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Abstract

Current state-of-the-art Video Object Segmentation
(VOS) methods rely on dense per-object mask annota-
tions both during training and testing. This requires time-
consuming and costly video annotation mechanisms. We
propose a novel Point-VOS task with a spatio-temporally
sparse point-wise annotation scheme that substantially re-
duces the annotation effort. We apply our annotation
scheme to two large-scale video datasets with text descrip-
tions and annotate over 19M points across 133K objects in
32K videos. Based on our annotations, we propose a new
Point-VOS benchmark, and a corresponding point-based
training mechanism, which we use to establish strong base-
line results. We show that existing VOS methods can easily
be adapted to leverage our point annotations during train-
ing, and can achieve results close to the fully-supervised
performance when trained on pseudo-masks generated from
these points. In addition, we show that our data can be
used to improve models that connect vision and language,
by evaluating it on the Video Narrative Grounding (VNG)
task. We will make our code and annotations available at
https://pointvos.github.io.

1. Introduction

Video Object Segmentation (VOS) has grown into a very
popular research field [6, 39, 51, 53] that has shown con-
siderable progress over the past few years [11, 13, 70],
branching out into new downstream tasks with language
referring expressions [25] or user interactions [8]. New
datasets have been instrumental in advancing progress in
VOS [3, 17, 21, 52, 59, 66]. However, the relatively costly
annotation process necessary for creating VOS datasets has
so far been a major limiting factor. The traditional VOS
task requires temporally dense object segmentation masks
for the frames of each training video. As a result, existing

* Equal contribution. The ordering of the authors was determined by
a last-minute coin flip.
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Figure 1. Comparison of the conventional VOS task with our
new Point-VOS task. (a) The conventional VOS task utilizes
dense segmentation mask for each frame during training and ini-
tializes the first-frame reference with dense masks. (b) We propose
to change this paradigm and use only spatially sparse point anno-
tations on a sparse subset of frames during training, and only a few
points for the first-frame reference initialization. Green and blue
dots represent foreground points and red dots background points.

video segmentation datasets [21, 39, 40, 52] are usually rel-
atively small in scale, and past community efforts to scale
them up to at least several thousand videos required sub-
stantial annotation effort [3, 15, 17, 66]. Given the commu-
nity’s clear trend to connect vision to language [42, 60] and
the consequent need for even larger datasets [44], there is
thus an urgent need to reduce the annotation cost for videos.

Some approaches try to mitigate this problem by re-
ducing the reliance of vision models on annotated train-
ing data, e.g., by self-supervised learning [61, 64] or ex-
ploiting image-level mask annotations [1]. Another strategy
has been to create semi-automatic annotation pipelines [59]
that generate pseudo ground-truth masks from more readily
available data, such as existing bounding box annotations.
Nevertheless, neither of those presents a general solution.

In this work, we address the annotation cost problem by
proposing an entirely point-based VOS framework, Point-

1

ar
X

iv
:2

40
2.

05
91

7v
2 

 [
cs

.C
V

] 
 1

0 
Ju

n 
20

24

pointvos.github.io
https://pointvos.github.io


VOS. Inspired by recent point-guided image segmentation
methods [5, 10], Point-VOS moves away from using full
mask supervision and instead relies on spatio-temporally
sparse point annotations as weak supervision signals for
VOS (see Fig. 1). Our point-based formulation enables us to
design an efficient semi-automatic annotation pipeline (see
Fig. 4) that requires substantially less annotation effort to
create human-validated ground-truth video annotations.

We demonstrate the value of our proposed annotation
pipeline by annotating two large-scale video datasets, Point-
VOS Oops [19] (PV-Oops) and Point-VOS Kinetics [23]
(PV-Kinetics), with altogether 19M points for 133K ob-
jects in 32K videos. Our annotations cover almost an order
of magnitude more videos and objects than major previous
VOS datasets [3, 17, 21, 39, 40, 52, 59, 66] (see Tab. 1). In
particular, we show how our annotation pipeline can make
use of existing information from the Video Localized Nar-
ratives corpus (VidLN [60]) in order to bootstrap the an-
notation process by automatically converting mouse traces
from VidLN into Point-VOS initializations.

We launch a new Point-VOS benchmark based on these
datasets, where VOS methods are expected to use only point
annotations both as training supervision and as test-time ini-
tialization. We also develop two strong baselines by (i)
adapting the state-of-the-art VOS method STCN [13] to
work directly with points instead of masks, and (ii) training
STCN on pseudo-masks generated from point annotations.
Our experiments show that, despite the weaker level of su-
pervision, this Point-VOS STCN baseline already reaches
more than 90% of the performance of the original STCN
when applied to the DAVIS benchmark [40] (see Sec. 4.2).

Finally, we also show a direct use case of our point
annotations for language-guided VOS. As a consequence
of our use of VidLN data to bootstrap the point annota-
tion pipeline, the point annotations in PV-Oops and PV-
Kinetics are connected to nouns in longer language captions
(the Video Localized Narratives), describing the referred
object’s actions in the video. Thus, our annotations are
multi-modal and bridge the gap between open-vocabulary
language object descriptions and the corresponding video
object segmentations. We showcase the usefulness of
the multi-modal annotations by training a Video Narrative
Grounding (VNG) [60] model using our datasets, resulting
in significant improvements on two VNG benchmarks.

In summary, we make the following contributions: (1)
We propose the new Point-VOS task for point-guided
VOS, that includes weakly supervised training on spatio-
temporally sparse point annotations. (2) We propose a
novel and efficient semi-automatic annotation pipeline for
Point-VOS that substantially reduces the annotation effort
for creating human-validated ground-truth video annota-
tions. (3) We demonstrate the value of our proposed an-
notation pipeline by annotating and releasing two large

Dataset Videos Objects Annotations Positive
Points

Negative
Points

Ambiguous
Points

DAVIS’16 [39] 50 50 3.4K - - -
DAVIS’17 [40] 90 205 13.5K - - -
YT-VOS [66] 4.4K 7.7K 197K - - -
BURST [3] 2.9K 16K 600K - - -
VISOR [15] 7.8K † 271K - - -
VOST [52] 713 † 175K - - -
MOSE [17] 2.1K 5.2K 431K - - -

PV-Oops 8.4K 13.1K 93K 548K 1.2M 18K
PV-Kinetics 23.9K 120K 965K 5.2M 12.6M 253K

Table 1. Comparison of VOS datasets with ours. Our Point-
VOS data is much larger compared to existing VOS datasets. “An-
notations” counts for each object in how many frames it is anno-
tated. †: The number of objects is not reported.

video datasets, PV-Oops and PV-Kinetics. By design, those
datasets feature multi-modal vision-language annotations
that connect open-vocabulary language object descriptions
to the corresponding video object annotations. (4) We es-
tablish a new benchmark based on these datasets, where we
train and test VOS methods either on point annotations or on
pseudo masks, and present strong baselines. (5) We realize
the potential of multi-modal vision-language annotations in
our proposed datasets and showcase their use for language-
guided VOS.

2. Related Work

Video Object Segmentation Datasets. DAVIS [39, 40]
is one of the first densely annotated VOS datasets, with 90
videos. Later, the YouTube-VOS (YT-VOS) dataset [66]
with 4.4K videos further advanced the state-of-the-art.
Later datasets [3, 15, 17, 41, 52] focused on specific VOS
sub-challenges; among them, VISOR [15] is the largest in
terms of the number of videos with 7.8K kitchen videos.
Despite the growing interest in the VOS task, VOS datasets
are still small in scale mainly due to their expensive anno-
tation process. In contrast, we introduce a much more effi-
cient point-wise annotation scheme that enables us to anno-
tate about 32K videos, 4 times more than VISOR.

