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Abstract

In this paper, we propose a novel model-based multi-agent reinforcement learning approach
named Value Decomposition Framework with Disentangled World Model to address the
challenge of achieving a common goal of multiple agents interacting in the same environment
with reduced sample complexity. Due to scalability and non-stationarity problems posed
by multi-agent systems, model-free methods rely on a considerable number of samples for
training. In contrast, we use a modularized world model, composed of action-conditioned,
action-free, and static branches, to unravel the complicated environment dynamics. Our
model produces imagined outcomes based on past experience, without sampling directly
from the real environment. We employ variational auto-encoders and variational graph
auto-encoders to learn the latent representations for the world model, which is merged with
a value-based framework to predict the joint action-value function and optimize the overall
training objective. Experimental results on StarCraft II micro-management, Multi-Agent
MuJoCo, and Level-Based Foraging challenges demonstrate that our method achieves high
sample efficiency and exhibits superior performance compared to other baselines across a
wide range of multi-agent learning tasks.

1 Introduction

As teams of agents expand in size, their potential increases concomitantly. However, the complexity of
coordinating the units grows rapidly as more interactions and constraints must be considered. This work
proposes to extend the current state-of-the-art approaches, based on latent imagination with world models
(Hafner et al., 2022), to multi-agent reinforcement learning (MARL) with the key concept of disentanglement,
which facilitates effective scaling to unprecedented multi-agent team sizes and problem complexities.

Recently, model-based reinforcement learning (MBRL) has demonstrated sample efficiency and scalability in
handling large single-agent tasks (Xu et al., 2018; Hafner et al., 2020; 2022; Yang & Wang, 2020; Luo et al.,
2022). We explore its application to MARL with an emphasis on latent space generative models, as each
agent may only have access to local observations, suffering from the partial observability issue. The majority
of applied MARL research has been centered around model-free methods (Tampuu et al., 2017; Lowe et al.,
2017; Iqbal & Sha, 2018; Zhou et al., 2020; Jeon et al., 2022), while model-based algorithmic studies are still
slowly progressing from simple stochastic games to more complex scenarios (Brafman & Tennenholtz, 1999;
2003; Zhang et al., 2021a).

Training model-based policies can be challenging across various domains (Shen et al., 2020). In multi-agent
systems, changes occurring around an agent are frequently uncontrollable due to simultaneous interactions
with other agents. This leads to a complex learning problem for holistic models, while a recent study on
modular representation attempted to decouple the environment dynamics into passive and active components
(Pan et al., 2022). Inspired by their work, we maintain three branches within our world model: action-
conditioned, action-free, and static. Each branch tackles a unique learning problem, including grasping
common interaction-free (static) state features, identifying passive (action-free) forces surrounding an agent,
and understanding the full complexity of the active (action-conditioned) control system. The predictions of
the branches are synergistic and produce informative latent space roll-outs, which are learned by variational
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and graph convolutional auto-encoders. Combined with individual action values from the joint agent network,
the simulated roll-outs are passed into a mixing network, which adopts value decomposition techniques for
estimating joint value functions. To the extent of our knowledge, our study marks the first endeavor to
leverage the disentanglement of latent representations in MARL.

We evaluate our method on well-known MARL environments including StarCraft II MARL benchmark
(SMAC) (Samvelyan et al., 2019), Multi-Agent MuJoCo (MAMuJoCo) (Peng et al., 2021), and Level-Based
Foraging (LBF) (Christianos et al., 2020). We have constantly observed the performance of our approach
matching or surpassing the state-of-the-art across a rich variety of tasks. The improvement in episodic
returns is evident in MAMuJoCo and LBF test beds. Moreover, our method consistently develops winning
strategies for Super-Hard SMAC challenges, a group of scenarios characterized by a high diversity of unit
types involved in complicated interactions. This reinforces the importance of our disentanglement approach
for large-scale MARL tasks.

2 Related Work

2.1 Model-Based Reinforcement Learning

A fundamental concept in MBRL is the environment model (Luo et al., 2022). It is an abstraction of the
environment dynamics, formulated as a Markov decision process (MDP). The agent has the ability to imagine,
which means it can generate simulated samples in the environment model. This reduces the interactions
with the real environment and improves sample efficiency (Xu et al., 2018; Janner et al., 2019).

As a class of the environment model, world models can be applied to learning representations and behaviors
(Watter et al., 2015; Pan et al., 2022). Built on the framework of PlaNet (Hafner et al., 2019), Dreamer
(Hafner et al., 2023) uses a world model to train the agent with latent imaginations, efficiently predicting
long-term behaviors. Meanwhile, the development of multi-agent MBRL has mainly focused on theoretical
analyses (Bai & Jin, 2020; Zhang et al., 2020; Yang & Wang, 2020). Existing algorithms in this field rely
heavily on specific prior knowledge such as information on states and adversaries (Brafman & Tennenholtz,
2003; Park et al., 2019b; Zhang et al., 2021b), which can be inaccessible in many scenarios.

Yang & Wang (2020) and Zhang et al. (2020) review the complexities of MARL algorithms arising from non-
stationarity, partial observability, and agent coordination issues. The authors consider model-based MARL
as a promising approach to improve sample efficiency and model effectiveness, and believe that it deserves
more attention from MARL researchers. Luo et al. (2022) provide a comprehensive survey of model-based
RL, highlighting the importance of model learning, planning, and integration with model-free methods.
The survey suggests that potential directions in the development of model-based MARL include the new
design of decentralized methods and communication protocols based on the learned models. Zhang et al.
(2021b) introduce a model-based multi-agent policy optimization framework. By learning a model of the
adversaries’ behaviors and adjusting the rollout strategy based on the learned model, the approach improves
the efficiency of policy optimization in competitive settings. Zhang et al. (2020) propose a model-based
MARL algorithm for zero-sum Markov games, achieving near-optimal sample complexity. The algorithm
leverages the game structure to learn a model of the opponent’s strategy and update the agent’s policy
accordingly. The authors provide theoretical guarantees on the sample complexity, proving that it is lower
than the complexity of model-free methods. Park et al. (2019b) investigate MBRL in competitive multi-
opponent games. The authors design an approximate model learning framework that estimates the transition
dynamics and rewards of the game environment using auxiliary networks. The communication between agents
is promoted by policy gradients in actor-critic networks.

However, both (Zhang et al., 2021b) and (Zhang et al., 2020) mainly concentrate on the theoretical studies
of MARL algorithms and have limitations in application. The proposed approach in (Zhang et al., 2021b)
requires prior knowledge about opponents to construct the opponent model, which may cause generalization
errors that are hard to estimate. Zhang et al. (2020) only study the setting of zero-sum Markov games.
Park et al. (2019b) use an auxiliary prediction network, which may lead to prediction errors in complex
environments. Moreover, Park et al. (2019b) conducted experiments in only one benchmark and compared
against only one baseline (MADDPG). In contrast, our VDFD method is tested across different benchmark
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environments and compared with many MARL baselines, demonstrating high efficiency and generalization
capability even in complex settings. VDFD estimates the prior and posterior distributions of the states
under partial observability, without the need for explicit opponent modeling.

2.2 Value-Based MARL Methods

A large class of RL algorithms applied in multi-agent systems are value-based methods. They typically
compute value function estimates and differ in the extent of centralization. In a fully decentralized scenario
(Tan, 1997; Tampuu et al., 2017), each agent improves its own policy with the assumption of participating
in a stationary environment. Because each agent fails to account for the behaviors selected by other agents
or the rewards received by them, the assumption of environment stationarity in traditional RL no longer
holds (Yang & Wang, 2020). There is no theoretical guarantee that an independent learning algorithm will
converge in this case (Zhang et al., 2021a).

On the other hand, a centralized controller gathers the observation and the joint action of the agents. A
method in which all agents have access to global state information and are aware of the non-stationarity in the
environment also demonstrates centralization. Boutilier (1996) described the multi-agent Markov decision
process, assuming that all agents observe the global rewards. Guestrin et al. (2002) designed a global payoff
function as the sum of local payoff functions, which are a variant of local rewards. The global payoff function
was optimized by agents using a variable elimination algorithm. However, due to the combinatorial nature
of MARL, the scale of the joint action space will expand exponentially with respect to the number of agents
within the same environment (Kok & Vlassis, 2006; Zhang et al., 2021a). As a result, appropriate remedies
for scalability issues need to be found.

Recent studies focused on MARL algorithms that lie between the two extremes of decentralization (Yang
et al., 2019; Son et al., 2019; Rashid et al., 2020; Wang et al., 2020a;b;c; Jeon et al., 2022), according to
the paradigm of Centralized Training with Decentralized Execution (CTDE) (Kraemer & Banerjee, 2016).
CTDE stipulates that agents are allowed to exchange information with other agents only during training and
they must act in a decentralized manner during execution. Following this paradigm, the value decomposition
network (VDN) (Sunehag et al., 2017) shares network weights and information channels and specifies roles
across them. VDN leverages the joint value function Qtot of the learning agents, which can be additively
factorized into individual Q functions Q̃i. The assumption of VDN can be overly restrictive, since the
additive value decomposability may not hold for more complex action-value functions. QMIX (Rashid et al.,
2018) replaces the full factorization in VDN with the enforcement of monotonicity between the joint Qtot

and the individual Q̃i, which enables it to represent a larger class of action-value functions than VDN.

