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ABSTRACT

Generating dynamic and interactive 3D objects, such as trees, has wide appli-
cations in virtual reality, games, and world simulation. Nevertheless, existing
methods still face various challenges in generating realistic 4D motion for com-
plex real trees. In this paper, we propose DynamicTree, the first framework that
can generate long-term, interactive animation of 3D Gaussian Splatting trees. Un-
like prior optimization-based methods, our approach generates dynamics in a fast
feed-forward manner. The key success of our approach is the use of a com-
pact sparse voxel spectrum to represent the tree movement. Given a 3D tree
from Gaussian Splatting reconstruction, our pipeline first generates mesh mo-
tion using the sparse voxel spectrum and then binds Gaussians to deform the
mesh. Additionally, the proposed sparse voxel spectrum can also serve as a ba-
sis for fast modal analysis under external forces, allowing real-time interactive
responses. To train our model, we also introduce 4DTree, the first large-scale
synthetic 4D tree dataset containing 8,786 animated tree meshes with semantic
labels and 100-frame motion sequences. Extensive experiments demonstrate that
our method achieves realistic and responsive tree animations, significantly outper-
forming existing approaches in both visual quality and computational efficiency.
https://anonymous.4open.science/w/dynamictree-anonymous/

1 INTRODUCTION

With recent advances of neural radiance fields (NeRF) Mildenhall et al. (2021) and 3D Gaussian
Splatting (3DGS) Kerbl et al. (2023), high-quality reconstruction and real-time rendering become
feasible. Driven by these, there is high demand to make static reconstructions interactable, for
immersive experiences like 3D games, movies, and virtual reality Jiang et al. (2024); Franke et al.
(2025); Schieber et al. (2025). As a vital component of natural landscapes, tree animation can signif-
icantly enrich immersive digital experiences. For example, when viewing a reconstructed backyard
on a VR headset, if trees can sway gently in the wind or respond to dragging interaction, it would
significantly enhance immersion.

However, animating a realistic 3D tree remains challenging. Traditional tree animation meth-
ods Quigley et al. (2017); Pirk et al. (2017; 2014) typically construct physical tree models and
then perform dynamic simulations. Although such approaches can generate realistic motion dynam-
ics, they are either confined to synthetic tree models or require labor-intensive mesh refinements for
high-quality rendering. Consequently, they are ill-suited for animating reconstructed 3DGS repre-
sentations to faithfully reproduce real-world experiences.

To animate 3DGS trees, existing methods can be broadly categorized into 4D generation and
physics-based simulation. 4D generation approaches first create a static 3DGS model from text
or images Bahmani et al. (2024); Singer et al. (2023); Ling et al. (2024); Zheng et al. (2024); Xu
et al. (2024); Miao et al. (2024); Yin et al. (2023), then use video diffusion models (VDMs) to op-
timize the 4D representation. These methods, however, involve costly per-scene optimization and
often yield short sequences with poor geometric consistency. In contrast, physics-based approaches,
such as PhysGaussian Xie et al. (2024), couple 3DGS with physical simulation engines like Mate-
rial Point Method (MPM) Jiang et al. (2015), achieving better 3D consistency and longer motion
sequences. Nonetheless, they rely on simplified assumptions (e.g., uniform material), which reduce
realism and are computationally expensive, making them unsuitable for real-time applications.
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Figure 1: DynamicTree achieves long-term, realistic animation and dynamic interaction with real
reconstructed 3DGS trees, which first generates mesh motion via a compact sparse voxel spectrum
representation and then deforms the surface-bound Gaussian primitives. We visualize the slice of
the generated motion at the orange scanline along the time dimension.

In this work, we introduce DynamicTree, a novel 4D generative framework for animating 3DGS
trees with real-time interactions. Unlike VDM-based 4D generation methods, DynamicTree directly
learns tree motion priors in 3D space, avoiding geometric inconsistency. Moreover, compared to
computationally expensive physics-based optimization, our generative model directly synthesizes
3D tree motion in a feed-forward manner, achieving more than a hundred times acceleration. To train
the model, we construct the first large-scale 4D tree motion dataset with 8, 786 animated meshes,
semantic labels, and 100-frame sequences, generated via hierarchical branching simulation Weber
& Penn (1995).