Fully-Supervised VOS Methods. Early VOS meth-
ods [7, 31, 49, 55, 56] use online learning at test time which
makes them very slow. The following methods [37, 57, 69]
alleviate this by propagating predictions frame-by-frame,
using limited context and accumulating errors on the way.
Recent methods [11, 13, 38] address this by incorporating
a larger temporal context using an external memory (e.g.,
STM [38] and its extensions [11–13, 46]). More recent
works [1, 2, 70] use Transformers with spatio-temporal at-
tention. All of these methods rely on dense segmentation
masks. In contrast, we use much cheaper point annotations
in our work.

Weakly-Supervised VOS Methods. Weakly supervised
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VOS PET TAP-Vid Point-VOS

Point annotations for training ✗ ✗ ✓ ✓

Point annotations for test-time ✗ ✓ ✓ ✓

Arbitrary point location on object ✗ ✓ ✗ ✓

Temporally sparse annotations ✗ ✗ ✗ ✓

Simple, fast & efficient annotations ✗ ✗ ✗ ✓

Multi-modal annotations (✓) ✗ ✗ ✓

Table 2. Comparison of the design decisions of our new
spatially-temporally sparse point annotation scheme in Point-
VOS with the annotation schemes in other tasks: VOS [39],
Point Exemplar-guided Tracking (PET) [3] and Tracking Any
Point in a Video (TAP-Vid) [18]. (✓): Multi-modal annotations
are only available for some extensions of VOS datasets [16, 25, 45]
that initialize by a referring expression.

VOS approaches can be mainly classified into two types:
(i) The first type aims at reducing the first-frame super-
vision at test time by either using points [3] or bounding
boxes [29, 50, 58, 62, 71] instead of dense masks while
still relying on dense annotations for training. (ii) The sec-
ond type [1, 24, 59] reduces the training supervision by ex-
clusively using image-level datasets or by using bounding
boxes instead of masks, while still relying on dense masks
for the reference at test time. Unlike these methods, we use
weak point supervision both at training and test times.

Point Supervision for Images. Point supervision during
training has already been explored for various image tasks
such as instance segmentation [5, 9, 10, 27, 32, 43, 47, 48],
action recognition [35, 36] and object counting [28]. [10]
annotate points on objects and show that instance segmenta-
tion methods can be effectively trained on them. [5] use an
efficient mobile friendly point annotation scheme to collect
a new image dataset. However, unlike our method, these
methods work only with images and sometimes require
object-level bounding boxes [10] for annotating points.

Point Supervision for Videos. Existing video-level point
based annotations [18, 72] are mainly used for point track-
ing, which requires point correspondences that are again ex-
pensive to obtain and not relevant for tasks such as VOS.
In contrast, we focus on annotating random points, i.e., we
want points that are on a certain object, but we do not re-
quire points in different frames to correspond to the exact
same part of the object. To the best of our knowledge, [3] is
the only previous attempt that utilizes point annotations for
VOS-related tasks. However, different from our work, [3]
makes use of point annotations only to initialize the first
frame at test time while keeping the training supervision
unchanged.

Video Annotations. We also compare the design decisions
of the point annotation scheme in Point-VOS with exist-
ing video annotation schemes in Tab. 2. Conventional VOS

1 2 3 4 5 10 20 30 Mask
Reference frame supervision (#Points)

50.0%

55.0%

60.0%

65.0%
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75.0%
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F

58.84

65.80

69.80 69.76 69.88
70.74

71.48 71.46

73.46

56.86

65.48

69.38 69.42 69.08
70.02 70.38 70.58

72.14

58.88

64.44

67.66 67.48 67.06
68.50 68.38 68.46

70.28

58.62

62.28
63.68 64.28 63.78 64.32 64.40 64.52

66.58

50.56

52.46 52.76 52.90
52.22 51.96

51.34
50.40

53.80

Training Supervisions (#Points)
30 Point w/ Random Sampling
20 Point w/ Random Sampling
10 Point w/ Random Sampling
5 Point w/ Random Sampling
1 Point w/ Random Sampling

Figure 2. Training vs. test-time point supervision results using
simulated points on the DAVIS validation set. ♦ represents our
chosen setting, i.e. 10 points for training supervision and 10 points
for test-time supervision. We run each experiment 5 times and
report the mean score.

uses dense masks that are expensive to annotate. PET [3]
uses point initialization at test-time but still dense masks for
training. TAP-Vid [18] uses exact point correspondences
for training that are extremely costly to annotate. In con-
trast, Point-VOS expects that only random points on objects
are annotated and the annotation effort is even further re-
duced by making use of temporal sparsity.

3. Point Annotations for VOS
In the conventional VOS task, the training set contains N
videos V ={v1,v2,...,vN}, where each video v ∈ V with
Tv frames and Ov objects consist of a set of images Iv=
{I1,I2,...,ITv} and a set of dense segmentation masks Mv=

{mt,o|t∈{1,...,Tv},o∈{1,...,Ov}}. At test-time, the input is a
video v /∈ V and the corresponding reference segmenta-
tion masks MR

={mR
1 ,mR

2 ,...,mR
OR} for OR objects in a sin-

gle frame (usually the first). The conventional VOS method
then has to generate temporally consistent segmentation
masks M̂v={m̂t,o|t∈{1,...,Tv},o∈{1,...,OR}} for the OR fore-
ground objects for each frame of the video.

In our proposed Point-VOS task, we update this task by
replacing the training masks M and reference masks MR

with point annotations, and by working with a sparse set
of frames. Hence, in a Point-VOS training set, each video
v ∈ V has a set of images Iv={I1,I2,...,ITv} and a set of point
annotations Pv={Pt,o|t∈T sparse

v ,o∈{1,...,Ov}} with T sparse
v ⊂

{1,...,Tv}, |T sparse
v | ≪ Tv , where each Pt,o is a set of points

for object o in frame t. At test-time, a Point-VOS method
is initialized with reference points PR

={PR
1 ,PR

2 ,...,PR
OR} on

OR objects in the reference frame. The expected output M̂v

is the same as for the original VOS task, i.e., a predicted
segmentation mask for each frame of each object.
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3.1. Simulating Point Annotations

To study the effect of training and initializing with points
rather than masks, we perform a series of experiments
where we train jointly on the DAVIS and YT-VOS training
sets and evaluate on the DAVIS validation set.

First, we analyze the number of points required for train-
ing supervision and for test-time initialization. For this, we
sample points randomly from each of the available ground-
truth masks in every annotated video frame such that these
points are at least d = 20 pixels apart from each other.
When the required number of points under the distance
constraint cannot be sampled, e.g., when the ground-truth
masks are very small, we retain the maximum possible
number of points under the constraint.

We then use an STCN [13] version that is adapted to
work with points (see Sec. 4), and train multiple models
with varying numbers of points used for training supervi-
sion. We evaluate each model on the DAVIS validation set
with different numbers of points for initialization on the ref-
erence frame. Fig. 2 shows that training with 10 points (—)
achieves good results and adding more points during train-
ing only gives minor gains. When we have less than 10
points during training, the performance strongly degrades.
For inference, we find that more points on the reference
frame lead to better results. However, this increases the test-
time annotation burden and is a trade-off which is highly
application dependent. As a result, we propose to evalu-
ate different numbers of points (up to 10) on the reference
frame (♦). We also tried other sampling strategies such as
farthest-point sampling, but random sampling gave better
results (see supplement for details).

