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ABSTRACT

Grokking, or the delayed generalization phenomenon, describes the abrupt and
rapid improvement in test accuracy that occurs after a model has been overfitted
for a prolonged period. This phenomenon was first identified by Power in the
context of operations on a prime number field. Over the past two years, a range
of mathematical analyses has been conducted to investigate grokking, typically
involving the use of the hidden progress measure which mean a function that can
anticipate the occurrence of grokking. We believe that a comprehensive and rig-
orous mathematical modeling approach can invigorate the research on this task
and provide a unified perspective for understanding previous research. This paper
introduces a novel approach by modeling the task as a unique dynamical system.
Using mathematical derivation within this framework, we propose a robust hid-
den progress measure that effectively captures the grokking phenomenon across
all operations on prime number fields. This approach not only provides a more
complete understanding but also offers deeper insights into the underlying archi-
tecture of the model. Based on this understanding, we also proposed a method to
accelerate grokking without involving regularization or altering the model archi-
tecture.

1 INTRODUCTION

For a long time, it has been widely believed that model overfitting results from an excessive reliance
on biases within the dataset, causing the model to lose its ability to generalize to new data. However,
the observation of grokking (Power et al. (2022)) challenges this understanding. Grokking offers a
new perspective on the training process, suggesting that improvements in training accuracy may
only indicate a superficial ”mastery” of the task by the model.

In recent years, numerous attempts have been made to explain grokking, typically following a pattern
of hypothesis formulation - theorem construction - experimental validation. From a mathematical
perspective, these efforts are phenomenological, lacking a deep exploration of the origins of the
theoretical tools employed. To fully understand the grokking phenomenon, it may be necessary
to undertake more structured work, specifically the development of a comprehensive mathematical
model. Such a model would situate the problem within an established mathematical framework,
thereby providing access to a variety of powerful analytical tools.

At first, Our work focused on placing the task where grokking happens, within the framework of
dynamical systems. This allows us to utilize the tools of dynamical systems to examine the mathe-
matical structure of the entire task. By studying the properties of the phase space of the dynamical
system, we aim to further analyze the reasons behind the occurrence of grokking in these tasks. In
Figure 1, we illustrate our understanding of the aforementioned concept, where we posit that work
at the structural level should be prioritized.

A complete mathematical framework has allowed us to re-evaluate previous approaches to analyzing
grokking. We acknowledge the existence of a hidden progress measure (Nanda et al. (2022)), which
is a function embedded within the model’s update process that can accurately represent grokking.
We re-modeled the task using a dynamical systems approach, which allowed us to anchor the math-
ematical background of multiple hidden progress measures. Ultimately, based on our analysis of
the specific dynamical system associated with this task, we have proposed a robust and elegant hid-
den progress measure. This measure can precisely track the occurrence of grokking and does not
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Application or 
phenomenon

Theorem: specific 
properties

Structure:formal 
symbolic system Dynamic system

Properties of the 
specific dynamic system

Progress measures 
for grokking (in our work)

Figure 1: This figure is intended to illustrate the hierarchical levels of mathematical analysis. Struc-
tured work often involves introducing a problem into a well-established mathematical framework.
Within this framework, general theorems can be combined with specific tasks to derive theorems
that are applicable to those particular tasks. These task-specific theorems can then be directly em-
ployed to solve problems, representing the application-level aspect of the work.

depend on the selection of the prime number p in the original task. We believe that the grokking phe-
nomenon in this task is highly unique. Therefore, based on our theoretical framework, we attempted
to accelerate grokking without using regularization techniques and achieved promising results.

The main contributions and innovations of our work can be summarized as follows:

• We re-modeled the prime field addition task from the perspective of dynamical systems and
reconstructed the analysis of grokking.

• We proposed a function called Main embedding diff (MED) that can track changes in test
loss, serving as a robust hidden progress measure. It is not limited to a specific prime
number p, but can be applied to any task with a similar structure.

• Without using regularization techniques or altering the model architecture, we reduced the
number of epochs required for grokking to half of the original.

2 RELATED WORK

2.1 GROKKING

Grokking was first proposed in Power et al. (2022), which happened on a model of a two-layers
transformer decoder to solve several algorithmic tasks. Initial understanding of grokking focused
on the size of the dataset and some studies proposed the concept of ’critical dataset size’ like Zhu
et al. (2024) and Huang et al. (2024). The essence of these methods is to explain mutation behavior
through the linear variation of dataset size. Some studies have also recognized that grokking might
be a common phenomenon in classification tasks, prompting researchers to approach the problem
from a structural perspective like Liu et al. (2022) and Thilak et al. (2022) . However, the number of
classification tasks in which the grokking phenomenon has been observed is limited, leading some to
speculate that grokking is a result of the Transformer architecture, as discussed Wang et al. (2024).
Some studies also focus on changing the architecture to investigate variations in the phenomenon like
Park et al. (2024), Kunin et al. (2024) and Lee et al. (2024). And there have always been researchers
who associate grokking with emergence, and notable work in this area includes: Mallinar et al.
(2024), He et al. (2024), Zhao et al. (2024).
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Figure 2: The left panel illustrates the architecture of our proposed model, while the right panel
depicts the extended task structure. We conceptualize this as a natural language processing task. To
achieve this, we employ p symbols representing the range from 0 to p−1 (often select k to k+p−1).
Here, T denotes elements within the training set, and V denotes elements within the test set.

2.2 PROGRESS MEASURE

The concept of a progress measure was first introduced in Barak et al. (2022), essentially as a
smooth function of continuous changes in activation values used to predict model behavior. One
of perspectives is based on frequency and Fourier coefficients, inspired by circuit signal analysis,
with representative papers including Nanda et al. (2022), Zhou et al. (2024) and Furuta et al. (2024).
The second perspective is local complexity, derived from linear region analysis, with representative
papers including Humayun et al. (2024). The third perspective is based on information theory and
its representative paper is Clauw et al. (2024). Recently, some methods have aimed to provide a
more unified perspective like Yunis et al. (2024) and Song et al. (2024).

