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Abstract

We address the challenge of adopting language models (LMs) for embodied tasks
in dynamic environments, where online access to large-scale inference engines or
symbolic planners is constrained due to latency, connectivity, and resource limita-
tions. To this end, we present NESYPR, a novel embodied reasoning framework
that compiles knowledge via neurosymbolic proceduralization, thereby equipping
LM-based agents with structured, adaptive, and timely reasoning capabilities. In
NESYPR, task-specific plans are first explicitly generated by a symbolic tool lever-
aging its declarative knowledge. These plans are then transformed into composable
procedural representations that encode the plans’ implicit production rules, en-
abling the resulting composed procedures to be seamlessly integrated into the LM’s
inference process. This neurosymbolic proceduralization abstracts and generalizes
multi-step symbolic structured path-finding and reasoning into single-step LM
inference, akin to human knowledge compilation. It supports efficient test-time
inference without relying on external symbolic guidance, making it well suited
for deployment in latency-sensitive and resource-constrained physical systems.
We evaluate NESYPR on the embodied benchmarks PDDLGym, VirtualHome,
and ALFWorld, demonstrating its efficient reasoning capabilities over large-scale
reasoning models and a symbolic planner, while using more compact LMs.

1 Introduction

Recent works such as Inner Monologue [1], SayCan [2], and LLM-Planner [3] have demonstrated
the potential of large-scale language models (LMs) to control embodied agents on complex tasks in
dynamic environments. Yet, the inherent limitations of autoregressive inference (e.g., shallow plan-
ning, inefficient context reuse, and lack of structure) have led researchers to explore more structured
reasoning approaches. Three primary directions have emerged: (i) agentic frameworks that support
autonomous planning and multi-step reasoning [4, 5, 6, 7], (ii) neurosymbolic methods that integrate
LMs with external symbolic reasoning frameworks [8, 9, 10, 11], and (iii) augmented LM approaches
that incorporate memory modules [12, 13, 14, 15]. Despite these advances, existing approaches
still face significant limitations, particularly in resource-constrained dynamic environments. Agentic
frameworks require iterative inference of large-scale models, leading to substantial computational
overhead [16]. Neurosymbolic methods, while using predefined rules to systematically search for ac-
curate reasoning paths, often suffer from increased task-solving time and diminished effectiveness in
dynamic settings unless the solver and its rule base are continuously updated to reflect environmental
changes [17]. Memory-augmented LM approaches typically expand the context window to encode
more information, yet they rarely retain the procedural structure needed for complex embodied tasks.

These limitations emphasize the need for a reasoning framework tailored to LM-based embodied
agents, capable of structured and adaptive decision-making under time and resource constraints and
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without online symbolic assistance. To this end, we draw inspiration from the Adaptive Control
of Thought (ACT) theory [18], which models skill acquisition as a process of knowledge compila-
tion—the conversion of declarative knowledge into procedural form via repeated practice. Declarative
knowledge is held in declarative memory as chunks that encode explicit facts such as propositions
or problem states. By contrast, procedural knowledge consists of condition–action rules, stored in
procedural memory and triggered automatically as cognitive procedures. A central mechanism in
ACT, known as proceduralization, hinges on the interplay of three memory systems. Declarative
memory supplies the relevant chunk into working memory, which temporarily holds the current
problem state during interaction with the environment. Through repeated use, the factual patterns are
gradually compiled into production rules stored in procedural memory. Once compiled, production
rules fire whenever their conditions match the contents of working memory, enabling actions without
further reference to declarative memory. By bypassing declarative retrieval, proceduralization reduces
cognitive load and supports faster, more automatic, and less error-prone execution [19, 20, 21, 22].