Next, we analyze the number of frames required for
training on randomly sampled points 10 per frame per ob-
ject. Starting from all frames, we sub-sample (evenly-
spaced) up to 20 frames for each video. Fig. 3 shows the
results of STCN trained on such a temporally sparse train-
ing set. We find that the performance of STCN saturates at
10 frames (—), where increasing it further does not yield
any noticeable performance improvements, and having less
than 10 frames deteriorates the performance. Here again,
we try different frame sampling techniques, such as random
sampling, but do not observe any performance difference
(details in the supplement). In summary, we find 10 points
per object on 10 frames to be a good setting (⋆).

3.2. Semi-Automatic Annotation Scheme

We design a very efficient semi-automatic point annotation
pipeline to annotate videos with points (Fig. 4). Instead of
annotating points in multiple frames manually from scratch,
we aim to generate point candidates automatically that then
only need to be quickly verified by human annotators.

Pseudo-mask Generation. To annotate an object, as a

1 2 3 4 5 10 20 30 Mask
Reference frame supervision (#Points)
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F
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67.66 67.48 67.06

68.30 68.38 68.46
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67.10
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67.27 66.80

67.60

69.00

57.63

62.57

66.17 66.00 66.33
67.30 66.93

67.43

68.93

55.27

60.37

63.17 63.17 63.53
64.47 64.67 64.83

66.23

52.97

59.33

62.83
63.83 63.80 63.73

64.27 64.57
65.33

#Frames
All Frames
20 Frame w/ Evenly-Spaced Sampling
10 Frame w/ Evenly-Spaced Sampling
7 Frame w/ Evenly-Spaced Sampling
5 Frame w/ Evenly-Spaced Sampling

Figure 3. STCN results on DAVIS validation set for vary-
ing temporal sparsity, when trained on 10 randomly sampled
points per frame per object. ⋆ represents our chosen setting,
i.e. 10 points for training supervision and 10 points for test-time
supervision, on 10 frames. We run each experiment 3 times and
report the mean score.

starting point we require only a rough localization of it (e.g.,
by a few points) in a single frame of the video. We then con-
vert this rough localization into a pseudo-mask using the in-
teractive segmentation method DynaMITe [43]. called Dy-
naMITe [43].

Pseudo-mask Propagation. We feed the pseudo-mask
from the previous step into STCN [13] to propagate it
both forward and backward in time to all other frames of
the video and obtain pixel-wise binary probability maps
P={p1,p2,...,pT } for all frames 1, . . . , T of the video.

Point Sampling. Because both DynaMITe and STCN can
introduce errors in the previous process, we do not use
the resulting pseudo-masks directly, but instead, we use
the STCN output probability maps to sample points and let
human annotators verify them. We sub-sample the probabil-
ity maps temporally equally-spaced to 10 frames. Then, for
each object and each retained frame, we threshold the prob-
ability map into (i) a high probability region that likely rep-
resents the foreground object, (ii) a low probability region
that likely represents the background, and (iii) an uncertain
region. Points from the uncertain region are hard for STCN
and hence might provide a valuable learning signal after be-
ing manually annotated. For each of the 10 frames, we then
randomly sample 10 potential background points from the
low-probability region, 7 potential foreground points from
the high-probability region, and 3 ambiguous points from
the uncertain region. Here, we again ensure that each of
these points are at least d distance apart from each other,
and we obtain in total up to 200 points per object.

Annotator Verification. We show the annotators the rough
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Figure 4. Semi-automatic annotation pipeline used to annotate VidLN data. We first extract a mouse trace segment for each noun
in VidLN captions, and convert it into a pseudo mask using DynaMITe. We then use STCN to propagate the pseudo-mask across the video.
We then use the STCN output probability maps to sample sparse point annotations and let annotators verify them. Green circles represent
foreground points and red circles background points.

localization information used to generate the points, over-
laid on the image, so that they understand which object
should be considered. Next, we show them the foreground
point candidates one by one overlaid on the image (see
Fig. 4, right). They use a hotkey to either accept or re-
ject this foreground point candidate or to indicate it is am-
biguous. We repeat the same procedure with the back-
ground point candidates, and finally with the points with
high uncertainty. By batching points of the same type (e.g.,
foreground candidates) together, the annotators can very
quickly verify them.

3.3. Point-VOS Datasets

For our annotations, we choose two large datasets from
Video Localized Narratives (VidLN [60]). VidLN provides
annotations, where annotators speak to provide a caption
for the video, and while speaking, they move their mouse
pointer over the object they refer to in multiple key-frames
to provide a rough localization. Leveraging VidLN anno-
tations has primarily two advantages for us: (i) the mouse
traces can be used to automatically select foreground ob-
jects in a video, and correspondingly give us a free rough
localization as starting point for our annotation scheme; and
(ii) the associated text description can be used to develop
multi-modal VOS algorithms. We build on the “location-
output question” annotations from Oops [19] because they
provide a set of mouse traces for nouns that are already ver-
ified to have good quality. Additionally, we choose Kinet-
ics [23], because it is by far the largest VidLN dataset.

To convert the continuous mouse traces into segments,
we first use the NLP toolkit spaCy to find nouns in the
VidLN captions, and then for each noun retrieve a rough lo-
calization by mouse trace segments T ={t1,t2,...,tn} on key-
frames F={f1,f2,...,fn} provided by VidLN [60]. We extract
the mouse trace segment tk on the key frame fk on which
it has the largest area. Each noun is thus localized with a
corresponding mouse trace segment on a single key-frame.

Instance Segmentation from Mouse Traces. We adapt
DynaMITe to work with mouse traces instead of user clicks
and hence our version of DynaMITe takes a mouse trace
segment tk and the corresponding frame fk as input, and

generates a binary segmentation mask mk as output. More
details can be found in the supplement.

Point Verification. On average, we get 147 points per ob-
ject to be verified and, following this procedure, an anno-
tator spends on average 140 seconds per object, i.e., 0.95
seconds per point. In contrast, annotating a single dense
mask can take ∼ 80s [30]. If we consider annotating an
object with a mask in each frame of a single video in the
DAVIS training set with an average of 70 frames, it takes
about 5600s, which is 40 times slower than our annota-
tion scheme. This demonstrates that our annotation scheme
achieves an extreme speedup and lets us annotate much
larger datasets than existing VOS benchmarks. Moreover,
[18] report that annotating point correspondences over 250
frames for 10 objects with 3 points per object takes 3.3
hours, i.e., 1,188s per object. This is 8 times slower than our
annotation scheme, which shows that our point annotations
are also much faster than annotating point correspondences.

The statistics of our point annotations in Tab. 1 show that
in total we annotated more than 19M points for 133K ob-
jects in 32K videos. Thus, we annotated significantly more
videos and objects than the largest existing VOS datasets
VISOR [15] and BURST [3]. Our annotations cover 4 times
more videos than VISOR, consisting of 7.8K videos, and 8
times more objects than BURST with 16K objects.