In our approach, a value factorization framework is employed to mix the agents’ individual action values.
The framework receives the outputs from the disentangled representation learning process, in which the
future states are inferred using informative simulated roll-outs. It can therefore predict real-world dynamics
and approximate the global value function with high accuracy.

3 Background

3.1 Dec-POMDP

When agents engage in a task, it is possible that each of them has a limited field of view. The decentralized
partially observable Markov decision process (Dec-POMDP) is appropriate for modeling collaborative agents
in a partially observable environment (Oliehoek & Amato, 2016).
Definition 3.1. A Dec-POMDP is defined by a tuple

M := ⟨S, A, N , T, Z, O, R, γ⟩,

where S is the state space of all agents, A is the joint action space of all agents, N = {1, ..., N} represents the
set of N agents, T is the state transition function, Z represents the observation space, O is the observation
function, R is the reward function, and γ ∈ [0, 1] represents the discount factor with respect to time.

3



Under review as submission to TMLR

Encoder Decoder

Encoder Decoder

Minimizing KL 

prior
(standard VAE)

posterior
(GALA)

(a)

Shared Parameters

VAE VAEGALA GALA GALA
Minimizing KL Minimizing KL 

Action-Conditioned Action-Free Static

(b)

Figure 1: The learning processes and the structure of the modularized world model. (a) Using VAE and
GALA to learn the prior and the posterior in the KL term. The KL distance between the distributions
connected by the purple dotted line is minimized. ht can be viewed as a function of ŝt−1, at−1, and zt. (b)
The three modules of the world model with shared parameters.

At time step t, each agent i ∈ N chooses an action ai from its own action space Ai to form the joint action
a ∈ A, where a := (a1, ..., aN ) and A := ×i∈N Ai. Then the environment moves from s to s′ based on
T (s′|s, a) : S × A × S → [0, 1]. Every agent i draws an observation z ∈ Z according to O(s, i) : S × N → Z
because of partial observability. i has its own action-observation history, denoted by τ i ∈ T := (Z × A)∗,
and selects ai by its policy πi(ai|τ i) : T × A → [0, 1]. The learning goal is to maximize the expected return
by optimizing the joint policy π = (π1, ..., πN ). The joint action-value function of π is

Qπ(st, at) = Est+1:∞,at+1:∞ [Gt|st, at],

where Gt =
∑∞

k=0 γkrt+k is the discounted return; rt+k is the reward computed by R for all agents at time
step t + k.

3.2 Value Decomposition and Individual-Global-Max

Based on the CTDE paradigm, value decomposition is an effective technique deployed in MARL as it
encourages collaboration between agents (Son et al., 2019). To apply this technique, we need to define the
condition of Individual-Global-Max:
Definition 3.2. Let A be the joint action space and T be the joint action-observation history space. Denote
the agents’ joint action-observation histories as τ ∈ T and their joint actions as a ∈ A. Given the joint
action-value function Qtot : T × A → R, if there exist individual {Qi : T i × Ai → R}i∈{1,...,N} such that the
following holds:

arg max
a∈A

Qtot(τ , a) =

 arg maxa1 Q1(τ1, a1)
...

arg maxaN QN (τN , aN )

 (1)

then {Qi}i∈{1,...,N} satisfy the Individual-Global-Max (IGM) condition for Qtot with τ , which means
Qtot(τ , a) can be decomposed by {Qi}i∈{1,...,N}.

IGM guarantees that a MARL task can be solved in a decentralized manner as long as local and global
action-value functions are consistent (Son et al., 2019).

4 Method

When multiple agents are interacting with each other simultaneously, the environment dynamics can be more
sophisticated than in single-agent scenarios. To learn latent dynamics models effectively, we can leverage
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Figure 2: The overall architecture of the VDFD model. The modules enclosed by green, yellow, and pink
dashed lines represent the action-conditioned, action-free, and static branches, respectively. The bright
yellow circle denotes the agent network, which implements the joint policy for all agents. The joint actions
can therefore be extracted from the agent network.

disentangled representation learning (Goyal et al., 2021; Pan et al., 2022). We hereby introduce a novel
model-based multi-agent reinforcement learning algorithm named Value De-composition Framework with
Disentangled World Model (VDFD). Specifically, the world model is decomposed into three modules: an
action-conditioned (controllable) branch that responds to and depends on the actions of the agents, an
action-free (non-controllable) branch that is independent of the agents’ behaviors, and a static branch that
consists of environmental features and remains unchanged.

In this section, we analyze how the variational lower bound for the latent state inference in the world model
can be deduced and optimized when the environment is modeled as Dec-POMDP. We then discuss the details
of world model disentanglement. Next, we elaborate on the entire workflow of VDFD which consists of two
parts, world model imagination and reinforcement learning with value function factorization. Lastly, we
derive the overall learning objective by summing up the loss functions of different components.

4.1 Disentangling the World Model for Representation Learning

Since the global state s is inaccessible to agents outside the centralized training phase, we need to infer the
latent state ŝ from local actions a and observations z. We implement a variational auto-encoder (VAE) and
a variational graph auto-encoder (VGAE) to approximate the prior and posterior distributions of ŝ, which
is a crucial step in maximizing the evidence lower bound for Dec-POMDP. To learn compact and accurate
representations of a multi-agent environment, we disentangle dynamic and static components, denoted as d
and zstatic, from the world model and train them jointly. The mixed dynamics d of the model can be decoupled
into an action-conditioned branch, which corresponds to the state transition ŝt ∼ q(·|ŝt−1, at−1, zt), and an
action-free branch, which is beyond the control of the agents and can therefore be separated from their joint
actions. The non-controllable transition can be modeled as v̂t ∼ q(·|v̂t−1, zt). The roll-outs from decoupled
branches are jointly conveyed to the value factorization framework for centralized training.

4.1.1 Deriving the Variational Lower Bound

To perform latent space inference in Dec-POMDP, we need to deduce the evidence lower bound (ELBO)
corresponding to this setting. Inspired by the probabilistic approach in (Huang et al., 2020), we create
two approximate functions qπ(·) and qθ(·), where θ represents the learnable parameter, qπ(·) is used for
approximating the optimal joint policy, and qθ(·) is the inference function for latent states. When we keep
qθ(·) fixed, qπ(·) can be trained using soft Q-learning or vanilla Q-learning. When we fix qπ(·) as the optimal
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policy, qθ(·) can be learned for the latent space. Given time steps t ∈ [0, T ], joint actions a ∈ A and joint
observations z ∈ Z, we can define the approximate posterior as qθ(ŝt|ŝt−1, at−1, zt). This function is used
to infer the latent states. ŝt is an abstract representation of the agents’ local observations, which indicates
that zt ∼ p(zt|ŝt). We can then derive the ELBO of Dec-POMDP, LELBO(a0:T , z1:T ), as below. The full
deduction can be found in Appendix E.

LELBO(a0:T , z1:T ) = log p(a0:T , z1:T )

= logEqθ(ŝ1:T |a0:T ,z1:T )

[
p(ŝ1:T , a0:T , z1:T )
qθ(ŝ1:T |a0:T , z1:T )

]
≥ Eqθ(ŝ1:T |a0:T ,z1:T ) log

[
p(ŝ1:T , a0:T , z1:T )
qθ(ŝ1:T |a0:T , z1:T )

]
≈

T∑
t=1

{log [p(at|zt)] + log [p(zt|ŝt)] − DKL [qθ(ŝt|ŝt−1, at−1, zt) ∥ p(ŝt|ŝt−1, at−1)]} (2)

4.1.2 Optimizing the ELBO

We investigate each term in the sum of Eq.2 to maximize the ELBO. First, log [p(at|zt)] stands for the
joint policy that is independent of the state inference. Therefore, it can be considered as unrelated to
the optimization of the ELBO. The second term, log [p(zt|ŝt)], indicates that the latent states contain the
information from which the local observations can be derived. The last term in LELBO(a0:T , z1:T ) is

DKL [qθ(ŝt|ŝt−1, at−1, zt) ∥ p(ŝt|ŝt−1, at−1)] ,

which denotes the negative Kullback-Leibler (KL) divergence. This term implies that the KL distance
between the approximates of posterior and prior should be minimized in the optimization process. As the
actual prior distribution p(ŝt|ŝt−1, at−1) is unknown, we introduce a generative model pprior

θ (ŝt|ŝt−1, at−1) to
estimate the prior.

4.1.3 Using Generative Models

We apply generative models to learning pprior
θ (ŝt|ŝt−1, at−1) and qθ(ŝt|ŝt−1, at−1, zt) in the KL term. We

construct a VAE for the prior pprior
θ (·). It takes in the past state, ŝt−1, and the past actions of all agents, at−1,

to compute the prior distribution of the current state. The prior latent state is denoted as ŝt ∼ pprior
θ (ŝt |

ŝt−1, at−1).