Building on the ACT theory, we present NESYPR, a novel embodied reasoning framework based on
neurosymbolic proceduralization. It performs knowledge compilation by abstracting and generalizing
multi-step symbolic path-finding and reasoning into a single-step LM inference, thereby enabling LM-
based agents to perform embodied reasoning efficiently, without relying on large-scale inference or
online access to external symbolic tools. In NESYPR, task-specific plans are first explicitly generated
by a symbolic tool leveraging its declarative knowledge. These plans are then transformed into
composable procedural representations that encode the plans’ implicit production rules, enabling
the resulting composed procedures to be seamlessly integrated into the LM’s inference process.
This proceduralization proceeds in two phases: i) compositional NeSy procedure learning and ii)
NeSy procedure contrastive planning. During training phase i), an agent learns to encode production
rules into a vector-quantized procedural memory, in which the resulting vectors are structured to be
composable for task-specific plan generation. At test phase ii), without access to symbolic tools, the
agent continues adaptive reasoning by generating plans augmented with procedural memory, while
contrastively reconstructing their internal representations based on environmental feedback.

We evaluate NESYPR on PDDLGym [23], VirtualHome [24], and ALFWorld [25], where inputs
include observation, goal, and domain knowledge that are specified symbolically. For structured
reasoning, NESYPR achieves a 46.7% higher task success rate than DeepSeek-R1-Distill [26], a
distilled 70B-scale reasoning model, while operating with a 70 times smaller LM (as shown in
Table 3). For adaptive reasoning, it attains a 62.1% higher success rate on unseen tasks with dynamic
conditions than the symbolic planner [27] (in Table 3). For timely reasoning, it reduces inference
latency by more than 90.0% compared to BoT [28], a large-scale inference baseline, while achieving
a 36.0% improvement in task success rate (in Table 3). These results demonstrate that NESYPR
endows LM-based agents with strong structured, adaptive, and timely reasoning capabilities.

Our contributions are summarized as: (1) We present NESYPR, the neurosymbolic proceduralization-
based reasoning framework inspired by ACT, which compiles multi-step symbolic reasoning into
single-step LM inference, eliminating the need for online symbolic planners in embodied tasks. (2)
We develop compositional NeSy procedure learning, which encodes production rules into a vector-
quantized procedural memory whose vectors can be compositionally combined to generate task-
specific plans. (3) We implement NeSy procedure contrastive planning, which adaptively generates
plans by contrastively reconstructing task-specific procedures from stored procedures labeled with
environmental feedback. (4) We show the effectiveness and efficiency of NESYPR through extensive
evaluations including 3 embodied benchmarks and 9 experimental scenarios, demonstrating its
capabilities for structured, adaptive, and timely reasoning.

2 Related Work

Agentic Frameworks for Embodied Tasks. A growing body of research has explored how LMs
can be utilized to plan actions in physical or simulated environments [1, 2, 3, 29, 30, 31, 32]. Recent
studies emphasize agentic frameworks that enable autonomous planning and multi-step reasoning,
rather than relying on single-step predictions. Within this paradigm, methods such as ReAct [4],
Reflexion [5], and others [6, 33, 34, 7, 35, 36] integrate Chain-of-Thought (CoT) [37, 38, 39, 40]
reasoning with environmental feedback. Although these frameworks demonstrate strong performance,
they typically rely on iterative inference of large-scale models, leading to substantial computational
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overhead. In contrast, our approach employs an LM equipped with a specialized memory architecture,
enabling robust reasoning without dependence on large-scale models or multi-step inference.

Neurosymbolic Methods for Embodied Task Reasoning. Neurosymbolic approaches integrate
symbolic reasoning modules—such as rule-based or logic programming tools [41, 42, 43]—with
neural networks to achieve interpretable and verifiable reasoning. With the advent of LMs, these
hybrid systems have advanced logical reasoning in natural language tasks [44, 45, 46, 47, 48].
This line of research has also extended into embodied tasks [8, 9, 10, 11, 49], where delegating
task reasoning to symbolic tools yielded more reliable and optimized action plans. However, these
methods depend on handcrafted domain knowledge (e.g., action rules) and require continuous updates
to remain effective in dynamic environments [17]. Moreover, solving time increases sharply with
task complexity, limiting real-time decision-making in complex settings. In contrast, our approach
embeds procedural knowledge within the LM’s memory architecture, enabling efficient reasoning
and end-to-end adaptation through environmental feedback, without online symbolic assistance.