PV-Oops. Oops [19] consists of fail videos of uninten-
tional action, often filmed by amateurs in diverse environ-
ments. They contain a lot of camera jitter and motion blur,
making tracking and segmentation challenging. We create
the Point-VOS Oops dataset (PV-Oops), and annotate more
than 13K objects in 8.4K videos that are split into a training
and a validation set. We also create a PV-Oops benchmark
to measure Point-VOS performance on this challenging do-
main. For 991 objects in the validation set, we annotate
points in the first frame for initialization and dense pixel
masks for up to 3 frames per object for evaluation. By con-
ducting simulation experiments on DAVIS, we found that
the results evaluated against either masks in only 3 frames,
or in all frames, correlate extremely well, meaning that 3
frames are sufficient for evaluation purposes (see supple-
ment for details).
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“eruption”

“bouncy castle”

Figure 5. Example point annotations for PV-Oops (top) and PV-Kinetics (bottom). The objects are connected to nouns from a large
vocabulary. Green dots represent foreground points and red dots background points.

PV-Kinetics. Kinetics [23] is a very large-scale action
recognition dataset with 650K videos that cover 700 ac-
tion classes. The Kinetics videos are approximately 10s
long and are annotated with action labels. Similar to Oops,
for the Point-VOS Kinetics (PV-Kinetics) dataset, we use
the subset of videos with VidLN annotations and annotate
120K objects with points across 23.9K videos.

With our new annotations, we obtain the largest VOS-
related dataset in terms of the number of videos that cover
a wide range of human actions. Fig. 5 shows some example
point annotations from PV-Oops and PV-Kinetics. More de-
tailed statistics and more annotation visualizations are avail-
able in the supplement.

4. Experiments
4.1. Point-VOS Benchmark

We propose a new benchmark for the Point-VOS task in or-
der to evaluate what a method can achieve by using point
annotations for training and testing. At test time, for each
foreground object, we provide multiple sets of point ini-
tializations with varying degrees of sparsity (1, 2, 5, or 10
points) on the corresponding reference frame, and also re-
port their mean scores. This reflects different trade-offs at
test-time between annotation effort and result quality.

For training, we use point annotations from our an-
notated PV-Oops and PV-Kinetics datasets, in addition to
Point-VOS versions PV-DAVIS and PV-YT of the popu-
lar VOS training sets, that we create by sub-sampling the
object masks both spatially and temporally, as explained
in Sec. 3.1. The methods are then evaluated on the vali-
dation sets of PV-DAVIS, PV-YT, and PV-Oops. For PV-
DAVIS and PV-Oops, we use the popular J&F metric, and
report the mean score for the different point initilizations.
On the PV-YT validation set, consistent with the original
task, we report the J and F scores for both seen and un-
seen classes, along with their overall mean G. Owing to
the limited evaluations permitted by the YT-VOS evalua-
tion server, we only consider initialization with 10 points.

We compute all scores on dense ground truth masks.

Point-STCN Baseline. As a first baseline, we adapt STCN
to work with points both for training supervision and test-
time initialization, and we call this adaptation Point-STCN.
Point-STCN makes minimal changes to the original STCN
model, showing that existing VOS methods can be easily
adapted to work with our Point-VOS datasets.

Pre-training FT Mean 1-point 2-point 5-point 10-point

PV-Oops ✗ 59.8 48.6 57.8 65.5 67.7
PV-Kinetics ✗ 50.4 29.5 41.5 60.7 69.7
PV-Oops + PV-Kinetics ✗ 54.2 35.2 45.9 63.6 71.9

— ✓ 61.3 49.4 60.8 67.2 67.7
PV-Oops ✓ 62.8 50.6 62.4 67.7 70.4
PV-Kinetics ✓ 62.8 48.0 61.7 69.6 72.0
PV-Oops + PV-Kinetics ✓ 63.1 48.4 61.4 69.5 72.9

Table 3. PV-DAVIS benchmark results (J&F) of Point-STCN.
FT: fine-tuning on PV-DAVIS and PV-YT.

Pre-training FT G JS FS JU FU

PV-Oops ✗ 51.6 60.8 62.0 40.1 43.5
PV-Kinetics ✗ 49.6 48.2 50.6 46.3 53.4
PV-Oops + PV-Kinetics ✗ 52.2 52.4 54.2 47.7 54.5

— ✓ 51.9 59.2 60.5 41.7 46.5
PV-Oops ✓ 54.4 61.1 62.6 44.6 49.5
PV-Kinetics ✓ 56.6 61.5 64.4 46.9 53.6
PV-Oops+ PV-Kinetics ✓ 57.2 62.5 64.7 47.7 53.7

Table 4. PV-YT benchmark results of Point-STCN when initial-
ized with 10-points. FT: fine-tuning on PV-DAVIS and PV-YT.

The original STCN method is first pre-trained on syn-
thetic video sequences created by augmenting static images,
and then fine-tuned on the densely labelled DAVIS and YT-
VOS video datasets. Additionally, STCN also uses a syn-
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Training Mean 1-point 2-point 5-point 10-point

PV-DAVIS + PV-YT 48.6 40.5 47.4 52.7 53.8
PV-Kinetics 42.5 27.3 35.7 50.3 56.7
PV-Oops 61.2 54.6 60.2 64.4 65.5

Table 5. PV-Oops benchmark results (J&F) of Point-STCN.

thetic dataset called BL30K [12], which we do not use in
our work. For Point-STCN, we also start from static im-
age pre-training, and then directly train on our spatially-
temporally sparse Point-VOS data. Here, we start by train-
ing on PV-DAVIS and PV-YT, and then further explore the
benefits of adding our new PV-Oops and PV-Kinetics data
as an additional pre-training step. More details about the
implementation of Point-STCN are in the supplement.

Tabs. 3 and 4 demonstrate that the newly annotated PV-
Oops and PV-Kinetics data bring large improvements as
compared to starting from static images, especially for the
settings where we fine-tune these models on PV-YT and PV-
DAVIS. E.g., the mean J&F on PV-DAVIS improves from
61.3% to 63.1%, and G on PV-YT improves from 51.9%
to 57.2% when pre-training with both PV-Oops and PV-
Kinetics. This demonstrates that our new PV-Oops and PV-
Kinetics annotations serve as good initilizations for adapt-
ing models to other target domains. For results without
fine-tuning, we observe that training on PV-Kinetics im-
proves the scores only when sufficiently many points (> 5)
are available as test-time initialization. This could be at-
tributed to the domain mismatch between Kinetics and YT-
VOS/DAVIS, hence requiring more test-time information.

Tab. 5 shows the results on PV-Oops. Using our PV-
Oops annotations improve the performance from 48.6%
to 61.2% J&F as compared to Point-STCN trained on
just PV-DAVIS and PV-YT. This shows that using points,
VOS models can be adapted to target domains with a
strongly reduced annotation effort.

Pseudo-mask Baseline. As an alternative to training on
points directly, we consider using the points to first generate
pseudo-masks and then train STCN on those pseudo-masks.
For this, we use the same training procedure that was used
to train original STCN, but replace the bootstrapped cross-
entropy loss with a more robust Huberised cross-entropy
loss [34, 59] to reduce the influence of errors in the pseudo-
masks. At test-time, we first generate pseudo-masks from
the different point initializations and then use these masks
as reference. The pseudo-masks provide much more useful
information than points, but require an additional model at
test-time and increase the run-time.