We employ a variant of the VGAE named GALA (Park et al., 2019a) for the posterior qθ(·) to improve the
computational efficiency of state inference. GALA is a completely symmetric auto-encoder that combines
traditional VAE structure with a Graph Convolutional Network (GCN) encoder (Kipf & Welling, 2016).
Additionally, it has a special decoder that performs Laplacian sharpening, which is a counterpart to the
encoder that conducts Laplacian smoothing. Unlike previous VGAEs that only use an affinity matrix of
the GCN in the decoding phase, GALA is able to directly reconstruct the feature matrix of the nodes.
Consequently, it captures the information on the relationship between nodes. Because GALA leverages
GCN, it ensures that the number of parameters to be trained remains constant so long as the feature
dimension of the nodes remains stable, irrespective of the growth in the number of agents.

We use recurrent neural networks (RNNs) to implement the agent network in Dec-POMDP. We denote the
hidden outputs of the RNN for agent i and for the whole network as hi

t and ht, respectively. We interpret
hi

t as the integration of all past knowledge specific to agent i, and assume that ht collectively encapsulates
all the past information of the environment. By this assumption, we can reformulate the approximate
posterior qθ(·|ŝt−1, at−1, zt) as qθ(·|ht). Initially, the posterior latent state is ŝt ∼ qθ(ŝt|ŝt−1, at−1, zt). With
the reparameterization, it can be transformed into ŝt ∼ qθ(ŝt|ht). Figure 1a illustrates the learning behaviors
of the generative models.
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4.1.4 Modules of the World Model

We expatiate on our own version of world model disentanglement. At time step t, we define the environment
dynamics as d1:t. By dividing d1:t into a branch of action-conditioned latent states ŝ1:t and a branch of
action-free latent states v̂1:t, we aim at analyzing interactions and understanding relationships between
them. We apply the aforementioned generative models to them, as shown in Figures 1a and 1b. Within the
action-conditioned branch, we have the prior representations modeled as ŝt ∼ pprior

θ (ŝt|ŝt−1, at−1) and the
posteriors as ŝt ∼ qθ(ŝt|ht). We seek to minimize the KL divergence between them. Inside the action-free
branch, we model the priors as v̂t ∼ pprior

θ (v̂t|v̂t−1) and the posteriors as v̂t ∼ qθ(v̂t|v̂t−1, zt), minimizing
the KL distance as well. Lastly, the static branch incorporates the observations denoted as z1:t. Because it
has no priors or posteriors, we only use GALA for representation learning. Denote the outputs of action-
conditioned, action-free, and static branches as oac

t , oaf
t , and zstatic, respectively. Define ⊙ as Hadamard

product. Let Mac, Maf, and Mst be real-valued masks, which can be viewed as hyper-parameters. We
obtain the masked output:

Ot = Mac ⊙ oac
t + Maf ⊙ oaf

t + Mst ⊙ zstatic (3)

We can decide whether the action-free module has an impact on learning using our prior knowledge of the
tasks. When non-controllable dynamics can be treated as irrelevant time-varying noises, v̂1:t will be zeroed
out and the joint policy is merely correlated with ŝ1:t. For tasks like video prediction and multi-agent
cooperation, however, the action-free latent states can affect the decision-making of the agent. The policy
and the reward then depend on both ŝ1:t and v̂1:t.

In complicated multi-agent systems, the boundary between action-free and action-conditioned components
might be unclear. Learning to disentangle the dynamics in such systems has always been a challenging
research topic in model-based RL. To address this challenge, we have proposed a clear design principle for
our model: the controllable branch should identify the system dynamics that depend on the agent’s actions,
the non-controllable branch should capture passive forces surrounding an agent, and the static branch should
learn stationary state features. With this design principle, we are able to maintain a unified disentangled
representation learning framework as illustrated in Figure 2. It is worth noting that we did not assume ŝ
and v̂ to be mutually independent. In cases where a clear separation is infeasible, we can still disentangle
the environment dynamics into modular representations and tackle sub-tasks decoupled from the original
complex learning task, using this unified framework.

4.2 Combining the Modularized World Model with Value Function Decomposition

We amalgamate the world model with the mixing network in QMIX (Rashid et al., 2018) to make it applicable
in multi-agent systems. It operates under the condition of IGM. Receiving outputs of the agent network and
merging them monotonically, this mixing network is responsible for the reinforcement learning process in our
method. It models the joint action-value function Qtot(τ t, at), the only component of the environment that
is not included in the disentangled world model. Qtot(τ t, at) can be decomposed into individual action-value
functions to calculate the expected returns. After combining the value decomposition framework with the
world model, we obtain the complete workflow of VDFD. It is displayed in Figure 2. The architecture may
seem different from Figure 1b because we use the world model to carry out latent imaginations, where the
roll-out horizon for imagination is set to 3.

We will explain how one step forward in the imagination works. At time step t, ht encapsulates all past
information including the joint action-observation histories τ t. In the action-conditioned module, ht is fed
into the agent network. Under the joint policy π = (π1, ..., πN ), the imagined joint actions can be obtained
by a′

t ∼ π(·|τ t). Then a′
t is sent by the agent network into the VAE. Meanwhile, the GALA encoder takes ht

as input and computes the posterior latent state ŝt ∼ qθ(·|ht), which is also sent into the prior model. With
all the required inputs (i.e., a′

t and ŝt), it can infer the latent state ŝt+1 ∼ pprior
θ (·|ŝt, a′

t). Then, ŝt+1 is taken
by the GALA decoder as input to derive h′

t+1, which contains the imagined action-observation histories
τ ′

t+1. The one step forward is completed in this module and the procedures repeat at t + 1.

Regarding the action-free module, the inputs for GALA at time t are the action-free latent state v̂t−1 and
joint observations zt. GALA outputs v̂′

t−1 and ẑt by reconstruction. The prior VAE uses v̂′
t−1 to deduce
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v̂t ∼ pprior
θ (·|v̂′

t−1). Then v̂t is passed into GALA together with ẑt for the next step forward. For the static
module, we only need to feed the environment observations into GALA.

Suppose the roll-out horizon is set to j ∈ Z. We perform j roll-outs in the action-conditioned and action-free
branches to obtain the latent states {ŝt, ..., ŝt+j} and {v̂t, ..., v̂t+j}. They are aggregated to form the roll-out
states ŝRollout

t and v̂Rollout
t , using real-valued masks Mac and Maf. We denote the observations as ẑ1:t+j for

the static branch. GALA takes in ẑ1:t+j and returns ẑstatic, which is transformed into ẑRollout through Mst.

Combining ŝRollout
t , v̂Rollout

t and ẑRollout together, we obtain ORollout
t , building a bridge between world model

learning and value decomposition framework, in which the mixing network receives three different types of
inputs. The first type consists of individual action-value functions from the agent network, the second is
the real global state st, and the last is ORollout

t . Because ORollout
t incorporates information about potential

future observations and states with isolated controllable and non-controllable dynamics, it can assist the
agents greatly in decision-making.

4.3 Components of the Learning Objective

We divide the optimization of the overall learning objective into two parts. The first part is the decoupled
world model, which involves learning simulated data via generative models. The second part is the value de-
composition framework, which takes as input the imagined roll-outs and agent networks for the reinforcement
learning process.

In the action-conditioned module of the world model, we aim to minimize the KL divergence between the prior
and posterior distributions. We need to prevent the prior distribution of ŝt from becoming extremely complex,
meaning that we also consider the KL term between the prior and the Normal distribution p(st) := N (0, I).
Then we obtain:

LKL
ac (θ) = DKL

[
pprior

θ (ŝt | ŝt−1, at−1) ∥p(st)
]

+ DKL

[
qθ(ŝt|ht)∥pprior

θ (ŝt|ŝt−1, at−1)
]

= LKL
ac-prior(θ) + LKL

ac-post(θ)

Reconstruction processes occur in both generative models. The VAE outputs ŝ′
t−1 and a′

t−1, which are
reconstructed from the original past state and actions, ŝt−1 and at−1. Likewise, GALA outputs h′

t by
reconstructing the authentic past information ht. The reconstruction loss function can be expressed as:

LREC
ac (θ) = LREC

ac-prior(θ) + LREC
ac-post(θ)

where:

LREC
ac-prior(θ) = MSE(ŝt−1, ŝ′

t−1; θ) + MSE(at−1, a′
t−1; θ)

LREC
ac-post(θ) = MSE(ht−1, h′

t−1; θ)

Here MSE(·) denotes the mean squared error function. The calculation of loss in the action-free branch is
very similar to the action-conditioned branch, except that the auto-encoders receive different inputs and
produce different outputs. We can derive the KL divergence loss as:

LKL
af (θ) = DKL

[
pprior

θ (v̂t | v̂t−1) ∥p(vt)
]

+ DKL

[
qθ(v̂t|v̂t−1, zt)∥pprior

θ (v̂t|v̂t−1)
]

= LKL
af-prior(θ) + LKL

af-post(θ)

and the reconstruction loss as:

LREC
af (θ) = MSE(v̂t−1, v̂′

t−1; θ) + MSE((v̂t−1, zt−1), (v̂′
t−1, z′

t−1); θ)
= LREC

af-prior(θ) + LREC
af-post(θ)
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Figure 3: Performance of VDFD against the other algorithms in Super-Hard SMAC environments. VDFD
yields the best performance overall. SMMAE converges faster on one map (2c_vs_64zg) but our method
surpasses the win rate of SMMAE by 7.96% ultimately. Please refer to Appendix B for all nine baselines
implemented and the results on the other SMAC battle scenarios.