Memory-augmented LMs for Long-term Generation. Recent studies [14, 15, 50, 51, 52, 53]
enhance LMs with external memory structures to better retain long-term context, often through
recurrent memory updates within transformer architectures. Other approaches store intermediate
attention states—such as key-value pairs from relevant documents or histories—in external memory
modules for retrieval during inference [12, 13, 54]. While these methods expand the model’s context
window to capture richer semantic information, only a few studies [55, 56, 57] explore memory
architectures specialized for embodied tasks. In contrast, our approach introduces a procedural
memory architecture that encodes task-level procedural knowledge, enabling efficient reasoning and
adaptive behavior in dynamic embodied environments.

3 Problem formulation

We consider embodied reasoning in dynamic settings, where an agent engages with a stream of tasks
and must adapt to changing states and goals over time. Each task is defined as a tuple τ=(S,A,P,g),
where s∈S is the state, a∈A is the action, P : S × A → S is the transition function describing
dynamics, g∈G denotes the goal. Due to partial observability [58], the agent receives an observation
ot at each timestep t. Unlike conventional multitask settings [1, 3], the agent must solve a sequence of
tasks T ={τ1,τ2,. . . ,τN}, over time, where both g andP may vary across tasks [59, 60]. Our objective
is to develop an LM-based agent (LM policy) that solves tasks autonomously and continuously at test
time with no online access to any symbolic tools, while internalizing procedural knowledge from
symbolic guidance during training. Note that Eq. (1) defines the ideal objective, which is approximated
in practice by supervising the LM on planner-computed action sequences with symbolic inputs.

π∗
LM = argmax

πLM

N∑
i=1

E
τi

[
T∑

t=0
SR(st, πLM(ot, g))−DKL(πLM(· | ot, g) ∥ πtool(· | ot, g))

]
(1)

Here, SR : S ×A → {0, 1} indicates whether actions taken in current states st lead to task success,
and DKL measures the divergence between the LM-based policy πLM and the symbolic policy πtool

derived from external tools in [42, 27, 61]. Accordingly, π∗
LM aims at maximizing task success while

aligning its learned procedural behavior with the tool’s declarative guidance.

4 NESYPR: Neurosymbolic Proceduralization

To equip agents with structured and adaptive reasoning for diverse embodied tasks, NESYPR learns
to encode production rules and compose procedures, compressed representations derived from the
declarative knowledge of symbolic tools. We refer to this end-to-end learning and utilization process
as neurosymbolic proceduralization. As illustrated in Figure 1, neurosymbolic proceduralization
operates in two phases: i) a training phase, compositional NeSy procedure learning, where procedural
knowledge is structured within procedural memory using plans generated by a symbolic tool, and
ii) a test phase, NeSy procedure contrastive planning, where the agent autonomously adapts to new
tasks by contrastively reconstructing procedural representations, without relying on symbolic tools.

During phase i), the agent trains on offline data comprising symbolically defined problem instances
(observations and goals) and associated domain knowledge (action rules). The declarative knowledge
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Figure 1: The framework architecture of NESYPR

used by symbolic tools for problem-solving, such as search algorithms, state transitions, cost estima-
tion, and goal evaluation, is internalized as production rules. The agent composes these rules into
task-solving procedures in procedural memory, which it then exploits to generate plans. In phase ii),
using the procedural memory established during phase i) training, the agent performs structured
reasoning without access to external symbolic tools (i.e., declarative memory). It further engages in
adaptive reasoning by contrastively reconstructing procedures from prior ones labeled as successes
or failures via environmental feedback. The agent continually reinforces plans aligned with valid
procedures while suppressing those associated with invalid ones. Accordingly, NESYPR enables
LM-based agents to reason robustly across tasks and adapt efficiently to ever-changing environments.

4.1 Compositional NeSy Procedure Learning

As shown in Figure 2, our learning method incorporates a procedural memory that extends existing
approaches [15, 14] across L layers to support structured reasoning. Working memory M extends
the context window by accumulating symbolic inputs from the environment. The procedural memory
then performs vector quantization (VQ) [62], encoding production rules into discrete procedure-units
stored in a procedure-book C, which are composed to generate plans.

