
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ONLINE POLICY SELECTION
FOR INVENTORY PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We tackle online inventory problems where at each time period the manager makes
a replenishment decision based on partial historical information in order to meet
demands and minimize costs. To solve such problems, we build upon recent works
in online learning and control, use insights from inventory theory and propose
a new algorithm called GAPSI. This algorithm follows a new feature-enhanced
base-stock policy and deals with the troublesome question of non-differentiability
which occurs in inventory problems. Our method is illustrated in the context of a
complex and novel inventory system involving multiple products, lost sales, per-
ishability, warehouse-capacity constraints and lead times. Extensive numerical
simulations are conducted to demonstrate the good performances of our algorithm
on real-world data.

1 INTRODUCTION

Inventory control is a standard problem in operations research and operations management where
a manager needs to make replenishment decisions in order to minimize costs and meet demands
(Nahmias, 2011; Roldán et al., 2017). Classical inventory theories focus on the optimization side
of the problem, that is, determining what is the optimal replenishment strategy assuming all the
parameters of the inventory model are known. For instance, the manager knows future demands or
the distribution they are drawn from. However, in real-world scenarios an inventory manager rather
faces optimization and learning problems presented in a sequential fashion, that is, at each time
period the manager makes its replenishment decisions based on past observations. For these reasons,
machine learning frameworks such as online learning or reinforcement learning seem particularly
well-suited to solve these realistic inventory problems. For instance, there is now an important body
of literature that builds upon techniques from online convex optimization like online gradient descent
(Zinkevich, 2003) to solve inventory problems (Hihat et al., 2024). However, they are extremely
specialized, designed for specific inventory models involving specific dynamics, cost structures and
demand processes (see, for example, Huh & Rusmevichientong, 2009; Shi et al., 2016; Zhang et al.,
2018). On the other hand, other generic approaches for control problems such as Model Predictive
Control (MPC) (Mattingley et al., 2011) suffer from a prohibitive computational cost and a lack of
scalability.

Contributions. In this paper, we first show how realistic, general inventory problems fit within the
recent Online Policy Selection (OPS) framework of Lin et al. (2024) which is at the crossroads of
control and online learning. We detail how various constraints very common in the industry, such as
perishability, lead times, or warehouse capacity constraints, can be mathematically modeled in this
setting. We obtain a general online inventory problem, that can be simplified and applied to several
more classical problems such as usual perishable inventory systems (Nahmias, 2011).

We then present a new algorithm for solving this online optimization problem, called GAPSI. This
algorithm is adapted from GAPS (Lin et al., 2024) to take into account specific aspects of inventory
problems, in particular the fact that the functions we are dealing with are not differentiable. We find
that this non-differentiability problem cannot be ignored, since it leads to undesirable behaviors, and
we show how carefully selected derivatives for the policies and Adagrad-style learning rates solves
it. We also propose a new policy which draws on classical base-stock policies (Snyder & Shen,
2019, Section 4.3.1) while dealing with uncertainty in future demand. The idea is to learn a target

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

level which writes as a linear function of either past demand features or forecasts. In this way, we
obtain a general online method for solving real-world inventory problems that can take into account
many different constraints and domain-specific knowledge about demands. For example, if we know
that demand has a weekly seasonality, then this knowledge can be incorporated into the algorithm
by using indicators of the day of the week as features.

Finally, we provide extensive experiments which demonstrate the good performance of GAPSI com-
pared to classical approaches. We observe that GAPSI performs particularly well when demands are
not stationary, have some changes of regime, and when the features are well-chosen. We emphasise
that in this work we do not only propose an efficient new algorithm, but also want to show that online
learning is a promising approach for realistic inventory problems, and therefore draw the attention
of this community to these problems.

Related works. Many online learning frameworks have been applied or adapted to inventory prob-
lems. For instance, in the absence of inventory dynamics, Levina et al. (2010) see their problem as
prediction with expert advice and Lugosi et al. (2024) use partial monitoring. In the presence of
dynamics, the situation is much more complex, and this is what interests us. The research most
closely related to this paper typically considers Online Convex Optimization (OCO) (Zinkevich,
2003) as their main learning framework. This is the case of Huh & Rusmevichientong (2009), Shi
et al. (2016), Zhang et al. (2018), Zhang et al. (2020), Guo et al. (2024). The common approach in
this literature is to adapt OCO techniques, such as Online Gradient Descent (OGD), in various ways
to handle inventory dynamics. However, this is mostly done on a case-by-case basis: specialized
algorithms are designed for specific dynamics. So the manager can only implement these solutions
if they are facing a very similar problem.

The reason why most inventory problems are not instances of classical online learning problems is
that they lack a notion central in control problems: that of a dynamical system influenced by the
manager’s decisions and impacting the losses. Incorporating this notion in online learning leads us
to the literature of online control. The latter has mostly focused on linear dynamics, as in Agarwal
et al. (2019), but most inventory dynamics are not linear. Among the recent developments in online
control, the OPS framework of Lin et al. (2024), presented in Subsection 2.1, provides much more
flexibility by allowing for general dynamics. Nevertheless, some challenges remain when consid-
ering inventory problems through OPS among which the non-differentiability of the losses, policies
and dynamics.

On the other hand, there exist general-purpose control techniques which are not specific to inventory
problems, in particular, Model Predictive Control (MPC) (Mattingley et al., 2011), which became
popular in the 1980s. The main idea is to solve an optimization problem at each time step based on
a predictive model up to a receding planning horizon. These approaches are not the main subject of
this paper, but we consider MPC as a competitor in the experimental section.

Overview. We start in Section 2 by introducing the OPS framework and show through various
examples that it is well-adapted to model realistic inventory problems. Then, we present in Section
3 our algorithm, GAPSI, that is based on GAPS (Lin et al., 2024) while taking into account aspects
specific to inventory management, via the use of a feature-enhanced base-stock policy, AdaGrad
learning rates and carefully chosen partial derivatives. We conclude in Section 4 with an extensive
numerical simulation study. We refer to the appendix for precise mathematical details and additional
experiments.

Notations. Let us denote by R+ = [0,+∞) the set of non-negative real numbers, N = {1, 2, . . . }
the set of positive integers, N0 = {0, 1, . . . } the set of non-negative integers and [n] = {1, . . . , n}.

2 PROBLEM STATEMENT

2.1 ONLINE POLICY SELECTION

The Online Policy Selection (OPS) framework of Lin et al. (2024) is a discrete-time control problem
where the decision-maker learns the parameters of a parameterized policy in an online fashion.
Formally, let X be the state space, U the control space and Θ the parameter space. At each time

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

period t ∈ N, the decision-maker starts by observing the state of the system xt ∈ X, then, they
choose a parameter θt ∈ Θ which is used to determine the control through a time-varying policy:
ut = πt(xt, θt) ∈ U. A loss ℓt(xt, ut) ∈ R is incurred, and finally the system transitions to the next
state: xt+1 = ft(xt, ut) ∈ X. Given a horizon T ∈ N, the goal is to minimize the cumulative loss∑T

t=1 ℓt(xt, ut) by selecting θt sequentially. We assume that the dynamics (ft)t∈N, losses (ℓt)t∈N,
and policies (πt)t∈N are oblivious, meaning they are fixed before the interaction starts.

Note that the well-studied Online Convex Optimization (OCO) framework (Zinkevich, 2003) can be
seen as a special case of OPS, obtained by removing the dynamics of the system, simplifying the
policies, and introducing convexity assumptions. Formally, to recover OCO, one can set X = {0}
and πt(xt, θt) = θt, assume that Θ is a closed convex subset of an Euclidean space and that ut 7→
ℓt(xt, ut) is convex for every t ∈ N.

2.2 INVENTORY PROBLEMS

To model an inventory, we must determine its dynamics and the cost structure to be minimized. The
vector xt must fully describe the state of the inventory at time t. It encodes the quantities of products,
including both on-hand units and eventual on-order units. The control ut is used here to represent
the ordered quantities at time t. The transitions ft will determine how the inventory states evolve
over time. Loss functions ℓt determine the cost structure. We describe below how these quantities
can be defined, starting with a simple model and making it more complex as we go along.

Lost sales. First, assume that we have one product and no lead time, meaning that a product is
instantaneously received when ordered and no perishability. Then, xt ∈ R+ is simply the quantity
of this product available in the inventory. We assume that unmet demand is lost, which is modeled
by the transition ft(xt, ut) = [xt + ut − dt]

+, where dt ∈ R+ is the demand at time period t.
Online lost sales inventory problems have been investigated by Huh & Rusmevichientong (2009)
for instance.

Fixed lifetime perishability. Now, if this product has a fixed usable lifetime of m ∈ N periods,
then a unit received on period t can be sold from periods t to t+m− 1 and, if this does not happen,
it expires and leaves the inventory at the end of period t + m − 1 as an outdating unit. To model
such a system we need to keep track of the entire age distribution of the on-hand inventory through
a state vector xt of dimension n = m − 1 (Nahmias, 2011, Section 1.3). For i ∈ [m − 1], the ith

coordinate xt,i represent the number of units that will expire at the end of day t + i − 1 if not sold
before. We again assume that unmet demand is lost and we choose a classical transition ft which
sells first the oldest products (Nahmias, 2011, Chapter 2). This can be written component-wise as

ft,i(xt, ut) = ft,i(zt) =

[
zt,i+1 −

[
dt −

i∑
j=1

zt,i

]+]+
, (1)

where zt = (xt,1, . . . , xt,n, ut) ∈ Rn+1 will be thereafter called the state-control couple. Zhang
et al. (2018) proposed an online control algorithm for such systems.

Order lead times. An order lead time, also known as order delay, is the difference between the
reception time period and the order time period. To adapt our model to take into account order lead
times on top of tracking on-hand products, we need to track on-order products in the state vector
by increasing its dimension. For instance, to include a lead time L ∈ N0 in lost sales perishable
inventory systems, we can set n = m + L − 1. Then, the first m − 1 coordinates of the state xt

evolve following (1) and the next L coordinates correspond to on-order units. To our knowledge
there exist online algorithms handling lead times (Zhang et al., 2020; Agrawal & Jia, 2022), but they
consider only non-perishable products.

Multi-product system. Assume now that there are K ∈ N product types indexed by k ∈ [K].
Each product is perishable with lifetime mk ∈ N and has a lead time Lk ∈ N0. We add an index
k to all quantities which are product-dependent. For example, we now have K transition func-
tions

(
ft,k(xt, ut)

)
k∈[K]

, K demands per time step (dt,k)k∈[K], and the state-control couples are
denoted by zt = (zt,k)k∈[K] where each zt,k = (xt,k,1, . . . , xt,k,nk

, ut,k). Multi-product systems

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

become interesting whenever losses or transitions cannot be separated per product. This happen in
the presence of joint constraints like the warehouse-capacity constraints introduced next.