There is no KL term in the static branch of the world model. The loss is computed as:

Lst(θ) = MSE(ẑ1:t, ẑstatic; θ)

We implement the KL balancing technique as an option when minimizing the KL loss because we want to
avoid the posterior representations being regularized towards a poorly trained prior. To address this problem,
we employ different learning rates so that the KL divergence is minimized faster with respect to the prior
than the posterior. We apply the stop_grad(·) function in Hafner et al. (2022), which stops backpropagation
from gradients of variables. Let α ∈ [0, 1] be the learning rate. KL balancing can then be defined as:

DKLB

[
qθ(·)∥pprior

θ (·)
]

= αDKL

[
qθ(·)∥stop_grad(pprior

θ (·))
]

+ (1 − α)DKL

[
stop_grad(qθ(·))∥pprior

θ (·)
]

Finally, we denote the learnable parameters of the value decomposition framework as ϕ. To maintain
consistency with QMIX, we define the TD target ytot and TD loss LTD(ϕ) as:

ytot = rt + γmaxat+1Qtot(τ t+1, at+1, st+1, ; ϕ)

LTD(ϕ) =
(
ytot − Qtot(τ t, at, st, ; ϕ)

)2

The overall loss function of VDFD can be expressed as:

L = β1LKL
ac + β2LREC

ac + β3LKL
af + β4LREC

af + β5Lst + LTD (4)

where {βi}i∈{1...5} are hyper-parameters corresponding to the real-valued masks. By jointly optimizing
components of the overall learning objective, we guide VDFD to accurately predict latent trajectories and
efficiently perform reinforcement learning, eventually maximizing the returns.

5 Experiments

To assess the performance and generalization capability of VDFD, we consider three well-established MARL
benchmarks: StarCraft Multi-Agent Challenge (SMAC), Multi-Agent MuJoCo (MAMuJoCo), and Level-
Based Foraging (LBF). We compare our method with widely applied MARL algorithms, including VDN

9
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Figure 4: Episodic return of VDFD compared to other methods in Multi-Agent MuJoCo control suite. The
return is scaled for clear plotting. Appendix C contains experimental details. Each run lasts 7M time
steps. VDFD is able to gain the highest return during the testing phase in every scenario. Our algorithm
outperforms QMIX, which shows the highest return among the baselines, by 25% on average.

(Sunehag et al., 2017), IQL (Tampuu et al., 2017), COMA (Foerster et al., 2018), QMIX (Rashid et al.,
2018), QTRAN (Son et al., 2019), MASER (Jeon et al., 2022), QMIX-CIA (Liu et al., 2023), SMMAE (Zhang
et al., 2023), and QPLEX-CIA (Liu et al., 2023). We make sure the baselines for our experiments include
both the well-known methods that demonstrate the CTDE paradigm (e.g., VDN, QMIX, QTRAN) and the
MARL algorithms that are the most up-to-date (e.g., MASER, QMIX-CIA, SMMAE). All experiments are
performed with five different seeds. Moreover, we carry out ablation studies to analyze the impact of the main
components of VDFD, involving different branches in the disentangled world model, the variational graph
auto-encoder, and the approximate prior function. We verify that they are indispensable to our method.

5.1 Performance on StarCraft II Micro-Management

Built upon StarCraft II, SMAC consists of battle scenarios corresponding to an extensive range of learning
tasks (Samvelyan et al., 2019). It focuses on the problem of micro-management, in which each agent takes
fine-grained control over an individual unit and selects actions independently. As SMAC requires the official
API, we use the newest SC2.4.10 release (Blizzard, 2019). It contains stability updates and bug fixes
compared to the older releases adopted in previous papers (Rashid et al., 2018; Mahajan et al., 2019; Du
et al., 2019; Jeon et al., 2022). Every agent manipulating a unit receives observations only within the unit’s
field of view, which leads to partial observability. The SMAC scenarios (maps) can be classified into three
categories: Easy, Hard, and Super-Hard, based on the difficulty. We evaluate the VDFD model on 21 diverse
scenarios, all of which can be found in Appendix B. All experiments in SMAC run for 2M time steps. We plot
the mean and the standard deviation of the five independent runs for each algorithm. The main results are
summarized as Test Win Rate, defined as the percentage of episodes in which our army defeats the enemies
within the permitted time limit (Samvelyan et al., 2019). Table 1 presents an overview of the main results
for VDFD and the other four competing methods in the SMAC benchmark.

Figure 3 indicates that VDFD rises above the competing methods on the Super-Hard SMAC challenges.
Compared to Easy and Hard scenarios, the Super-Hard challenges require more effective cooperation and
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Figure 5: The episodic return of VDFD compared with the baselines in the benchmark of Level-Based
Foraging. We select four representative tasks in which the levels of partial observability and cooperation
vary, and in which the numbers of players and food items differ. The outstanding competence of VDFD is
evident in all of the tasks. Our method exceeds QMIX, the second-best competitor, by a large margin.

particular micro-management tricks to defeat opponents. In 3s5z_vs_3s6z, the enemies have one more
Zealot than the allies, which enables them to isolate the ally Zealots from the ally Stalkers and attack the
latter. MMM2 is asymmetric and heterogeneous, in which there are three different types of units on each
side. The enemy army in 2c_vs_64zg consists of 64 Zerglings, yielding the largest state and action spaces
in SMAC. It is followed by 27m_vs_30m, which consists of 57 Marines in total. Because VDFD leverages
the decoupled world model that performs latent imaginations, it is equipped with useful knowledge about
what will happen in the future given different actions. It can therefore maintain precise control over the ally
units and adopt the optimal micro-management strategy for a certain environment more easily than other
baselines. Furthermore, since VDFD is essentially a model-based approach, it can be more sample-efficient
than model-free methods, especially in large-scale battles.

5.2 Performance on Multi-Agent MuJoCo

To address the need for multi-agent robotic control, Peng et al. (2021) developed Multi-Agent MuJoCo
(MAMuJoCo) based on the original MuJoCo suite Todorov et al. (2012). In MAMuJoCo, a single robot can
be partitioned into disjoint sub-graphs, each of which represents an agent. The agent may control one or
more joints, depending on the specific agent partitioning. All agents need to collaborate on solving diverse
tasks. MAMuJoCo also introduces partial observability, as the agents can be configured with different levels
of observational capabilities. For example, an agent can be set to observe only the state of its own joints
and body, or it can be set to observe its immediate neighbor’s joints and bodies. An overview of the results
on MAMuJoCo is presented in Table 2.

As Figure 4 shows, four different learning tasks are completed1. Several methods face difficulties in per-
forming MAMuJoCo tasks. For example, QPLEX-CIA and MASER even obtain negative returns in one or
more scenarios, because the robot cannot move forward and consequently gets penalized. In contrast, VDFD

1Ant_8×1 is the Ant partitioned into 8 agents, Walker2d_6×1 is the Walker partitioned into 6 agents, HalfCheetah_6×1
is the Half Cheetah partitioned into 6 agents, and Hopper_3×1 is the Hopper partitioned into 3 agents. All of the tasks are
partially observable.
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Figure 6: Comparison of VDFD win rates with two different sets of ablations on four SMAC scenarios. The
two sets of ablations are {NO-AC, NO-AF, NO-ST} and {VDF-SV, VDF-POST}. The SMAC environments
are 5m_vs_6m, MMM2, 3s_vs_4z and 2s_vs_1sc. Each plot displays the mean and standard deviation
over five seeds. VDFD outperforms all the ablations, although the difference in win rates is small on the
relatively simpler 2s_vs_1sc map. The results further suggest the importance of disentangled representation
learning, prior estimation with VAE, and posterior estimation with GALA in our model-based approach.

gains the highest episodic return in every environment, demonstrating that it consistently learns to move
the robots in the correct direction. Because VDFD leverages simulated roll-outs in policy improvement, it
is able to learn policies that coordinate the distinct joints of the robot under different configurations.

5.3 Performance on Level-Based Foraging

The Level-Based Foraging environment (LBF) Christianos et al. (2020) is a collection of mixed cooperative-
competitive games in the multi-agent domain. The general setting consists of agents and food items, which
are placed in a grid world and are assigned different levels. The goal of agents is to collect food, but the
collection of a food item is allowed only if the sum of levels of agents involved in loading is greater or equal to
the item’s level. Agents receive a reward equal to the level of the collected food divided by their contribution
(i.e., their levels). LBF poses challenges to both the cooperation and the competition of the agents. In this
paper, four distinct LBF tasks are defined, with variable numbers of agents and items, cooperation setting,
partial observability, and world size. Detailed settings regarding the LBF, the SMAC, and the MAMuJoCo
benchmarks can be found in Appendix A and Appendix C. Table 4 provides an overview of our results across
these three benchmark environments.