Hl,M = DecoderBlockl
(
Hl−1,M

)
, M ≜ [e1, e2, . . . , eS ], ei ∈ RD (2)

At each layer l ∈ {1, . . . , L}, the decoder block DecoderBlockl takes the previous hidden state
Hl−1 and M as input. Each slot ei encodes environmental context in dimension D, with S defining
memory capacity. Runtime procedure R integrated into DecoderBlockl contributes to refining Hl.

Memory-augmented module. M encodes the current environmental state, using a memory-
augmented cross-attention adapted from [15]. To enable information exchange between the self-
attention output Eself ∈RT×D from Hl−1 and M , we apply a cross-attention.

Ework = softmax
(

QK⊤
√
D

)
V, Q = EselfWQ,K = MWK , V = MWV (3)

Here, WQ,WK ,WV ∈RD×D are learnable projection matrices. M is then updated via a gating
mechanism that merges the original memory with the cross-attended representation Ework.

M ← gup ⊙ α(Ework) + (1− gup)⊙M , gup = σ (α(Ework)Wup) (4)

Here, α is alignment operator ensuring dimensional consistency, σ denotes the sigmoid activation
function, ⊙ represents slot-wise multiplication, and Wup∈RD×D is a learnable projection matrix.

In procedural memory, R is obtained by applying VQ to M using a procedure-book C =
{c1,c2,. . . ,cK}, where each procedure-unit cj ∈ Rd is a d-dimensional vector. Each slot ei ∈M is
partitioned into contiguous d-dimensional chunks to align with the procedure-units.

ei =
[
e
(1)
i ; e

(2)
i ; . . . ; e

(q)
i

]
, q = ⌊D/d⌋, e(r)i ∈ Rd (5)

Each e
(r)
i is replaced with its nearest procedure-units ckr

∈C, selected by minimizing the Euclidean
distance.

ci =
[
ck1

; ck2
; . . . ; ckq

]
, ckr

= argmin
cj∈C

∥e(r)i − cj∥2 (6)
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Figure 2: Vector-quantized procedural memory and contrastive planning

Concatenating the selected procedure-units forms a composite procedure ci. Aggregating all such
procedures across memory slots yields runtime procedure: R=[c1,c2,. . . ,cS ]∈RS×D. To integrate
R into the model reasoning process, we combine R with Ework, enhancing Hl.

Hl = FFN (Ework + gout ⊙ α(R)) , gout = σ (EworkWout) ,Wout ∈ RD×D (7)

Here, FFN is a feed-forward submodule, Wout is a learnable matrix, and gout is a gating matrix.

Learning objective. To train the procedure-book C end-to-end for compositional procedures, we
combine the task objective (e.g., LM fine-tuning) with a VQ loss applied at each layer l.

L(l)
VQ = ∥sg(M (l))−R(l)∥2F + β∥M (l) − sg(R(l))∥2F (8)

Here, sg is the stop-gradient operator, ∥·∥F is the Frobenius norm [63], and β is a weighting coefficient
that controls M to align with R. The overall training objective is defined as

L = −E
T
[log πθ(a | o, g,M)] + λ

L∑
l=1

L(l)
VQ (9)

where θ denotes the learnable parameters of the LM, and λ balances the task-specific objective and
the VQ term. C is updated using an exponential moving average (EMA) [64], providing compositional
procedural representations to R for use in structured reasoning.

4.2 NeSy Procedure Contrastive Planning

To support adaptive reasoning at test time without symbolic tools, we introduce a procedure-based
contrastive planning strategy that reconstructs composed procedures from feedback-labeled stored
procedures and contrastively generates plans aligned with dynamic environments.

