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Abstract—The emergence of vision-language-action models
(VLAs) for end-to-end control is reshaping the field of robotics by
enabling the fusion of multimodal sensory inputs at the billion-
parameter scale. The capabilities of VLAs stem primarily from
their architectures, which are often based on frontier large
language models (LLMs). However, LLMs are known to be
susceptible to adversarial misuse, and given the significant physical
risks inherent to robotics, questions remain regarding the extent
to which VLAs inherit these vulnerabilities. Motivated by these
concerns, in this work we initiate the study of adversarial attacks
on VLA-controlled robots.

I. INTRODUCTION

The emergence of robotic foundation models (RFMs) has
transformed robotics across domains including robot-assisted
surgery [33, 54], autonomous driving [56, 42], and agricul-
ture [55, 17]. Production-ready systems such as Physical
Intelligence’s π0 model [6] and Google’s Gemini-controlled
robots [20, 15] excel at dynamic manipulation and multi-
agent coordination [1], suggesting AI-enabled robots will
soon collaborate alongside humans in society. As RFMs
approach real-world deployment, the AI safety community
has begun anticipating new risks [22, 23, 31]. Traditional
AI security has focused on model-level threats like prompt
injection [18, 41, 19] and jailbreaking [14, 65, 13], but emerg-
ing concerns anticipate risks from increasingly autonomous
models, including deceptive alignment [11, 28, 12] and self-
replication [7, 47]. We initiate the study of adversarial attacks
on vision-language-action (VLA) models, which cast robotic
control through autoregressive prediction by fusing textual
and visual inputs [6, 34, 9]. While recent work has explored
jailbreaking RFMs [52, 63], our attacks are designed to obtain
complete control authority over VLA-controlled robots via
textual prompting. Unlike LLM alignment that blocks harmful
generations, VLAs lack analogous refusal training, contributing
to a distinct attack landscape that we characterize here.
Contributions. We: (1) identify realistic VLA threat models
concerning targeted action elicitation via textual prompting;
(2) propose token-level attacks achieving 90%+ success rates
at eliciting targeted actions across OpenVLA fine-tunes; (3)
demonstrate attack persistence across rollout steps (up to
28× increase); and (4) show environment-agnostic attacks
transferring across simulation and real-world settings.

II. RELATED WORK

Foundation models for robotic applications. Advances
in deep learning have driven remarkable progress in
robotics, evolving from end-to-end policy networks [25, 35]
to transformer-based architectures [57]. Two dominant
paradigms have emerged: (1) High-level planners that
control robots via pre-defined APIs containing primitives like
“walk_forward”[58, 39, 3], deployed across self-driving[36],
service robots [27, 49], and surgery [33]; and (2) Low-level
actuators or vision-language-action models (VLAs) that
generate continuous actions from textual goals and visual
inputs [45]. Prominent VLAs include Google’s RT-1/RT-2/RT-
X models [9, 8, 16], OpenVLA [34], Physical Intelligence’s
π0[6], and diffusion-based architectures like CogACT[37].

Adversarial attacks and defenses. AI safety research
focuses on aligning AI actions with human values [4, 26, 46],
expanding from immediate misalignment concerns [60, 10]
to long-term risks of AI agents [2, 43, 24]. Technical
methods include jailbreaking attacks on LLMs and
VLLMs [65, 14, 40, 48], though defenses informed by
red-teaming have improved model robustness [66, 51, 29, 21].
Recent work targets downstream applications like web
agents [62, 18, 59] and search engines [44]. Most related
is Robey et al. [52], demonstrating LLM-based planner
vulnerabilities, and concurrent work showing instruction
rephrasing can elicit dangerous actions [32, 63]. However, our
study is the first to consider attacks on low-level VLAs.

