNN architectures are listed in the upper block. The middle block
shows the performance of plug-and-play methods with parameter sharing in CNNs. Performance
obtained by our reproductions are marked with ∗.

Methods Size CIFAR-10 CIFAR-100 TinyImageNet

SqueezeNet (Iandola et al., 2016) 2.36M 6.98∗ 29.56∗ 48.22∗
ShuffleNet (Zhang et al., 2018) 0.91M 7.89∗ 29.94∗ 54.72∗
ShuffleNet-V2 (Ma et al., 2018) 1.3M 8.96∗ 29.68∗ 51.13∗

MobileNet-V2 (Sandler et al., 2018) 2.36M 5.52∗ 30.02∗ 48.22∗
NASNet (Zoph et al., 2018) 3.1M 3.59 21.77∗ 47.17∗

LegoNet-VGG16-w(o=2,m=0.5) (Yang et al., 2019) 3.7M 6.77 29.45∗ 48.42∗
LegoNet-VGG16-w(o=4,m=0.25) (Yang et al., 2019) 0.9M 8.65 30.11∗ 55.22∗

WRN-40-1 HyperNets (Ha et al., 2016) 0.10M 8.02 - -
WRN-40-2 HyperNets (Ha et al., 2016) 2.24M 7.23 - -

SWRN 28-10-1 (Savarese & Maire, 2019) 12M 4.01 19.73 43.05∗
SWRN 28-10-2 (Savarese & Maire, 2019) 17M 3.75 18.37 41.12∗

WRN-40-1 ACDC-block m8 0.043M 7.19 30.23 51.47
WRN-40-1 ACDC-block m24 0.114M 7.02 28.14 49.05

WRN-40-4 ACDC-g-layer m16 s32 0.67M 4.38 20.04 45.87
WRN-28-10 ACDC-g-block m24 s160 2.27M 4.25 19.64 41.24

WRN-28-10 ACDC-net m12 5.21M 3.52 18.81 39.96
WRN-28-10 ACDC-block m24 13.20M 3.26 17.85 38.74

Image classification with comparisons. We further present experiment results on CIFAR-10,
CIFAR-100, and TinyImageNet. We compare exampled variants of ACDC against HyperNetworks
(Ha et al., 2016) and Soft Parameter Sharing (Savarese & Maire, 2019), both of which serve as
plug-and-play replacements to standard convolutions as well. Though HyperNetworks (Ha et al.,
2016) achieves remarkable parameter reduction, ACDC is able to achieve higher accuracies with even
fewer parameters. The parameter reductions in Soft Parameter Sharing (Savarese & Maire, 2019) are
highly restricted by the large scale elements in the filter bank. For example, SWRN 28-10-1, as the
smallest variant of Soft Parameter Sharing on WRN, adopts a single template per sharing group, and
can only achieve 66% of parameter reduction. By adopting ACDC-net and ACDC-block to WRN, we
are able to achieve both higher parameter reductions and accuracy. We also compare state-of-the-art
light CNN architectures (Iandola et al., 2016; Zhang et al., 2018; Ma et al., 2018; Sandler et al., 2018)
and architecture based on neural architecture search (Zoph et al., 2018). Additional comparisons
against network compression and pruning methods are in supplementary material Section B. ACDC
demonstrates high performance in terms of both parameter and accuracy, and show great flexibility,
that in practice, allows model selection based on real-world applications.

Table 3: Performance on ImageNet. Parameters,
top-1 and top-5 errors are reported. Numbers ob-
tained by our reproductions are marked with ∗. We
use ResNet34 and ResNet50 as baseline models.

Methods Size Top-1 Top-5

ResNet34 21.28M 27.42∗ 9.02∗

Structured Conv A 9.82M 27.19 -
Structured Conv B 5.60M 30.56 -

ACDC-layer m12s64 (ours) 1.66M 32.82 12.14
ACDC-net m12 (ours) 3.34M 30.85 11.25

ACDC-stage m16 (ours) 5.77M 27.78 9.72

ResNet50 25.26M 24.17∗ 7.82∗

ChPrune 17.89M 27.7 9.2
LegoNet-w 9.3M - 8.7

Versatile 11.0M 25.5 8.2
Structured Conv A 13.49 24.35 -
Structured Conv B 8.57 26.59 -

ACDC-net m8 (ours) 14.29M 25.38 8.08
ACDC-stage m8 (ours) 16.37M 24.04 7.68

Large-scale image classification. To fully
demonstrate the effectiveness of ACDC, we
perform further experiments on the large-scale
ImageNet dataset (Deng et al., 2009). We use
ResNet34 and ResNet50 as baseline models,
and compare ACDC against LegoNet (Yang
et al., 2019), Versatile (Wang et al., 2018b),
network pruning method ChPrune (He et al.,
2017), and recently proposed Structured Conv
(Bhalgat et al., 2020). Results are presented
in Table 3. ACDC achieves better parameter
reductions on ResNet34. One variant of ACDC
with grouping in layers uses only 1.66 million
parameters with acceptable performance de-
crease. For ResNet50, since a large proportion
of the parameters are in the 1 × 1 conv layers,
ACDC achieves fair parameter reductions with
maintained performance.