In Figure 5 and Table 3, it is clear that VDFD surpasses all other baselines in collecting food items and
maximizing episodic returns. QMIX exhibits moderate performance when the world is relatively small (in
"2s-8x8-2p-2f-coop-v2 "), but degrades significantly as the world size, the number of players, or the number
of food items grows. In the task of "10x10-3p-5f-v2 ", there are three players with more items to collect (five
items) than in other worlds. The players, therefore, need to spend more time gaining rewards. However,
VDFD still achieves remarkable progress given the limited time steps.

5.4 Ablation Studies

We carry out ablation experiments to investigate the effects of the main components in VDFD. First of
all, the performance comparison between VDFD and QMIX is implicitly an ablation study that shows the
importance of combining the world model with value function factorization.

Secondly, to examine the influence of the modules in the disentangled world model, we perform a set of
experiments with three alterations of VDFD: NO-AC, NO-AF, and NO-ST. In Figure 6, we present the
ablation results of them. For the first alteration, NO-AC, we remove the action-conditioned branch of the
world model by masking out the outputs of the branch. Likewise, NO-AF and NO-ST are implemented to
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mask out action-free and static branches. It is clear that the lack of any module in the world model results
in sub-optimal performance, as they correspond to different parts of the information about the environment
dynamics. NO-AC suffers the most because the agent network and the action representations are excluded
from the imagination process. As the complexity of the environment increases, the significance of the action-
free branch becomes evident. The performance of the NO-AF model drops 33% in 5m_vs_6m and 28% in
MMM2, which is substantial compared to the relatively easier 2s_vs_1sc map.

Finally, we conduct an ablation study on the impact of generative models. We consider two variants of
VDFD in this ablation study, VDF-SV and VDF-POST. The graph auto-encoder GALA is substituted with
a fully-connected VAE for learning the posterior qθ(·) in VDF-SV. For VDF-POST, we exclude the VAE for
learning pprior

θ (·), which means that only the posterior GALA is used for state inference. Figure 6 reveals
that both VDF-SV and VDF-POST are outclassed by VDFD. VDF-POST has the worst win rates in every
scenario. Compared to the original VDFD, the performance of VDF-SV decreases by 19%, 18%, and 11% in
5m_vs_6m, MMM2, and 3s_vs_4z, respectively. This indicates that GALA excels fully-connected VAE in
seizing the information about the relationship between agents. The results of VDF-POST imply that it is
necessary to approximate the unknown prior, instead of using only the posterior in representation learning.

Table 1: An overview on the Test Win Rates of VDFD compared with MASER, SMMAE, QMIX-CIA, and
QPLEX-CIA in Super-Hard, Hard, and Easy SMAC environments. Even in the challenge of 2c_vs_64zg
where the competing algorithms display the smallest performance differences among Super-Hard environ-
ments, our method is still on top of the others at the end of the testing episodes, with an average improvement
of 6.42%. The baselines that completely fail in the Super-Hard challenges (such as COMA and IQL) are not
considered for comparison.

SMAC Environments\Methods VDFD MASER SMMAE QMIX-CIA QPLEX-CIA
2c_vs_64zg 0.92 0.87 0.85 0.85 0.88

3s5z_vs_3s6z 0.18 0.02 0.01 0.02 0.10
27m_vs_30m 0.71 0.41 0.58 0.17 0.25

MMM2 0.86 0.72 0.81 0.49 0.11

SMAC Easy Challenges (Averaged) 0.98 0.99 0.95 0.97 0.98
SMAC Hard Challenges (Averaged) 0.95 0.87 0.86 0.85 0.87

Table 2: An overview on the episode return of VDFD compared with other MARL baselines in Multi-Agent
MuJoCo. It is clear that among all the competing baselines, QMIX and VDN acquire the highest episodic
return at the end of the testing episodes. VDFD surpasses QMIX by 25% and VDN by 61% across different
Multi-Agent MuJoCo environments on average.

Tasks VDFD MASER IQL QMIX-CIA QPLEX-CIA SMMAE QMIX VDN
Ant_8×1 48.54 13.65 22.50 22.23 -2.09 22.62 33.50 26.73

Walker2d_6×1 24.59 7.40 18.61 10.86 6.56 12.16 23.33 18.72
HalfCheetah_6×1 42.73 -3.14 16.03 -2.18 -9.26 -3.28 35.83 20.13

Hopper_3×1 28.74 5.86 17.09 3.94 12.18 12.52 22.09 24.10

Table 3: An overview on the episode return of VDFD compared to the other approaches in Level-Based
Foraging. Our method can make substantial performance gains across distinct LBF tasks compared to
QMIX, VDN, and IQL.

LBF Environments\Methods VDFD COMA SMMAE QMIX VDN IQL
2s-8x8-2p-2f-coop-v2 0.99 0.06 0.02 0.73 0.71 0.65

2s-10x10-3p-3f-v2 0.92 0.20 0.10 0.53 0.56 0.56
10x10-3p-5f-v2 0.50 0.12 0.07 0.11 0.10 0.11
10x10-4p-3f-v2 0.92 0.04 0.12 0.31 0.57 0.37
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Table 4: An overview of the performance of VDFD compared to competing methods across SMAC, MA-
MuJoCo, and LBF. For SMAC, Test Win Rates are averaged within difficulty levels. For MAMuJoCo and
LBF, the episodic returns are averaged over all tasks selected within the benchmark. VDFD leads the group
among all environments, except for the Easy SMAC maps where results are nearly identical.

Environments\Methods VDFD MASER SMMAE QMIX-CIA QPLEX-CIA QMIX
SMAC Easy Maps (Avg.) 0.98 0.99 0.95 0.97 0.98 0.96
SMAC Hard Maps (Avg.) 0.95 0.87 0.86 0.85 0.87 0.14

SMAC Super-Hard Maps (Avg.) 0.67 0.50 0.56 0.38 0.33 0.00
MAMuJoCo Tasks (Avg.) 36.15 5.94 11.01 8.71 1.85 28.69
LBF Environments (Avg.) 0.83 N/A 0.08 N/A N/A 0.42

6 Conclusion

We present VDFD, a model-based method coalescing disentangled representation learning into value function
factorization, to address the immense complexity of MARL. To optimize the learning objective, we model
the system as Dec-POMDP and integrate generative models in VDFD. We encapsulate the environment
representations into a decoupled world model to enhance sample efficiency. VDFD acquires the capability of
inferring future states by learning the latent trajectories in the world model. We demonstrate experimentally
and analytically that VDFD outstrips well-known MARL baselines and achieves solid generalizability. Using
ablation studies, we confirm that the components of VDFD are indispensable for its outstanding performance.

Looking ahead, we aim at implementing different generative models, such as new variants of the VAE, to
compare their effectiveness when applied to the world model. Moreover, we are committed to extending the
scope of our research to encompass challenging sparse-reward environments. These settings pose a difficult
hurdle in MARL, and addressing these challenges holds immense significance for real-world applications.
Through comprehensive assessments in such environments, we hope to uncover the potential applicability of
VDFD across a broader spectrum of practical domains.
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Appendix

A Overview of the Three Benchmark Environments

A.1 StarCraft Multi-Agent Challenge

Our algorithm is tested in the StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019). Designed
using the popular RTS game StarCraft II, SMAC fosters the development of MARL methods in complex
and real-time settings. It encourages the performance analysis of diverse MARL algorithms on standardized
benchmarks.
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Name Ally Units Enemy Units Type Difficulty
1c3s5z 1 Colossus, 3 Stalkers

& 5 Zealots
1 Colossus, 3 Stalkers
& 5 Zealots

Heterogeneous
& Symmetric

Easy

2c_vs_64zg 2 Colossi 64 Zerglings micro-trick: po-
sitioning

Super-
Hard

2m_vs_1z 2 Marines 1 Zealot micro-trick: al-
ternating fire

Hard

2s_vs_1sc 2 Stalkers 1 Spine Crawler micro-trick: al-
ternating fire

Hard

2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots Heterogeneous
& Symmetric

Easy

3m 3 Marines 3 Marines Homogeneous &
Symmetric

Easy

3s_vs_3z 3 Stalkers 3 Zealots micro-trick: kit-
ing

Hard

3s_vs_4z 3 Stalkers 4 Zealots micro-trick: kit-
ing

Hard

3s_vs_5z 3 Stalkers 5 Zealots micro-trick: kit-
ing

Hard

3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots Heterogeneous
& Symmetric

Hard

3s5z_vs_3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots Heterogeneous
& Asymmetric

Super-
Hard

5m_vs_6m 5 Marines 6 Marines Homogeneous &
Asymmetric

Hard

8m 8 Marines 8 Marines Homogeneous &
Symmetric

Easy

8m_vs_9m 8 Marines 9 Marines Homogeneous &
Asymmetric

Hard

10m_vs_11m 10 Marines 11 Marines Homogeneous &
Asymmetric

Hard

25m 25 Marines 25 Marines Homogeneous &
Symmetric

Hard

27m_vs_30m 27 Marines 30 Marines Homogeneous &
Asymmetric

Super-
Hard

bane_vs_bane 20 Zerglings & 4
Banelings

20 Zerglings & 4
Banelings

micro-trick: po-
sitioning

Hard

MMM 1 Medivac, 2 Maraud-
ers & 7 Marines

1 Medivac, 2 Maraud-
ers & 7 Marines

Heterogeneous
& Symmetric

Hard

MMM2 7 Marines, 2 Maraud-
ers & 1 Medivac

8 Marines, 3 Maraud-
ers & 1 Medivac

Heterogeneous
& Asymmetric

Super-
Hard

so_many_banelings 7 Zealots 32 Banelings micro-trick: po-
sitioning

Hard

Table 5: StarCraft II micro-management challenges.