Warehouse-capacity constraints. Until now, we have assumed that one can store an arbitrarily
large quantity of products in the inventory, but in real-world problems we may need to ensure that
the warehouse’s capacity is not overflown. For instance, Shi et al. (2016) consider this kind of con-
straints in an online control setting, but with no lead times nor perishability. Modeling warehouse-
capacity constraints can be nontrivial, in particular in presence of lead times, since the manager does
not know the future demands in advance. We propose a new model imposing restrictions at reception
time to prevent overflow, which we summarize next and whose details can be found in Appendix
A. Given a state-control vector zt, we check whether a warehouse-capacity constraint zt ∈ Vt is
satisfied or not. If the constraint is not satisfied, some operator must be applied to zt to discard
some units. We propose to remove products that just arrived in the ascending order (starting from
product k = 1, 2, . . . ,K), which yields a new state-control vector z̃t,k. This allows us to define new
transitions ft, by taking any of the previously seen transitions and evaluating it at z̃t instead of zt.

Losses. The goal in inventory control can be seen as minimizing a loss ℓt writing as a sum of
terms capturing different trade-offs such as over-ordering versus under-ordering, or meeting the
demand while maintaining low inventory management costs. For instance, the penalty cost is a term
proportional to unmet demand, which writes [dt,k −

∑mk

i=1 z̃t,k,i]
+. Similarly, the holding cost is a

term proportional to on-hand units just after meeting demand, [
∑mk

i=1 z̃t,k,i − dt,k]
+. These are the

most classical costs for losses in stochastic inventory problems, see, e.g., the newsvendor problem
in Arrow et al. (1951) or Snyder & Shen (2019, Subsection 3.1.3). We could also incorporate usual
terms such as the purchase cost (proportional to ordered units) or the outdating cost (is proportional
to outdating units). We also propose a new overflow cost, proportional to discarded units due to
overflow, which is specific to our model and pushes the manager to respect the warehouse-capacity
constraint. In what follows, we will assume that ℓt is the sum of these five costs (see Appendix A
for details).

Summary. Putting everything together, the following timeline summarizes our model in its most
general form. For each time period t = 1, 2, . . .

1. The manager observes the state xt ∈ X (which is zero if t = 1).
2. The manager orders the quantities ut ∈ U and pays purchase costs.
3. The manager receives the units (zt,k,mk

)k∈[K], some of which may be discarded due to the
warehouse-capacity constraint, incurring overflow costs and forming a new state-control
vector z̃t.

4. The demand dt is realized and met to the maximum extent possible using on-hand units
(
∑mk

i=1 z̃t,k,i)k∈[K] starting by oldest units (z̃t,k,1)k∈[K]. Penalty costs and holding costs
are paid.

5. The next inventory state xt+1 ∈ X is defined through the transition ft , where outdating
units leave the inventory incurring an outdating cost.

3 THE ALGORITHM: GAPSI

Let us now introduce our new algorithm for inventory problems named Gradient-based Adaptive
Policy Selection for Inventories (GAPSI). Its pseudo-code is provided in Algorithm 1. In essence,
GAPSI performs an online gradient descent to update the parameters of its replenishment policy.
More precisely, GAPSI follows a new feature-enhanced base-stock policy whose parameter is se-
quentially updated according to AdaGrad (Streeter & McMahan, 2010; Duchi et al., 2011), using
an approximated gradient computed as in GAPS (Lin et al., 2024) by combining carefully chosen
generalized Jacobian matrices. We detail further what each step does below.

3.1 DESIGNING A POLICY TAILORED TO INVENTORY PROBLEMS

The first action the decision-maker needs to perform is to pass an order based on the current state
xt, according to a certain policy πt, which usually depends on xt and some parameter. A standard

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1: GAPSI
1 Parameters: Learning rate factor η > 0, buffer size B ∈ N, initial parameter θ1 ∈ Θ.
2 Observe the initial state x1;
3 for t = 1, 2, . . . do
4 Order the quantities ut = πt(xt, θt) according to the policy πt (see Section 3.1) ;
5 Incur the loss ℓt(xt, ut) and observe the next state xt+1 = ft(xt, ut);
6 Compute the Jacobian matrices of πt, ℓt and ft (see Section 3.3);
7 Compute an approximated gradient gt as in GAPS (see Section 3.2);
8 Update the parameter θt+1 by using gt via AdaGrad (see Section 3.2);

policy for stochastic inventory problems is the base-stock policy (Snyder & Shen, 2019, Chapter
4). Such policy is parameterized by a time-varying base-stock level St ∈ RK

+ which the manager
tries to maintain: for each product, if the inventory position is less than the base-stock level then the
difference is ordered, otherwise no order is placed. This policy is appealing because it is optimal in
a certain sense for simple problems, see Snyder & Shen (2019, Section 4.5), Bu et al. (2023), and
Xie et al. (2024).

For GAPSI, we introduce a feature-enhanced variant of this policy. We assume that before each
order at time t, and for every product k ∈ [K], the manager has access to a vector of nonnegative
features wt,k ∈ Rpk

+ . These can typically gather information about the seasonality, holidays, price
discounts or demand forecasts. We then propose to follow a base-stock policy whose level St,k is,
for each product k, a linear combination of the features wt,k,i with some coefficients θt,k,i which
we need to learn. Our choice of policy can then be formally defined as:

πt(xt, θt) = (πt,k(xt,k, θt,k))k∈[K] where πt,k(xt,k, θt,k) =

[
w⊤

t,kθt,k −
mk+Lk−1∑

i=1

xt,k,i

]+
.

Note that if we take univariate constant feature vectors (such as wt,k ≡ 1) we recover standard base-
stock policies. We also point out that if the features are forecasts of the demand, our policy recovers
an heuristic proposed by Motamedi et al. (2024, Subsection 5.1) in the context of single-product
offline inventory problems. Finally, we highlight that πt is not differentiable, which happens to be a
problem when optimizing with respect to θ, which will be discussed in Section 3.3.

3.2 LEARNING THE PARAMETERS WITH GAPS AND ADAGRAD

The main goal of GAPSI is to learn the parameters θt ∈ Θ, which we assume to be constrained
in a box Θ =

∏P
i=1[ai, bi], P :=

∑
k pk. To do so, we use an online optimization scheme which

approximately minimizes a surrogate loss function Lt : Θ → R. Precisely, Lt(θ) is the loss which
we would have incurred at time t if we had followed the policy associated to θ for all periods so far,
that is, if we had applied the controls us = πs(xs, θ) for all s = 1, . . . , t.

Ideally, and this is a standard idea in online control, we would like to perform an online gradient
descent with respect to Lt, but the cost of computing ∇Lt(θt) is prohibitive when t grows. This
is why we turn to GAPS (Lin et al., 2024), a procedure returning an approximated gradient gt ∼
∇Lt(θt) at a reasonable cost, by making two approximations. First, instead of computing ∇Lt(θt)
along the ideal trajectory of parameters (θt, . . . , θt), it is computed along the current trajectory
(θ1, . . . , θt), allowing to use efficiently past computations. Second, the historical dependency is
truncated to the B most recent time steps. By doing so, all we need to do at each time step is to
compute the jacobians of the functions πt, ft, ℓt and to combine them with past jacobians to calculate
gt?. For more details on the implementation, we refer to Lin et al. (2024) and Appendix B.

Once we have computed the approximated gradient gt, GAPSI can update the parameter θt by
performing one step of AdaGrad (Streeter & McMahan, 2010; Duchi et al., 2011), where the learning
rates are set component-wise as in Orabona (2019, Algorithm 4.1) and can be further tuned with an
extra parameter η > 0:

θt+1 = ProjΘ (θt −Htgt) with Ht = diag(ηt,1, . . . , ηt,P) and ηt,i = η
bi − ai√∑t

s=1 g
2
s,i

. (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Our choice of this variant of AdaGrad is motivated by its adaptivity to the gradients, its coordinate-
wise learning process and its decreasing learning rates.

3.3 THE TROUBLESOME COMPUTATION OF JACOBIANS FOR NONSMOOTH FUNCTIONS

As described in Section 3.2, at each iteration we need to compute the jacobians1 of the functions
πt, ft, and ℓt. A striking feature of these functions is that none of them is differentiable, due to the
presence of positive parts in their definition (see Sections 2.2 and 3.1). In standard machine learn-
ing, non-differentiability may cause theoretical difficulties (Bolte & Pauwels, 2021), but in practice
it is usually not a problem: most neural network architectures include ReLU (the positive part func-
tion) but still perform perfectly well. This apparent contradiction can be ignored by observing that,
in general, points of non-differentiability are never reached during training (Bertoin et al., 2021,
Theorem 2).

However, this story appears to be surprisingly different for online inventory problems. First, different
choices of subgradients can lead to drastically different trajectories for GAPSI, and some of them
can lead to disastrous performance. Second, in some real-world scenarios most jacobians simply
cannot be accessed. Therefore, the main message of this section is that one cannot blindly rely
on automatic differentiation for such nonsmooth online problems. We explain below where those
problems come from, and how to avoid them.

Differentiating the policy πt. Imagine a scenario in which the demand for a product is zero on
a given interval of time, pushing the manager to reduce the corresponding stock to zero. Then
arises the question of what happens when the demand becomes positive again. One would expect
that the manager starts to order again the said product. But it appears that this depends heavily on
how the partial derivatives of πt are computed. To see this, look at Figure 1 where we simulate a
simple problem where the demand is 0 for 100 days, and then switches to 1 for the next 100 days.
When running GAPSI with standard autodifferentiation rules for derivating πt, one can see that after
the 100th day the base-stock level remains stationary: the manager keeps the inventory level to 0,
missing numerous sales. A simple analysis (see Appendix B.2 for the details) shows that because
autodiff computes the left-partial derivative of πt, as soon as θt = 0 the parameter will remain
this way even if the demand restarts. Therefore, we advocate for always taking the right-partial
derivatives of πt. Our custom differentiation rule can be seen in action in Figure 1. Whenever the
level reaches zero, our differentiation rule implies that a negative gradient is computed, therefore
increasing the level. This leads to oscillations which decay thanks to the Adagrad learning rate (2).
On the other hand, as soon as the level reaches zero, auto-differentiation leads to a zero gradient,
independently of the demand which leads to this undesirable stationary behavior. We highlight that
zero demand for a long time interval is not specific to the above toy problem, but can often be
observed in real-world problems (see Figure 4 for example).

Figure 1: Base-stock level w.r.t. time when using GAPSI, depending on the differentiation rule.

Differentiating the loss ℓt and transition ft. The loss ℓt depends on the parameters at hand,
structural parameters of the problem (such as unit costs or volume information), but also on the ex-
ogenous demand dt. It is a well-known issue in inventory problems that the demand dt is sometimes
unknown even at the end of time t, preventing the computation of the loss ℓt or its derivatives, called

1Because we consider nonsmooth functions, it would be more rigorous to talk about generalized jacobians
but for the sake of simplicity we will simply call them jacobians.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

the censored demand framework. However, in this framework it is usually accepted that the man-
ager has access to a partial information, which is the number of sales. Previous work such as Huh &
Rusmevichientong (2009) observed in such a framework that even if the subdifferential of ℓt cannot
be accessed, its left-partial derivatives can still be computed. This observation can be adapted to our
model, at least when there are no warehouse-capacity constraints. The situation is actually exactly
the same for the transition ft. We observe that its subdifferential cannot be accessed in general, but
that its left-partial derivatives can be computed, which to our knowledge has never been discussed
in prior works.

All derivations of these partial derivatives are given in Appendix B and implemented in the code.
As a side benefit, we get a faster algorithm with these custom derivatives than if we had used autod-
ifferentiation directly.