2.3 NONLINEAR DYNAMICAL SYSTEM AND CHAOS

The primary mathematical framework we used is dynamical systems theory, and the mathematical
aspects mainly reference the following sources: Birkhoff (1927), Malyshev (1993), Brin & Stuck
(2002). Applying dynamical systems theory to optimization is a significant direction in modern
control theory. An important outcome of this approach is gradient flow, with common results such
as Gambarini et al. (2024), In recent years, there have also been efforts to integrate dynamical
systems theory with large models, like Geshkovski et al. (2023) and Hernández & Zuazua (2024).

3 PRELIMINARIES

In Power et al. (2022), the task that exhibits the phenomenon of grokking involves using a trans-
former’s decoder to learn addition mod p. The dataset is composed of (i, j), i, j ∈ {0, 1, ..., p},
from which a subset is selected as the training set to test whether the model can generalize to the
entire dataset.

In Figure 2, we present the model architecture and the modifications made to the task formulation
based on our understanding. We consider this task to be understood as a classification task within
the domain of natural language processing. Let xi represents the ith number’s embedding vector,
pi represents the ith position embedding vector. We can write the embedding process of (i, j, p+)
as (xi + p1,xj + p2,x0 + p3), and the last vector is used to simplify the complex embedding
of (+,modp) . As the transformer block can be written as an affine transformation, and on the
inverse-embedding layer, we use a matrix to map the activation values obtained from the previous
transformation into an eigenvector,that means we can write this process as

y = Wx+ b. (1)

logit = softmax(WUy). (2)

γ = c−WUWx. (3)
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4 THE DYNAMICAL SYSTEM MODEL

4.1 ESTABLISHMENT OF MODEL

To establish the dynamical system model, we first introduce some fundamental concepts. A dynam-
ical system refers to a system that evolves over time under the influence of driving forces. It is one
of the most commonly used mathematical models in control theory and optimization theory. There
are many specific forms of representation for dynamical systems, such as difference equations, par-
tial differential equations, and ordinary differential equations (ODEs). Here, we adopt the form of
ordinary differential equations to describe the dynamical system.
Definition 1 (Dynamical system). The following form of equations are what we refer to as a dy-
namical system

dx

dt
= f(x, t;µ),

x → g(x;µ),

with x ∈ U ⊂ Rn, t ∈ R1, and µ ∈ V ⊂ Rp, where U and V are open sets in Rn and Rp.

The core of dynamical systems research lies in understanding the properties of phase space and the
long-term behavior of trajectories.

Definition 2 (Phase space and equilibrium solution). For a dynamical system
dx

dt
= f(x, t;µ),

some interval I ⊂ R1 into Rn, which we represent as x : (I → Rn) t → x(t) with
dx

dt
=

f(x, t;µ) satisfied. The map x called a trajectory and the space of the curve called the phase space
of the dynamical system. The long-term behavior of dynamical systems is often closely related to
their equilibrium points. Equilibrium points are these x make f(x, t;µ) = 0.

We can now introduce how general deep learning tasks can be modeled as dynamical systems. First,
we need to understand the parameter update process as a temporal evolution, where each update
represents a discrete time step. Consequently, all the model parameters are combined into the vector
x. The parameters driving the system’s updates are derived from the training samples. For each
sample, we can formulate the function f(x, t;µ) determined by that sample according to the model’s
forward propagation method. A detailed description will be provided in Appendix A.

Returning to the phenomenon of grokking, as discussed in Section 3, a training sample is (i, j, p+)
. Thus, the parameters updated by each sample point have overlaps. Therefore, if we assume that
a time step corresponds to an epoch of parameter updates, it becomes challenging to formulate a
complete function f(x, t;µ), so we establish the dynamical system model corresponding to each
individual sample for the task described in Section 3. Following the order of backward, the model
can be formulated as follow:

dWU

dt
=

p−1∑
i=0

γie
(i)(Wx)T , (4)

dW

dt
=

d∑
i=0

(γWU )i,:e
(i)xT , (5)

dx

dt
= γWUW . (6)

with ei represents the ith standard unit vector, x represents the vector obtained by concatenating
the three embedding vectors corresponding to (i, j, p+). This model can be generalized to general
classification tasks. Additionally, let us denote the reachable region Ω of the model’s updating
process as the state space of the dynamical system. Ω is a finite open set.

4.2 PROPERTIES FOR THE MODEL

One of the things we’ve been emphasizing is that each sample of a test set determines a correspond-
ing dynamical system. In this task, due to the simplicity of the model architecture, these dynamical
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systems have similar phase space structures (only one affine transformation from each other). Us-
ing this similarity, we can define a family of transformations that project a higher-dimensional phase
space onto some lower-dimensional phase spaces (Rn → Rm) to simplify our study of the properties
of the system.

For the equation 4-6, we define a mapping family {Fc,i,j,p} dependent on the entire sample set.
Definition 3. For the sample (i, j, p+) → c, we define a map Fs,i,j,p, s = 1, 2, ..., p that it maps
x,W ,WU in equation 4-6 into three scalars x,w, u with equations

dx

dt
= −(xwu− δs,c)wu, (7)

dw

dt
= −(xwu− δs,c)xu, (8)

du

dt
= −(xwu− δs,c)xw. (9)

The δs,c mentioned above is a Kronecker symbol.
Theorem 1. The map family defined above exists.

The key idea of this theorem lies in quantifying the changes in task characteristics with model up-
dates into a three-dimensional dynamical system. We prove this theorem using the Varison Lemma
from functional analysis, thereby avoiding the cumbersome discussions in algebra. The detailed
proof can be found in Appendix B. We consider the equilibrium points of the dynamical system de-
fined by equation 4-6. Apart from the trivial equilibrium point, all equilibrium points satisfy γi = 0.
Let Vc = {x|xc > xi,∀i ̸= c, 1 ≤ i ≤ p}. According to the softmax function employed in
the model, essentially, all equilibrium points lie within the cone Vc as we have defined. We aim
to thoroughly understand the properties of this dynamical system by mapping Vc ∪ Ω into a scalar
quantity and then considering the process of updating this scalar. This approach allows us to use
visualization techniques to comprehensively study the properties of the simplified system. Theorem
1 ensures the feasibility of this approach. Now, we will present the fundamental properties of the
simplified dynamical system.