A variety of micro-management tasks that SMAC provides are shown in Table 5. They vary in terms of
the number and types of units, creating a diverse set of challenges that require effective cooperation and
strategies. For example, although bane_vs_bane is symmetric, it has 24 units in one team, and 4 of them
are Banelings. They are suicide bomber units that explode when being killed, which increases the difficulty
of battles. The 7 allied Zealots in so_many_baneling have to survive the attacks by 32 enemy Banelings
that are strong against Zealots. They must design a plan for positioning, spreading far from each other
on the terrain so that the Banelings’ suicidal attacks inflict minimal damage on them. The allied army
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Figure 7: The battle scenario of 1c3s5z as viewed in the StarCraft II official API. The allied units are set to
red and the enemy units are set to blue. Each side has 1 Colossus, 3 Stalkers, and 5 Zealots. This scenario
is symmetric but heterogeneous. The allied army has the same number of units as the enemy army (nine
units in total), but the team consists of different types of units (three types in total).

in 25m has 25 Marines, far exceeding 3m and 8m. Asymmetric scenarios, such as so_many_baneling and
2m_vs_1z, require the agents’ effective control over the units to beat the enemies consistently. In 3s_vs_4z
and 3s_vs_5z, the allied Stalkers need a specific strategy called kiting in order to vanquish the enemy
Zealots, which causes delays to the reward.

In Appendix B, we will use a larger number of images similar to Figure 7 to illustrate the behaviors of agents
during StarCraft II battles.

Figure 8: Different configurations of robots in Multi-Agent MuJoCo. A) Many-Agent Swimmer; B) Three-
Agent Hopper; C) Two-Agent Half Cheetah; D) Six-Agent Half Cheetah; E) Two-Agent Humanoid; F)
Two-Agent Walker2d; G) Two-Agent Reacher; H) Two-Agent Ant; I) Diagonal Two-Agent Ant; J) Four-
Agent Ant; K) Many-Agent Ant. The figure is extracted from (Peng et al., 2021, p. 12214).
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A.2 Multi-Agent MuJoCo

The Multi-Agent MuJoCo (MAMuJoCo) environment, developed by Peng et al. (2021), is a benchmark for
multi-agent robotic control and learning. It is based on OpenAI MuJoCo environments, which have been
widely applied in the research area of single-agent RL. As demonstrated by Figure 8 (Peng et al., 2021,
p. 12214), a single robot in the MAMuJoCo environment can be partitioned into disjoint sub-graphs, each
of which represents an agent. The agent may control one or more joints, depending on the specific agent
partitioning. Each of the joints corresponds to a controllable motor. All agents need to collaborate on
solving distinct tasks. In this environment, agents can be configured with different levels of observational
capabilities. For instance, an agent can be set to observe only the state of its own joints and body, or it can
be set to observe its immediate neighbor’s joints and bodies.

The MAMuJoCo configurations used in this paper include:

• The Three-Agent partitioning of Hopper denoted as Hopper_3×1 (configuration B in Figure 8),

• The Six-Agent partitioning of Half Cheetah denoted as HalfCheetah_6×1 (configuration D in Figure
8),

• The Six-Agent partitioning of Walker2d denoted as Walker2d_6×1 (every agent controls a joint of
Walker2d),

• The Eight-Agent partitioning of Ant denoted as Ant_8×1 (every agent controls a joint of Ant).

A.3 Level-Based Foraging

Figure 9: Visualization of a sample task in the Level-Based Foraging environment. The figure is extracted
from (Papoudakis et al., 2020, p. 17). This grid world has a size of 8 × 8. Two agents collaborate on
collecting the three food items randomly located in the grid world.
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The Level-Based Foraging (LBF) environment (Christianos et al., 2020; Papoudakis et al., 2020) is a col-
lection of mixed cooperative-competitive games in the field of multi-agent reinforcement learning. In this
environment, agents and food items are randomly placed in a grid world. Each of them is assigned a level,
and the level may vary. The task for each agent is to navigate the grid world map and collect the food items.
In order to load the items, agents have to choose a certain action next to the item. However, such collection
is only successful if the sum of levels of agents involved in loading food is equal to or greater than the food
item level. Agents receive a reward equal to the level of the collected food divided by their contribution
(their levels). LBF provides a test bed for studying both cooperation and competition among agents in
MARL. In our experiments, four distinct LBF tasks are defined, with variable environment configurations.

To customize the environment configuration, Christianos et al. (2020) provide a template: "Foraging{obs}-
{x_size}x{y_size}-{n_agents}p-{food}f{force_c}-v2". The options in the template are as follows:

• {obs}: This option introduces partial observability into the environment. For example, if it is set to
"-2s", each agent will only have a visibility radius of 2. Otherwise, it can be left blank.

• {x_size} and {y_size}: These fields determine the size of the grid world. For example, an 8 × 8 grid
world is expressed as "8x8" in the template.

• {n_agents}: This option sets the number of agents (players) for the task.

• {food}: This field sets the number of food items that will be randomly placed in the grid world.

• {force_c}: This field indicates whether the task will be fully cooperative or not. If it is set to
"-coop", then the environment will only contain food items that require the cooperation of all agents
to be collected successfully.

For example, we have created an LBF environment named "2s-8x8-2p-2f-coop-v2 " for the experiments. This
configuration indicates that there are two players and two food items randomly scattered in an 8 × 8 grid
world. Every player has a visibility radius of two and they have to fully collaborate on collecting the food.
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B Supplemental Results

B.1 Performance Comparison Between VDFD and Another Model-Based MARL Algorithm

Table 6: To complement the results in Section 5 of the main paper, we decide to compare the performance
of VDFD with MAG (Models as AGents), a model-based MARL algorithm that was recently proposed (Wu
et al., 2023). This table displays the mean and standard deviation of the Test Win Rate (%) in SMAC
(StarCraft II Multi-Agent Challenge) and the episodic return in Multi-Agent MuJoCo (without scaling) for
VDFD and MAG. During the experiments, the total number of roll-outs in a single run is the same for
both VDFD and MAG. We make sure that a fair comparison is made in this way. From the results, we can
observe that VDFD achieves better performance in seven of the eight environments overall. VDFD is very
consistent because it always yields lower standard deviations than MAG across the runs.

Environments \Methods VDFD (Ours) MAG
2c_vs_64zg (SMAC) 91.88 ± 3.92 31.67 ± 18.62
2s_vs_1sc (SMAC) 99.37 ± 1.39 95.00 ± 4.08

2s3z (SMAC) 98.75 ± 1.71 93.33 ± 2.89
3s_vs_3z (SMAC) 99.88 ± 0.17 97.50 ± 2.89
3s_vs_4z (SMAC) 99.08 ± 0.92 85.00 ± 7.64
3s_vs_5z (SMAC) 92.50 ± 4.74 51.25 ± 23.11

3s5z_vs_3s6z (SMAC) 17.19 ± 2.20 32.73 ± 22.18
Humanoid (MAMuJoCo) 549 ± 33 423 ± 104

B.2 Test Win Rates of All Methods in SMAC Scenarios

For each SMAC scenario, we will present two plots. This is because we have implemented ten algorithms in
total: VDFD (our method), IQL Tampuu et al. (2017), VDN Sunehag et al. (2017), COMA Foerster et al.
(2018), QMIX Rashid et al. (2018), QTRAN Son et al. (2019), MASER Jeon et al. (2022), QMIX-CIA Liu
et al. (2023), SMMAE Zhang et al. (2023), and QPLEX-CIA Liu et al. (2023). We need to divide them into
two groups when we are plotting so that every curve can be viewed clearly.

Figure 10: Test Win Rates of VDFD against the baselines of QMIX, IQL, COMA, QTRAN, and VDN in
Easy SMAC environments.

B.3 Illustration of the Performance of VDFD in StarCraft II Gameplay

Using the replays of the experiments in SMAC, here we provide more fascinating details obtained from the
official StarCraft II game API. The figures in this section will demonstrate the interactions of the agents
during the battles. Based on the default game setting, the red units belong to the allied army while the blue
units represent the enemy troops. Moreover, in the bottom left corner of each figure, an overview of the map
is displayed, in which the green squares and the blue squares denote the allied units and the enemy units,
respectively.