Procedure reconstruction. We maintain two procedure banks:M+ for successful procedures and
M− for failures. For each ci ∈R, before integration in Eq. (7), we reconstruct two versions: a
positive procedure c+i by matching againstM+, and a negative procedure c−i againstM−.

c+i ←
{
c+ if ∃c+∈M+∧sim(ci, c

+)≥υ

ci otherwise
, c−i ←

{
c− if ∃c−∈M−∧sim(ci, c

−)≥υ

ci otherwise
(10)

Here, sim denotes a similarity function (e.g., cosine similarity), and υ is a reconstruction threshold.
We then reconstruct two runtime procedures: R+ = [c+1 ,c

+
2 ,. . . ,c

+
S ] and R− = [c−1 ,c

−
2 ,. . . ,c

−
S ].

These are used to generate two versions of the hidden state Hl within a single batch: one conditioned
on R+ and the other on R−. Both are then used in contrastive decoding [65].

Contrastive planning. Following [66], we guide generation toward successful procedures by com-
puting a contrastive score for each token xi within an adaptive plausibility set Vhead(x<i),

Vhead(x<i) = {xi∈V |p+(xi | x<i,M ;M+) ≥ ϑmax
x′

p+(x′ |x<i,M ;M+)} (11)

where ϑ=0.1 controls the truncation threshold. For xi∈Vhead(x<i), we obtain contrastive score by

S(xi) = log p+(xi | x<i,M ;M+)− log p−(xi | x<i,M ;M−) (12)
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where p+ and p− denote token distributions conditioned on successful and failed procedures, respec-
tively. The final next-token distribution is then reshaped as follows.

pCP(xi | x<i) =

{
softmax (S(xi)) ·

∑
x′∈Vhead

p+(x′ | x<i) if xi ∈ Vhead(x<i)

p+(xi | x<i) otherwise
(13)

This decoding process suppresses failure patterns and promotes plans aligned with the environment,
enabling adaptive reasoning without symbolic guidance. Algorithm of NESYPR is in Appendix.

5 Evaluation

5.1 Experiment Setting

Environments. We evaluate NESYPR across diverse embodied benchmarks, including multiple do-
mains from PDDLGym [23] (e.g., Minecraft, Rearrangement, GlibRearrangement), VirtualHome [67],
and ALFWorld [25]. To assess embodied reasoning performance in dynamic environments, as de-
scribed in Section 3, we configure each benchmark to support task sequences that require multi-step
planning and continual adaptation. In PDDLGym, where symbolic planners are built-in [27, 61], obser-
vations are provided in symbolic form. We construct 9 distinct task sequences by randomly composing
tasks, ensuring consistent evaluation settings across all baselines. For VirtualHome and ALFWorld,
we utilize symbolic observation interfaces provided by their respective open-source implementation.
We evaluate under continual task settings with behavior-incremental and environment-incremental
configurations, using 4 distinct task sequences for each, following [68]. During the evaluation, agents
receive only binary feedback at the task level (success or failure), and no gradient updates are allowed.

Datasets. For training, we use a small set of problem instances paired with plans generated by
symbolic planners [27]. In PDDLGym, the train sets include 29 instances for Minecraft, 20 for
Rearrangement, and 40 for GlibRearrangement. The test sets contain 389, 400, and 80 instances
respectively, all disjoint from the train data. For VirtualHome and ALFWorld, the train sets consist
of 77 and 549 instances, respectively. Each test set is split into seen and unseen sets. The seen
set contains 112 and 1,509 instances respectively, and shares the same goal as the train set, but
varies in object placement and inter-object relations. The unseen set contains 52 and 1,369 instances
respectively, and introduces entirely new tasks, not present in both the train and the seen sets. At test
time, agents are given only the current observation and goal, with no access to symbolic tools.