For the simplified dynamical system, we consider the properties of its trajectories within the unit
cube [0, 1]3.
Theorem 2. The non-trivial attractors (equilibrium points) of the dynamical system defined by
equation 7-9 are all stable.

The proof of this theorem is quite straightforward, and we will place it in the appendix. This theorem
means the dynamical system we study has simple structure of phase space, so the core problem is
how to deal with the relationship between these mappings. To further understand this issue, we shall
define the norm of the aforementioned family of mappings. The statement of this definition and the
subsequent theorem require some background in the framework of functional analysis, which we
will include in Appendix B.

Definition 4. ∥Fs,i,j,p∥ = sup
x∈Rn/{0}

{Fc,i,j,p(x)

∥x∥2
}, (i, j, p+) → c.

This definition will reflect the optimal transport path of the embedded vectors in the original embed-
ding space. Based on this, we proceed to state our main result.
Theorem 3. If the model have learnt all dynamical systems, then ∀d1 + d2|p, we have
∥Fs,i,j,p − Fs,i+d1,j+d2,p∥ = 0.

This theorem provides the criteria for generalizing from the training set to the test set, we will see
its proof in Appendix B.
Assumption 1. For (i, j, p+) → c in test set V, consider the train set as T, the norm of Fs,i,j,p

satisfies
∥Fs,i,j,p∥ ∝

∑
t1,t2∈Z/{0},0≤i+t1≤p,0≤j+t2≤p

αdmodel

t21 + t22
∥Fs,i+t1,j+t2,p∥ , (10)

with αdmodel
is a function of dmodel and we guess it is approximately a linear function in specific

situations.
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(a) k=0

(b) k=45

(c) k=60

(d) k=81

Figure 3: By reducing the range of overlap between i and j, we observe the slowdown in the speed
of grokking. By comparing with the lighter original images, we can directly see the ability of our
designed MED function to track the test loss.

Assumption 2. If the model have learnt all dynamical systems, then we have

∥Fs,i,j,p − Fs,i+t,p∥ = tϵ, (11)

with ϵ is a small positive number.

4.3 MAIN EMBEDDING DIFF

In this section, we introduce our designed hidden progress measure that we call main embedding
diff and its properties. Based on this, we provide an in-depth analysis of grokking, which will be
validated in Section 5.

First, we provide a precise definition of the hidden progress measure for deep learning models. The
focus is on formalizing the qualitative description of this concept presented in Barak et al. (2022).

Definition 5 (Hidden progress measure). Let the complete set of parameters of a deep learning
model be denoted by W, and the update step by n. Given a function f : W × Z+ → R , if there
exists a mapping ϕ ◦ f : W × Z+ → {0, 1} such that ϕ ◦ f takes the value of 1 when a specific
phenomenon occurs and 0 otherwise, then we call f a hidden progress measure of this specific
phenomenon of the model.

We now introduce the methodology by which we derived our progress measure. We define an input
region as F−1

c,i,j,p({1}) and interpret the task as a mapping from an input region to Vi. The input
region must satisfy the requirements outlined in Theorem 3.

Theorem 4 (Main result). We divide the aforementioned task into two parts: the first part involves
encoding using an embedding matrix, while the second part employs a transformer to decode and
perform classification. The purpose of the latter part is to establish the region mapping described
in Theorem 3, whereas the former part ensures that the input meets the requirements of the input
region for the latter part.
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(a) p=47

(b) p=79

(c) p=211

(d) p=397

Figure 4: To more intuitively demonstrate the impact of changes in p, we reduced the number of
epochs as p increased. When p = 47, grokking still requires over 10,000 epochs, whereas when
p = 397, it only needs 1,000 to 2,000 epochs.

In our task, the overall input distribution exhibits characteristics of a uniform distribution. Conse-
quently, a single-layer transformer is the most stable, whereas a multi-layer transformer introduces
complex structures in the input region, significantly increasing the proportion of training data re-
quired. This can lead to overfitting or even non-fitting issues, which we will verify in Experiment
4. We have verified that the input region distribution formed by the parameter updates of this model
differs from the commonly understood concept of an embedding dictionary structure. For a detailed
discussion, please refer to Appendix F.

Therefore, our progress measure is a quantity that can describe the characteristics of a uniform
distribution, specifically aligning with Assumption 2.

Definition 6 (Main embedding diff). In our task (as described in Figure 2), consider 1, 2, . . .
and a, b, . . ., where these two p-tuples correspond to the sets of embedding vectors denoted as
x
(1)
1 , . . . ,x(1)

p and x
(2)
1 , . . . ,x

(2)
p respectively on the time step n, then the MAIN EMBEDDING DIFF

of n defined as

MED(n) =

p−1∑
i=1

∥∥∥x(1)
i − x

(1)
i+1

∥∥∥
2
+

p−1∑
j=1

∥∥∥x(2)
j − x

(2)
j+1

∥∥∥
2
. (12)

We list the properties of the main embedding diff as follows.

Pro 1. There exist a positive number e and a positive integer N such that, when n > N , MED(n) <
e and exhibits approximately periodic oscillations. This indicates that the model has reached the
upper limit of its generalization capacity.

We refer to property 1 as the restrictive nature of MED. The lower bound e mentioned here often
represents the upper bound of our task’s generalization ability.

Pro 2. Let the test loss be denoted by TL(n), then TL(n+1)− TL(n) and MED(n+1)−MED(n)
have the same sigh. This implies MED can track the variations in the test loss.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

p=97,k=85,dmodel =128

p=97,k=85,dmodel =256

p=47,k=0,dmodel =64

p=47,k=0,dmodel =256

Figure 5: (Left) We selected p = 97 and k = 85 and we found that grokking occurred over 20,000
epochs earlier with dmodel = 256 compared to dmodel = 128. (Right) We selected p = 47 and k = 0
and we found that grokking occurred over 10,000 epochs earlier with dmodel = 256 compared to
dmodel = 64.

The theory of dynamical systems can also accommodate previously established hidden progress
measures like Fourier Decomposition in Nanda et al. (2022). We have included a detailed discussion
of this aspect in Appendix C.