III. JAILBREAKING ATTACKS ON VLAS

To anticipate how VLA-integrated systems might enable
misuse or unsafe behavior in future deployments, we next
seek to formalize a set of plausible yet forward-looking threat
models targeting these architectures. We start by reviewing
the greedy coordinate gradient (GCG) chatbot jailbreaking
attack [65], which underpins our approach to attacking VLAs.
Given a goal string G (e.g., “Tell me how to build a bomb”),
the objective of GCG is to elicit a response from a targeted
LLM that begins with a concomitant target T string (e.g., “Sure,
here is how to build a bomb”), by by appending a fixed-length
suffix S that has been optimized to elicit the target (for more
detailed derivations of the objective, please refer to equations
(1)–(4) in [65].



Figure 1: Adversarial attacks on VLAs. VLA architectures fuse input images and textual task descriptions to produce low-level
actuation. We show that adversarially attacking the textual prompt can subvert actions produced by an unattacked VLA (left) to
elicit targeted actions (right).

A. Threat models for VLAs

Unlike LLMs, VLAs fuse two distinct sources of input: a
textual prompt describing a robotic task, and an image showing
the robot’s current scene. Actions are defined at the token level,
whereby the model generates n tokens (corresponding to the
degrees of freedom of the physical robot). To parallel Zou et al.
[65], we consider attacks that aim to elicit a targeted action
or sequence of actions. In this paper, we consider a threat
model in which the adversary can modify the textual prompt,
either by adding tokens to the end of a nominal instruction,
or else replacing the prompt with an adversarially chosen
sequence of tokens. This threat model reframes safety in VLA-
integrated systems as a matter of control authority, rather than
harm-centric definitions typically associated with jailbreaking.
This perspective avoids the ambiguity of labeling individual
actions as “harmful,” since identical actions may be safe in
one context and dangerous in another. In other words, a robust
VLA should resist adversarial takeover and simultaneously
ensure that, even under adversarial control, generated actions
should remain within or close to the distribution of actions
seen during training.

B. Adversarial attacks on VLAs

Having restricted our attention to attacks on a targeted VLA’s
textual embeddings, we now evaluate our attack across the
following objectives.

Single-step attacks. We first consider single-step attacks,
which target the generation of a single fixed action. The
performance of such attacks speak to the “reachability” of
a VLA’s action space, in the sense that single-step attack
algorithms seek to determine whether there exists an input
prompt that will drive a VLA to a specific, targeted action.

Persistence attacks. We next consider a more sophisticated
attack in which the attacker’s goal is to cause an action to
persist for a longer horizon. That is, the attack should elicit a
targeted action across VLA inference steps despite evolving
image representations.

Transfer attacks. GCG is a white-box attack, meaning that
it requires access to the weights of the target model to craft
jailbreaks. Therefore, assessing the robustness of closed-weight

chatbots (e.g., OpenAI’s o1 or Anthropic’s Claude models)
via GCG necessitates the paradigm of transfer, wherein attack
strings are optimized on an open-weight source model and then
inputted into a closed-weight model. Given the effectiveness
of transfer in the LLM setting, we also consider such attacks
in the context of VLAs.

C. Attacking chatbots versus VLAs

While the threat models and algorithms discussed in this
section are adapted from the chatbot jailbreak literature,
the VLA setting admits several key differences. Firstly, as
the severity of a jailbroken response can be subjective, the
performance of chatbot jailbreaking is heavily dependent on
the choice of the evaluation judge (c.f., [14, Table 1]). In
contrast, attacks on VLAs do not require a judge, since we
can directly compare the generated tokens to the target tokens.
Further, in the context of chatbots, the difficulty of jailbreaking
is tightly coupled to the strength of safety-oriented post-
training: models with more robust internal representations (see,
e.g., [66]) are significantly harder to jailbreak than those with
less involved post-training recipes. However, for VLAs, these
internal representations are less relevant. As such, we focus
not on semantic notions of harm, but on the adversary’s ability
to gain control authority: the capacity to drive the robot to a
specific target action, independent of what that action means
or whether it is harmful.