Baselines. For comparison, we organize the baselines into four categories: (i) Single-step planning,
including ZSP [30], RAP [69], and LLM-Planner [3], generates action plans in an inference step.
(ii) Agentic workflow, such as CoT [37], ToT [38], GoT [39], ReAct [4], and Reflexion [5], per-
forms multi-step reasoning through multiple LM calls. (iii) Memory-augmented LM, including
LongMem [12] and LM2 [15], incorporates long-term memory into the LM attention mechanism.
Optimus-2 [55] and DT-Mem [57] extend this approach for embodied agents. We also include BUT-
LER [70], a parameter-efficient fine-tuning method. (iv) Proceduralization such as BoT [28] stores
abstract reasoning templates in a meta-buffer and dynamically instantiates them to guide procedural
LM reasoning. Furthermore, Large Reasoning Model (LRM) [71] integrates CoT-style reasoning
through reinforcement learning, with compact variants distilled from larger models. PlaSma [72]
distills procedural knowledge from larger LMs into compact models. By default, we use LLaMA-3.2-
1B [73] for PDDLGym, and Qwen2.5-0.5B [74] for VirtualHome and ALFWorld.

Metrics. We use four standard metrics, following [30, 75, 76]. Cumulative Task Success Rate (CSR)
measures the percentage of tasks where all sub-goals are achieved. Cumulative Goal-Conditioned
Success Rate (CGC) reports the fraction of individual sub-goals achieved across all tasks. Executabil-
ity (Exe) assesses if each selected action is feasible. Success rate weighted by Path Length (SPL)
reflects both task success and path efficiency.

Further details of the experimental settings are provided in the Appendix.

5.2 Main Result

Open-loop continual embodied tasks. To evaluate the generalization performance of NESYPR on
open-loop continual task planning, we conduct experiments in Table 1 using multiple domains from
PDDLGym. In this setting, the agent generates a complete action sequence without intermediate
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Table 1: Performance on open-loop continual embodied tasks in PDDLGym. Metrics are averaged
over 9 random seeds, with standard deviations to indicate consistency across runs. PARAMS denotes
the total number of model parameters, with the ratio of trainable parameters in parentheses.

METHOD PARAMS
TRAIN TEST

CSR (↑) CGC (↑) EXE (↑) SPL (↑) CSR (↑) CGC (↑) EXE (↑) SPL (↑)

DOMAIN: MINECRAFT

ZSP 1.7B (0.0%) 76.4±5.5 81.7±4.8 100.0±0.0 0.8±0.1 16.4±1.5 35.9±2.0 100.0±0.1 0.1±0.0
RAP 1.7B (0.0%) 76.4±5.5 81.7±4.8 100.0±0.0 0.8±0.1 16.8±0.9 18.0±1.9 100.0±0.1 0.1±0.0
COT 1.7B (0.0%) 83.3±6.7 83.3±9.3 100.0±0.0 0.8±0.1 17.0±0.5 25.7±1.8 100.0±0.0 0.1±0.0
TOT 1.7B (0.0%) 85.1±4.2 85.7±3.7 100.0±0.0 0.9±0.0 18.7±1.0 32.2±2.6 100.0±0.0 0.1±0.0
GOT 1.7B (0.0%) 89.1±5.1 94.6±7.7 100.0±0.0 0.9±0.1 18.9±0.5 25.9±1.2 100.0±0.0 0.1±0.0
BUTLER 1.2B (0.6%) 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 51.4±1.9 56.7±2.6 99.7±0.3 0.4±0.0
LONGMEM 1.6B (24.6%) 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 53.3±3.7 56.3±4.1 99.8±0.1 0.5±0.0
LM2 1.3B (6.3%) 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 47.9±8.4 56.5±4.6 99.9±0.1 0.4±0.0
NESYPR 1.3B (6.3%) 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 65.2±1.4 68.9±2.4 100.0±0.1 0.6± 0.0