5 EXPERIMENTS

5.1 SETUP OF EXPERIMENTS AND OVERALL DESCRIPTION

Our experimental design is largely inherited from Power et al. (2022), and the basic setup remains
the same. The only difference is Power used a transformer with 2 layers but we used a transformer
with 1 layer for most of the experiments and the weight decay coefficient is set to 1.0.

All our experiments include three plots: a comparison of training/test loss, a comparison of train-
ing/test accuracy, and a plot showing the variation of the MED function. To better present the
results, each dataset underwent filtering. The lighter color represents the plots before filtering, while
the darker color indicates the plots after filtering.

All our experiments can demonstrate the overall tracking capability of our designed MED function
for test loss. In all experiments, we observe the following phenomena:

• The original plot of the test loss and the original plot of the MED function exhibit an almost
identical pattern of variation;

• When the MED function falls below its initial value, grokking happens;

• When the MED function begins to oscillate and no longer shows an overall downward
trend, the increase in test accuracy also stops.

This also corresponds to the three properties we described earlier. This further explains the validity
of Theorem 4. We also made some predictions based on the preceding theory and conducted ablation
experiments. After completing the ablation study, we will provide a method to accelerate grokking.

5.2 MAIN EXPERIMENT

5.2.1 EXPERIMENT: REDUCING THE OVERLAP IN THE DATA

In this experiment, we set p = 97 and gave different displacement on i or j when generating the
dataset that dataset pairs turned into (i, j+k). We selected k =0,45,60,81 and we saw that the speed
of grokking slows down as k increases, Our main embedding diff can trace the val loss for all these
situations whether the speed.

8
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n=1 n=2

n=3 n=4

Figure 6: We use n denote the number of transformer layers and replace MED with its mean value.
The decrease in the final mean value of MED as the number of layers increases demonstrates the
segmentation behavior of a multi-layer transformer on the input region. When n = 1, standard
grokking was observed; at n = 2, overfitting occurred (Some studies refer to it as ”ungrokking”
(Varma et al. (2023)) while others term it ”misgrokking” (Lyu et al. (2023)); and for n = 3 or
n = 4, non-fitting was observed, The oscillatory behavior displayed with light coloring indicates
that our fitting results are no longer of significant interest. However, when n = 3, an intermediate
state between n = 2 and n = 4 emerges, which is evident in the U-shaped curve of our fitted results.

We designed this experiment based on Theorem 4, which indicates that an increase in k means
that the embedding layer needs to capture more distributional information, thereby increasing the
learning time. The results can be saw in Figure 3.

5.2.2 EXPERIMENT: INCREASING THE SIZE OF THE DATASET

When grokking has not occurred, the norm of Fs,i,j,p corresponding to points (i, j, p+) that are not
in the training set tends to zero. Based on Assumption 1, we could conclude that

∥Fs,i,j,p∥ ∝
∑

t1,t2∈Z/{0},0≤i+t1≤p,0≤j+t2≤p

αdmodel

t21 + t22
∥Fs,i+t1,j+t2,p∥

∝
∑

t1,t2∈Z/{0},(i+t1,j+t2,p)∈T,0≤i+t1≤p,0≤j+t2≤p

αdmodel

t21 + t22
∥Fs,i+t1,j+t2,p∥ .

The last expression has the upper and lower bounds as follows:

αdmodel
βp2

c2
≤

∑
t1,t2∈Z/{0},(i+t1,j+t2,p)∈T,0≤i+t1≤p,0≤j+t2≤p

αdmodel

t21 + t22
∥Fs,i+t1,j+t2,p∥ ≤ αdmodel

βp2

C2
,

with β represents the proportion of the training set, and both c and C are constants.

This also implies that the size of the training set will determine the rate of grokking. Unlike previous
work, we chose not to change the proportion of the training set but to vary the value of p to demon-
strate this result. Similarly, our designed MED function has demonstrated its capability across all
values of p. The results could be saw in Figure 4.

5.2.3 EXPERIMENT: IMPACT OF MODEL WIDTH

According to our theory, another factor that influences the rate of grokking is the size of dmodel.
When grokking is certain to occur, changing dmodel can have an accelerating effect on grokking.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: The experiments were conducted with p = 97, k = 0, and dmodel = 128. The left
side shows the results with random embeddings, while the right side displays the results using the
improved embedding method. From top to bottom, the training set proportions are 0.3, 0.25, and
0.2, respectively. The number of epochs required for grokking to begin on the right side is only half
of that on the left side.

In Figure 5, we present this result, with more detailed information provided in .

Additionally, we conducted extensive validation experiments, including various operations other
than addition and the impact of positional encoding. These details are included in Appendix D.

5.2.4 EXPERIMENT: INCREASING THE NUMBER OF TRANSFORMER LAYERS.

We selected p = 97, d = 97, and dmodel = 512, with a training set proportion of 0.3 to demonstrate
the overfitting or even non-fitting phenomena that occur when increasing the number of transformer
layers. The results could be saw in Figure 6.

5.3 ACCELERATION OF GROKKING

After thoroughly understanding the causes and monitoring methods of grokking, we will present an
approach to accelerate grokking.

Since the occurrence of grokking implies thorough learning of the uniformity in the input space, our
approach is to adjust the initial embedding values to facilitate this learning process. Specifically, we
use a circulant matrix generated from a random vector to replace the embedding matrix, as expressed
below:

WE = Toeplitz(v, v′), (13)
with Toeplitz represents the operation of generating a Toeplitz matrix, and v is a random vector. We
have presented the experimental results in Figure 7.

6 CONCLUSION AND DISCUSSION

In this paper, we propose moving beyond a phenomenon-driven approach to theorem-based thinking
and instead advocate for the use of structured mathematical tools. Based on this belief, we re-
modeled the i + j mod p task using dynamical systems. Through theoretical analysis, we found
that the cause of the grokking phenomenon is that, when the optimization task has a simple phase
space structure, the speed at which the distribution of the task is learned is significantly slower than
the speed at which the biases of the training set are learned. Additionally, we designed a powerful
and concise hidden progress measure that can comprehensively track the test loss of a task under
any condition. We believe that the intrinsic structure of the task is a crucial factor in the occurrence
of grokking. Therefore, we achieved the acceleration of grokking without employing regularization
techniques or modifying the model architecture.
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A DYNAMICAL SYSTEM IN GENERAL TASKS

In this appendix, we present several more complex concepts in dynamic system modeling, employ-
ing purely formal notations to link the model with system optimization.