4 NUMERICAL EXPERIMENTS

In this section we evaluate empirically the performances of GAPSI. We refer to Appendix C for
additional details and results.

Datasets. In this section, we use two real-world datasets, the M5 dataset provided by the company
Walmart (Makridakis et al., 2022), and a proprietary dataset from the company Califrais, a food
supply chain start-up. Both datasets include multiple sales time series over horizons of T = 1969
and T = 860 days respectively. The time series are organized hierarchically: the total demand is
split into categories which are split into subcategories, which are finally split into products. These
datasets are therefore very rich depending on where we place ourselves in the hierarchy, the total
demand (root of the hierarchy) having much less variability than the demand of one specific product
(leaves of the hierarchy). We will use different levels in this hierarchy, treating the time series as
demand for a single product, even if it is actually aggregated over different products (of a category
or all of them in the case of the total demand).

Metrics. To compare algorithms, our metric throughout the section is the ratio of cumulative losses
between the considered algorithm and the best stationary base-stock policy S∗

T . This policy picks
the single best base-stock level independently of time, given the demand realizations over a horizon
T . It is therefore an oracle in the sense that it sees future demands and cannot be implemented in
practice, and makes an assumption of stationarity. This metric follows the standard approach in
online learning, which consists in comparing an algorithm to a constant strategy. A ratio below one
therefore means that the algorithm considered has a better performance than S∗

T , and is equivalent to
having a negative regret in online learning. In the appendix, we complete the results with two other
metrics adapted to inventory problems, the lost sales and outdating percentage.

4.1 CYCLIC DEMANDS

We start with an experiment to illustrate the behavior of GAPSI against cyclic demands. We consider
a single-product lost sales FIFO perishable inventory system without warehouse-capacity constraints
(K = 1, Vt = +∞). The demand of the product is given by the total demand of the M5 dataset
described above, with a lifetime of two (m = 2) and no lead times (L = 0). We consider time-
invariant unit costs.

To test the performance of GAPSI, we need to specify a choice of policy, that is, a choice of features.
To see how the performances of GAPSI can be improved using features, we enhance GAPSI with
15 features as follows:

wt = (DT , DT1{tmod7=0}, . . . , DT1{tmod7=6}, dt−7, . . . , dt−1) ∈ R15
+ , (3)

where DT is an a priori upper bound on the demand. The first component of wt is time-invariant and
plays the role of an intercept, the next 7 components can be interpreted as the one-hot encoding of the
day of the week, and the last 7 components consist of past demands. We compare the performance
of GAPSI with these features and GAPSI without any feature (in which case, only the intercept DT

is kept in (3)). We also include in the comparison the best cyclic base-stock policy (each day of the
week has its own base-stock level).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 2: Demand (black curve) and base-stock levels (col-
ored curves) of variants of GAPSI and baselines on a time
window of 100 steps. In the legend, the ratio of losses is
given between parenthesis for each algorithm.

Figure 3: Ratio of losses against level
of variability (increasing from left to
right) for 10 products selected from
the M5 dataset (selected as quantiles of
all products ranked by their normalized
standard deviation)

The results are given in Figure 2. GAPSI without features outperforms the best stationary base-stock
policy (it has a ratio of losses below 1). When considering the feature vector (3) we observe that
these performances are further improved. The best cyclic base-stock policy positions itself between
GAPSI without features and GAPSI with features. Figure 2 also shows the different behaviors:
compared to the stationary base-stock policy (blue curve) GAPSI without features (orange curve) is
able to adapt its level but have slow variations and cannot learn seasonal patterns unless features are
provided (red curve).

4.2 COMPARISON STUDY

We now conduct an extensive comparison of GAPSI on several demand dynamics and against several
competitors, in particular against MPC. MPC (Mattingley et al., 2011), also known as Receding
Horizon Control, is a classical approach in operational research that is based on solving at each time
period an optimization problem that aims at minimizing predicted future losses up to a receding
planning horizon. Formally, at each time period t, using past information, we build a predictive
model x̂τ+1|t = f̂τ |t(x̂τ |t, ûτ |t) for τ = t, . . . , t + H − 2 that is initialized with x̂t|t = xt and
minimize predicted losses

∑t+H−1
τ=t ℓ̂τ |t(x̂τ |t, ûτ |t) under this predictive model. This provides a

sequence of planned controls ût|t, . . . , ût+H−1|t, from which we execute the control ut = ût|t.

MPC therefore requires to have access to forecasted demands. To obtain a fair comparison, we thus
take as features for GAPSI the same forecasts instead of the feature vector (3). We take as forecasts
the demand of the previous week: d̂t = dt−7. To obtain an estimate of the stability of the different
algorithms with respect to noise in the forecasts, we perturb them with independent and identically
distributed Gaussian noise, which yields N = 10 different forecasts.

We use the same inventory system as in the previous section and consider four different demand
curves: three levels of the M5 dataset (Total, Category and Product), and the Total level of Califrais.
Then, we compare the following algorithms: the MPC approach with a planning horizon of H = 7

days and planned demands equal to the forecasted demands (d̂t, . . . , d̂t+6), the best stationary base-
stock policy S∗

T , the non-stationary base-stock policies with levels d̂t, GAPSI without features, and
GAPSI with features wt = (DT , d̂t).

The results are given in Table 1. They show that both the base-stock policy with levels d̂t and the
MPC approach have similar performances. Both are significantly worse than the baseline S∗

T and
have the highest variance. On the other hand, GAPSI is able to outperform all the other algorithms
while having a small variance. This experiment also shows that GAPSI can take advantage of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 1: Performances and robustness in terms of ratio of losses. Standard deviations are taken over
10 repetitions where we inject noise into the forecasts (GAPSI without forecasts therefore does not
have standard deviations)

M5 Califrais

Total Category Product Total

Base-stock levels d̂t 1.196 ± 0.008 1.219 ± 0.009 1.028 ± 0.011 1.579 ± 0.022
MPC 1.199 ± 0.008 1.219 ± 0.009 1.028 ± 0.011 1.579 ± 0.021
GAPSI without forecasts 0.952 0.944 0.735 0.902
GAPSI with forecasts 0.910 ± 0.002 0.904 ± 0.002 0.704 ± 0.005 0.912 ± 0.003

forecasts better than the other approaches tested which tend to “overfit” by ordering just enough
to meet the forecasted demand. Moreover, MPC is slower to run (around 100 times longer), while
base-stock level approaches have running times of the same order of magnitude as GAPSI. Complete
running times are given in Appendix C

Figure 4: Base-stock levels of GAPSI
and S∗

T against the demand of product
HOUSEHOLD 1 022 whose normalized stan-
dard deviation is high (1.64) and corresponds
to the ninth decile of all products. The last 969
time steps are shown.

Figure 5: Colored curves show the evolution
of demands (solid curves) and GAPSI’s base-
stock levels (colored dashed curves) for each one
of the 3 products (blue, yellow, green). Grey
curves show the sum of GAPSI’s base-stock lev-
els (dashed curve) and the warehouse volume V
(solid line).

4.3 IMPACT OF THE VARIANCE

The larger the variability in the demands, the more difficult inventory optimisation becomes. Here
we design an experiment to study the robustness of GAPSI to such variability. The parameters of
this experiment are similar to the previous ones, the only differences being the demands, selected as
follows. The 3049 products of the M5 dataset have been ranked in ascending order of variability.
The variability is measured by their standard deviation over the horizon, normalized so that the
magnitude of the demands does not affect this measure. We then select one product for each decile
of the ranked products. The formula and examples of demands corresponding to different levels of
variability can be found in Appendix C.

The results are given in Figures 3 and 4. In Figure 3, the ratio of losses is plotted against the level
of variability, increasing from left to right. We notice that in the first six examples, which have the
lowest normalized standard deviation, GAPSI incurs a cost that is close to the best stationary base-
stock policy S∗

T , with a ratio of losses ranging from 0.944 to 1.013. Then, in the last 4 examples,
which have a higher normalized variance, GAPSI drastically outperforms S∗

T with a competitive
ratio ranging from 0.384 to 0.493. This phenomenon is due to the nature of these last demands
which feature many consecutive periods of zero demand, a situation in which GAPSI can adjust
its base-stock level by temporarily reducing it, whereas the stationary policy S∗

T cannot. Figure

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

4 is an example of such demand, and we can see how GAPSI adapts to a period of zero demand
(between t = 1000 and t = 1200), and also how later, in a period of demand with a positive trend,
it slowly increases its base-stock level. This illustrates how GAPSI is particularly well-adapted to
non-stationary demands.

4.4 MULTIPLE PRODUCTS AND WAREHOUSE-CAPACITY CONSTRAINTS

We conclude with an experiment with multiple products and warehouse-capacity constraints. We
consider a multi-product inventory system with K = 3 products with demands taken from the M5
dataset at the category level. The parameters of the experiment are similar to the previous experiment
for each product, in particular we have mk = 3 and Lk = 0, and GAPSI is run without features. The
only difference is now the presence of a finite time-invariant warehouse volume Vt = V < +∞,
time-invariant unit volumes vt,k = 1 and time-invariant overflow costs.

The results are given in Figure 5 where we see that GAPSI successfully satisfies the volume con-
straints and even saturates it which is the desired behavior since it minimizes lost sales. Indeed, the
gray dashed curve is overall below the gray solid line, that is,

∑K
k=1 vt,kSt,k =

∑K
k=1 St,k ≲ V .

Notice that this is happening even though demand is overall increasing.

5 CONCLUSION

In this paper, we used techniques from online learning and insights from inventory control theory
to address realistic inventory problems. We showed that the recent framework of Online Policy
Selection (OPS) (Lin et al., 2024), at the crossroads of online learning and control, is well-adapted
to model complex inventory problems involving, for instance, multiple products, perishability, order
lead times and warehouse-capacity constraints. To address such problems, we designed GAPSI, a
new online algorithm, and showed its efficiency through extensive numerical simulations.

However, the question of theoretical guarantees remains open. The standard assumptions of OPS
are not satisfied for the inventory problems we consider. Indeed, policies, losses and transitions are
not differentiable so that both classical chain rules and smoothness do not hold. Furthermore, the
contraction property used in Lin et al. (2024) does not seem to hold. Proving regret bounds without
these assumptions is very challenging.

The work of Bolte & Pauwels (2021) could be a promising way of handling the non-differentiability
issue. They develop a flexible calculus theory for a new notion of generalized derivatives, allowing
to consider chain rules for functions that are not differentiable in the classical sense.

REFERENCES

Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control with
adversarial disturbances. In International Conference on Machine Learning, pp. 111–119. PMLR,
2019.

Shipra Agrawal and Randy Jia. Learning in structured mdps with convex cost functions: Improved
regret bounds for inventory management. Operations Research, 2022.

Kenneth J Arrow, Theodore Harris, and Jacob Marschak. Optimal inventory policy. Econometrica:
Journal of the Econometric Society, pp. 250–272, 1951.

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Numerical influence of
relu’(0) on backpropagation. Advances in Neural Information Processing Systems, 34:468–479,
2021.

Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming, 188:19–51, 2021.

Jinzhi Bu, Xiting Gong, and Xiuli Chao. Asymptotic optimality of base-stock policies for perishable
inventory systems. Management Science, 69(2):846–864, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Sichen Guo, Cong Shi, Chaolin Yang, and Christos Zacharias. An online mirror descent learning
algorithm for multiproduct inventory systems. Available at SSRN 4806687, 2024.