DOMAIN: REARRANGEMENT

ZSP 1.7B (0.0%) 94.2±3.8 97.6±1.2 100.0±0.0 0.9±0.0 15.3±2.1 22.4±3.4 100.0±0.0 0.1±0.0
RAP 1.7B (0.0%) 94.2±3.8 97.6±1.2 100.0±0.0 0.9±0.0 18.3±1.7 29.0±2.6 100.0±0.0 0.1±0.0
COT 1.7B (0.0%) 95.0±4.5 98.5±2.5 100.0±0.0 1.0±0.0 19.2±0.9 29.9±1.5 100.0±0.0 0.1±0.0
TOT 1.7B (0.0%) 95.0±6.3 99.5±1.2 100.0±0.0 1.0±0.1 20.2±1.2 33.9±1.4 100.0±0.0 0.2±0.0
GOT 1.7B (0.0%) 95.8±4.9 100.0±0.0 100.0±0.0 1.0±0.0 23.0±1.5 37.1±1.4 100.0±0.0 0.2±0.0
BUTLER 1.2B (0.6%) 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 56.5±2.0 69.8±2.9 100.0±0.0 0.5±0.0
LONGMEM 1.6B (24.6%) 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 58.2±1.9 69.9±1.4 100.0±0.0 0.5±0.0
LM2 1.3B (6.3%) 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 57.4±4.0 69.6±8.9 100.0±0.0 0.5±0.1
NESYPR 1.3B (6.3%) 100.0±0.0 100.0±0.0 100.0±0.0 1.0±0.0 73.5±3.0 80.8±1.0 100.0±0.0 0.7± 0.0

observations and receives only binary task feedback (success or failure) before proceeding to the next
task. NESYPR outperforms the strongest baseline, LongMem, in the Minecraft and Rearrangement
domains, achieving improvements of 13.6% in CSR, 11.7% in CGC, and 0.15 in SPL on the test set,
thereby demonstrating superior structured and adaptive reasoning capabilities. Similar performance
gains are observed in the GlibRearrangement domain as well. More experimental results are provided
in Appendix. The single-step planning baselines such as ZSP and RAP, which rely on in-context
retrieval-augmented generation [77], show limited reasoning capacity on unseen tasks. The agentic
workflow baselines such as CoT, ToT, and GoT, which use reasoning-guidance prompts crafted from
the train set [16], perform slightly better, but remain far from achieving reliable task success. The
memory-augmented LMs such as LongMem and LM2 surpass the fine-tuning baseline BUTLER,
but their average CSR on the test set is still 15.2% lower than that of NESYPR.

Closed-loop continual embodied tasks. To further evaluate the generalization performance of
NESYPR alongside its adaptability in dynamic settings, we conduct experiments under a closed-loop
continual task planning setup in VirtualHome and ALFWorld. The test set is divided into seen and
unseen sets, enabling a detailed assessment of the agent’s structured and adaptive reasoning capabil-
ities. Unlike open-loop settings, the agent selects actions sequentially in response to intermediate

Table 2: Performance on closed-loop continual embodied tasks in VirtualHome and ALFWorld.

METHOD
TRAIN SEEN UNSEEN

CSR (↑) CGC (↑) SPL (↑) CSR (↑) CGC (↑) SPL (↑) CSR (↑) CGC (↑) SPL (↑)

BENCHMARK: VIRTUALHOME

LLM-PLANNER 61.0±3.5 66.4±2.9 0.4±0.0 45.5±1.9 47.4±2.0 0.3±0.0 28.8±2.2 30.0±2.1 0.2±0.0
REACT 63.6±1.1 70.0±0.6 0.4±0.0 54.7±1.3 56.4±0.8 0.4±0.0 32.7±3.5 34.3±3.6 0.3±0.0
REFLEXION 60.8±5.9 68.8±5.5 0.4±0.0 57.2±3.8 61.6±5.4 0.4±0.0 33.7±2.5 35.3±2.1 0.3±0.0
LONGMEM 80.5±2.9 86.2±2.5 0.8±0.0 63.3±5.6 68.3±6.3 0.6±0.1 45.7±7.3 52.2±8.9 0.4±0.1
LM2 80.2±4.2 85.2±2.9 0.8±0.0 53.6±5.9 57.6±5.2 0.5±0.1 38.8±4.4 43.3±4.4 0.3±0.0
DT-MEM 77.3±3.8 80.8±4.8 0.7±0.0 69.3±5.7 71.9±5.9 0.7±0.1 48.7±5.9 52.6±6.0 0.5±0.1
OPTIMUS-2 79.3±5.4 83.9±4.0 0.8±0.1 70.4±4.4 74.0±3.4 0.7±0.1 44.0±6.1 50.9±7.3 0.4±0.1
NESYPR 89.8±1.9 92.3±1.1 0.9±0.0 78.9±4.5 81.7±2.5 0.8±0.0 61.1±2.2 69.3±2.6 0.6±0.0