We consider a deep learning model with n layers, where each layer corresponds to a manifold map-
ping fn(x;ωn) with ωn represents the parameter set of the n-th layer. Here, the term ”layer” refers
to the component that induces the manifold mapping, and does not necessarily denote a specific
layer. Let the loss function be denoted as L. Following the approach in this paper, we use measures
to handle the dataset. We denote the embedding of the dataset, considering each token in the em-
bedding layer as a high-dimensional vector in Rn. We denote the empirical measure corresponding
to these points in Rn as ν.
Definition 7. The empirical measure µ in Rn for a dataset with N data points is defined as:

µ =
1

N

N∑
i=1

δxi ,

where xi ∈ Rn denotes the high-dimensional vectors corresponding to each data point, and δxi

represents the Dirac measure centered at xi.

We denote the functional relationships involved in the backward process as ∂L and ∂fn, the model’s
training process is equivalent to the following equation:

dν

dt
=

n∏
i=1

∂fi∂L, (14)

dωk

dt
=

n∏
i=k+1

∂fi∂L. (15)

Now, we still lack a method for the quantitative description of a task. We assume that the training
(or pre-training) task of the model corresponds to a kernel function K and a discriminative equation.
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Definition 8. K : Ω × Rn → R is referred to as the kernel function corresponding to the training
task if ∫

Rn

K(x,

n∏
i=1

fi ◦ dν) = 1, (16)

with x ∈ Ω means the model training has succeeded.

The issues corresponding to the phenomena of delayed generalization and emergence can be formu-
lated as follows:
Definition 9 (Delayed generalization). For the family of empirical measures {νi}i∈{1,...,N}, delayed
generalization means there exist a positive integer n < N such that:∫

Rn

K(x,

n∏
i=1

fi ◦ dνn) = 1 ⇔
∫
Rn

K(x,

n∏
i=1

fi ◦ dνN ) = 1. (17)

Definition 10 (Emergence). For the family of kernel functions {Ki}i∈{1,...,N}, emergence means
there exist a positive integer n < N such that:∫

Rn

Kn(x,

n∏
i=1

fi ◦ dν) = 1 ⇔
∫
Rn

Ki(x,

n∏
i=1

fi ◦ dν) = 1,∀i ∈ {1...N}. (18)

Our work is guided by the framework outlined above. In our approach, we use dimensional reduction
to transform the integral of the kernel function equaling 1 into uwx = 1. This is because we were
unable to find a method that fully characterizes the kernel function, which represents the greatest
challenge encountered in this modeling process.

B PROOF OF THEOREM AND VISUALIZATION

B.1 PROOF OF THEOREM 1 AND THEOREM 3

Theorem 1 is an existence theorem, which is used to ensure the existence of the framework for our
method.

We employ Urysohn’s Lemma from topology to establish the existence result here. Urysohn’s
Lemma is a classical tool in topology, often used to demonstrate the construction of specific types
of continuous functions within certain topological spaces.
Lemma 1 (Urysohn’s lemma). Let X be a normal topological space, and let A and B be two disjoint
closed subsets of X. Then, there exists a continuous function f : X → [0, 1] such that f(A) = {0}
and f(B) = {1}

Remember that Vc = {x|xc > xi,∀i ̸= c, 1 ≤ i ≤ p}, WuWx defined by equation 1-3 is a
vector in Rp. After the model training is completed, we consider the convex hull of all vectors that
lie within the cone Vc, denoted as Bc. And the complement of Vc in Ω̄ denoted as Ac.

Since Bc ⊂⊂ Vc, Ac and Bc are two separable closed sets. Moreover, since every Euclidean
space is a normal space, we can invoke Urysohn’s lemma. Thus, there exists a continuous function
f : Rp → [0, 1] such that f(Ac) = {0}, f(Bc) = {1}. For a vector WuWx in Rp, we denote
f(WuWx) = uwx.

Now, we will employ a similar approach to derive the complete mapping that we require. Consider
the vector space Rn and closed sets A′

c,B′
c such that WuA′

c = Ac, WuB′
c = Bc. Using Urysohn’s

lemma like above we obtain there exists a continuous function f ′ : Rn → [0, 1] such that f ′(A′
c) =

{0}, f ′(B′
c) = {1}. For a vector Wx in Rn, we denote f ′(WuWx) = wx. Similarly, we can

obtain that the function f ′′ : Rn → [0, 1] and denote f ′′(x) = x.

According to our definition, when the model makes a correct prediction, x = w = u = 1; when
the model makes an incorrect prediction, x = 0. This satisfies the equation 7-9 when s = c. When
s ̸= c, we can use a similar approach by extracting a closed set from the high-dimensional cone Vs

and applying the Urysohn lemma to it along with the remaining set. It should be noted that this time
the complement set is mapped to 1, while the subset is mapped to 0.

13
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And the proof of Theorem 3 is included in the proof of Theorem 1 where we use the same subset of
Vc to conduct Fs,i,j,p and Fs,i+d1,j+d2,p. To derive our proposed progress measure, we further
introduce two assumptions which we believe are correct based on the information compression
capability of manifold learning.

B.2 PROOF OF THEOREM 2 AND VISUALIZATION OF ITS PHASE SPACE

Theorem 2 aims to demonstrate that the compressed dynamical system within the unit cube exhibits
simple trajectory properties, thereby indicating that the complex, high-dimensional nature of the
dynamical system is not a phenomenon that requires specific consideration for this task.

We take the following system of equations as an example, with similar reasoning applying to other
cases.

dx

dt
= (1− xwu)wu, (19)

dw

dt
= (1− xwu)xu, (20)

du

dt
= (1− xwu)xw. (21)

We first provide the precise definition and the criteria for determining the stability of equilibrium
points in dynamical systems.

Definition 11. Consider an equilibrium point x∗ of a dynamical system.

• x∗ is said to be stable if, for any ϵ > 0, there exists a δ > 0 such that if ∥x(0)− x∗∥ < δ,
then ∥x(t)− x∗∥ < ϵ for all t ≥ 0.