We generally use DynaMITe [43] to generate pseudo-
masks from the point annotations. For the training set,
we feed both positive and negative points for each object
in every annotated frame to DynaMITe, while for the vali-
dation set, we only use the available foreground point ini-

Pre-training FT Mean 1-point 2-point 5-point 10-point

— ✗ 65.6 55.2 67.4 69.5 70.4
PV-Oops ✗ 67.2 59.0 69.8 69.1 70.9
PV-Kinetics ✗ 68.9 59.9 71.1 71.6 73.0
PV-Oops + PV-Kinetics ✗ 70.4 61.1 72.5 73.2 74.8

— ✓ 70.3 61.6 72.0 72.7 75.0
PV-Oops ✓ 70.6 61.0 72.4 73.1 75.8
PV-Kinetics ✓ 71.0 62.4 72.9 73.6 75.0
PV-Oops + PV-Kinetics ✓ 71.6 63.0 73.4 74.4 75.8

PV-Oops + PV-Kinetics ∗ ✓ 67.4 44.8 69.1 77.0 78.8

Table 6. PV-DAVIS benchmark results (J&F) of STCN [13]
trained with pseudo-masks. FT: fine-tuning on PV-DAVIS
and PV-YT, *: using SAM pseudo-masks.

Pre-training FT G JS FS JU FU

— ✗ 63.0 63.8 66.0 58.2 63.7
PV-Oops ✗ 63.6 67.9 69.9 55.5 61.0
PV-Kinetics ✗ 67.3 67.8 70.5 62.0 69.0
PV-Oops + PV-Kinetics ✗ 68.3 70.0 72.7 62.1 68.5

— ✓ 67.7 69.4 72.7 60.9 67.8
PV-Oops ✓ 67.7 69.5 73.0 60.3 68.0
PV-Kinetics ✓ 68.1 70.6 73.7 60.4 67.6
PV-Oops + PV-Kinetics ✓ 68.7 70.5 73.7 61.8 68.8

PV-Oops + PV-Kinetics ∗ ✓ 73.7 75.5 77.6 68.1 73.9

Table 7. PV-YT benchmark results of STCN [13] trained with
pseudo-masks, and evaluated on 10-points. FT: fine-tuning
on PV-DAVIS and PV-YT, *: using SAM pseudo-masks.

Training Mean 1-point 2-point 5-point 10-point

— 57.1 50.7 56.7 60.4 60.8
PV-DAVIS+PV-YT 61.3 55.9 61.2 63.9 64.3
PV-Kinetics 61.3 55.4 60.9 64.2 64.7
PV-Oops 64.9 59.7 64.9 67.4 67.7

PV-Oops∗ 57.7 40.5 57.6 65.9 66.7

Table 8. PV-Oops benchmark results (J&F) of STCN [13]
trained with pseudo-masks, starting from static-image pre-
training. *: using SAM pseudo-masks.

tialization. Recently, the very strong SAM [27] segmenta-
tion model became available, so for some additional setups
we create masks with SAM with ViT-H backbone instead
of DynaMITe and also report those results.

Similar to the previous baseline setup, we first
train STCN on pseudo-masks generated from PV-DAVIS
and PV-YT, and then later include the additional data
from PV-Oops and PV-Kinetics as an additional pre-training
step. Tabs. 6 and 7 show that the performance of STCN
consistently improves with additional Point-VOS data on
both PV-DAVIS and PV-YT. Without fine-tuning, the addi-
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Task Training Testing J&F

➀ VOS Masks Masks 85.3

➁ Point-VOS Points† Points 67.7
➂ Point-VOS* Pseudo-Masks† Pseudo-Masks 76.9

➃ Hybrid Masks Points 78.3
➄ Hybrid* Masks Pseudo-Masks 80.4

Table 9. Ablations on DAVIS using different training and test-
time supervisions. *: SAM pseudo-masks, †: temporally sparse.
Hybrid: masks during training, points at test-time.

tional Point-VOS data improves the mean J&F for PV-
DAVIS from 65.6% to 70.4% as compared to just using
the static image pre-training, showing that the additional
video annotations are very helpful. Likewise, the results
on PV-YT improve the G from 63.0% to 68.3%. Also after
fine-tuning, consistent improvements can be seen on both
datasets. On DAVIS, using SAM pseudo-masks instead of
DynaMITe is beneficial when more points are available at
test-time, but leads to significantly worse results for initial-
ization with only 1 or 2 points. This is likely because SAM
tends to generate part-based segmentations for a low num-
ber of points.

Tab. 8 again shows that fine-tuning STCN on the PV-
Oops training data significantly improves the results on
the PV-Oops benchmark from 57.1% mean J&F to 64.9%,
as compared to just using static images, further boosting the
baseline performance.

4.2. Ablation Study

In Tab. 9, we compare the conventional VOS task
with Point-VOS on the DAVIS validation set. The train-
ing and testing columns denote the annotations available at
training and test-time, respectively for each task setup.

In the original VOS setup (➀), STCN achieves 85.3%
J&F . The Point-VOS setup (➁) just on points yields
67.7% J&F , which is around 80% of the original VOS
quality (➀). However, when we use pseudo-masks (➂), the
gap closes more and we achieve 76.9% J&F , which is
more than 90% of the original VOS quality (➀). This result
is remarkable, considering that ➂ has a three-fold disadvan-
tage compared to ➀: 1) weak point supervision instead of
masks during training, 2) temporal sparsity during training,
3) sparse point initialization instead of masks at test-time.

We also consider a Hybrid task setting, which uses dense
mask annotations for training but point-based initialization
for testing (see supplement for implementation details). Re-
sults on the Hybrid setup show that switching from VOS to
point-based training has a larger negative effect on quality
than switching to point-based initialization (➀ → ➃ vs. ➃
→ ➁). Again, the use of pseudo-masks improves results (➄)
and shrinks the gap towards the original VOS setup.

Pre-Training UVO-FT OVIS-VNG UVO-
VNG

No-FT FT

Static ✗ 28.5 32.4 39.6
Static + PV-Oops ✗ 24.5 31.4 32.9
Static + PV-Kinetics ✗ 33.9 35.1 51.8

Static ✓ 32.0 32.7 46.4
Static + PV-Oops ✓ 31.8 32.6 48.0
Static + PV-Kinetics ✓ 32.0 35.0 52.8

Static + PV-Kinetics ∗ ✓ 32.9 34.4 52.5

Table 10. OVIS-VNG and UVO-VNG results (J&F) of RF-
VNG. All models start with COCO-PNG pre-training. UVO-FT:
fine-tuning on UVO-VNG data, FT: fine-tuning on OVIS-VNG
data, No-FT: no fine-tuning. *: using SAM pseudo-masks.

4.3. Language-Guided Tasks

As described in Sec. 3.2, each object that we annotated is
linked to a noun in a sentence. Hence, those multi-modal
annotations can be used to improve models connecting vi-
sion and language, e.g., for the Video Narrative Grounding
(VNG) [60] task. In VNG, the input to a method is a text
description (e.g., “A green parrot with a red-black neckline
is playing with the other parrot” [60]) in which the position
of certain nouns (e.g., both instances of “parrot”) is marked.
For each marked noun, the VNG method has to segment the
corresponding noun in each frame of the video.

Our multi-modal point annotations link each point to
a noun in a sentence, which matches the setup of VNG.
We combine the pseudo-masks generated by DynaMITe
based on the annotated points with the language annotations
to create our new Oops-VNG and Kinetics-VNG training
sets that cover 133K objects in 32K videos. This is more
than 3 times larger than the existing VNG datasets OVIS-
VNG [41, 60] and UVO-VNG [60, 63] that span 45K ob-
jects in 8K videos.