Still, even with this dataset, direct motion prediction in 3D space is challenging, as it requires both
an efficient and robust representation of 3D motion. Since a reconstructed 3DGS tree typically
contains hundreds of thousands of Gaussians, naive long-term motion prediction is prohibitively
expensive in memory and training data. Thus, an effective animation strategy is needed to reduce
computational and data costs. Furthermore, since the training data are synthetic while testing targets
real reconstructed trees, a robust 3D representation is essential to bridge the synthetic-to-real gap.

Our framework addresses these challenges with a two-stage pipeline. We first generate mesh motion
and then bind Gaussians to the deforming mesh, allowing full 3DGS deformation while only mod-
eling mesh dynamics Waczyńska et al. (2024); Gao et al. (2024). To further improve efficiency and
generalization, we introduce a sparse voxel-based motion representation that both reduces the com-
plexity of dense vertex deformations and mitigates the synthetic-to-real gap by converting irregular
mesh sampling into a unified voxel structure. Moreover, inspired by previous work Li et al. (2024),
we further model the motion of each voxel as a spectrum, which can model a long-term mesh motion
using a few frequency components, further reducing the complexity for long-term motion genera-
tion. At last, we can treat the predicted 3D spectrum as 3D modal bases Li et al. (2024) for modal
analysis and approximate 3D interaction by a summation of base motions. By doing so, it reduces
the interaction simulation to about 18ms, making it significantly faster than MPM-based simulation
and enabling real-time interaction.

We evaluate our method through comparative experiments on various real-world scenes, showing
that our approach produces more natural animations of trees swaying in the wind and dynamically
interacting. We summarize our contributions as follows:

• We introduce DynamicTree, a novel framework for long-term motion generation of real-
world trees, enabling realistic swaying animations.

• We propose a novel sparse voxel spectrum motion representation for efficient and long-
term 4D generation. With the generated 3D spectrums, we can further perform fast simu-
lation of interactive dynamics under external forces.

• To facilitate the generation of complex 3D tree motion, we contribute 4DTree, a large-
scale synthetic 4D tree dataset containing 8,786 animated tree meshes, each with 100-frame
motion sequences.
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2 RELATED WORK

2.1 TREE ANIMATION

Traditional methods for realistic tree animation typically involve creating a physical tree model and
simulating its dynamics. For instance, Quigley et al. (2017) represents trees as collections of ar-
ticulated rigid bodies connected by rotational springs, allowing for flexible yet physically plausible
deformations. In contrast, Akagi (2012) introduces a particle-based approach where a link structure
between particles replaces the traditional 3D tree model, enabling efficient computation of inter-
action forces and dynamic responses. Windy-Tree Pirk et al. (2014) incorporates a growth model
along with Navier–Stokes equations and the Smoothed Particle Hydrodynamics method. Further-
more, Zhao & Barbič (2013) introduces a semi-automatic pipeline for interactive wind and drag
simulations, which, however, requires heavy manual effort to make scanned trees simulation-ready
and extensive artistic refinement of materials and lighting during rendering. In summary, although
these prior methods can generate realistic dynamics, they remain limited to synthetic physical tree
models or suffer from suboptimal rendering, leading to a noticeable gap in visual realism compared
with 3DGS-based tree animations.

2.2 4D GENERATION

Recently, 4D content generation has gained growing attention in generative AI. These methods
typically construct a static 3D model and then optimize its motion over time. Methods such as
MAV3D Singer et al. (2023), Dream-in-4D Zheng et al. (2024), and CT4D Wu et al. (2024) use SDS
to generate 3D models from text input, followed by video SDS to animate them. Comp4D leverages
large language models (LLMs) Achiam et al. (2023) for motion generation, while 4Dynamic Yuan
et al. (2024) bypasses optimization by using generated videos directly. Beyond text-conditioned,
Animate124 Zhao et al. (2023) and DreamGaussian4D Ren et al. (2023) combine image-to-3D and
video diffusion priors to optimize 4D models. EG4D Sun et al. (2024) and 4DGen Yin et al. (2023)
first generate a dynamic video from the input image, and then use multi-view diffusion models Voleti
et al. (2024); Liu et al. (2023) to generate multi-view sequences for optimizing the 4D representation.
Despite recent progress, these methods rely on 2D motion priors from VDMs due to the lack of real
3D motion data. These limitations often result in inferior temporal and spatial coherence, causing
noticeable artifacts in the optimized 3DGS results. Moreover, these approaches depend on scene-
specific optimization, entailing substantial computational overhead.