• x∗ is said to be asymptotically stable if it is stable and there exists a δ′ > 0 such that if
∥x(0)− x∗∥ < δ′, then lim

t→∞
x(t) = x∗.

• x∗ is said to be unstable if it is not stable; that is, there exists an ϵ > 0 such that for any
δ > 0, there exists an initial condition x(0) with ∥x(0) − x∗∥ < δ but ∥x(t) − x∗∥ ≥ ϵ
for some t ≥ 0.

To determine the stability category of an equilibrium point, the Lyapunov method is often used.

Theorem 5 ( Lyapunov’s stability theorem). Consider a dynamical system described by:

dx

dt
= f(x), x ∈ Rn,

where x∗ is an equilibrium point, i.e., f(x∗) = 0. To determine the stability of the equilibrium point
x∗, one constructs a Lyapunov function V : Rn → R that satisfies the following conditions:

1. V (x) > 0 for all x ̸= x∗, and V (x∗) = 0 (positive definiteness).

2. The time derivative of V (x) along the trajectories of the system, given by V̇ (x) = ∇V ·
f(x), satisfies V̇ (x) ≤ 0 (negative semi-definiteness).

Then:

• If there exists a Lyapunov function such that V̇ (x) < 0 for all x ̸= x∗, then the equilibrium
point x∗ is locally asymptotically stable.

• If V̇ (x) ≤ 0, then the equilibrium point is stable in the sense of Lyapunov, but not neces-
sarily asymptotically stable.

• If no such Lyapunov function can be found, alternative methods must be used to analyze
stability.

14
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Figure 8: This figure directly show the phenomenon of points within the unit cube moving towards
the equilibrium point (1,1,1) which is highlighted.

For our equations we construct the function V (x,w, u) as follows:

V (x,w, u) = (x− 1)2 + (w − 1)2 + (u− 1)2. (22)

It is obvious that V > 0 for all points in open unit cube and V = 0 when the system takes (1,1,1).
Now we only need to verify that V̇ is semi-positive definite within the unit cube.

V̇ = (3xwu− wu− xu− xw)(1− xwu) (23)

It is easy to verify that all of its leading principal minors are non-positive, hence it is non-positive
definite. So (1,1,1) is a stable equilibrium point.

We can intuitively observe the simplicity of the structure of this dynamical system through visual-
ization. We present the visualization results in Figure 8.

C DISCUSSION ON OTHER PROGRESS MEASURES IN DYNAMICAL SYSTEMS

In this appendix, we demonstrate how the two types of progress measures previously employed in
the study of the grokking phenomenon are manifested within dynamical systems.

C.1 FOURIER DECOMPOSITION

In the study of dynamical systems, the Fourier transform serves as a robust analytical tool for decom-
posing complex time-domain signals into their constituent frequency components. By converting a
time-series signal into the frequency domain, the Fourier transform facilitates a deeper understand-
ing of the periodicity and spectral characteristics inherent to the system under investigation. This
method proves especially advantageous for identifying dominant frequencies and harmonics, which
are crucial for elucidating the underlying mechanisms driving the system’s behavior. In the con-
text of learning algorithms, Fourier analysis can uncover latent patterns and progress indicators that
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may not be evident in the time domain. For example, analyzing the Fourier gaps of the population
gradient provides a novel framework for examining the convergence properties of the algorithm,
allowing researchers to detect subtle improvements and oscillations that influence the overall dy-
namics of learning. Thus, the Fourier transform method enables a more nuanced and comprehensive
understanding of both deterministic and stochastic processes in dynamical systems.

The following is some foundational knowledge required to address this problem.

FOURIER TRANSFORM AND INVERSE FOURIER TRANSFORM

The Fourier transform is used to convert a time-domain (or spatial domain) signal into its frequency-
domain representation. For a continuous function f(t), its Fourier Transform is defined as:

F (ω) =

∫ ∞

−∞
f(t)e−iωt dt,

with:

- F (ω) is the complex function in the frequency domain, representing the amplitude and phase at
frequency ω.

- i =
√
−1 is the imaginary unit.

- ω is the angular frequency (rad/s).

The inverse Fourier transform converts the frequency-domain signal back to the time-domain repre-
sentation:

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωt dω.

DISCRETE FOURIER TRANSFORM AND INVERSE DISCRETE FOURIER TRANSFORM

The discrete Fourier transform (DFT) is used to analyze the frequency components of a discrete
signal. For a discrete signal of length N , x[n], its DFT is defined as:

X[k] =

N−1∑
n=0

x[n]e−i 2π
N kn, k = 0, 1, . . . , N − 1.

with:

- X[k] is the complex value at discrete frequency k, representing amplitude and phase.

- x[n] is the discrete signal in the time domain.

- N is the number of sampling points.

The Inverse DFT is given by:

x[n] =
1

N

N−1∑
k=0

X[k]ei
2π
N kn, n = 0, 1, . . . , N − 1.

FOURIER GAP

The Fourier gap describes the situation where certain frequency components are missing or filtered
out in the frequency domain. In the presence of a Fourier Gap, the frequency-domain signal G(ω)
can be expressed as:

G(ω) = F (ω) ·W (ω),

16
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with:

- F (ω) is the Fourier transform of the original signal.

- W (ω) is a window function that determines which frequency components are retained (W (ω) = 1)
or filtered out (W (ω) = 0).

A Fourier gap may cause information loss or spectral distortion during signal reconstruction.

DECAY OF FOURIER COEFFICIENTS

The rate of decay of Fourier coefficients reflects the distribution of the signal in the frequency domain
and is closely related to its smoothness in the time domain.

Theorem 6 (Decay of Fourier coefficients for periodic signals). If f(t) is a periodic function with
period 2π and k-times continuously differentiable, then its Fourier series coefficients cn = an+ ibn
satisfy:

|cn| ≤
C

|n|k
,

where C > 0 is a constant.

This implies that the smoother the function (higher order k), the faster the decay of the Fourier
coefficients |cn|.
Theorem 7 (Decay of Fourier transform for non-periodic signals). If f(t) is an absolutely inte-
grable function with a k-th order continuous derivative f (k)(t), and its derivative is also absolutely
integrable, then its Fourier Transform F (ω) satisfies:

|F (ω)| ≤ C

|ω|k
,

where C > 0 depends on f(t) and its derivatives.