We conduct experiments using the state-of-the-art VNG
method RF-VNG [60]. The original RF-VNG is trained
in 3 steps: 1) pre-training on static images of the COCO-
PNG [20] training set, 2) optional training on UVO-VNG,
3) optional fine-tuning on the OVIS-VNG training set for
evaluation on the OVIS-VNG validation set. We use the
same training recipe, but insert another pre-training step be-
tween steps 1) and 2), where we train RF-VNG [60] on our
new Oops-VNG or our new Kinetics-VNG training sets.

Tab. 10 demonstrates that adding our new data signifi-
cantly improves the baseline results for the VNG task. E.g.,
the best result on OVIS-VNG improves from 32.7% J&F
to 35.0%, and for UVO-VNG, from 46.4% to 52.8%, i.e.,
we achieve an improvement of 6.4 percentage points.
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5. Conclusion

In this work, we have proposed a point-based VOS task,
Point-VOS, and a point-wise annotation scheme, which is
much more efficient than the existing dense-mask annota-
tion scheme. We use this to annotate two large-scale multi-
modal VOS datasets that are much larger than the largest
available densely annotated VOS datasets. In addition, we
also introduce a point-based training strategy for the VOS
methods and correspondingly show that existing VOS meth-
ods can be easily adapted to leverage our point annota-
tions. Finally, our experiments show the benefits of our
newly annotated point data by advancing the state-of-the-
art performance for various uni-modal and multi-modal (vi-
sion+language) benchmarks.
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Point-VOS: Supplementary Material

Abstract

In this supplementary, we provide the experimental results of the addi-
tional simulations in Appendix A, the details for annotating the Point-VOS
Oops validation set in Appendix B, the statistics for Point-VOS datasets in
Appendix C, the implementation details in Appendix D and the additional
qualitative results in Appendix E.

A. Additional Simulations

Farthest Point Sampling Strategy. In Sec. 3.1 of the main paper, we
ran a number of point simulation experiments on DAVIS [40] and YT-
VOS [66] to analyse the effect of using point annotations both during train-
ing and testing. For these experiments, the simulated points are sampled
randomly from the available ground truth segmentation masks for each
frame.

In addition to sampling the points randomly, we also consider using the
farthest-point sampling (FPS) technique. The FPS algorithm starts from
some random initial point in the given input point set, and then iteratively
selects a single point that has the largest distance from all the previously
sampled ones. For our point simulations, instead of starting from a random
point, we always start from a point that best represents the center of the
input mask. To sample this center, we first generate Euclidean distance
transforms from the ground-truth segmentation masks for each foreground
object and the common background. We then sample the point that has
the largest distance from each of these distance transforms and further use
these as the starting points for the FPS algorithm. The FPS algorithm is
then separately applied on the points that represent each of the foreground
objects and the background starting from the corresponding center point.

Similar to the point simulation experiments presented in Sec. 3.1, we
again use Point-STCN to train multiple models on different number of
simulated points. Here again, we do not apply any temporal sparsity. Also,
note that in both random and FPS point sampling strategies, we run each
experiment 5 times and report the mean score. In Fig. 6, we show the
results for the FPS point sampling strategy on the DAVIS validation set. It
can be seen that the performance of Point-STCN is much worse when we
use FPS instead of the random sampling strategy (see Fig. 2 in the main
paper), e.g., for FPS we achieve the best result by training with 30 points,
which is almost on par with using 10 points as training supervision in the
random point sampling strategy. Thus, we decided to use the random point
sampling strategy for our point annotations.

Randomly Sub-sampling Frames. Along with the evenly-spaced sub-
sampling strategy explained in Sec. 3.1 of the main paper, we also try to
sub-sample frames randomly. Similarly to evenly-spaced sub-sampling,
starting from all frames, we randomly sub-sample up to 20 frames for each
video. For training supervision, we keep again the setup of 10 randomly
sampled points per frame per object. Also, we run each experiment 3 times
for both evenly-spaced and random sub-sampling strategies and report the
mean score.

We demonstrate the results for the random sub-sampling strategy on
the DAVIS validation set in Fig. 7. We obtain very similar results for both
strategies. We cannot observe a notable difference compared to Fig. 3
in the main paper, so we decided to make use of the evenly-spaced sub-
sampling strategy.

Evaluating on temporally sparse videos. To annotate the ground-truth
segmentation masks for the evaluation of the Point-VOS Oops (PV-Oops)
benchmark, we also make the following key design decision. As the
consecutive frames are extremely correlated and redundant, we question
whether evaluating the results on a sparse subset of frames is sufficient.
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Figure 6. FPS point sampling results on the DAVIS validation
set. We vary the number of sampled points per object for training
supervision and the number of sampled points on the reference
frame.
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Figure 7. Results on the DAVIS validation set for randomly
sub-sampling frames. We vary the number of randomly sampled
frames.

In that way, we would diminish the annotation effort while annotating the
validation set as well, increasing cost and time-efficiency.

To this end, we run analysis experiments on DAVIS benchmark results.
First, we generate temporally sparse validation sets from the DAVIS vali-
dation set by sub-sampling 3, 4, 5, and 10 frames evenly spaced, i.e., we
obtain 4 temporally sparse validation sets consisting of sub-sampled 3, 4,
5, or 10 frames. Then,we get the methods [4, 7, 13, 14, 22, 25, 31, 33, 37,
38, 54, 55, 57, 58, 62, 65, 67, 68] from the DAVIS benchmark leaderboard,
evaluate them on a sparse set of frames. Finally, we compare these results
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Figure 8. Temporally dense J&F vs. temporally sparse J&F results. We get 18 methods (colored dots) from the leaderboard of the
DAVIS benchmark and evaluate them on the 4 different temporally sparse DAVIS validation sets. TEMP-3 shows the results evaluated on
3 sub-sampled frames, TEMP-4 on 4 sub-sampled frames, TEMP-5 on 5 sub-sampled frames, and TEMP-10 on 10 sub-sampled frames.

with the results on the temporally dense validation set, i.e., the original
DAVIS validation set with all frames. As seen in Fig. 8, the results are ex-
tremely correlated for all temporally sparse validation sets. In other words,
even with only 3 ground-truth frames per object for evaluation, the ranking
between methods does not change in almost all cases (except when their
performance is extremely close to each other).

B. Annotating Point-VOS Oops Validation Set
We start annotating the Point-VOS Oops (PV-Oops) validation set by first
annotating the reference frame with points. We generate point-wise an-
notations on the sub-sampled (evenly-spaced) 10 frames from each video
and ask human annotators to verify them in the same way as for the train-
ing point annotations. Then, we check each video to decide the reference
frame. In each video, we assign the first frame that contains at least 7
foreground points as the reference frame and remove all frames before the
reference frame. In case, we cannot find a frame in the video with at least
7 foreground points, we eliminate the video. We also check whether we
have enough frames after the reference frame. If there is no frame after the
reference frame with at least 3 foreground points and 1 background point,
we also drop the video.

Afterwards, we annotate the ground-truth segmentation masks for the
evaluation of the PV-Oops benchmark. Informed by the simulation exper-

iment for evaluating on a sparse subset of frames (see Appendix A), we
decided to annotate temporally sparse segmentation masks for the evalua-
tion of the PV-Oops benchmark with 3 ground-truth frames.