Figures 15 and 17 present the agents controlled by VDFD in the 3s5z_vs_3s6z and MMM2 environments,
respectively. Both of them belong to the classification of Super-Hard. We have also prepared a video that
records the replays in these two environments. Please refer to the supplemental materials.
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Figure 11: Test Win Rates of VDFD against MASER, SMMAE, QMIX-CIA, and QPLEX-CIA in Easy
SMAC environments. Every algorithm in this figure exhibits state-of-the-art performance on Easy maps.

Figure 12: Test win rates of VDFD compared to the baselines of QMIX, IQL, COMA, QTRAN, and VDN
in Hard challenges. Each plot displays the mean and standard deviation over 5 seeds. There exists a
performance gap between Easy and Hard challenges for the baselines. Neither QMIX nor QTRAN yields
high winnnig rates in most of the Hard maps. It is obvious that VDFD reaches state-of-the-art performance
in all of the additional challenges. VDFD exhibits a delay in time for winning against the enemy army in
3s_vs_5z since it slowly learns the kiting strategy, which requires luring the enemies while maintaining a
safe distance.

24



Under review as submission to TMLR

Figure 13: Test win rates of VDFD compared with latest MARL algorithms including SMMAE, MASER,
QMIX-CIA, and QPLEX-CIA in Hard challenges. Each plot displays the mean and standard deviation over
5 seeds. As newly developed MARL approaches, SMMAE, MASER, QMIX-CIA, and QPLEX-CIA outshine
the relatively older baselines shown in the last figure, reaching the same level of competence as VDFD in
Hard scenarios. Meanwhile, VDFD is still able to surpass all other approaches on some of the maps, such
as 5m_vs_6m, 10m_vs_11m, and 25m.

Figure 14: Test win rates of VDFD compared to the other MARL approaches in Super-Hard challenges. The
plots on the left indicate that the baselines can hardly learn a policy to beat the enemy troops throughout
the battle. On the other hand, our method is able to lead the group in terms of performance amongst all
the newly proposed algorithms, as demonstrated by the plots on the right.
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Figure 15: Our model VDFD in 3s5z_vs_3s6z.

Figure 16: The VDN baseline in 3s5z_vs_3s6z.
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Regarding the 3s5z_vs_3s6z challenge, the allied army owns three Stalkers and five Zealots, and the enemies
have one more Zealot by comparison. From what Figure 15 has shown, the major issue we need to solve is
how to break through the enhanced protection for the Stalkers made by the six opposing Zealots. Through
the battle, our Stalkers attempt to lure the enemy Zealots, and our Zealots focus fire on the opposing Stalkers
at the same time. In the end, the two live allied Zealots destroy the last opponent. Every MARL baseline
performs poorly in this challenge. For example, VDN repeatedly fails to control the units to protect the
allied Stalkers properly and is crushed by the opposing Zealots, as shown by Figure 16.

Figure 17: Our model VDFD in MMM2.

Furthermore, we look into the scenario of MMM2. The key tactic for VDFD to learn in this challenge is to
annihilate the Medivac in the enemy army as soon as possible because it can heal the three Marauders and
the eight Marines. Apparently, we have the privilege after the opposing Medivac is obliterated, and our army
is still left with the Medivac, three Marines, and one Marauder when the enemies get defeated. In contrast,
Figure 18 discloses the battle scenes of VDN. Because the agents failed to prioritize the elimination of the
opposing Medivac, it healed the enemy Marauders to sustain the hits from the allies and ruined them. All
the opposing Marauders survived at last.

Overall, we have illustrated that VDFD achieves state-of-the-art performance using the combat scenes cap-
tured within the game. By providing an analysis from the perspective of StarCraft II gameplay, we further
strengthen our statement on the competitiveness of our approach.
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Figure 18: The VDN baseline in MMM2.

B.4 Performance of All Tested Algorithms in Multi-Agent MuJoCo Environments

Figure 19: Episodic return of VDFD against the other MARL algorithms including QMIX-CIA, QPLEX-
CIA, MASER, QMIX, VDN, IQL, and SMMAE in Multi-Agent MuJoCo environments. For clear plotting,
the values of the returns are scaled for all methods, and the details can be found in Appendix C. VDFD
outperforms all other algorithms in Multi-Agent MuJoCo.
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B.5 Performance of VDFD Compared to Baselines in Level-Based Foraging Tasks

Figure 20: Episode return of VDFD compared with the other MARL baselines including QMIX, VDN,
IQL, SMMAE, and COMA in Level-Based Foraging environments. We select four representative tasks in
which the levels of partial observability and cooperation vary, and in which the numbers of players and food
items differ. The outstanding competence of VDFD is evident in all of the learning tasks. In addition, it is
interesting to observe that QMIX and VDN can beat SMMAE, especially in environments that require full
cooperation.
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C Experimental Details

Name Value
Action selector Epsilon-greedy
Number of time steps 2000000
Agent architecture RNN
Batch size 32
Buffer size 5000
Number of environments to run in parallel 1
Branching factor 3
Learning rate 5 × 10−4

Discount hyperparameter γ 0.99
Optimizer RMSProp
RMSProp hyperparameter α 0.99
RMSProp hyperparameter ϵ 1 × 10−5

Dimension of the hidden state for agent network 64
Latent dimension of an agent 16
Dimension of the embedding layer for agent network 4
Dimension of the embedding layer for mixing network 32
Dimension of the embedding layer for hyper-network 64
Number of hyper-network layers 2
Runner Episodic runner
Logging interval for runner 1 × 104

Logging interval for training 1 × 104

Logging interval for the summary of statistics 1 × 104

Starting value of exploration rate 1
Finishing value of exploration rate 0.05
Number of time steps for epsilon rate annealing 5 × 104

Number of time steps after which the target networks are updated 200
Roll-out horizon 3
Loss function parameters β1, β2, β3, β4 1/2
Loss function parameter β5 1/3
Whether to use greedy evaluation True
Whether to use KL balancing True
KL balancing α 0.8
Number of time steps between test intervals 10000
Number of episodes for testing every time 32

Table 7: The set-up of hyperparameters for our VDFD.

In Table 7 and Table 8, we show the hyperparameter settings for the VDFD model and the environmental
set-up for SMAC, respectively. The settings for Multi-Agent MuJoCo and for Level-Based Foraging are
displayed in Table 9 and Table 10. To make clear graphs for Multi-Agent MuJoCo, we scale the returns for
the four tasks in MAMuJoCo. We have specified this in Table 9.

The hyperparameters of the other MARL baselines are consistent with their official implementations. Our
implementation for VDFD is based on the Pytorch framework. The version of Python is 3.9.16. We run each
of the experiments in this paper with 5 different seeds. We use Linux machines with the Intel(R) Xeon(R)
W-2133 CPU and the NVIDIA GeForce RTX 3090 GPU.
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Description Value
Whether to consider episodes continuing or finished False
after the time limit is reached
Whether agents receive the last actions of False
all units within the sight range as part of observations
Whether agents receive pathing values False
within the sight range as part of observations
Whether to log messages about False
observations, states, actions, and rewards
Whether to use a combination of agents’ observations False
as the global state
Whether agents receive the health of True
other agents within the sight range
Whether to use a non-learning heuristic AI False
Whether agents receive their own health True
Whether to scale down the reward for every episode True
Number of time steps 2000000
Reward scaling rate 20
Reward for winning (all enemies die) +200
Reward for defeating one enemy +10
Reward when one ally dies −5
Number of time steps per agent step 8
How far away units move per step 2
Races {Random, Protoss, Terran, Zerg}
Basic Actions {attack, move, stop, heal, no-op}
Directions {East, West, South, North}
Difficulty 7 (very difficult)
Game version SC2.4.10

Table 8: The default settings for SMAC environments.
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Name Value
Number of time steps 7000000
Number of nearest joints to observe 2
Batch size 32
Number of episodes for testing during the test interval 32
Number of time steps between testing intervals 10000
Number of time steps between logging intervals 10000
Whether the agent receives its ID True
Whether agents receive the last actions True
within the sight range
Partitioning of the robot Ant (hip4, ankle4, hip1, ankle1,

hip2, ankle2, hip3, ankle3)
Partitioning of the robot Half Cheetah (bthigh, bshin, bfoot, fthigh, fshin, ffoot)
Partitioning of the robot Hopper (thigh_joint, leg_joint, foot_joint)
Partitioning of the robot Walker2d (foot_joint, leg_joint, thigh_joint,

foot_left_joint, leg_left_joint, thigh_left_joint)
Scaling factor for the returns of Ant_8×1 0.2
Scaling factor for the returns of HalfCheetah_6×1 0.2
Scaling factor for the returns of Hopper_3×1 0.1
Scaling factor for the returns of Walker2d_6×1 0.1

Table 9: The default settings for Multi-Agent MuJoCo control suite.

Name Value
Number of time steps 2000000
Number of episodes for testing during the test interval 100
Number of time steps between testing intervals 50000
Number of time steps between logging intervals 50000
Basic Actions {None, North, South, East, West, Load}
Whether the agent receives its ID True
Whether agents receive the last actions True
within the sight range

Table 10: The default settings for Level-Based Foraging environments.
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D Markov Games

In MARL environments, the dynamics of the environment and the reward are determined by the joint
actions of all agents, and a generalization of MDP that is able to model the decision-making processes of
multiple agents is needed. This generalization is known as stochastic games, also referred to as Markov
games (Littman, 1994).
Definition D.1. A Markov game GM is defined as a tuple

⟨N , S, {Ai}i∈{1,...,N}, P, {Ri}i∈{1,...,N}, γ⟩, where

• N = {1, ..., N} represents the set of N agents, and it is equivalent to a single-agent MDP when
N = 1.