This theorem indicates that if a signal is sparse in some basis (such as the Fourier basis), the number
of measurements required for reconstruction can be much smaller than traditionally required.

A METHOD FOR RECONSTRUCTING FOURIER COEFFICIENTS AS A MEASURE OF PROGRESS.

In dynamical systems, a signal generally refers to a state variable that changes over time. In the
context of deep learning models modeled as dynamical systems, it refers to a scalar or vector-valued
function with model weights as its independent variables.

x, W , Wu are all treated as signals in Nanda et al. (2022), they found that the Fourier coefficients in
this context exhibit significant sparsity, According to Theorems 6 and 7, the emergence of sparsity
implies that the signal exhibits increasing periodicity or quasi-periodicity. Our method has men-
tioned that, upon the completion of generalization, the embedding exhibits norm-based periodicity,
which coincides with the results observed in the Fourier decomposition.

COMPRESSED SENSING THEORY

We believe that the observation of Fourier sparsity is likely to have broad applications beyond this
specific task; it may be a common phenomenon within Transformer architectures. This is because
the Transformer itself is a powerful tool for information compression and reconstruction. Therefore,
we have included the well-known perceptual reconstruction theorem below in the hope that it will
provide valuable insights.

Theorem 8 (Compressed sensing reconstruction). Let x ∈ RN be a K-sparse signal (i.e., with
only K non-zero Fourier coefficients). Using M = O(K log(N/K)) linear measurements y = Ax
(where A ∈ RM×N is a random measurement matrix), the signal x can be exactly reconstructed
using ℓ1-minimization algorithms.
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C.2 LOCAL COMPLEXITY

Unlike Fourier decomposition, which aligns directly with the classical approach to studying dynam-
ical systems, the concept of local complexity corresponds more closely to the method known as
Poincaré sections in dynamical system analysis.

The Poincaré section method is a fundamental technique in the study of dynamical systems, offering
a way to reduce the dimensional complexity of continuous systems by examining their intersections
with a lower-dimensional subspace. This method involves selecting a hyperplane, referred to as the
Poincaré section, which the system’s trajectories intersect transversely. By analyzing the sequence
of intersection points, one can study discrete dynamics and capture essential features of the system’s
behavior, such as periodic orbits, quasi-periodic motions, and chaotic trajectories. The Poincaré
section thus serves as a powerful tool for visualizing and understanding the qualitative nature of
dynamical systems, providing insights into stability, bifurcations, and the global structure of phase
space. In the context of learning algorithms and complex systems, applying Poincaré sections helps
identify invariant sets and analyze long-term behavior, thereby enhancing our capacity to predict
and control system dynamics.

Definition 12. Let Φt : M → M denote a smooth dynamical system defined by the flow Φt(x),
where x ∈ M and M is an n-dimensional differentiable manifold (phase space). A Poincaré section
Σ ⊂ M is a codimension-one submanifold (i.e., of dimension n− 1) such that:

1. Σ is transverse to the flow Φt(x), meaning that at every point x ∈ Σ, the flow vector
d

dt
Φt(x) is not tangent to Σ.

2. Every trajectory of the flow Φt(x) that starts near Σ will intersect Σ again after some time.

Definition 13. The Poincaré map (or first return map) P : Σ → Σ is a discrete dynamical system
defined by the intersections of the trajectories of the original flow with the Poincaré section Σ. For
a point x ∈ Σ, the Poincaré map P (x) is the point of the next intersection of the trajectory through
x with Σ. Formally,

P (x) = ΦT (x)(x),

where T (x) > 0 is the smallest positive time such that ΦT (x)(x) ∈ Σ.

Theorem 9. Let x∗ ∈ Σ be a fixed point of the Poincaré map P : Σ → Σ, i.e., P (x∗) = x∗.
Then, x∗ corresponds to a periodic orbit of the original flow Φt. The stability of the periodic orbit
is determined by the eigenvalues of the derivative DP (x∗) of the Poincaré map at x∗.

If all the eigenvalues of DP (x∗) have magnitudes less than one, the periodic orbit is stable; if any
eigenvalue has a magnitude greater than one, the periodic orbit is unstable.

In light of the local complexity defined in Humayun et al. (2024), this concept treats the hierarchy of
deep networks as a nested chain of affine transformations. Let us consider an affine transformation
from one layer to the next, given by y = Wx+ b. Using wi to represent the i-th row vector of W ,
we can define a family of hyperplanes {wix + bi = 0}. The local complexity is then expressed by
the number of hyperplanes intersecting the convex hull formed by the samples.

The Poincaré section indicates that an increase in local complexity corresponds to an increase in
the density of trajectories on the hyperplane. When the trajectory density approaches a stable value,
it often signifies that the dynamical system has converged to a stable solution, representing the
completion of generalization.

D SUPPLEMENTARY EXPERIMENTS

In this appendix, we conduct a series of supplementary experiments to discuss additional boundary
conditions.
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(a) 128

(b) 256

(c) 512

(d) 1024

Figure 9: This figure aims to compare the impact of different embedding dimensions on the speed
and upper limit of generalization. We selected the same number of epochs for all cases. We found
that although increasing the embedding dimension from 512 to 1024 resulted in a decrease in the
lower bound of the MED from around 80 to around 60, there was no significant improvement in
generalization ability.

D.1 THE UPPER LIMIT OF GENERATION: SIZE OF DATASET OR WIDTH OF MODEL

Our first supplementary experiment is designed to investigate the following question: when the
dataset size is very small, is it possible that increasing the embedding dimension of the model could
trigger the phenomenon of grokking?

We first selected the case where p = 43 and k = 0. Unlike the experiments conducted earlier
(Figure 5), we can clearly observe that as the embedding dimension of the model increases, the final
upper bound of our test accuracy also increases. When the embedding dimension is set to 128, the
test accuracy oscillates around 0.7. However, when the embedding dimension is increased to 512,
the test accuracy ultimately rises to 0.99. We present the results in Figure 9.