While annotating 3 ground-truth frames, we start by first annotating
the frame with the mouse trace segment for each video. Note that the
mouse trace comes from the location-output questions of VidLN [60] for
the PV-Oops dataset. In the original VidLN location-output task (which we
do not consider in our work), a mask in the frame with the mouse trace is
approximately evaluated by comparing it to the mouse trace. By annotating
a segmentation mask for this frame, we make sure that our annotations
can be used to replace the original VidLN evaluation, that compares the
predicted mask with the mouse trace, with a more precise evaluation, that
compares the predicted mask with the annotated mask.

After annotating the frame with mouse trace, we check each video and
eliminate the videos, if the frame with the mouse trace is temporally before
the reference frame, or exactly on the reference frame. From the remaining
videos, we sub-sample (evenly-spaced) 3 frames from the frames coming
after the reference frame with point annotations, and we check whether the
frame with the mouse trace is in the 3 sub-sampled frames. If the frame
with the mouse trace is in the 3 sub-sampled frames, we keep the other
2 sub-sampled frames and annotate them with ground-truth masks. If the
frame with the mouse trace is not in the 3 sub-sampled frames, we drop
the frame that is temporally closest to the mouse trace frame and send the
other 2 frames to annotation.
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Dataset Videos Annotations Objects Positive
Points

Negative
Points

Ambiguous
Points

tr
ai

n

Point-VOS Oops 7.4K 93K 12K 541K 1.2M 18K

Point-VOS Kinetics 23.9K 965K 120K 5.2M 12.6M 253K

Point-VOS DAVIS 60 600 145 9.7K 6K —

Point-VOS YouTube 3471 34.6K 6.4K 472K 346K —

va
l

Point-VOS Oops 991 3.5K 991 7.3K 9.9K 91

Point-VOS DAVIS 30 1.9K 61 558 300 —

Point-VOS YouTube 507 614 1K 9.8K 6K —

Table 11. Statistics for the Point-VOS datasets. Annotations
here means summing up frames containing at least one annotated
object. Note that for Point-VOS DAVIS and Point-VOS YouTube,
we sampled the points from the ground truth masks, while for all
other datasets, we annotated new points.

C. Point-VOS Datasets Statistics

Overview. In Tab. 11, we present the detailed statistics for the training
and validation splits of the Point-VOS datasets.

Point-VOS Oops (PV-Oops) and Point-VOS Kinetics (PV-Kinetics) are
the datasets that we annotated with new points. In total, we collected
19.7M points where 5.8M points are annotated as positive points and
13.9M points as negative points. Also, 271K points are annotated as
ambiguous points. We do not use any ambiguous annotations in our exper-
iments.

In PV-Oops, there are 541K positive points and 1.2M negative points
in the training split, and also 7.3K positive points and 9.9K negative
points in the validation split. In PV-Kinetics, there are 5.2M positive
points and 12.6M negative points.

In addition to the PV-Oops and PV-Kinetics datasets, we also gener-
ated the Point-VOS versions of the DAVIS and YouTube-VOS (YT-VOS)
datasets. For Point-VOS DAVIS (PV-DAVIS) and Point-VOS YouTube
(PV-YT), we sample the spatially temporally sparse points from the ground
truth masks. Since the original DAVIS and YT-VOS datasets are mas-
sively smaller than PV-Oops and PV-Kinetics, the total positive and neg-
ative points are also very much less in PV-DAVIS and PV-YT. There are
9.7K positive points and 6K negative points in the PV-DAVIS training
split, 558 positive and 300 negative points in the PV-DAVIS validation
split. PV-YT contains 472K positive and 346K negative points in the
training split, and 9.8K positive and 6K negative points in the validation
split. Note that there are fewer annotations in both PV-DAVIS and PV-YT
compared to the original DAVIS and YT-VOS datasets as we sub-sample
10 frames.

Frame Distribution. In addition to the detailed statistics, we also ana-
lyze the distribution of frames in the training splits of PV-Oops and PV-
Kinetics. During the annotation process, we provided 10 frames to the
human annotators for annotations. Here, the distribution of frames means,
we check each video after the annotation process and sum up the frames in
each video, which have at least one positive point annotation.

Fig. 9 shows the frame distribution for PV-Oops (see Fig. 9a) and
PV-Kinetics (see Fig. 9b). As seen, more than 40% of the videos in both
PV-Oops and PV-Kinetics have all frames with positive point annotations
(see red slice). Also, more than 30% of the videos in both PV-Oops and
PV-Kinetics contain more than 5 frames with positive point annotations
(see chameleon, green, caramel macchiato and orange slices).

Point Distribution. Finally, we analyze the distribution of the positive and
negative points in the training splits of PV-Oops and PV-Kinetics. Here,
the distribution of points means reporting the total number of videos in the
different ranges of the number of point annotations.

We show the distribution of points in Fig. 10 for PV-Oops (see Fig. 10a)
and PV-Kinetics (see Fig. 10b). As seen, we observe similar point distribu-
tions in both PV-Oops and PV-Kinetics. As the size of the objects varies,
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6 Frame7.7%

7 Frame
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(a) PV-Oops
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Figure 9. The distribution of frames for PV-Oops and PV-
Kinetics. The distribution of frames means summing up frames
in each video, which contains at least one positive point annota-
tion.

the distribution of the positive points has more probability mass on the
left than the distribution of the negative points in both PV-Oops and PV-
Kinetics. Since we fixed the number of background points to 10 points for
annotating, the distribution of the negative points has probability mass at
the center for both PV-Oops and PV-Kinetics.

D. Implementation Details

Point-STCN. A major advantage of using point annotations is that it can
be used to train existing VOS models without making drastic changes to
either the inherent model or the training strategy. We show this by eas-
ily adapting STCN to work with our point annotations while keeping most
of the network structure intact. Specifically, we make the following mod-
ifications to STCN: (i) The value encoder of STCN now takes a set of
sparse points (that we represent as a sparse segmentation mask) for each
of the reference foreground objects in the first frame mask instead of the
dense pixel-level masks. To leverage these point annotations, similar to the
original STCN pre-processing pipeline, we apply augmentations like affine
transformations and convert the points into a mask that has only non-zero
elements on the locations of the points. We concatenate the point masks
with the input image which is then processed by the value encoder. (ii)
Instead of using a bootstrapped cross-entropy loss on the predicted dense
posterior probabilities, we use a point-wise cross entropy loss where the
loss is applied to only the output vectors at sparse point locations that are
annotated in the ground-truth. We use bilinear interpolation on the output
probability map to approximate the predictions on the precise point loca-
tions. During training, we use both the positive and the negative points
for the loss computation. For each training sample, we sample 3 frames
from a video. One of those frames is considered the reference frame which
we used for initialization. The two other frames are considered the target
frames, on which we calculate the loss. Only the positive (foreground)
points are used as initialization in the reference (first) frame during both
training and testing, while both positive and negative points are used to
calculate the loss on the target frames.

DynaMITe Adaptation. DynaMITe [43] was originally designed to pro-
cess user interactions in the form of user clicks. Since, for our point an-
notation scheme, only a mouse trace is available on the reference frames
for each foreground object, we adapt DynaMITe to work with a trace as
input for generating a reference mask. Those reference masks are later
fed to STCN for propagation (see Sec. 3.2 of the main paper). To adapt
DynaMITe, we first sample the image features that correspond to each of
the pixel-locations covered by the input mouse trace, and perform a global
average pooling operation to generate a single feature vector. This feature
vector is then projected linearly to generate a query that corresponds with
the trace, similar to the click features in DynaMITe. This query is then
used by the Interactive Transformer module in DynaMITe to generate the
output mask for the object of interest.