2.3 PHYSICS-BASED 3DGS SIMULATION

Physics-based dynamic generation methods use the differentiable MPM simulation framework to
optimize the dynamics of 3DGS. The pioneering work PhysGaussian Xie et al. (2024) employs a
customized MPM formulation that bridges Newtonian dynamics and 3D Gaussian kernels, enabling
the simulation of various material behaviors. To reduce manual parameter tuning, recent works com-
bine MPM with VDMs or LLMs to estimate physical properties. For instance, PhysDreamer Zhang
et al. (2024) and Dreamphysics Huang et al. (2024) integrate motion priors from VDMs with MPM,
enabling the learning of dynamic properties such as Young’s modulus and Poisson’s ratio. Phys-
Flow Comas et al. (2024) initializes parameters via GPT-4 Achiam et al. (2023) and further opti-
mizes them using optical flow guidance. However, as precisely setting individual parameters for
each part is challenging, these methods often assume uniform material properties across the entire
object to simplify optimization. This facilitates global motion coherence but suppresses local defor-
mation details and reduces visual realism in tree animation. Additionally, the high computational
cost of MPM-based simulation limits its use in real-time applications.

2.4 SPECTRUM-BASED MOTION REPRESENTATION

Quasi-periodic motions of plants and trees are well-suited for spectrum-based modeling. Prior work
shows they can be modeled as a superposition of a few harmonic oscillators at different frequen-
cies Chuang et al. (2005); Davis (2016); Diener et al. (2009). Generative-Dynamics Li et al. (2024)
leverages this property by reconstructing long videos from a few generated frequency components.
Moreover, Abe et al. Davis et al. (2015) demonstrate that spectral volumes can serve as image-
space modal bases for plausible interactive simulation via modal analysis. Building on this idea,
Generative-Dynamics and ModalNeRF Petitjean et al. (2023) apply similar principles to image-
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Figure 2: Our framework animates 3DGS trees in two stages: (1) spectrum-based motion generation
in the frequency domain, and (2) deformation transfer to 3DGS through mesh binding. In the first
stage, we extract the tree mesh from multi-view images, voxelize it, and encode it into a sparse voxel
latent condition. A sparse voxel diffusion model then generates a compact motion representation S,
which is used to reconstruct mesh motion via devoxelization and inverse Fast Fourier Transform. In
the second stage, 3DGS primitives are bound to the mesh surface and animated by its deformations.
space and implicit NeRF representation, achieving interactive dynamic simulations. Inspired by
these works, we propose a sparse voxel spectrum representation that enables efficient long-term
motion generation and interactive simulation for 3D trees.

3 METHODOLOGY

3.1 TASK FORMULATION

Given multi-view images of a static tree, our goal is to generate a 4D model as a deformed 3DGS
sequence G = {Gt |Gt = {xt

i, r
t
i , s

t
i, σ

t
i , c

t
i}Hi=1}Tt=0, where xt

i, r
t
i , s

t
i, σ

t
i and cti denote the position,

rotation, scale, opacity, and color of the i-th Gaussian primitive at frame t, respectively. This re-
quires predicting temporal deformations of the static 3DGS: Dg = {Dt

g|Dt
g = (∆xt

i ∈ R3,∆rti ∈
R4,∆sti ∈ R3)}H,T

i=1,t=1. Previous methods Yin et al. (2023); Comas et al. (2024) typically rely
on optimization-based strategies to solve this problem, which are computationally expensive. We
instead formulate this task as a conditional generation problem. To handle large-scale primitives
efficiently, we propose a two-stage pipeline, named DynamicTree, as shown in Fig. 2. First, we
introduce the sparse voxel spectrum (§3.2) representation to efficiently represent the motion. Then,
we extract voxel grid conditions (§3.3) and employ a sparse voxel diffusion module (§3.4) to gen-
erate mesh motion. Subsequently, a two-stage optimization strategy is proposed in §3.5 to refine
performance. Finally, we bind 3DGS on the animated mesh surface (§3.6) to compute Dg .

3.2 SPARSE VOXEL SPECTRUM

The motion of a mesh sequence can be represented as Dm = {Dt
m ∈ R3×N |t = 1, ..., T}, where

Dt
m(i) denotes the displacement vector of the i-th vertex relative to its initial frame position at time

t. Although simpler than predicting the 3DGS deformation Dg = {Dt
g ∈ R10×H |t = 1, ..., T},

where Dt
g is the deformation of center, scale, and quaternion rotation for a Gaussian blob, mesh

motion remains challenging due to the large number of vertices N and frames T .