Massil Hihat, Stéphane Gaı̈ffas, Guillaume Garrigos, and Simon Bussy. Online inventory prob-
lems: beyond the iid setting with online convex optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Woonghee Tim Huh and Paat Rusmevichientong. A nonparametric asymptotic analysis of inventory
planning with censored demand. Mathematics of Operations Research, 34(1):103–123, 2009.

Tatsiana Levina, Yuri Levin, Jeff McGill, Mikhail Nediak, and Vladimir Vovk. Weak aggregating
algorithm for the distribution-free perishable inventory problem. Operations Research Letters, 38
(6):516–521, 2010.

Yiheng Lin, James A Preiss, Emile Anand, Yingying Li, Yisong Yue, and Adam Wierman. On-
line adaptive policy selection in time-varying systems: No-regret via contractive perturbations.
Advances in Neural Information Processing Systems, 36, 2024.

Gábor Lugosi, Mihalis G Markakis, and Gergely Neu. On the hardness of learning from censored
and nonstationary demand. INFORMS Journal on Optimization, 6(2):63–83, 2024.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m5 competition: Back-
ground, organization, and implementation. International Journal of Forecasting, 38(4):1325–
1336, 2022.

Jacob Mattingley, Yang Wang, and Stephen Boyd. Receding horizon control. IEEE Control Systems
Magazine, 31(3):52–65, 2011.

Maryam Motamedi, Douglas G Down, and Na Li. Optimal ordering policy for perishable products
by incorporating demand forecasts. Available at SSRN 4807963, 2024.

Steven Nahmias. Perishable inventory systems, volume 160. Springer Science & Business Media,
2011.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Raúl F Roldán, Rosa Basagoiti, and Leandro C Coelho. A survey on the inventory-routing problem
with stochastic lead times and demands. Journal of Applied Logic, 24:15–24, 2017.

Cong Shi, Weidong Chen, and Izak Duenyas. Nonparametric data-driven algorithms for multiprod-
uct inventory systems with censored demand. Operations Research, 64(2):362–370, 2016.

Lawrence V Snyder and Zuo-Jun Max Shen. Fundamentals of supply chain theory. John Wiley &
Sons, 2019.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Yaqi Xie, Will Ma, and Linwei Xin. Vc theory for inventory policies. arXiv preprint
arXiv:2404.11509, 2024.

Huanan Zhang, Xiuli Chao, and Cong Shi. Perishable inventory systems: Convexity results for
base-stock policies and learning algorithms under censored demand. Operations Research, 66(5):
1276–1286, 2018.

Huanan Zhang, Xiuli Chao, and Cong Shi. Closing the gap: A learning algorithm for lost-sales
inventory systems with lead times. Management Science, 66(5):1962–1980, 2020.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Supplementary Material for
“Online policy selection for inventory
problems”

Table of Contents
A Inventory problems 13

A.1 Complete expression of transition functions and losses 13
A.2 Equivalent expressions for discarding . 14

B GAPSI 16
B.1 The GAPS algorithm . 16
B.2 On the selection of derivatives . 18
B.3 Definitions and properties of one-sided derivatives 18
B.4 A chain rule for the positive part . 19
B.5 One-sided derivatives for our model . 20
B.6 Censored demand case . 23

C Numerical experiments 25
C.1 Additional results for Section 4.1 . 26
C.2 Additional results for Section 4.2 . 27
C.3 Additional result for Section 4.3 . 27
C.4 Classical perishable inventory systems . 27
C.5 Impact of the lifetime and the lead time . 29
C.6 Large scale experiments . 30

A INVENTORY PROBLEMS

A.1 COMPLETE EXPRESSION OF TRANSITION FUNCTIONS AND LOSSES

Order lead times. The transition function with order lead times writes

ft,i(xt, ut) =

zt,i+1 −

[
dt −

i∑
i′=1

zt,i′

]++

for i = 1, . . . ,m− 1,

ft,i(xt, ut) = zt,i+1 for i = m, . . . ,m+ L− 1.

Multi-product system with warehouse-capacity constraints. Let us provide two examples of
models handling warehouse-capacity constraints with multiple products. The first one is adapted to
a simplified setting without lead-times and with non-perishable products. The second one is the one
we consider. Assume there are K ∈ N product types indexed by k ∈ [K].

• Shi et al. (2016) consider a lost sales system with instantaneous replenishment (L = 0) and
non-perishable products, that is, every product follows the following transition :

ft(xt, ut) =
(
ft,k(xt, ut)

)
k∈[K]

=
(
[xt,k + ut,k − dt,k]

+)
k∈[K]

.

However, instead of allowing the manager to choose arbitrary order quantities ut ∈ RK
+ ,

they are restricted to choose ut ∈ RK
+ such that:

∑K
k=1(xt,k + ut,k) ≤ V , where V > 0

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

is the warehouse capacity. Notice that the constraint can be expressed as zt ∈ V, where
zt = (xt,k, ut,k)k∈[K] and,

V =
{
zt = (xt,k, ut,k)k∈[K]

∣∣ K∑
k=1

(xt,k + ut,k) ≤ V
}
.

• Consider the multi-product setting where each product k ∈ [K] is perishable with lifetime
mk ∈ N and have a lead time Lk ∈ N0. The warehouse-capacity constraint is satisfied if
and only if zt ∈ Vt, where

Vt =

{
zt
∣∣ K∑

k=1

mk∑
i=1

vt,kzt,k,i ≤ Vt

}
,

where for a time period t, vt,k is the unit volume of product k and Vt is the total volume
of the warehouse. If the constraint is not satisfied, we remove products that just arrived in
the ascending order (starting from product k = 1, 2, . . . ,K). Formally, this corresponds to
defining z̃t,k,mk

as follows:zt,k,mk
− 1

vt,k

[K∑
k′=1

mk′∑
i′=1

vt,k′zt,k′,i′ − Vt

]+
−

k−1∑
k′=1

vt,k′zt,k′,mk′

++

, (4)

and z̃t,k,i = zt,k,i for all i ∈ [mk + Lk] \ {mk}. The reader may find Equation (4) hard
to interpret, so we provide in Appendix A.2 an alternative expression which is more easily
interpretable.
Finally, to obtain the next state xt+1 we simply need to evaluate, for every product k, the
transition on the resulting vector z̃t,k rather than zt,k. That is,

ft,k,i(xt, ut) =


[
z̃t,k,i+1 −

[
dt,k −

∑i
i′=1 z̃t,k,i′

]+]+
for i = 1, . . . ,mk − 1,

z̃t,k,i+1 for i = mk, . . . ,mk + Lk − 1.

(5)

Notice that setting Vt = +∞ removes the warehouse-capacity constraints. Finally, we
assume that mk + Lk ≥ 2 for all products k ∈ [K], that is, we never have both mk = 1
and Lk = 0, allowing us to avoid dealing with the degenerate case where the dimension of
a product’s state is zero (nk = mk + Lk − 1 = 0).

Loss. The complete loss function writes as

ℓt(xt, ut) =

K∑
k=1

(
cpenat,k ·

[
dt,k −

mk∑
i=1

z̃t,k,i

]+
+ choldt,k ·

[mk∑
i=1

z̃t,k,i − dt,k

]+
+ cpurct,k · ut,k

+ coutdt,k · [z̃t,k,1 − dt,k]
+
+ covert,k · (zt,k,mk

− z̃t,k,mk
)

)
, (6)

where cpenat,k , choldt,k , cpurct,k , coutdt,k , covert,k ≥ 0 corresponds to unit costs for product k at time period t,
for each respective type of cost.

A.2 EQUIVALENT EXPRESSIONS FOR DISCARDING

In this appendix we give an alternative expression for z̃t, the state-control vector after discarding,
defined in Equation (4) and provide its interpretation afterwards.

Proposition A.1. Let ot denote the volume overflow defined as:

ot =

[
K∑

k′=1

mk′∑
i′=1

vt,k′zt,k′,i′ − Vt

]+
. (7)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Also, define recursively the volume to remove for k = 1, . . . ,K,

rt,k = min

{
vt,kzt,k,mk

,

[
ot −

k−1∑
k′=1

rt,k′

]+}
. (8)

Then, we have,
k∑

k′=1

rt,k′ = min

{ k∑
k′=1

vt,k′zt,k′,mk′ , ot

}
. (9)

Furthermore, z̃t,k,mk
defined in (4), can be rewritten as:

z̃t,k,mk
= zt,k,mk

− rt,k
vt,k

. (10)

Proof. We start by proving Equation (9) using an induction over k = 1, . . . ,K. First, for k = 1, we
have:

1∑
k′=1

rt,k′ = rt,1
(8)
= min {vt,1zt,1,m1 , ot} = min

{ 1∑
k′=1

vt,k′zt,k′,mk′ , ot

}
.

Now, assume Equation (9) holds for some k ∈ [K − 1]. Then,

k+1∑
k′=1

rt,k′

=

k∑
k′=1

rt,k′ +min

{
vt,k+1zt,k+1,mk+1

,

[
ot −

k∑
k′=1

rt,k′

]+}
(using Equation (8))

=

k∑
k′=1

rt,k′ +min

{
vt,k+1zt,k+1,mk+1

,

[
ot −min

{ k∑
k′=1

vt,k′zt,k′,mk′ , ot

}
︸ ︷︷ ︸

·≥0

]+}

(using Equation (9))

=

k∑
k′=1

rt,k′ +min

{
vt,k+1zt,k+1,mk+1

, ot −min

{
k∑

k′=1

vt,k′zt,k′,mk′ , ot

}}

=min

{ k∑
k′=1

rt,k′ + vt,k+1zt,k+1,mk+1
,

k∑
k′=1

rt,k′ + ot −min

{ k∑
k′=1

vt,k′zt,k′,mk′ , ot

}}

=min

{
min

{ k∑
k′=1

vt,k′zt,k′,mk′ , ot

}
+ vt,k+1zt,k+1,mk+1

, ot

}
(using Equation (9))

=min

{ k+1∑
k′=1

vt,k′zt,k′,mk′ , ot + vt,k+1zt,k+1,mk+1
, ot

}

=min

{ k+1∑
k′=1

vt,k′zt,k′,mk′ , ot

}
,

where the last equality comes from the fact that vt,k+1zt,k+1,mk+1
≥ 0. This completes the proof of

Equation (9).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Now we move to the proof of Equation (10).

zt,k,mk
− rt,k

vt,k
= zt,k,mk

−min

{
zt,k,mk

,
1

vt,k

[
ot −

k−1∑
k′=1

rt,k′

]+}
(using Equation (8))

=

[
zt,k,mk

− 1

vt,k

[
ot −

k−1∑
k′=1

rt,k′

]+]+

=

[
zt,k,mk

− 1

vt,k

[
ot −min

{ k−1∑
k′=1

vt,k′zt,k′,mk′ , ot

}]+]+
(using Equation (9))

=

[
zt,k,mk

− 1

vt,k

[
ot −

k−1∑
k′=1

vt,k′zt,k′,mk′

]+]+
= (4),

where we used in the second and fourth equality that [a− b]
+
= a−min{a, b}, for any a, b ∈ R.