6

Under review as a conference paper at ICLR 2021

45%

50%

55%

60%

65%

70%

Conv4 Conv6 Resnet 10 Resnet 18 Resnet 34

miniImageNet

MAML 5W1S MAML-ACDC 5W1S

MAML 5W5S MAML-ACDC 5W5S

Figure 5: Few-shot image classification with
deeper CNN architectures. 5W1S and 5W5S de-
note 5-way 1-shot and 5-way 5-shot experiments,
respectively.

93.00%

94.00%

95.00%

96.00%

0 0.01 0.05 0.1 0.2 0.3 0.4 0.5

A
cc
ru
cy

Atom Drop Rate

Atom-drop

Figure 6: Accuracy with different atom drop rate p.

0.33M

0.59M 0.85M
1.11M 1.37M 1.64M 1.90M 2.16M 2.43M 2.69M

93.00%

94.00%

95.00%

96.00%

97.00%

4 8 12 16 20 24 28 32 36 40

A
cc
ur
ac
y

Number ofAtoms

Performance with Different Number ofAtoms

Figure 7: Accuracy with different number of dictionary
atoms m. Parameter sizes are denoted as #M .

Table 4: Comparisons of FLOPs with different variants of ACDC with grouping.

Networks Baseline ACDC m8 s64 ACDC m16 s64 ACDC m8 s32 ACDC m16 s32

VGG16 125.66B 64.15B 64.17B 32.29B 32.30B
ResNet18 222.4B 116.76B 116.78B 60.13B 60.14B

3.2 ADAPTATION EXPERIMENTS

We further demonstrate that the proposed ACDC improves the adaptation of deep networks on
novel tasks with limited supervisions, which is validated by few-shot classification using commonly
adopted experimental settings. Specifically, we adopt ACDC-net on the model-agnostic meta-learning
(MAML) (Finn et al., 2017) algorithm, which is a method that adapts to a novel task by tuning the
entire network from a learned initialization. Although MAML is designed to be model-agnostic, we
consistently observe that it struggles for further performance improvements when using deeper and
wider networks. Same observations are reported in (Chen et al., 2019). We show that such limitation
can be alleviated by structural regularizations with ACDC. We follow the same experimental settings
as (Chen et al., 2019) and perform both 5-way 1-shot and 5-way 5-shot image classifications on
miniImageNet dataset. The comparisons are shown in Figure 5. Though adopting ResNet10 with
MAML achieves improvements over simple network with few stacked layers, the performance drops
with more residual layers as shown by the results on ResNet18. By using ACDC-net with deeper
ResNets, performance is not only maintained but also improved when more layers are used.

3.3 COMPUTATION EFFICIENCY

ACDC enjoys another merit of being computationally efficient when using sharing with grouping.
Since after grouping, each group of convolutional filters only convolves with a subset of input features,
ACDC-g-block and ACDC-g-net substantially reduce the number of FLOPs. We report comparisons
with ResNet18 and VGG16 in Table 4. All numbers are obtained by feeding the network a typical
batch with 100 64× 64 images. It is clearly shown that by using small groups, the computation can
be reduced dramatically, and larger number of dictionary atoms only effects the total FLOPs slightly.

3.4 ABLATION STUDIES

Training with ACDC introduces two hyperparameters, which are the number of dictionary atoms
m per sub-structure, and the atom drop rate p. We present here ablation studies on the impacts to
the network accuracy with different p and m. Both experiments are conducted using ResNet18 with
ACDC-net and trained on CIFAR-10. As shown in Figure 6, atom-drop improves generalization when
p ≤ 0.1. Higher values of p potentially degrade the performance as the training becomes unstable.
Thus we use p = 0.1 as the default setting. As shown in Figure 7, having more dictionary atoms
in each sub-structure leads to performance improvements that saturate at m = 32. More dictionary
atoms also result in larger parameter sizes, which are unfavourable.