Prior works Wang et al. (2024); Lei et al. (2024) exploit the spatial sparsity of 3D motion using
compact bases (e.g., Wang et al. (2024) drives 40k Gaussians with only 20 motion bases). In our
case, tree-like motions also exhibit such sparsity. For example, vertices within the same leaf or local
branch tend to show similar motion patterns. However, relying solely on sparse motion bases like
Wang et al. (2024) will make it difficult to model fine-grained details due to the complexity of tree
motion. Therefore, we propose representing tree motion using sparse voxels, where all vertices in a
voxel share the same displacement. With this, to predict dense mesh motion, we only need to predict
sparse voxel motion Dv = {Dt

v ∈ R3×n|t = 1, ..., T}, where n is typically an order of magnitude
smaller than N .
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To ensure temporal consistency over long sequences, instead of autoregressive or time-conditioned
generation Blattmann et al. (2023); Bertiche et al. (2023); Li et al. (2022), we draw inspiration
from Generative-Dynamics Li et al. (2024), which models motion via low-frequency components
of spectral volumes Davis et al. (2015). Inspired by this, we introduce the sparse voxel spectrums
to represent 3D motion. Specifically, for sparse voxel motion Dv ∈ R3×n×T , we apply the Fast
Fourier Transform (FFT) along the temporal dimension, resulting in a complex-valued frequency-
domain representation D̂v ∈ C3×n×T , where each spatial displacement is decomposed into its
corresponding components. Tree-like quasi-periodic motions are predominantly captured by the first
K frequency components. Thus, a compact representation D̂(K)

v ∈ C3×n×K is sufficient for nearly
lossless reconstruction of the full spectrum D̂v ∈ C3×n×T , with K = 16 following Li et al. (2024).
Then, to facilitate the generation of these top-K frequency components for the sparse voxel motion,
we introduce the sparse voxel spectrum representation S = {si ∈ R6×n|i = 1, ...,K}, where the
dimension of size 6 corresponds to the real and imaginary parts of the x, y, and z dimensions. Given
this representation, we can reconstruct the mesh motion through the following operation:

Dm = Dev(iFFT(S)) (1)
where iFFT denotes the inverse FFT along the temporal dimension, and Dev(·) represents the de-
voxelization process that maps sparse voxel displacements to dense mesh vertex motion.

3.3 VOXEL GRID CONDITION

To reduce the synthetic-to-real gap when using multi-view images as input, we condition the motion
generation model on voxel grids. Given multi-view images of a static tree, we first reconstruct its
mesh M = (V, F ) using an off-the-shelf method Guédon & Lepetit (2024), where V = {vi ∈
R3}Ni=1 and F = {fj ⊂ {1, . . . , N}}Pj=1 denote the sets of vertices and faces, respectively. We then
voxelize the mesh to obtain a sparse voxel grid G, which serves as the conditioning input.

3.4 SPARSE VOXEL DIFFUSION

Before performing the diffusion generation, the sparse voxel grid G is encoded via a sparse en-
coder with several sparse convolutional blocks Williams et al. (2024), resulting in a compact latent
representation g ∈ Rd×n as geometric conditioning. Our sparse voxel diffusion module builds on
the U-Net architecture introduced by XCube Ren et al. (2024). Specifically, to generate the sparse
voxel spectrum S = {si ∈ R6×n | i = 1, . . . ,K} of the mesh motion, we condition the diffusion
generation process on both the frequency index and the latent feature g, generating each frequency
component separately. The diffusion process Ho et al. (2020) starts from pure Gaussian noise and
iteratively predicts noise over L Markov steps. At each step, we concatenate the latent feature g
with the noisy latent sl, and inject the frequency embedding into every ResBlock of the sparse voxel
U-Net through scale and shift operations.

3.5 OPTIMIZATION

We directly supervise the sparse voxel spectrums during training. To achieve this, we construct a
4D dataset of tree mesh motion sequences, which is detailed in Sec. 5. Given the constructed mesh
motion, we first apply the FFT to obtain the spectrum for each vertex. Then, we voxelize the mesh
motion spectrum to create the ground truth of sparse voxel spectrums.