In light of Proposition A.1, it becomes easier to interpret the state-control vector after discarding
z̃t defined by Equation (4). Indeed, at the reception of the products, one first checks the volume
overflow ot defined by Equation (7). If ot = 0 there is no overflow and we have z̃t = zt, otherwise
we remove some products. In this case, we start discarding from the first product (k = 1). A volume
vt,1zt,1,m1 of product 1 just arrived to the warehouse and we remove a maximum of it to the extent
of the volume overflow ot, that is, we remove a volume rt,1 = min{vt,1zt,1,m1 , ot} as defined in
Equation (8). If rt,1 = ot then we do not discard products anymore, i.e. rt,k = 0 for k ∈ [K] \ {1}.
Otherwise, rt,1 = vt,1zt,1,m1 , and we move to the second product (k = 2) from which we want
to remove a volume of ot − rt,1 ≥ 0 out of the volume vt,2zt,2,m2

that just arrived, this defines
rt,2 according to Equation (8), and so on and so forth. Finally, from each product k we removed a
volume rt,k from the quantity zt,k,mk

and this completely defines z̃t,k,mk
through Equation (10).

B GAPSI

In this appendix we provide details on GAPSI. Section B.1 recalls how GAPS (Lin et al., 2024) and
its gradient approximation procedure works. Then, Section B.2 motivates theoretically the use of
custom derivative selections. Sections B.3 and B.4 state general definitions and properties related to
one-sided derivatives and functions that are composed of positive parts. Finally, Sections B.5 and
B.6 provide, in our new model, the formulas for the derivatives of the functions involved, in the
general case and censored demand case respectively.

B.1 THE GAPS ALGORITHM

Main ideas. The GAPS algorithm (Lin et al., 2024) solves OPS problems using an online gradient
descent approach with an approximated gradient. More precisely, define the surrogate functions
Lt : Θ→ R where Lt(θ) is the loss incurred at time period t if we had followed the policy associated
to θ for all periods, that is, if we applied the controls us = πs(xs, θ) for all s = 1, . . . , t. An
idealized gradient descent would be with respect to these losses (Lt)t≥1, taking the form:

θt+1 = ProjΘ(θt − ηt∇Lt(θt))

where Θ is the set of parameters, ProjΘ denotes the Euclidean projection operator on Θ and ηt are
learning rates.

However, the complexity of computing the gradients of Lt exactly grows proportionally to t, be-
coming intractable when the horizon is large. In GAPS, two approximations are made to compute
an approximated gradient:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

1. Instead of computing the gradient ∇Lt(θt) along the ideal trajectory θt, . . . , θt, it is com-
puted along the current trajectory θ1, . . . , θt.

2. The historical dependence is truncated to the B most recent time steps.

Implementation. In practice, the approximated gradient can be computed in an online fashion
using chain rules as detailed in Lin et al. (2024, Appendix B, Algorithm 2).

Since Lt(θt) = ℓt(xt(θt), ut(θt)) where xt(θ) and ut(θ) = πt(xt(θ), θ) denote the state and control
if we had applied the parameter θ from period 1 to t, then,

∂Lt(θt)

∂θt
=

(
∂ℓt(xt(θt), ut(θt))

∂xt
+

∂ℓt(xt(θt), ut(θt))

∂ut
· ∂πt(xt(θt), θt)

∂xt

)
· ∂xt(θt)

∂θt

+
∂ℓt(xt(θt), ut(θt))

∂ut
· ∂πt(xt(θt), θt)

∂θt
.

Applying the first approximation, that is, replacing xt(θt) and ut(θt) by xt and ut respectively, we
obtain a first expression for the approximated gradient:(

∂ℓt(xt, ut)

∂xt
+

∂ℓt(xt, ut)

∂ut
· ∂πt(xt, θt)

∂xt

)
· ∂xt(θt)

∂θt
+

∂ℓt(xt, ut)

∂ut
· ∂πt(xt, θt)

∂θt
.

Now, let us deal with ∂xt(θt)/∂θt. Since xt(θt) = ft−1(xt−1(θt), ut−1(θt)), we have that:

∂xt(θt)

∂θt
=

(
∂ft−1(xt−1(θt), ut−1(θt))

∂xt−1
+

∂ft−1(xt−1(θt), ut−1(θt))

∂ut−1
· ∂πt−1(xt−1(θt), θt)

∂xt−1

)
· ∂xt−1(θt)

∂θt−1

+
∂ft−1(xt−1(θt), ut−1(θt))

∂ut−1
· ∂πt−1(xt−1(θt), θt)

∂θt−1
.

Applying the first approximation, that is, replacing the points xt−1(θt), ut−1(θt) and θt by xt−1,
ut−1 and θt−1 respectively, we obtain the following approximating expression for ∂xt(θt)/∂θt,(

∂ft−1(xt−1, ut−1)

∂xt−1
+

∂ft−1(xt−1, ut−1)

∂ut−1
· ∂πt−1(xt−1, θt−1)

∂xt−1

)
· ∂xt−1(θt−1)

∂θt−1

+
∂ft−1(xt−1, ut−1

∂ut−1
· ∂πt−1(xt−1, θt−1)

∂θt−1
.

Together with the second approximation, this expression leads to a recursive way of approximating
∂xt(θt)/∂θt and thus ∇Lt(θt) which is detailed below in Algorithm 2 with our notations (see also
Lin et al. (2024, Appendix B, Algorithm 2)).

Algorithm 2: Gradient approximation procedure

1
∂xt

∂θt−1
← ∂ft−1

∂ut−1
· ∂πt−1

∂θt−1
;

2 for b = 2, . . . , B − 1 do
3

∂xt

∂θt−b
←
(

∂ft−1

∂xt−1
+ ∂ft−1

∂ut−1
· ∂πt−1

∂xt−1

)
· ∂xt−1

∂θt−b
;

4 return ∂ℓt
∂ut
· ∂πt

∂θt
+
(

∂ℓt
∂xt

+ ∂ℓt
∂ut
· ∂πt

∂xt

)
·
∑B−1

b=1
∂xt

∂θt−b
;

Theoretical guarantees. Under suitable assumptions Lin et al. (2024) are able to prove theoretical
guarantees for GAPS in the form of regret upper bounds.

Assuming, amongst other things, Lipschitz continuity, smoothness, a contractive perturbation prop-
erty, the convexity of Lt, a large enough horizon T and buffer length B and appropriately tuned
learning rates, Corollary 3.4 of Lin et al. (2024) gives in particular for any θ ∈ Θ,

T∑
t=1

ℓt(xt, ut)− Lt(θ) = O(
√
T),

where O(·) hides problem-dependent constants.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

B.2 ON THE SELECTION OF DERIVATIVES

In this appendix, we illustrate on a simple theoretical example a problematic behavior of GAPSI
when the derivatives or not carefully selected.

Proposition B.1. Consider any single-product inventory problem without dynamics and assume
GAPSI follows a base-stock policy. Assume further that it is implemented using auto-differentation
with ReLU ′(0) = 0 or using left derivatives for the policy. Then, if the base-stock level reaches
zero it remains so for all the subsequent periods.

Proof. Consider a single-product inventory problem with scalar states, controls and parameters
where there are no dynamics (ft ≡ 0) and arbitrary losses ℓt. Assume GAPSI follows the base-
stock policy: πt(xt, θt) = [θt − xt]

+ over Θ = [0, 1] and that we set ∂πt

∂θt
(xt, θt)← 1{θt>xt} which

holds if auto-differentiation is used with ReLU ′(0) = 0 or if left derivatives are used for the policy.

Since there are no dynamics, following line 4 of Algorithm 2 (or line 10 of Algorithm 2 in Appendix
B of (Lin et al., 2024)), we have:

gt =
∂ℓt
∂ut

(xt, ut) ·
∂πt

∂θt
(xt, θt) =

∂ℓt
∂ut

(xt, ut) · 1{θt>xt}

Therefore for any t ∈ N, θt = 0 implies gt = 0, which in turn implies θt+1 = ProjΘ(θt−Htgt) = 0
and so on and so forth.

The undesirable stationary behavior described in Proposition B.1 can also be observed in practice
(see Figure 1). One may wonder whether this is happening because of a wrong application of the
chain rule (which is applied here on functions that are not differentiable everywhere). In fact, this is
not the case, since according to the base-stock policy πt(xt, θt) = 0 for all θt ≤ xt, this behavior
still happens even if we computed the exact left derivative of ℓ̃t(θ) = ℓt(xt, πt(xt, θ)) and performed
an (exact) online subgradient descent with respect to these derivatives. Notice that even if ℓt(xt, ·)
is convex, ℓ̃t is not necessarily convex which explains the difficulties encountered by a subgradient
descent. Due to this undesirable behavior we advocate for the use of right derivatives instead of left
derivatives for the policies.

B.3 DEFINITIONS AND PROPERTIES OF ONE-SIDED DERIVATIVES

First, we start by some definitions regarding one-sided and standard derivatives.

Definition B.2. Let f : R→ R and x ∈ R. We denote by

∂+f(x) = lim
h→0+

f(x+ h)− f(x)

h

whenever it exists and say that f is right-differentiable at x in such a case. Similarly, we denote by

∂−f(x) = lim
h→0−

f(x+ h)− f(x)

h

whenever it exists and say that f is left-differentiable at x in such a case. Finally, we denote by

∂f(x) = lim
h→0

f(x+ h)− f(x)

h

whenever it exists and say that f is differentiable at x in such a case.

One-sided derivatives and classical derivatives are related by the following proposition.

Proposition B.3. Let f : R → R and x ∈ R. f is differentiable at x if and only if f is right-
differentiable at x and left-differentiable at x with ∂+f(x) = ∂−f(x). In such a case, we have
∂f(x) = ∂+f(x) = ∂−f(x).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

B.4 A CHAIN RULE FOR THE POSITIVE PART

The following proposition is concerned by the one-sided derivatives of a composition of functions
involving the positive part.

Proposition B.4. Let f : R → R be a function that is continuous at 0 and define for all h ∈ R,
g(h) = [f(h)]

+.

• If f(0) < 0, then, g is differentiable at 0 and ∂g(0) = 0.

• If f(0) = 0 and f is right-differentiable at 0, then, g is right-differentiable at 0 and
∂+g(0) = [∂+f(0)]

+.

• If f(0) = 0 and f is left-differentiable at 0, then, g is left-differentiable at 0 and ∂−g(0) =

− [−∂−f(0)]
+.

• If f(0) > 0 and f is right-differentiable at 0, then, g is right-differentiable at 0 and
∂+g(0) = ∂+f(0).

• If f(0) > 0 and f is left-differentiable at 0, then, g is left-differentiable at 0 and ∂−g(0) =
∂−f(0).

Proof.

• First, let us assume f(0) < 0, thus g(0) = 0. Since f is continuous at 0, there exists ε > 0,
such that f(h) < 0 for all h ∈ (−ε, ε). Therefore, g(h) = [f(h)]

+
= 0 for all h ∈ (−ε, ε).

In particular, ∂g(0) = limh→0(g(h)− g(0))/h exists and is equal to 0.