7

Under review as a conference paper at ICLR 2021

4 RELATED WORK

CNN architectures. The tremendous success of applying convolutional neural networks (CNNs)
on numerous tasks has stimulated rapid developments for more effective and efficient network
architectures in both hand-crafted (Chen et al., 2017; He et al., 2016; Howard et al., 2017; Iandola
et al., 2016; Sandler et al., 2018) and automatically discovered (Elsken et al., 2018; Liu et al., 2018;
Pham et al., 2018; Zoph & Le, 2016) manners. We consider our work orthogonal to such topology-
based methods, as the plug-and-play property of the proposed ACDC allows it to be added to all the
aforementioned methods as a replacement to the standard convolution. Besides efforts on studying
efficient network architectures, methods for network compression and pruning (Han et al., 2015a;
2016; 2015b; He et al., 2017; Li et al., 2016; Luo et al., 2017) have been extensively studied for
decreasing the model size by pruning the inconsequential connections and weights of a network.
Methods (Ha et al., 2016; Savarese & Maire, 2019) align with our direction as they are also insensitive
to network topologies. And as shown in the experiments, ACDC can achieve higher performance in
terms of parameter reduction and classification accuracy with greater flexibility.

Kernel decomposition in CNNs Convolutional kernel decomposition has been studied for various
objectives. (Sosnovik et al., 2019) utilizes kernel decomposition as a tool for constructing same
kernel with multiple receptive fields. DCFNet (Qiu et al., 2018) is proposed as a principle way of
regularizing the convolutional filter structures by decomposing convolutional filters in CNN as a
truncated expansion with pre-fixed bases.

Figure 8: Illustration on extending CAM from the last layer to all layers with ACDC-net. In CAM,
the visualized heatmap explains the importance of image regions. Each row shows the class activation
maps of a sample from the first convolution layer (left) to the final convolution layer (right).

5 CONCLUSION AND INTERPRETABILITY DISCUSSION

In this paper, we introduced atom-coefficient decomposed convolution, a plug-and-play replacement
to the standard convolution by imposing structural regularization to kernels in a CNN. We presented
observations that, due to the underlying cross-layer correlations, coefficients in the decomposed
convolution layers reside in a low rank structure. We explicitly exploited such observations by
enforcing coefficients to be shared within sub-structures of CNNs, and achieved significant parameter
reductions. Variants of ACDC can be constructed with different sharing structures, number of atoms,
and grouping sizes. We reported extensive experiment results that show the effectiveness of ACDC
on standard image classification and adaptations.

The structural regularization with ACDC has the potential for better interpretability of CNNs, due
to the cross-layer shared coefficients. We close our paper with an illustration that extends class
activation mapping (CAM) (Zhou et al., 2016), which is originally proposed to explain the importance
of image regions but only at the final convolution layer. CAM is calculated by weighted averaging
the features of the final convolution layer by the weight vector of a particular class. Since now with
ACDC-net, features across layers are generated with the same coefficients, we exploit the potential
correspondence to extend CAM to all the preceding layers using the same weighted sum, and visualize
the activation maps for all layers in Figure 8. We use a VGG network with 13 conv layers trained
with CUB-200 (Wah et al., 2011) high-resolution bird classification dataset. It is clearly shown that,
while the activation maps for shallow layers are inevitably noisy due to the limited receptive fields,
features in deeper layers are progressively refined to the discriminative regions. This shows the great
potential for better interpretability with ACDC, and we will keep this as a direction of future effort.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Yash Bhalgat, Yizhe Zhang, Jamie Lin, and Fatih Porikli. Structured convolutions for efficient neural
network design. arXiv preprint arXiv:2008.02454, 2020.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look
at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. Dual path
networks. In Advances in Neural Information Processing Systems, pp. 4467–4475, 2017.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, July 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. Ieee, 2009.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pp. 1126–1135. JMLR. org,
2017.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pp. 1135–1143,
2015b.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Vajda,
Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural networks.
arXiv preprint arXiv:1607.04381, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708, 2017.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. arXiv preprint arXiv:1905.00414, 2019.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. International Conference on Learning Representations, 2018.

9

Under review as a conference paper at ICLR 2021

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings
of the European Conference on Computer Vision, pp. 19–34, 2018.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 5058–5066, 2017.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision,
pp. 116–131, 2018.

Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Advances
in Neural Information Processing Systems, pp. 14014–14024, 2019.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. In Advances in Neural Information Processing Systems, pp.
5727–5736, 2018.