During training, we diffuse the sparse voxel spectrum at each frequency component over L diffusion
steps and supervise the model’s prediction using the following diffusion loss:

LDM = Eϵ∼N (0,I), l∼U({1,...,L})
[
∥ϵ− ϵθ(sl; l, g, f)∥2

]
, (2)

where g and f denote the sparse voxel latent condition and frequency embedding, respectively.
Further, we find that using only the diffusion loss LDM may lead to unrealistic motion, such as
divergence of some branches, as shown in Fig. 5, because the problem is under-constrained. To ad-
dress this, we introduce a Local Spectrum Smoothness (LSS) loss that encourages local consistency
in the frequency domain, inspired by the physical prior proposed by Sorkine & Alexa (2007) that
neighboring points tend to move similarly. Specifically, we compute discrepancies in the frequency-
domain parameters between each point and its neighbors, weighted by spatial proximity:

LLSS =
1

N

N∑
i=1

∑
j∈N (i)

e−αdij (∥Rei − Rej∥+ λ∥Imi − Imj∥) ,

5
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where Rei and Imi denote the real and imaginary components of the spectrum at point i, N (i)
represents its κ-nearest neighbors, dij denotes the Euclidean distance between points i and j, and λ
controls the weight of the imaginary part.

Moreover, we observe that naively combining both losses LDM and LLSS from the beginning of
training would also lead to unstable learning. To address this issue, we adopt a two-stage training
strategy: in the first stage, we train the model using only LDM for a certain number of iterations; in
the second stage, we introduce LLSS to refine the spectral representation. This strategy significantly
improves training stability and overall performance.

3.6 MESH-DRIVEN 3DGS ANIMATION

With the generated sparse voxel spectrums of a given mesh M , we need to decode it to a full motion
field of 3DGS. To do that, we first devoxelize the sparse spectrum by assigning the same spectrum
to all vertices within the same voxel. Then, we convert spectrums to the time-domain mesh motion
Dm through the inverse Fast Fourier Transform.

With the recovered mesh motion, we then animate the 3DGS model, by binding Gaussian primitives
to the mesh surface, as proposed by GaMeS Waczyńska et al. (2024). This operation can be viewed
as a reparameterization: for each face fj = {v1, v2, v3} ∈ R3, we parameterize the attributes of its
associated Gaussian primitive (u, r, and s) using the positions of the three vertices:

µ = α1V1 + α2V2 + α3V3,

r = [r1(fi), r2(fi), r3(fi)],

s = diag(s1(fi), s2(fi), s3(fi)),
(3)

where α1, α2, and α3 are learnable parameters, and r1, r2, r3, s1, s2, and s3 are parameterization
functions. For details, please refer to Waczyńska et al. (2024). Through this binding strategy, we
can compute the 3DGS deformation Dg directly from the mesh motion Dm. This allows us to obtain
the final deformed 3DGS sequence G.

4 INTERACTIVE SIMULATION WITH MODAL ANALYSIS

Modal analysis is a technique used to decompose complex deformable motions into a set of fun-
damental vibration modes, each associated with a specific natural frequency. This approach is par-
ticularly well-suited for modeling the motion of systems composed of superpositions of harmonic
oscillators, such as tree motion Diener et al. (2009); Habel et al. (2009). Given an external force
f(t), we model all vertices of the tree mesh as a interconnected mass-spring-damper system P to
simulate the response D(t) = {di(t) ∈ R3 | i ∈ P}. With this, we can construct the following
equation of motion Shabana (1991):

Md̈(t) + Cḋ(t) +Kd(t) = f(t), (4)
where M , C, and K are the mass, damping, and stiffness matrices, respectively.

To solve this equation, we project it into modal space, resulting in |P | independent equations Davis
et al. (2015); Li et al. (2024):

miq̈i(t) + ciq̇i(t) + kiqi(t) = fi(t), (5)
where mi, ci, and ki correspond to the diagonal elements of the respective matrices. This is a
standard second-order differential equation, which can be solved using explicit Euler integration. To
perform the integration, we need to specify the initial modal displacement qi(0) and velocity q̇i(0).
These settings, along with the selection of M , C, and K, are based on the configurations described
in Petitjean et al. (2023).

By solving for the modal responses qk(t) at each natural frequency, we can reconstruct the physical-
space response using the corresponding mode shapes:

D(t) =

K∑
k=1

ϕk · qk(t). (6)

Thanks to prior work Davis et al. (2015); Li et al. (2024); Petitjean et al. (2023) that has shown the
spectrums of particle motion trajectories can be treated as modal bases, we can use the mesh motion
spectrums computed in Sec. 3 as the modal shapes ϕ to solve the above equation and obtain the
interactive dynamic response D(t).