• Now, assume f(0) = 0, thus g(0) = 0. Then for all h > 0, we have g(h)/h =

[f(h)]
+
/h = [f(h)/h]

+ and since the positive part is a continuous function, we have
limh→0+ g(h)/h = [limh→0+ f(h)/h]

+ as soon as limh→0+ f(h)/h exists. Similarly, for
all h < 0 we have g(h)/h = [f(h)]

+
/h = − [−f(h)/h]+ and since the positive part and

h 7→ −h are continuous functions, we have limh→0− g(h)/h = − [− limh→0− f(h)/h]
+

as soon as limh→0− f(h)/h exists.

• Finally, assume f(0) > 0. Since f is continuous at 0, there exists ε > 0, such that f(h) > 0

for all h ∈ (−ε, ε). Therefore, g(h) = [f(h)]
+
= f(h) for all h ∈ (−ε, ε). In particular, if

limh→0+(f(h)−f(0))/h exists then limh→0+(g(h)−g(0))/h also exists and they are both
equal. The same claim holds for limh→0−(f(h)− f(0))/h and limh→0−(g(h)− g(0))/h.

The following corollary gives a convenient way to compute one-sided derivatives of compositions
involving the positive part.

Corollary B.5. Let x ∈ R and f : R → R a function that is right-differentiable at x and left-
differentiable at x. Then, the function g defined by g(h) = [f(h)]

+ for all h ∈ R, is continuous at
x, right-differentiable at x and left-differentiable at x, furthermore,

∂+g(x) =
(
∂+f(x)

) (
1{f(x)>0} + 1{∂+f(x)>0}1{f(x)=0}

)
,

∂−g(x) =
(
∂−f(x)

) (
1{f(x)>0} + 1{∂−f(x)<0}1{f(x)=0}

)
.

Proof. One can easily see that a function that is right-differentiable and left-differentiable at some
point is necessarily continuous at this point. The rest of this corollary follows immediately from
Proposition B.4.

The following example considers the case of an affine function composed by the positive part. It
will be used repeatedly in the following.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Example B.6. Let a, b ∈ R and define the function g as g(x) = [ax+ b]
+ for all x ∈ R. Then, g is

left-differentiable and right-differentiable for all x ∈ R and,

∂+g(x) = a(1{ax+b>0} + 1{a>0}1{ax+b=0}),

∂−g(x) = a(1{ax+b>0} + 1{a<0}1{ax+b=0}).

Proof. This follows from Corollary B.5 when applied to f(x) = ax+ b.

B.5 ONE-SIDED DERIVATIVES FOR OUR MODEL

Before providing the one-sided derivatives of each component of the model: the policy, the losses
and the transitions, we recall the notations used.

• Time is indexed by t ∈ N and product types are indexed by k ∈ [K].

• The states are denoted by xt = (xt,k,i)k∈[K],i∈[nk] ∈ Rn with n =
∑K

k=1 nk and nk =
mk + Lk − 1 where mk and Lk are respectively the lifetime and lead time of product k.
The controls are denoted by ut = (ut,k)k∈[K] ∈ RK . State-controls are denoted zt =

(xt,k,1 . . . , xt,k,nk
, ut,k)k∈[K] ∈ Rn+K .

• The parameters are denoted by θt = (θt,k,i)k∈[K],i∈[pk] ∈ RP and the features are denoted
by wt = (wt,k,i)k∈[K],i∈[pk] ∈ RP where P =

∑K
k=1 pk.

• All these quantities are related in our model through the transitions ft defined in Equation
(5) and the policy πt defined in Equation (3.1).

• Finally, the loss functions ℓt are defined in Equation (6).

B.5.1 POLICY

The following proposition give the formulas for the one-sided partial derivatives of the feature-
enhanced base-stock policy.
Proposition B.7. Consider the feature-enhanced base-stock policy defined in Equation (3.1) and
recalled here:

πt,k(xt, θt) =

[
w⊤

t,kθt,k −
nk∑
i=1

xt,k,i

]+
.

The right partial derivatives of the policy are given by:

∂+πt,k(xt, θt)

∂xt,k′,i′
= −1{k=k′}1{w⊤

t,kθt,k>
∑nk

i=1 xt,k,i},

∂+πt,k(xt, θt)

∂θt,k′,i′
= wt,k,i′1{k=k′}

(
1{w⊤

t,kθt,k>
∑nk

i=1 xt,k,i} + 1{wt,k,i′>0}1{w⊤
t,kθt,k=

∑nk
i=1 xt,k,i}

)
.

The left partial derivatives of the policy are given by:

∂−πt,k(xt, θt)

∂xt,k′,i′
= −1{k=k′}1{w⊤

t,kθt,k≥
∑nk

i=1 xt,k,i},

∂−πt,k(xt, θt)

∂θt,k′,i′
= wt,k,i′1{k=k′}

(
1{w⊤

t,kθt,k>
∑nk

i=1 xt,k,i} + 1{wt,k,i′<0}1{w⊤
t,kθt,k=

∑nk
i=1 xt,k,i}

)
.

Proof. For each t ∈ N, k, k′ ∈ [K], i ∈ [nk], i′ ∈ [nk′], consider the functions:

xt,k′,i′ 7→ w⊤
t,kθt,k −

nk∑
i=1

xt,k,i and θt,k′,i′ 7→ w⊤
t,kθt,k −

nk∑
i=1

xt,k,i.

These are univariate real-valued affine functions with respective derivatives:

−1{k=k′} and 1{k=k′}wt,k,i′ .

Applying Example B.6 for these two functions leads to the desired result.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

B.5.2 STATE-CONTROL AFTER DISCARDING

Before moving to the derivations of one-sided partial derivatives of the losses and transitions which
are more involved due to multiple compositions, we start by computing the derivatives of an auxiliary
function: the state-control couple after discarding z̃t defined in Equation (4), with respect to the
state-control couple zt.
Proposition B.8. Consider the vector the state-control couple after discarding z̃t ∈ Rn+K which
definition is provided in Equation (4) and recalled here.

Given the state-control couple zt ∈ Rn+K , we have z̃t,k,mk
equal to,zt,k,mk

− 1

vt,k

[K∑
k′′=1

mk′′∑
i′′=1

vt,k′′zt,k′′,i′′ − Vt

]+
−

k−1∑
k′′=1

vt,k′′zt,k′′,mk′′

++

,

and z̃t,k,i = zt,k,i for all i ∈ [nk + 1] \ {mk}.
If i ∈ [nk + 1] \ {mk}, we have:

∂z̃t,k,i
∂zt,k′,i′

= 1{k=k′}1{i=i′}.

Now assume i = mk, then, the one-sided partial derivatives are given by:

∂+z̃t,k,i
∂zt,k′,i′

= ∂+α · (1{α>0} + 1{∂+α>0}1{α=0}),

∂−z̃t,k,i
∂zt,k′,i′

= ∂−α · (1{α>0} + 1{∂−α>0}1{α=0}),

where:

α = zt,k,i −
1

vt,k
[β]

+
,

β =

[
K∑

k′′=1

mk′′∑
i′′=1

vt,k′′zt,k′′,i′′ − Vt

]+
−

k−1∑
k′′=1

vt,k′′zt,k′′,mk′′ ,

∂+α = 1{k=k′}1{i=i′} −
1

vt,k
∂+β ·

(
1{β>0} + 1{∂+β>0}1{β=0}

)
,

∂+β = vt,k′
(
1{i′∈[mk′]}1{

∑K
k′′=1

∑m
k′′

i′′=1
vt,k′′zt,k′′,i′′≥Vt} − 1{k′∈[k−1]}1{i′=mk′}

)
,

∂−α = 1{k=k′}1{i=i′} −
1

vt,k
∂−β ·

(
1{β>0} + 1{∂−β<0}1{β=0}

)
,

∂−β = vt,k′
(
1{i′∈[mk′]}1{

∑K
k′′=1

∑m
k′′

i′′=1
vt,k′′zt,k′′,i′′>Vt} − 1{k′∈[k−1]}1{i′=mk′}

)
.

Proof. The case i ∈ [nk + 1] \ {mk} is trivial. On the other hand, the formulas for the case i = mk

are obtained by applying repeatedly Corollary B.5. First, consider the univariate real-valued affine
function:

zt,k′,i′ 7→
K∑

k′′=1

mk′′∑
i′′=1

vt,k′′zt,k′′,i′′ − Vt.

and apply Corollary B.5 (or Example B.6). Then, we derive easily ∂+β and ∂−β. Applying Corol-
lary B.5 to β, leads us easily to ∂+α and ∂−α. A final application of Corollary B.5 to α allows us
to conclude.

B.5.3 LOSSES

In the following we give, in the general case, the one-sided partial derivatives of the loss functions
used of our model, defined in Equation (6).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Proposition B.9. Consider the loss functions of our model defined in Equation (6) . The one-sided
partial derivatives of the losses are given by the following, for each □ ∈ {−,+},

∂□ℓt(zt)

∂zt,k′,i′
=

K∑
k=1

(
cpurct,k 1{k=k′}1{i′=mk′+Lk′}

+ choldt,k ∂□γhold ·
(
1{

∑mk
i=1 z̃t,k,i>dt,k} + 1{□·∂□γhold>0}1{

∑mk
i=1 z̃t,k,i=dt,k}

)
− cpenat,k ∂□γhold ·

(
1{

∑mk
i=1 z̃t,k,i<dt,k} + 1{□·∂□γhold<0}1{

∑mk
i=1 z̃t,k,i=dt,k}

)
+ coutdt,k ∂□γoutd ·

(
1{z̃t,k,1>dt,k} + 1{□·∂□γoutd>0}1{z̃t,k,1=dt,k}

)
+ covert,k ·

(
1{k=k′}1{i′=mk′} −

∂□z̃t,k,mk

∂zt,k′,i′

))
,

where:

∂□γhold =
∂□z̃t,k,mk

∂zt,k′,i′
+ 1{k′=k}1{i′∈[mk′−1]},

∂□γoutd = 1{mk=1}
∂□z̃t,k,mk

∂zt,k′,i′
+ 1{mk ̸=1}1{k′=k}1{i′=mk′},

and ∂□z̃t,k,mk
/∂zt,k′,i′ is given by Proposition B.8.

Proof. This follows from Proposition B.8 and Corollary B.5.

B.5.4 TRANSITIONS

In the following we give, in the general case, the one-sided partial derivatives of the transition
functions of our model, defined in Equation (5).

Proposition B.10. Consider the transition functions of our model defined in Equation (5) and re-
called here:

ft,k,i(zt) =


[
z̃t,k,i+1 −

[
dt,k −

∑i
i′=1 z̃t,k,i′

]+]+
for i = 1, . . . ,mk − 1,

z̃t,k,i+1 for i = mk, . . . ,mk + Lk − 1.

where z̃t is the state-control couple after discarding defined in Equation (4).

If i ∈ [nk] \ {mk − 1}, then, the one-sided derivatives of the transition functions are given by:

∂+ft,k,i(zt)

zt,k′,i′
= 1{k=k′}

(
1{i∈[nk]\[mk−1]}1{i′=i+1} + 1{i∈[mk−1]}

(
1{i′=i+1}1{zt,k,i+1≥[dt,k−

∑i
i′′=1

zt,k,i′′]
+} + 1{i′∈[i]}1{zt,k,i+1≥dt,k−

∑i
i′′=1

zt,k,i′′>0}
))

,

∂−ft,k,i(zt)

zt,k′,i′
= 1{k=k′}

(
1{i∈[nk]\[mk−1]}1{i′=i+1} + 1{i∈[mk−1]}

(
1{i′=i+1}1{zt,k,i+1>[dt,k−

∑i
i′′=1

zt,k,i′′]
+} + 1{i′∈[i]}1{zt,k,i+1>dt,k−

∑i
i′′=1

zt,k,i′′≥0}
))

.