IV. EXPERIMENTS

In this section, we evaluate the adversarial attacks proposed
in §III-B across a range of VLA architectures. In keeping with
the norms in the VLA literature, all of the architectures that
we consider target the control of a seven degree-of-freedom
robotic arm with an attached gripper. Each action dimension is
discretized into 256 distinct bins, and thus each action space
comprises 7256 distinct actions.

A. Single-step attacks

Given the effectiveness of VLAs fine-tuned on downstream
task data, we begin our evaluation with four fine-tuned versions
of OpenVLA [33], the most widely used open-source VLA.



Table I: Single step attacks. We report the attack success rates of the single step attack on four variants of OpenVLA, each
of which is fine-tuned on a different subset of the LIBERO benchmark. We consider a sparse gridding of the action space
for each model: For each model and each of the seven action dimensions, we consider one-hot targets for each of the 256
discrete bins, resulting in 256× 7 = 1792 distinct target actions per model. This table reports the per-dimension success rates
for these one-hot targets, as well as the overall success rate, which requires the elicitation of each of the seven dimensional
targets simultaneously.

Model Per-dimension success rate Overall
success rate

Avg. computation per success

0 1 2 3 4 5 6 Optim. steps Time (sec.)

Libero-Goal 98.1 98.5 98.3 98.7 98.1 98.5 96.6 96.5 53.2 304.6
Libero-Object 98.2 97.8 98.3 98.6 97.2 97.0 93.7 93.8 73.6 461.6
Libero-Spatial 99.3 98.3 99.3 99.4 97.9 98.4 97.7 97.5 32.8 185.2

Libero-10 93.8 90.8 91.7 91.0 92.0 94.0 77.4 77.3 109.7 604.3
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Figure 2: Persistence attacks. For each of the four OpenVLA fine-tunes considered in Table I, we measure the tendency of
the persistence attack outlined in §III-B to elicit a targeted action over the course of a full rollout. We run this attack with
r ∈ {1,2,3} images in the optimization objective. Each bar is shaded to indicate whether a persistence step corresponded to
an image seen during optimization, or else corresponded to an unseen image at a later point in the rollout. The x-axis denotes
whether the r seed images were taking from the a “burn-in” period before the rollout begins—during which we actuate via
randomly selected actions—or else from the first r steps of the rollout. And finally, the red dashed line denotes the frequency
with which 50 non-attacked rollouts elicit the targeted action.

Each variant is fine-tuned on a different Libero subset: Libero-
Goal, Libero-Object, Libero-Spatial, and Libero-10. In Table I,
we report two metrics: (1) the overall success rate, which
requires that each of the seven dimensions match the target
action, and (2) the per-dimension success rate, which measures
the success rate for each of the seven dimensions individually.
Our findings indicate that adversarial prompting is sufficient to
drive a VLA to nearly any targeted action. In keeping with the
original implementation of GCG [65], we run the single step
attacks for a maximum of 500 steps; the algorithm terminates if
an exact match for every dimension in the target is found. We
find that successful matches are found in between 30-110 steps,
which stands in contrast to the chatbot jailbreaking literature,
wherein jailbreaks often require optimization for all 500 steps.

Attacks are environmentally agnostic. A common pitfall
of VLAs is the “sim-to-real” gap, whereby policies trained in
simulated environments struggle to generalize to real-world

environments. To assess how well our attacks optimized in
a simulated environment transfer to real-world settings, we
evaluate single-step attacks on two environments from the
Open-X-Embodiment [16] set that OpenVLA was trained on:
HYDRA [5], a real-world environment, and SIMPLER [38],
a simulated environment. As shown in Table II, our attack
is successful across both of these environments, indicating
that such attacks also yield control authority in more realistic,
open-world settings.

B. Persistence attacks

We next consider persistent attacks, for which the goal is to
elicit a targeted action over a longer horizon relative to single
step attacks. In this setting, the attacker is given access to r
images, where r ∈ {1, 2, 3}, which are collected in one of two
ways: (1) images are taken from a “burn-in” period before the
rollout begins, during which the VLA is actuated with randomly
generated actions; and (2) images are taken from the first r



Table II: Attacks on real-world images. We find that our
attacks exhibit relatively strong performance when optimized
on images drawn from SIMPLER, a simulated environment,
and SIMPLER, a real-world environment.