Anton Obukhov, Maxim Rakhuba, Stamatios Georgoulis, Menelaos Kanakis, Dengxin Dai, and Luc
Van Gool. T-basis: a compact representation for neural networks. International Conference on
Machine Learning, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pp. 8026–8037, 2019.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Qiang Qiu, Xiuyuan Cheng, Robert Calderbank, and Guillermo Sapiro. DCFNet: Deep neural
network with decomposed convolutional filters. International Conference on Machine Learning,
2018.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In Advances in
Neural Information Processing Systems, pp. 6076–6085, 2017.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Pedro Savarese and Michael Maire. Learning implicitly recurrent cnns through parameter sharing.
arXiv preprint arXiv:1902.09701, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626,
2017.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant steerable networks. arXiv
preprint arXiv:1910.11093, 2019.

10

Under review as a conference paper at ICLR 2021

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compression:
Tensor ring nets. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018a.

Yunhe Wang, Chang Xu, XU Chunjing, Chao Xu, and Dacheng Tao. Learning versatile filters for
efficient convolutional neural networks. In Advances in Neural Information Processing Systems,
pp. 1608–1618, 2018b.

Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen, Chunjing Xu, Boxin Shi, Chao Xu, and
Chang Xu. LegoNet: Efficient convolutional neural networks with lego filters. In International
Conference on Machine Learning, pp. 7005–7014, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6848–6856, 2018.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2921–2929, 2016.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8697–8710, 2018.

11

Under review as a conference paper at ICLR 2021

APPENDIX

A IMPLEMENTATION DETAILS

All experiments are performed using PyTorch (Paszke et al., 2019).

Initialization. We train every ACDC network from scratch. We use orthogonal initialization for all
dictionary atoms, and Kaiming normal initialization for all coefficients.

Training details. All networks for CIFAR10 and CIFAR100 are trained for 350 epochs. The initial
learning rate is set to be 0.1. The learning rate decays by a factor of 10 at the 150-th and the 250-th
epoch. All ACDC networks are trained with a weight decay of 10−4. The reported numbers are
averaged over 5 runs. Networks for ImageNet are trained for 90 epochs. The initial learning rate is
0.1 and decays by a factor of 10 every 30 epochs. The weight decay for ImageNet experiments are
set to be 2.5× 10−5. We consistently observe that lower values for weight decay yield better results
on ACDC networks. We believe the reason is that the structural regularization of ACDC already
reduces the risk of overfitting.

Regularization by atom-drop. To improve the robustness of the dictionary atoms and the corre-
sponding reconstructed kernels, we further propose a structural regularization to dictionary atoms
named atom-drop inspired by widely used dropout. Specifically, when training the network, we ran-
domly drop a dictionary atom with probability p, which is referred as atom drop rate, by temporarily
setting values of the dropped dictionary atoms to 0, and the values of all other remained dictionary
atoms are multiplied by 1

1−p in order to maintain consistent scales of the reconstructed convolutional
kernels. At test time, all dictionary atoms are presented with no dropping.

10 2 10 1 100

% of parameter

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Er
ro

r

ACDC-net m8
ACDC-g-net m8 s64
ACDC-g-block m16 s64
T-Basis ICML2020
TR CVPRR2018
SNIP ICLR2018
GraSP ICLR2020

Figure 9: Comparisons against network compression and pruning methods on CIFAR-10 dataset.
Performance is measured with error rates and proportion of remained parameters (both lower the
better).As a plug-and-play method, ACDC can outperform network compression and pruning methods
in terms of both parameter reduction rate and prediction accuracy.

B COMPARISONS AGAINST NETWORK COMPRESSION AND PRUNING
METHODS

We present here further comparisons against network compression and pruning methods. Performance
is measured with error rates and proportion of remained parameters (both lower the better). Note that
different from post-processing using compression and pruning, ACDC is primarily proposed as a
structural regularization and a plug-and-play replacement to standard convolutional layers, so the
networks with ACDC remain trained end-to-end. We include SNIP (Lee et al., 2018), TR (Wang
et al., 2018a), and recently proposed T-Basis (Obukhov et al., 2020) and GraSP (Wang et al., 2020)
into the comparisons. Results shown in Figure 9 clearly demonstrate that ACDC can achieve even
smaller parameter size with negligent scarification to accuracy.

12

	Introduction
	Atom-Coefficient Decomposed Convolution
	Convolutional Kernel Decomposition
	Correlation and Redundancy: The Motivation Behind
	Coefficients Sharing Across Layers
	Coefficients Sharing Across Filter Groups

	Experiments
	Image Classification
	Adaptation Experiments
	Computation Efficiency
	Ablation Studies

	Related Work
	Conclusion and Interpretability Discussion
	Implementation Details
	Comparisons Against Network Compression and Pruning Methods