If i = mk − 1, then, the one-sided derivatives of the transition functions are given by:

∂+ft,k,i(zt)

zt,k′,i′
= ∂+δ ·

(
1{δ>0} + 1{∂+δ>0}1{δ=0}

)
∂−ft,k,i(zt)

zt,k′,i′
= ∂−δ ·

(
1{δ>0} + 1{∂−δ<0}1{δ=0}

)
,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

where,

δ = z̃t,k,mk
−

[
dt,k −

mk−1∑
i′′=1

zt,k,i′′

]+
,

∂+δ =
∂+z̃t,k,mk

∂zt,k′,i′
+ 1{k′=k}1{i′∈[mk′−1]}1{dt,k>

∑mk−1

i′′=1
zt,k,i′′}

,

∂−δ =
∂−z̃t,k,mk

∂zt,k′,i′
+ 1{k′=k}1{i′∈[mk′−1]}1{dt,k≥

∑mk−1

i′′=1
zt,k,i′′}

,

and ∂+z̃t,k,mk
/∂zt,k′,i′ and ∂−z̃t,k,mk

/∂zt,k′,i′ are given by Proposition B.8.

Proof. To prove this proposition, we start by recalling that z̃t,k,i = zt,k,i for all indexes i ̸= mk.
Thus, we can rewrite transitions replacing the coordinates of z̃t by those of zt at every spot except
in the case i = mk − 1 where z̃t,k,mk

appears through the term z̃t,k,i+1. Transitions are rewritten as
follows:

ft,k,i(zt) =



[
zt,k,i+1 −

[
dt,k −

∑i
i′=1 zt,k,i′

]+]+
for i = 1, . . . ,mk − 2,[

z̃t,k,mk
−
[
dt,k −

∑mk−1
i′=1 zt,k,i′

]+]+
for i = mk − 1,

zt,k,i+1 for i = mk, . . . ,mk + Lk − 1.

The case i ≥ mk is trivial, the case i ∈ [mk−2] can be dealt with two applications of Corollary B.5
and for the final case i = mk − 1 we start by differentiating δ using Proposition B.8 and Example
B.6. This leads us to the expressions of ∂+δ and ∂−δ and a final application of Corollary B.5 leads
to the desired result.

B.6 CENSORED DEMAND CASE

Here, we assume there are no warehouse-capacity constraints (Vt = +∞) and show that one
can compute all the partial derivatives required by GAPSI using censored demand information.
In this case, instead of observing the true demands dt, we only observe a sales vector st =
(st,k,i)k∈[K],i∈[mk], defined in our model by:

st,k,i = min

z̃t,k,i ,

dt,k − i−1∑
j=1

z̃t,k,j

+ , (11)

where z̃t is the state-control couple after discarding defined in Equation (4). The policy is completely
known when computing its derivatives thus we only consider losses and transitions, which depend
on the demand.

Notice that when letting Vt = +∞, there is no overflow, the state-control couple after discarding
defined in Equation (4) is given by z̃t,k,i = [zt,k,i]

+ for i = mk and z̃t,k,i = zt,k,i otherwise. Since
the model is such that state-control couples remain in Rn+K

+ , we can safely assume z̃t,k,i = zt,k,i
for all i ∈ [nk + 1] instead, which will make derivations simpler.

We start by stating a property regarding the sales vector and then proceed to the computation of the
left derivatives of losses and transitions in terms of the sales vector.

B.6.1 PROPERTIES OF THE SALES VECTOR

Proposition B.11. Consider the sales vector st defined in Equation (11). Then, we have for all
k ∈ [K], i ∈ [mk],

i∑
j=1

st,k,j = min


i∑

j=1

z̃t,k,j , dt,k

 , (12)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Proof. This property can be shown by a simple induction of i = 1, . . . ,mk.

For i = 1, we clearly have:
1∑

j=1

st,k,j = st,k,1
(11)
= min

{
z̃t,k,1 , [dt,k]

+
}

dt,k≥0
= min


1∑

j=1

z̃t,k,j , dt,k

 .

Assuming Equation (12) holds for some i ∈ [mk − 1], we have:

i+1∑
j=1

st,k,j
(12)
= st,k,i+1 +min


i∑

j=1

z̃t,k,j , dt,k


(11)
= min

z̃t,k,i+1 ,

dt,k − i∑
j=1

z̃t,k,j

++min


i∑

j=1

z̃t,k,j , dt,k

 .

Since the following relations hold:dt,k − i∑
j=1

z̃t,k,j

+

+min


i∑

j=1

z̃t,k,j , dt,k

 = dt,k,

z̃t,k,i+1 +min


i∑

j=1

z̃t,k,j , dt,k

 = min


i+1∑
j=1

z̃t,k,j , dt,k + zt,k,i+1

 ,

we can further simplify the expression of
∑i+1

j=1 st,k,j ,

i+1∑
j=1

st,k,j = min


i+1∑
j=1

z̃t,k,j , dt,k + zt,k,i+1 , dt,k

 zt,k,i+1≥0
= min


i+1∑
j=1

z̃t,k,j , dt,k

 .

This concludes the proof.

B.6.2 LOSSES

Proposition B.12. Consider our model without warehouse-capacity constraints (Vt = +∞). Then,
the loss function defined in Equation (6) can be rewritten as:

ℓt(zt) =

K∑
k=1

(
cpurct,k · zt,k,mk+Lk

+ choldt,k ·

[
mk∑
i=1

zt,k,i − dt,k

]+

+ cpenat,k ·

[
dt,k −

mk∑
i=1

zt,k,i

]+
+ coutdt,k · [zt,k,1 − dt,k]

+

)
.

The left partial derivatives of the losses can be written as follows:
∂−ℓt(zt)

∂zt,k′,i′
= cpurct,k′ 1{i′=mk′+Lk′} + choldt,k′ 1{i′∈[mk′]}1{

∑m
k′

i=1 zt,k′,i>
∑m

k′
i=1 st,k′,i}

− cpenat,k′ 1{i′∈[mk′]}1{
∑m

k′
i=1 zt,k′,i=

∑m
k′

i=1 st,k′,i}
+ coutdt,k′ 1{i′=1}1{zt,k′,1>st,k′,1}.

where st is the sales vector defined in Equation (11).

Proof. First, we need to compute the left partial derivatives of the loss functions in the case Vt =
+∞. To do so, we can either do it from scratch by applying Corollary B.5 (or Example B.6), or use
Proposition B.9 while replacing ∂−z̃t,k,mk

/∂zt,k′,i′ from Proposition B.8 by 1{k=k′}1{i′=mk′}.

Either way, we obtain the following left partial derivatives for the losses:
∂−ℓt(zt)

∂zt,k′,i′
= cpurct,k′ 1{i′=mk′+Lk′} + choldt,k′ 1{i′∈[mk′]}1{

∑m
k′

i=1 zt,k′,i>dt,k′}

− cpenat,k′ 1{i′∈[mk′]}1{dt,k′≥
∑m

k′
i=1 zt,k′,i}

+ coutdt,k′ 1{i′=1}1{zt,k′,1>dt,k′}.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Then, using the property (12) from Proposition B.11, we observe that:

i∑
j=1

zt,k,j > dt,k ⇐⇒
i∑

j=1

zt,k,j >

i∑
j=1

st,k,j

for all k ∈ [K], i ∈ [mk]. Considering this equivalence for i = mk and i = 1 leads to the desired
result.

B.6.3 TRANSITIONS

Proposition B.13. Consider our model without warehouse-capacity constraints (Vt = +∞). Then,
the transition functions defined in Equation (5) can be rewritten as:

ft,k,i(zt) =


[
zt,k,i+1 −

[
dt,k −

∑i
i′=1 zt,k,i′

]+]+
for i = 1, . . . ,mk − 1,

zt,k,i+1 for i = mk, . . . ,mk + Lk − 1.

The left partial derivatives of the losses can be written as follows:

∂−ft,k,i(zt)

zt,k′,i′
=
(
1{i∈[nk]\[mk−1]}1{i′=i+1} + 1{i∈[mk−1]}

(
1{i′=i+1}1{ft,k,i(zt)>0}

+ 1{i′∈[i]}1{
∑i+1

i′′=1
zt,k,j>

∑i+1

i′′=1
st,k,j}1{

∑i
i′′=1

zt,k,j=
∑i

i′′=1
st,k,j}

))
1{k=k′}.

where st is the sales vector defined in Equation (11).

Proof. As in the proof of Proposition B.12, we first need to compute the left partial derivatives of
the transition functions in the case Vt = +∞. To do so, we can either do it from scratch by applying
Corollary B.5 twice, or use Proposition B.10 while replacing ∂−z̃t,k,mk

/∂zt,k′,i′ from Proposition
B.8 by 1{k=k′}1{i′=mk′}.

Either way, we obtain the following left partial derivatives for the transitions:

∂−ft,k,i(zt)

zt,k′,i′
= 1{k=k′}

(
1{i∈[nk]\[mk−1]}1{i′=i+1} + 1{i∈[mk−1]}

(
1{i′=i+1}1{zt,k,i+1>[dt,k−

∑i
i′′=1

zt,k,i′′]
+} + 1{i′∈[i]}1{zt,k,i+1>dt,k−

∑i
i′′=1

zt,k,i′′≥0}
))

.

Then, we observe the following equivalences for all i ∈ [mk − 1],

zt,k,i+1 >

[
dt,k −

i∑
i′′=1

zt,k,i′′

]+
⇐⇒ ft,k,i(zt) > 0,

zt,k,i+1 > dt,k −
i∑

i′′=1

zt,k,i′′
(12)⇐⇒

i+1∑
i′′=1

zt,k,i′′ >

i+1∑
i′′=1

st,k,i′′ ,

dt,k −
i∑

i′′=1

zt,k,i′′ ≥ 0
(12)⇐⇒

i∑
i′′=1

zt,k,i′′ =

i∑
i′′=1

st,k,i′′ .

This concludes the proof.

C NUMERICAL EXPERIMENTS

In this section, we give additional details on the experiments of the main paper (in Subsections C.1,
C.2 and C.3). We also present three new experiments: a simulation with Poisson demands where we
use GAPSI in a setup where we know the optimal policy (Subsection C.4), a study on the impact of
lifetimes and lead times on the performance (Subsection C.5), and a large scale experiments where
we test GAPSI when there are hundreds of products in the inventory (Subsection C.6).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

We give the exact definitions of the metrics we computed to evaluate the performances of GAPSI:
the lost sales percentage, discussed in the main text, and two additional metrics classical in inventory
problems, that are, the outdating percentage and the ratio of losses. They are respectively defined
by:

100×
∑T

t=1

∑K
k=1 [dt,k −

∑m
i=1 zt,k,i]

+∑T
t=1

∑K
k=1 dt,k

,

100×
∑T

t=1

∑K
k=1 [xt,k,1 − dt,k]

+∑T
t=1

∑K
k=1 ut,k

,∑T
t=1 ℓt(xt, ut)∑T

t=1 ℓt(xt(S∗
T), ut(S∗

T))
,

where (xt(S
∗
T), ut(S

∗
T))t∈[T] is the trajectory associated to S∗

T .