6
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Figure 3: Comparison with 4DGen Yin et al. (2023). We visualize the middle frame of the generated
sequence, where our method preserves better 3D structures. Space-time slices are shown, with ver-
tical and horizontal axes representing time and the spatial profile along the brown line, respectively.

5 DATASET

To facilitate the learning of complex 3D tree dynamics, we introduce 4DTree, a large-scale 4D tree
dataset containing 8, 786 animated tree meshes. Each instance includes a 100-frame animation,
along with semantic labels for leaves and trunks, which can further support downstream tasks such
as semantic segmentation.

To create 4D tree data, a straightforward approach is to use commercial physics-based simulation
software, but this is time-consuming and impractical for large-scale datasets. Instead, we adopt the
method from Weber & Penn (1995), which models trees as hierarchical branching structures and
simulates wind-induced motion by treating stems as elastic rods coupled through oscillators, imple-
mented via the Sapling Tree Gen add-on in Blender. Still, this approach involves many sensitive
parameters, which, if set improperly, can cause unstable oscillations or unrealistic shapes. To ensure
quality and consistency of our dataset, we adopt a three-stage pipeline during production: parameter
tuning, automatic validation with scripts, and final visual filtering by human reviewers. Through
this process, we construct a clean and diverse 4D tree dataset with complex dynamics. For Detailed
procedures and data samples, please refer to the Appendix.

6 EXPERIMENTS

Implementation. We train our model from scratch without pre-trained models, taking 3.5 days on 8
RTX 4090 GPUs with a batch size of 48. During the first 40,000 iterations, we train the model using
only the LDM loss. Then, we introduce the LLSS loss and continue training for an additional 30,000
iterations. For the LLSS loss, we use the 5 nearest neighbors of each point, and both α and λ are set
to 0.5. We set the resolution of the sparse voxel spectrum to 1283, with an input resolution of 5123
for the sparse voxel encoder. This results in voxel latent conditions of dimensionality d = 128 at
the 1283 resolution. When binding 3DGS primitives, we assign five Gaussians per face. We use the
AdamW optimizer with an initial learning rate of 1× 10−4, which is halved every 20,000 iterations.
During inference, we employ DDIM Song et al. (2020) with 100 sampling steps.

Evaluation metrics. To evaluate our method in real-world scenarios, we collect a test set of 13 real-
world trees. For evaluation metrics, we follow prior works Yin et al. (2023); Chen et al. (2024) and
use CLIP ViT-B/32 Radford et al. (2021) to measure both visual realism and temporal coherence.
Specifically, we compute CLIP-I distance as the average CLIP distance between each frame and
the input view, and CLIP-T distance as the average CLIP distance between consecutive frames.
Furthermore, we conduct a user study on the rendered videos, focusing on four key aspects: motion
authenticity (MA), motion complexity (MC), 3D structural consistency (3DSC), and visual quality
(VQ). Below, we compare the results of motion generation and interaction simulation, respectively.

6.1 COMPARISON OF 3D ANIMATION

We select 4DGen Yin et al. (2023) as the baseline for motion generation. As shown in Fig. 3, the
results of 4DGen often exhibit artifacts in fine details. Moreover, when the tree structures become
more complex, 4DGen would fail to converge due to the degradation of motion generation in its un-
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PhysGaussian

Space-time slices

PhysFlow

Ours

slicest

Space-time slices𝑇

DraggingDragging

𝑡𝑇𝑡

Figure 4: Interactive simulation comparison of different methods. We apply a dragging external
force and then visualize the response of the scene, where our approach produces more natural oscil-
latory motion with finer-grained details. t and T denote the middle and final frames, respectively.

Table 1: Quantitative comparison of our method and other methods. The upper part is a comparison
of 3D animation, and the lower part is a comparison of interactive simulation.