However, the results mentioned above are not at the boundary. To observe the boundary results,
we continuously increased the value of k until the grokking phenomenon no longer appeared at
lower embedding dimensions. Then, we further increased the embedding dimension. The results
were remarkable: increasing the embedding dimension indeed led to the appearance of the grokking
phenomenon. This further supports the claim of our Theorem 4. Although Property 2 of the MED
(Minimum Embedding Dimension) has already indicated that when it is reduced to a certain level,
the model’s generalization ability has reached its limit, we still increased the number of epochs to
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(a) 256

(b) 512

(c) 1024

(d) 2048

Figure 10: We discarded the case with an embedding dimension of 128 because it was identical
to the plot for the 256-dimensional case. Note that we extended the number of epochs for the 256
and 512 dimensions to 200,000 to demonstrate that they had already reached the upper limit of
their generalization abilities. When the embedding dimension was increased from 1024 to 2048, we
observed a similar outcome to the previous experiment, with no noticeable change.

verify that grokking does not occur, rather than just not having occurred yet. We present these results
in Figure 10.

We further discuss the boundary case where p = 43 and k = 43. Our experiments suggest that,
assuming there is a metric for measuring the generalization ability of a model, it is inevitably in-
fluenced by parameters that are closely related to the prior distribution of the data. Similarly, we
hypothesize that the further reduction of the MED after the generalization performance reaches its
upper limit is likely due to capturing redundant details.

D.2 OTHER OPERATIONS OVER PRIME FIELDS

We also verified the performance of the MED function on several other operations. We selected five
cases to represent this: x− y, xy, x2 + y2, x2 + xy + y2, x3 + y3, and x3 + xy + y3.

Through the experiments, we found that our MED function is still exceptionally capable of tracking
test loss. However, the grokking phenomenon is not always consistent. While subtraction still ex-
hibits the grokking phenomenon, the generalization of second-order operations is highly dependent
on the dataset size. This is essentially due to the inherent difficulty in generalizing nonlinear rela-
tionships without prior assumptions. For detailed experiments, please refer to Figures 11 to 18.
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Figure 11: p = 97, k = 0, dmodel=128, x− y, the training set proportion is set to 0.3.

Figure 12: p = 97, k = 0, dmodel=128, xy, the training set proportion is set to 0.3.

Figure 13: p = 97, k = 0, dmodel=256, x2 + y2, the training set proportion is set to 0.2.

Figure 14: p = 97, k = 0, dmodel=128, x3 + y3, the training set proportion is set to 0.2.

Figure 15: p = 97, k = 0, dmodel=128, x2 + xy + y2, the training set proportion is set to 0.3.
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Figure 16: p = 97, k = 0, dmodel=256, x2 + xy + y2, the training set proportion is set to 0.3.

Figure 17: p = 97, k = 0, dmodel=256, x2 + xy + y2, the training set proportion is set to 0.4.

Figure 18: p = 97, k = 0, dmodel=256, x3 + xy + y3, the training set proportion is set to 0.5.

E SOME ANOMALOUS SITUATIONS IN EXPERIMENTS

In the final appendix, we report the abnormal phenomena observed when the model fails to fully
generalize. In our analysis, these phenomena share the same origin as the occasional confusion
exhibited by large models.

E.1 CHALLENGES POSED BY POSITIONAL ENCODING

We found that the use of positional encoding can effectively lower the lower bound of MED, which
is quite a natural outcome. This is because it essentially prescribes a certain offset value for each
position in advance, thereby compensating for some of the MED’s functionality. Additionally, due
to the commutative nature of the computational structure, the use of positional encoding should not
affect grokking. However, experiments show that using positional encoding often results in a delay
in grokking. We demonstrate this general phenomenon in Figure 19 by selecting the case where
p = 97, k = 97, dmodel = 128 and the training set proportion is set to 0.3.

This phenomenon is undoubtedly difficult to understand. We believe it is due to instability caused
by the small dataset size. Therefore, we increased the embedding dimension of the model, and when
dmodel = 256, an even more peculiar phenomenon emerged, which we present in Figure 20.

The solution to this instability is quite simple: by increasing the embedding dimension to 512, this
instability disappears. We present the results in Figure 21.
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with position encoding

without position encoding

Figure 19: The upper figure represents the scenario where positional encoding is used, while the
lower figure shows the scenario without positional encoding. The difference in rates between these
two cases is remarkably significant.

Figure 20: We arranged the images in order of generalization speed. However, in fact, positional
encoding was not used in the first and third images, while it was used in the second image. This
clearly demonstrates the instability of the generalization speed that we have discussed.
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with position encoding

without position encoding

Figure 21: When the embedding dimension reaches 512, the instability disappears.

E.2 DIFFERENCE IN THE UPPER BOUND OF GENERALIZATION UNDER BOUNDARY
CONDITIONS

Another interesting phenomenon is that when the dataset size is in a boundary condition, smaller
embedding dimensions may lead to different upper limits of achievable final test accuracy. We
illustrate this scenario in Figure 22.

Figure 22: We selected p = 47, k = 0, dmodel = 128 and the training set proportion is set to 0.3.
Then we could see that between the two experiments, there are not only significant differences in the
rate of convergence but also substantial discrepancies in the upper bound of achievable accuracy.

F DISCUSSION ON THE INPUT REGION DISTRIBUTION

For conventional discussions on the normalization of embedding dictionaries, refer to Liu et al.
(2022). Nanda et al. (2022) extends this conclusion to the overall structure. The foundation of
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these theories is that we can interpret arithmetic operations over a prime field as rotations on a
circle. Therefore, we might speculate whether the endpoint of the model’s learning corresponds
to an embedding dictionary aligned with such a circular structure. Our answer to this question is
negative.

We consider the task (ai, bi, p+),ai ∈ A,bi ∈ B with A ∪ B = ∅, we calculate the diameter and the
average neighbor distance of the embedding vector sets corresponding to A and B in this task.

We use d to denote the diameter function. The experiments indicate that d(A,B) ≫ d(A) + d(B).
Moreover, the distances between the vast majority of neighboring embedding vectors are approx-
imately half of the diameter, indicating that the embedding vectors cannot maintain a uniformly
distributed ordered structure. Therefore, the distribution of our input region more closely resembles
a covering space in topology rather than genuinely learning the structural characteristics of a prime
field.
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