For illustration purposes, Figure 6 shows the total sales of the M5 dataset, over the whole horizon
and on a specific window.

Figure 6: Total demand in the M5 dataset across all the T = 1969 time periods (top) and a zoom on
the last time periods (bottom).

C.1 ADDITIONAL RESULTS FOR SECTION 4.1

We give in Table 2 results on the three metrics corresponding to the experiment of Section 4.1. The
last column corresponds to the numbers indicated in the legend of Figure 2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 2: Metrics of several algorithms including GAPSI with features, correspondint to Figure 2

Lost sales Outdating Ratio of losses

GAPSI without features 1.02% 0.09% 0.952
Best cyclic base-stock policy 0.75% 0.08% 0.906
GAPSI with features 0.66% 0.05% 0.851

C.2 ADDITIONAL RESULTS FOR SECTION 4.2

We give in Table 3 the computation time corresponding to the experiment.

Table 3: Computation time in seconds.

M5 Califrais

Total Category Product Total

Base-stock levels d̂t 0.22 0.22 0.21 0.08
MPC 12.38 83.98 34.80 5.93
GAPSI without forecasts 0.67 0.67 0.68 0.26
GAPSI with forecasts 0.69 0.67 0.68 0.25

C.3 ADDITIONAL RESULT FOR SECTION 4.3

The normalized standard deviation is defined as:√√√√ 1

T

T∑
t=1

(
dt,k∑T

t′=1 dt′,k/T
− 1

)2

.

As an illustration, we show in Figure 7 four examples of demands, corresponding to different levels
of variability with respect to this metric. The top curve has lowest normalized standard deviation,
while the bottom one has the largest. We can see that for large standard deviation, there are changes
of regimes in the demand, with some long periods of zero.

C.4 CLASSICAL PERISHABLE INVENTORY SYSTEMS

In this series of simulations, we evaluate GAPSI as an algorithm for learning stationary base-stock
policies in the context of classical perishable inventory systems. More precisely, we consider the
experimental setup of Bu et al. (2023, Subsection 7.1). In this setup, there is a single product K = 1,
which is perishable with a lifetime of m = 3 periods and has no order lead time, L = 0, and no
warehouse-capacity constraint Vt = +∞. Its demand is drawn independently across time periods
from a Poisson distribution with mean 5. The losses include purchase costs, holding costs, penalty
costs and outdating costs with time-invariant unit costs.

According to the simulations of Bu et al. (2023), in this setup, the best stationary base-stock policy
computed with distributional knowledge performs very well with a relative optimality gap of at most
0.48%, where the optimal baseline taken into consideration is the following:

OPT = inf
π∈Π

lim sup
T→+∞

1

T

T∑
t=1

E [ℓt(xt(π), ut(π))] ,

with Π = {(πt)t∈N | πt : X→ U measurable}, that is, Π is the set of time-varying policies mapping
a state xt to an order quantity ut = πt(xt) through a measurable map πt.

The results of the simulations are given in Table 4. Each line of this table corresponds to a set
of time-invariant unit costs: (cpurc, cpena, coutd), and the unit holding cost is fixed to chold = 1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 7: Demands (black), GAPSI’s learned base-stock St (blue) and best stationary base-stock
policy S∗

T (red) in problems with demands’ normalized standard deviation of 0.21, 0.96, 1.12 and
3.38 (top to bottom).

Instead of considering the online performances of GAPSI, we measure the performances of base-
stock policies with base-stock level learned by GAPSI using the technique of averaging. This is
a standard approach when converting an online algorithm to a stochastic optimization algorithm,
see online-to-batch conversion (Orabona, 2019, Chapter 3). More specifically, after running GAPSI
with Θ = [0, 20], wt = 1, η = 0.1 and B = 10 against a (training) demand sequence of length

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

10000, we compute, for each T ∈ {100, 1000, 5000, 10000}, the average base-stock level learned
S̄T =

∑T
t=1 St/T and evaluate the expected long-term average loss of the stationary base-stock

policy associated to S̄T using 100 (test) demand sequences of length 10000.

Table 4: Expected average test loss of GAPSI’s learned stationary base-stock policies at different
points of the learning process and different unit costs.

T = 100 T = 1000 T = 5000 T = 10000 OPT

(0, 8, 3) 4.32± 0.15 4.22± 0.05 4.20± 0.04 4.19± 0.05 4.16
(0, 8, 6) 4.41± 0.16 4.27± 0.05 4.27± 0.05 4.26± 0.04 4.23
(0, 8, 8) 4.45± 0.19 4.31± 0.05 4.31± 0.05 4.31± 0.04 4.28
(0, 20, 8) 6.01± 0.43 5.58± 0.08 5.58± 0.08 5.57± 0.08 5.50
(0, 40, 8) 8.12± 1.03 6.61± 0.11 6.62± 0.11 6.62± 0.12 6.56
(5, 8, 3) 28.16± 0.18 28.03± 0.13 28.03± 0.12 27.99± 0.13 28.01
(5, 8, 6) 28.18± 0.19 28.05± 0.12 28.04± 0.12 28.02± 0.13 28.02
(5, 8, 8) 28.16± 0.16 28.04± 0.12 28.02± 0.15 28.04± 0.12 28.03
(5, 20, 8) 30.79± 0.42 30.30± 0.15 30.30± 0.14 30.30± 0.15 30.26
(5, 40, 8) 33.12± 0.93 31.65± 0.16 31.64± 0.17 31.63± 0.18 31.57

Using Table 4 we can compute the relative optimality gap which is at most 1.25% for T = 10000.
This indicates that GAPSI can be used to learn almost optimal base-stock policies in classical per-
ishable inventory systems.

C.5 IMPACT OF THE LIFETIME AND THE LEAD TIME

In this experiment, we study the impact of the lead time and the lifetime on GAPSI’s performances in
a single-product lost sales FIFO perishable inventory system without warehouse-capacity constraints
(K = 1, Vt = +∞). The demand of the product is given by the total demand of the M5 dataset. We
consider time-invariant unit costs: cpurc = 1, choldt = 1, coutdt = 1 and cpenat = 10.

For each value of lifetime m and lead time L, we ran both the best stationary base-stock policy
S∗
T in hindsight of the demand realizations and GAPSI with a single and constant feature: wt =

(L+1)maxs∈[T] ds, learning rate scale parameter η = 0.1, buffer size B = 50 over Θ = [0, 1]. We
chose this constant feature, instead of wt = 1 for instance, so that the parameters can lie in [0, 1]
and can be interpreted as a ratio of the maximum demand.

Table 5: Lost sales percentage

L = 0 L = 1 L = 7 L = 14

m = 2 1.02% 2.45% 4.02% 5.10%
m = 7 1.02% 2.42% 4.94% 7.28%
m = 30 1.02% 2.42% 4.94% 7.20%

Table 6: Outdating percentage

L = 0 L = 1 L = 7 L = 14

m = 2 0.09% 0.26% 1.27% 4.46%
m = 7 0% 0% 0% 0.92%
m = 30 0% 0% 0% 0%

The results are given in Tables 5, 6 and 7. We observe that in all scenarios, GAPSI outperforms the
best stationary base-stock policy, meaning that GAPSI can achieve negative regret. Furthermore,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Table 7: Ratio of losses

L = 0 L = 1 L = 7 L = 14

m = 2 0.952 0.943 0.853 0.793
m = 7 0.954 0.951 0.825 0.958
m = 30 0.954 0.951 0.826 0.904

even in the most difficult settings with high lead time and low lifetime (upper right corner of the ta-
bles), GAPSI managed to keep the lost sales moderate: at most 7.28%, and the outdating percentage
small: at most 4.46%.

C.6 LARGE SCALE EXPERIMENTS

Here, we run large scale experiments on the whole M5 dataset at the product level (K = 3049)
and the proprietary Califrais dataset (K = 299) which features perishable products. In the M5
dataset, lifetimes, lead times and costs has been set as usual to mk = 3, Lk = 0, cpurct,k = 1,
choldt,k = 1, coutdt,k = 1 and cpenat,k = 10. On the other hand, Califrais dataset already include lifetimes
mk ∈ {3, 4, 5, 6, 7, 10, 30}, lead times Lk ∈ {1, 2, 3, 4}, time-varying unit purchase costs and time-
varying unit selling prices. Purchase costs cpurct,k , holding costs choldt,k and outdating cost coutdt,k has
been set to these purchase costs provided and the penalty cost has been set to 10 times the selling
prices provided. Let us mention that the Califrais dataset features more erratic demands compared
to the M5 dataset and only T = 860 days of data. Indeed, the normalized standard deviation in the
Calfrais dataset lie between 0.82 and 29.33 compared to 0.21 and 3.38 in the M5 dataset. Figure 8
shows two demand sequences from the Califrais dataset. Half of the demand sequences have higher
normalized standard deviation than those depicted in this figure.

Figure 8: Two demand sequences from the Califrais dataset with respectively lowest normalized std.
0.83 (top) and median normalized std. 6.98 (bottom).

For both datasets, we did not consider volume constraints (Vt = +∞) and GAPSI is run with time-
invariant features wt,k = (Lk+1)maxs∈[T] ds,k and parameters η = 0.1, B = 10 over Θ = [0, 1]K .

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Table 8: Large scale experiments

Lost sales Outdating

M5 (K = 3049) 4.86% 4.74%
Califrais (K = 299) 18.05% 6.07%

The results are given in Table 8. Overall, the performances are better on the M5 dataset compared to
the Califrais dataset even though the former contains more than 10 times the number of products of
the latter. This is due to several factors. In Califrais’ dataset, the time horizon is shorter (T = 860),
the replenishment is not instantaneous and the demand is more erratic. As we have seen in Sections
4.3 and C.5, important lead times and variance impact negatively the performances of GAPSI. This
experiment shows that the number of products is less an issue compared to the properties of these
products (lifetimes, lead times, demands’ variance...). We think that employing coordinate-wise
learning processes through AdaGrad for hyper-rectangles learning rates is helping dealing with such
high-dimensional problems.

31

	Introduction
	Problem statement
	Online policy selection
	Inventory problems

	The algorithm: GAPSI
	Designing a policy tailored to inventory problems
	Learning the parameters with GAPS and AdaGrad
	The troublesome computation of jacobians for nonsmooth functions

	Numerical experiments
	Cyclic demands
	Comparison study
	Impact of the variance
	Multiple products and warehouse-capacity constraints

	Conclusion
	
	 Supplementary Material for ``Online policy selection for inventory problems''
	Inventory problems
	Complete expression of transition functions and losses
	Equivalent expressions for discarding

	GAPSI
	The GAPS algorithm
	On the selection of derivatives
	Definitions and properties of one-sided derivatives
	A chain rule for the positive part
	One-sided derivatives for our model
	Policy
	State-control after discarding
	Losses
	Transitions

	Censored demand case
	Properties of the sales vector
	Losses
	Transitions

	Numerical experiments
	Additional results for Section 4.1
	Additional results for Section 4.2
	Additional result for Section 4.3
	Classical perishable inventory systems
	Impact of the lifetime and the lead time
	Large scale experiments