Methods CLIP Score User Study Simulation
time

(ms/frame)CLIP-I↓ CLIP-T↓ MA↑ MC↑ SC↑ VQ↑ Overall↑

4DGen 0.0103 0.0094 4.6% 8.5% 2.1% 2.1% 4.3% -
Ours 0.0052 0.0021 95.4% 91.5% 97.9% 97.9% 95.7% -

PhysGaussian 0.0061 0.0087 14.9% 17.0% 36.2% 12.8% 20.2% 1,800
PhysFlow 0.0047 0.0025 34.0% 38.3% 34.0% 21.3% 31.9% 15,600

Ours 0.0038 0.0017 51.1% 44.7% 29.8% 65.9% 47.9% 18.22

derlying VDM. For quantitative comparison, we evaluate only the input-view results to ensure a fair
evaluation, as 4DGen performs poorly on novel views. The results in Table 1 demonstrate that our
method achieves superior performance across all metrics. More animation results are reported in the
Appendix. We strongly recommend viewing the supplementary videos for better visual assessment.

6.2 COMPARISON OF INTERACTIVE SIMULATION

For interactive dynamic simulation, we compare against state-of-the-art baselines PhysGaussian Xie
et al. (2024) and PhysFlow Comas et al. (2024). As shown in Fig. 4, PhysGaussian and PhysFlow
often produce unrealistic plastic deformations. Specifically, PhysGaussian deforms slowly with little
rebound, while PhysFlow exhibits partial recovery but still lacks fine-grained elasticity at the branch
and leaf level, producing overly global responses. In contrast, our method produces natural and
elastic motions, with branches and leaves exhibiting distinct behaviors. Quantitative results from
four viewpoints and simulation time are reported in Table 1. Our method not only outperforms the
baselines on most metrics but also significantly reduces the simulation time. For each frame, our
method takes only about 18 ms for simulation, with 13 ms for mesh motion computation via modal
analysis, 2.57 ms for Gaussian deformations calculation, and 2.65 ms for rendering, achieving a
real-time interaction. Note that PhysFlow requires additional parameter optimization, which results
in significantly longer runtime. More simulation results can be found in the Appendix.

6.3 ABLATION STUDY

The effect of training strategies. We ablate the training strategy in Fig. 5. As shown, directly using
LD would often cause noticeable artifacts such as geometry scattering and divergence, while joint
training with LLSS alleviates but does not eliminate them. In contrast, our two-stage strategy first
trains with LD for several iterations before introducing LLSS, which effectively resolves these issues
and greatly improves generalization.
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Initial frame w/o LSS loss w/ LSS loss
+ joint training

w/ LSS loss
+ staged training

如果有空的地⽅的话，将ablation_rigid添加个depth

Ablation rigid v2

view
108

view
212

Figure 5: Ablation of training strategies. Columns 2–4 show the middle frame of sequences gener-
ated by each strategy.

The effect of different resolutions. We compare the results of 3D animations at different sparse
voxel spectrum resolutions in Table 2. These experiments are conducted on eight GeForce RTX
4090 GPUs, and due to memory constraints, we reduce the batch size as the resolution increases.
As shown, the CLIP-I distance first decreases and then increases with increasing resolution. When
the resolution exceeds 128, the improvement in CLIP-I becomes marginal, while the training cost
continues to rise significantly. Therefore, we select 128 as our final resolution.

Table 2: Ablation of different resolutions

Resolution Batch Size Time CLIP-I↓
323 192 27h 0.0097
643 96 43h 0.0069
1283 48 85h 0.0039
2563 24 156h 0.0037
5123 12 261h 0.0056

Moreover, we further analyze the
synthetic-to-real gap through the per-
formance degradation observed at a
resolution of 5123. We find that at such
a high resolution, the voxel grid becomes
very fine and closely resembles point
clouds, introducing a domain gap between
training and inference. This is because
real mesh vertices are generally noisier
than synthetic ones. In contrast, using a
resolution of 1283 partially mitigates this
issue, as multiple noisy points within the same voxel share the same motion pattern, leading to
spatial smoothing that helps bridge the domain gap.

7 LIMITATION AND CONCLUSION

In this paper, we present DynamicTree, a novel framework for animating 3DGS trees. By introducing
the sparse voxel spectrum representation, our method enables efficient long-term motion generation
and real-time dynamic response to external forces. Furthermore, we also introduce a large-scale
synthetic 4D tree dataset to support learning-based tree motion generation. Experimental results
demonstrate that our approach achieves high-quality tree motion with strong temporal coherence
and physical plausibility.