Dimension HYDRA (%) SIMPLER (%)

0 93.4 50.4
1 86.0 48.1
2 73.6 47.3
3 85.1 48.1
4 88.4 45.0
5 88.4 48.8
6 63.6 41.9

Overall ASR 61.2 38.0
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Figure 3: Ensemble transfer results. We find that ensemble
attacks have a relatively uncorrelated, yet nontrivial effect on
transferability.

steps of the rollout. In both settings, we play the VLA policy
for 80 steps after applying the attack. Our results in Figure 2
indicate that we consistently persist across the seen images,
and as we increase the attacker’s image budget, generalization
to unseen images also tends to increase, particularly on the
Libero-Spatial fine-tune.

C. Transfer attacks

In the setting of transfer attacks, our goal is to evaluate the
extent to which attacks optimized for one VLA architecture
transfer to other VLA architectures. To do so, we optimize
single-step attack strings for the OpenVLA base model,
and then transfer these strings to three models: TraceVLA
[64], CogACT [37], and OpenPi0 [50]. In our experiments,
comparing four different prompting methods (the nominal
instruction, a randomly chosen string of tokens from the
downstream model’s vocabulary, and transferred strings both
when the optimization successfully and unsuccessfully resulted

Table III: Candidate defenses against VLA attacks. Attack
Success Rate (ASR) comparison across models with two modes
of perplexity filtering (abbreviated as PF) and smoothing
applied.

Defense Libero-10 Libero-Goal Libero-Object Libero-Spatial

No Defense 63.3 100.0 96.7 100.0
Multimodal PF 63.3 100.0 96.7 100.0
LLM-Only PF 0.0 0.0 0.0 0.0
Smoothing 0.0 0.0 0.0 0.0

in a match on the source model), we did not observe any
exact matches across the seven action dimensions. This is
unsurprising, given that textual attacks on standard VLLMs
are known to exhibit little, if any, transferability [53].

V. DEFENSES

VLA defenses. VLA defenses. Given connections between
chatbot jailbreaking and VLA attacks, we explore extending
LLM/VLLM jailbreaking defenses to VLAs. While defenses
relying on system prompts are inapplicable since VLAs
lack them [61], we evaluate perplexity filtering [30] and
smoothing [51] defenses on 120 randomly selected one-
hot target actions (Table III). Text-based perplexity filtering
proves effective—consistent with Jain et al. [30]’s findings on
suffix attacks—while multimodal filtering fails due to image
embeddings dominating the loss calculation. However, text-
only filtering is impractical for open-world robotics since
perplexity thresholds require knowing maximum instruction
perplexity on held-out sets beforehand. Smoothing achieves 0%
attack success but corrupts instructions, yielding 0% success on
legitimate tasks, due to poor generalizability in current VLAs.

VI. CONCLUSION

VLAs are gaining momentum in the field of robotics due
to their ability to fuse the textual and visual understanding of
VLMs with the low-level actuation. In this paper, we attempt
to anticipate future threat models that may impact robotic
foundation models as they are deployed commercially. In
particular, we present the first study of adversarial attacks
on low-level VLA actuators, showing that by optimizing
instructions we can obtain complete control authority over
a target VLA. These results underline the necessity for new
forms of defenses that are reflective of the unique output format
VLAs pose, as these systems become more powerful and widely
used in society.

Limitations and future work. We recognize that our attack
may be difficult to employ in practice, due to the white-box
nature and relative cost of the GCG algorithm. Further, while
our attack is designed to work on any autoregressive VLA,
diffusion-based models are also very prevalent throughout the
field. Extending attack frameworks to black-box scenarios and
diffusion-based models will be a critical step in the pursuit of
fully assessing the risks these models pose.
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