Training Details. We train Point-STCN with points and STCN
with pseudo-masks on Point-VOS DAVIS (PV-DAVIS) and Point-VOS
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Figure 10. The distribution of the positive and negative points in PV-Oops and PV-Kinetics. The x-axis represents the different ranges
for the number of points, and the y-axis represents the total number of videos. Also, we show the precise numbers for the total videos at
the top of the bars.

YouTube-VOS (PV-YT) jointly for a total of 38K iterations. The learning
rate is reduced after 30K steps. On Point-VOS Oops (PV-Oops), Point-
STCN and STCN are trained in total 60K iterations, and the learning rate
is reduced after 50K steps. On Point-VOS Kinetics (PV-Kinetics), and
also joint training on PV-Oops and PV-Kinetics, we train Point-STCN and
STCN in total 190K iterations and reduce the learning rate after 150K
steps.

Following the original STCN setup, when training jointly on PV-

DAVIS and PV-YT, we build a combined dataset by repeating the PV-
DAVIS dataset 5 times and PV-YT 1 time, to compensate for the smaller
size of PV-DAVIS. Similarly, when training jointly on PV-Oops and PV-
Kinetics, we build a combined dataset by repeating PV-Oops 5 times and
PV-Kinetics 1 time in order to compensate for the smaller size of PV-Oops.

Moreover, for each training of Point-STCN and STCN, we use
Adam [26] and start with a learning rate of 10−5 and reduce it to 10−6

after a certain number of training steps as indicated above. We set the
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weight decay to 10−7 and the batch size to 4. We conduct all STCN and
Point-STCN trainings with 8 V100 GPUs, and all inference experiments
on a single 3090 GPU.

For training ReferFormer, we closely follow the setup used by
VidLN [60].

Hybrid Task. In Sec. 4.1 of the main paper, we introduced the Hybrid task
(a task in between VOS and Point-VOS). In the VOS task, dense segmen-
tation masks are used both during training and for test-time initialization,
while, in the Point-VOS task, spatially temporally sparse point annotations
are used in both cases. For the Hybrid task, spatially and temporally dense
masks are used during training, while only points are used on the refer-
ence frame at test-time. This means that the Hybrid task follows the setup
from VOS at training time, while it follows the setup from Point-VOS at
test-time.

In the Hybrid setup, we make use of dense masks to train Hybrid-
STCN while we initialize the reference frame with sparse points. Recall
that STCN uses 3 frames during training, from which one is the reference
frame and two are the target frames. In the Hybrid setup, we initialize
STCN with points in the reference frame and apply a full mask loss in
the target frames. At test-time, Hybrid-STCN can then be initialized with
points and achieves better results than Point-STCN, as we use more super-
vision during training.

E. Additional Qualitative Results
In Fig. 11 and Fig. 12, we provide the additional example point annotations
for Point-VOS Oops (PV-Oops) and Point-VOS Kinetics (PV-Kinetics).
We successfully annotated multi-modal points for different and challeng-
ing scenes, and also the objects from a large vocabulary.

In Fig. 13 and Fig. 14, we also show the examples of ambiguous
point annotations from PV-Oops and PV-Kinetics, i.e. the point annota-
tions where the human annotators indicated that they were unsure. We
observe that we have ambiguous point annotations in particular cases for
both PV-Oops and PV-Kinetics, e.g., if the given point is in a challenging
lighting condition or at the border.

In Fig. 15, Fig. 17, and Fig. 19, we present the tracking results of
Point-STCN (trained with points) on Point-VOS Oops (PV-Oops), Point-
VOS DAVIS (PV-DAVIS) and Point-VOS YouTube (PV-YT), respectively.
Also, in Fig. 16, Fig. 18 and Fig. 20, we demonstrate the results of
STCN [13] (trained with pseudo-masks) on PV-Oops, PV-DAVIS and PV-
YT, respectively.
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“man”

“kid”

“man”

“person”

“langur”

“bird” “bird”

Figure 11. Additional example point annotations for Point-VOS Oops. We are able to have multi-modal point annotations in cluttered
scenes (first row), fast motion (third row), challenging lighting conditions (fourth row), and motion blur (fifth row). Green dots represent
positive points and red dots negative points.
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“treadmill”

“person”

“golf ball”

“metal”

“man”

“girl”

Figure 12. Additional example point annotations for Point-VOS Kinetics. We can provide multi-modal point-wise annotations for
objects from a large vocabulary (first and fourth rows), scenes with fast motion (second row), small objects (third row), and also scenes
with difficult lighting conditions (fourth row) and motion blur (fifth row). Green dots represent positive points and red dots negative points.
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“man” “dog”

“boy” “woman”

“langur”
“ball”

“boy”

Figure 13. Example ambiguous point annotations from Point-
VOS Oops. We observe that the human annotators indicate unsure
if the given point is in challenging lighting condition (first row))
or at border (second row), or at motion blur (third row), or if the
object is ambiguous (fourth row). Green dots represent positive
annotations, red dots negative annotations, and gray dots ambigu-
ous annotations.

“bag” “sink”

“man” “kid”

“spinning wheel” “baby”

“grassy surface” “cement”

Figure 14. Example ambiguous point annotations from Point-
VOS Kinetics. Similarly, the human annotators indicate unsure
if the given point is in challenging lighting condition (first col-
umn, first two rows) or at border (second column, first two rows),
or at motion blur (first column, last two rows), or if the object is
ambiguous (second column, last two rows). Green dots represent
positive annotations, red dots negative annotations, and gray dots
ambiguous annotations.
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Figure 15. Tracking results of Point-STCN on PV-Oops. The model is trained on PV-Oops with points, then evaluated on the 10-point
setup.

Figure 16. Tracking results of STCN [13] on PV-Oops. The model is trained on PV-Oops with DynaMITe [43] pseudo-masks, then
evaluated on 10 points setup.
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Figure 17. Tracking results of Point-STCN on PV-DAVIS. The model is first pre-trained on PV-Oops and PV-Kinetics with points, then
fine-tuned on PV-DAVIS and PV-YT with points, and finally evaluated on the 10-point setup.

Figure 18. Tracking results of STCN [13] on PV-DAVIS. The model is pre-trained on PV-Oops and PV-Kinetics with pseudo-masks,
then fine-tuned on PV-DAVIS and PV-YT with pseudo-masks, and finally evaluated on 10 points setup. The pseudo-masks are generated
from SAM [27].
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Figure 19. Tracking results of Point-STCN on PV-YT. The model is first pre-trained on PV-Oops and PV-Kinetics with points, then
fine-tuned on PV-DAVIS and PV-YT with points, and finally evaluated on the 10-point setup.

Figure 20. Tracking results of STCN [13] on PV-YT. The model is pre-trained on PV-Oops and PV-Kinetics with pseudo-masks, then
fine-tuned on PV-DAVIS and PV-YT with pseudo-masks, and finally evaluated on 10 points setup. The pseudo-masks are generated from
SAM [27].

22


	. Introduction
	. Related Work
	. Point Annotations for VOS
	. Simulating Point Annotations
	. Semi-Automatic Annotation Scheme
	. Point-VOS Datasets

	. Experiments
	. Point-VOS Benchmark
	. Ablation Study
	. Language-Guided Tasks

	. Conclusion
	. Additional Simulations
	. Annotating Point-VOS Oops Validation Set
	. Point-VOS Datasets Statistics
	. Implementation Details
	. Additional Qualitative Results