Although our method generates realistic 3D motion for real trees, several limitations remain. First,
modal analysis is inherently a global linear approximation that shares vibration patterns across the
entire object, potentially leading to synchronized motion between spatially distant regions. Sec-
ond, mesh-driven 3DGS deformation may sometimes introduce artifacts in large deformation areas,
which can be alleviated by increasing the number of Gaussians bound to faces in those regions.
Finally, our experiments mainly target common immersive motions such as swaying, so the current
dataset contains few large-scale deformations. In future work, we plan to augment the dataset with
more large-deformation motions to address this limitation.
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Yili Zhao and Jernej Barbič. Interactive authoring of simulation-ready plants. ACM Transactions on
Graphics (TOG), 32(4):1–12, 2013.

Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong, Zhenguo Li, and Gim Hee Lee. Animate124:
Animating one image to 4d dynamic scene. arXiv preprint arXiv:2311.14603, 2023.

Yufeng Zheng, Xueting Li, Koki Nagano, Sifei Liu, Otmar Hilliges, and Shalini De Mello. A
unified approach for text-and image-guided 4d scene generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7300–7309, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DATASET

As discussed in the paper, we implement the method of Weber & Penn (1995) as a plugin in Blender.
However, generating a large-scale 4D tree dataset using this method remains challenging, as it in-
volves numerous parameters and random sampling often produces invalid or unrealistic 4D trees.
To ensure data quality and consistency, we adopt a three-stage pipeline to construct our dataset:

1. Parameter Tuning: Trees are controlled by many shape parameters. Fully random sam-
pling over all of them tends to generate irregular or unrealistic trees, which can harm net-
work training. Instead, we manually select key parameters such as branch count, height,
branching angle, leaf count, etc., for stochastic variation. Other parameters are kept within
small perturbation ranges. This approach ensures diversity while avoiding extreme or im-
plausible deformations.

2. Automatic Filtering: After generating approximately 10,000 trees using the above strat-
egy, we observe that some samples exhibit undesirable high-frequency oscillations, such as
rapid back-and-forth motion at the root or excessive shaking in small branches. To filter
out these cases, we apply the Fast Fourier Transform to each motion sequence and remove
samples where the high-frequency components exceed a threshold.

3. Manual Curation: Finally, we perform visual inspection to eliminate edge cases such as
unnatural branch clustering or physically implausible motion patterns.

Through this process, we curate a final set of 8,786 4D trees, with selected examples visualized in
Fig. 6. For each tree, we first apply the FFT to its motion and then voxelize it. The spectrum of
vertices within the same voxel is averaged to produce the final sparse voxel spectrum representation.

SlicesSemanticMesh Normal SlicesSemanticMesh Normal

Figure 6: Examples from our synthetic dataset. To demonstrate the semantic labels, we render the
leaves and trunk with two simple material settings. Users can replace these with more realistic
materials for enhanced visual quality.

A.2 NETWORK

The sparse encoder and sparse voxel diffusion U-Net are adapted from the basic modules proposed
in XCube to better fit our conditioning input and spectral output. We report key parameter settings
of these two components in Table 3
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Table 3: Architecture Parameters

Parameter Sparse Encoder Voxel Diffusion

Base channels 32 128
Depth 3 2
Channels multiple - [1, 2, 4, 4]
Head - 8
Attention Resolution - [4,8]

A.3 VISUALIZATION RESULTS

Further visualizations and analytical details of the 3D animations and interactive dynamic simu-
lations are presented in Fig. 8 and Fig. 7. However, to facilitate a comprehensive perceptual and
qualitative evaluation of our method, we strongly recommend reviewing our supplementary videos.

Drag right

如果
animate3D
的mesh不好
获得，就换
成渲染的深
度图

或者
animate3d
要是不好制
作数据的话，
可以只给⾃
⼰实验的

result，但是
每个实验多
给⼀些结果，
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mesh,norm
al mesh等，
⻅下⼀⻚

Small force

Large force

Drag left

RGB slicesDepth slicesView 1 RGB slicesDepth slicesView 2
Tree 1

90

267

Tree 2

Figure 7: More results of interactive dynamic simulation. Our method can support interactive simu-
lations involving forces with varying magnitudes and directions.
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Figure 8: More results of 3D animation. For each scene, we visualize the space-time slices of depth
and RGB videos from two viewpoints. We also show the scene flow of three mesh point cloud
frames (t1 = 30, t2 = 50, t3 = 80) in the generated sequence, with color coding following the
strategy used in Hur & Roth (2020), where the movements (u, v) along the x and z directions are
encoded using standard optical flow coloring.
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