• S is the state space of all agents in the environment.

• {Ai}i∈{1,...,N} stands for the set of action space of every agent i ∈ {1, ..., N}.

• Define A := A1 × ... × AN to be the set of all possible joint actions of N agents, and define △(S)
to be the probability simplex on S. P : S × A → △(S) is the probability function that outputs the
transition probability to any state s′ ∈ S given state s ∈ S and joint actions a ∈ A.

• {Ri}i∈{1,...,N} is the set of reward functions of all agents, in which Ri : S × A × S → R denotes the
reward function of the i-th agent that outputs a reward value on a transition from state s ∈ S to
state s′ ∈ S given the joint actions of all agents a ∈ A.

• Lastly, γ ∈ [0, 1] represents the discount factor w.r.t. time.

A Markov game, when used to model the learning of multiple agents, makes the interactions between agents
explicit. At an arbitrary time step t in the Markov game, an agent i takes its action ai,t at the same time
as any other agent given the current state st. The agents’ joint actions, at, cause the transition to the next
state st+1 ∼ P (·|st, at) and make the environment to generate a reward Ri for agent i. Every agent has the
goal of maximizing its own long-term reward, which can be achieved by finding a behavioral policy

π(a|s) :=
∏
i∈N

πi(ai|s)

Specifically, the value function of agent i is defined as

V i
πi,π−i(s) := Est+1∼P (·|st,at),a−i∼π−i(·|st)

[ ∑
t

γtRi
t(st, at, st+1)|ai

t ∼ πi(·|st), s0
]

where the symbol −i stands for the set of all indices in {1, ..., N} excluding i. It is clear that in a Markov
game, the optimal policy of an arbitrary agent i is always affected by not only its own behaviors but also
the policies of the other agents. This situation gives rise to significant disparities in the approach to finding
solutions between traditional single-agent settings and multi-agent reinforcement learning.

In the realm of MARL, a prevalent situation arises where agents do not have access to the global environ-
mental state. They are only able to make observations of the state by leveraging an observation function.
This scenario is formally defined as Dec-POMDP, as we have shown in Definition 3.1. It contains two
extra terms for the observation function

O(s, i) : S × N → Z

and for the set of observations Z made by each of the agents, in addition to the definition of the Markov
game.
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E Detailed Deduction of the ELBO

Equation 2 in the main paper briefly shows how the ELBO of Dec-POMDP, LELBO(a0:T , z1:T ), is derived.
We present the full deduction process here.

LELBO(a0:T , z1:T )
= log p (a0:T , z1:T )

= logEqθ(ŝ1:T |a0:T ,z1:T )

[
p(ŝ1:T , a0:T , z1:T )

qθ(ŝ1:T | a0:T , z1:T )

]
≥ Eqθ(ŝ1:T |a0:T ,z1:T ) log

[
p(ŝ1:T , a0:T , z1:T )

qθ(ŝ1:T | a0:T , z1:T )

]
(5)

=
∫

qθ(ŝ1:T | a0:T , z1:T ) log
[

p(ŝ1:T , a0:T , z1:T )
qθ(ŝ1:T | a0:T , z1:T )

]
dŝ1:T

=
∫ T∑

t=1
qθ(ŝ1:T | a0:T , z1:T ) log

[
p (at | zt) p (zt | ŝt) p (ŝt | ŝt−1, at−1)

qθ (ŝt | ŝt−1, at−1, zt)

]
dŝ1:T

=
T∑

t=1

∫
qθ(ŝ1:t | a0:t, z1:t) log

[
p (at | zt) p (zt | ŝt) p (ŝt | ŝt−1, at−1)

qθ (ŝt | ŝt−1, at−1, zt)

]
dŝ1:t

=
T∑

t=1

{∫
qθ(ŝ1:t | a0:t, z1:t) log [p (at | zt) p (zt | ŝt)] dŝ1:t

+
∫

qθ(ŝ1:t | a0:t, z1:t) log
[

p (ŝt | ŝt−1, at−1)
qθ (ŝt | ŝt−1, at−1, zt)

]
dŝ1:t

}
=

T∑
t=1

{∫
qθ(ŝ1:t | a0:t, z1:t) log [p (at | zt) p (zt | ŝt)] dŝ1:t

−
∫

qθ (ŝ1:t−1 | a0:t−1, z1:t−1) DKL [qθ (ŝt | ŝt−1, at−1, zt) ∥ p (ŝt | ŝt−1, at−1)] dŝ1:t

}
= Eqθ(ŝ1:T |a0:T ,z1:T )

T∑
t=1

{log [p (at | zt) p (zt | ŝt)]

−DKL [qθ (ŝt | ŝt−1, at−1, zt) ∥ p (ŝt | ŝt−1, at−1)]}

≈
T∑

t=1
{log [p (at | zt) p (zt | ŝt)]

− DKL [qθ (ŝt | ŝt−1, at−1, zt) ∥ p (ŝt | ŝt−1, at−1)]} (6)

=
T∑

t=1
{log [p (at | zt)] + log [p (zt | ŝt)]

− DKL [qθ (ŝt | ŝt−1, at−1, zt) ∥ p (ŝt | ŝt−1, at−1)]} (7)

Note that (5) is reached via Jensen’s inequality. Equation 6 can be obtained by sampling ŝ1:T ∼
qθ (ŝ1:T | a0:T , z1:T ). Equation 7 is identical to Equation 2.
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F Supplementary Related Work

F.1 Variational Auto-Encoder (VAE)

The VAE model is a generative model that learns a probability distribution across the input space (Fortuin
et al., 2019). It is composed of an encoder network and a decoder network. When provided with the input
data x, VAE assumes that x is generated from a latent variable z that is not directly observed (Kingma &
Welling, 2013). The latent variable z is sampled from the prior distribution over the latent space, which
is the centered isotropic multivariate Gaussian p(z) = N (z; 0, I). The VAE then proceeds to learn the
conditional distribution p(x|z). The posterior distribution of the latent variables, p(z|x), is assumed to take
on an approximate Gaussian with a diagonal covariance to address the intractability of the true posterior
distribution. Consequently, the reconstruction error can be computed and back-propagated through the
encoder-decoder network (Ha & Schmidhuber, 2018).

The encoder of the VAE can be considered as a recognition model, and the decoder serves as a generative
model (Kingma & Welling, 2013). The VAE model can then be described as the combination of two coupled
but independently parameterized models. These two models support each other: the recognition model
provides the generative model with the approximates for its posteriors over latent random variables. And
conversely, the generative model enables the recognition model to learn informative representations of the
data. The recognition model is the approximate inverse of the generative model, according to Bayes’ rule.

F.2 Policy Gradient MARL Methods

In single-agent RL, there exists a class of policy gradient methods that do not necessarily require estimates
of the value functions. These algorithms update the learning parameters along the direction of the gradient
of specific metrics with respect to the policy parameter (Sutton & Barto, 2018). The optimal policy is
estimated using parametrized function approximations.

Policy gradient algorithms belong to one of the two main categories of MARL algorithms, including actor-
critic methods that update policy networks while learning a centralized value function to guide policy op-
timization based on the policy gradient theorem (Yang & Wang, 2020). Gupta et al. (2017) described a
multi-agent policy gradient version of the trust region policy optimization (Schulman et al., 2015) that en-
ables policy parameter sharing among all agents, but the actor and the critic can only be conditioned on
local observations and actions. BiCNet (Peng et al., 2017) also allowed parameter sharing to enhance the
scalability of the model, but the communication among agents actually depends on bi-directional RNN.
Lowe et al. (2017) adopted the framework of deep deterministic policy gradient (Lillicrap et al., 2015) to
multi-agent settings and proposed MADDPG, an approach that uses actors trained on the local observations
and a centralized critic for function approximation. The critic is learned by the agents based on their joint
observation and joint action. COMA (Foerster et al., 2018) utilized a critic for centralized learning as well,
conditioning the critic on the agents’ actions and global state information. The most notable feature of
COMA is that the critic computes a counterfactual baseline, to which the estimated return for the joint
action is compared. However, COMA tends to suffer high variance in the computation of the counterfac-
tual baseline, causing instabilities in multi-agent benchmarking (Papoudakis et al., 2020). Yu et al. (2021)
carefully investigated the performance of proximal policy optimization (Schulman et al., 2017) in cooper-
ative multi-agent environments and obtained competitive sample efficiency with minimal hyperparameter
tuning and no major algorithmic modifications. Designing a centrally computed critic to pass the current
state information into decentralized agents for learning optimal cooperative behaviors has proved to be an
important line of approach in addressing the credit assignment problem (Iqbal & Sha, 2018; Du et al., 2019;
Zhou et al., 2020).
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