BENCHMARK: ALFWORLD

LLM-PLANNER 52.4±2.6 68.1±2.0 0.5±0.0 14.0±0.8 21.7±0.7 0.1±0.0 3.3±0.4 11.7±0.5 0.0±0.0
REACT 46.3±1.5 65.3±1.1 0.4±0.0 12.8±0.5 21.4±0.6 0.1±0.0 2.9±0.2 11.6±0.2 0.0±0.0
REFLEXION 44.3±0.7 64.1±0.7 0.4±0.0 13.0±0.5 21.6±0.8 0.1±0.0 2.9±0.4 11.8±0.4 0.0±0.0
LONGMEM 50.1±3.1 58.6±2.4 0.5±0.0 48.6±0.6 57.3±0.7 0.5±0.0 45.2±0.8 54.5±0.8 0.5±0.0
LM2 63.8±1.5 71.5±1.4 0.6±0.0 42.6±2.4 46.9±2.0 0.4±0.0 38.7±2.1 45.2±2.5 0.4±0.0
DT-MEM 57.7±2.2 61.7±2.7 0.6±0.0 41.3±2.9 48.0±3.3 0.4±0.0 38.0±3.8 44.1±4.2 0.4±0.0
OPTIMUS-2 59.5±1.5 67.4±1.3 0.6±0.0 52.8±0.9 61.6±0.7 0.5±0.0 49.1±0.7 58.7±0.6 0.5±0.0
NESYPR 69.6±2.7 76.2±2.1 0.7±0.0 61.1±1.1 68.6±1.3 0.6±0.0 59.7±1.4 67.9±1.3 0.6±0.0
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observations. In Table 2, NESYPR outperforms the strongest baseline in VirtualHome, DT-Mem, with
average improvements of 12.5% in CSR and 11.5% in CGC on the train set, 9.6% and 9.8% on the
seen set, and 12.4% and 16.7% on the unseen set, respectively. In ALFWorld, NESYPR outperforms
the strongest baseline, Optimus-2, achieving average gains of 9.8% in CSR and 8.8% in CGC on
the train set, 8.3% and 7.0% on the seen set, and 10.6% and 9.2% on the unseen set, respectively.
Notably, the unseen sets show greater performance gains than the seen sets. Combined with an
average improvement of 0.12 in SPL, these results indicate that NESYPR performs effective symbolic
reasoning. In Appendix, additional results for each incremental configuration are provided, along
with complete baseline comparisons. Specifically, both LLM-Planner and agentic workflows such as
ReAct and Reflexion exhibit limited capability for symbolic reasoning across benchmarks. While
Reflexion leverages past experiences via verbal feedback, it appears to lack the robust reasoning
capabilities required in dynamic and complex tasks. Memory-augmented approaches for embodied
agents, such as DT-Mem and Optimus-2, outperform other baselines. Yet, NESYPR achieves higher
performance, surpassing both DT-Mem and Optimus-2 by an average of 11.2% in CSR and 11.6% in
CGC, showing the effectiveness of neurosymbolic proceduralization.

5.3 Analysis and Ablation

Table 3: Analysis on proceduralization. LATENCY denotes the agent’s planning time in seconds.
TOKENS denote the total number of input and output tokens used.

METHOD LM TASK PERFORMANCE REASONING LOAD

CSR (↑) CGC (↑) SPL (↑) LATENCY (↓) IN TOKENS (↓) OUT TOKENS (↓)

BOT
LLAMA3.1-8B 53.0±0.5 63.5±0.4 0.3±0.0 59.5±1.9 8007.9±103.9 1315.4±28.1
LLAMA3.1-70B 81.9±0.4 85.1±0.3 0.6±0.0 75.1±3.8 7651.0±127.7 794.1±33.4
GPT4.1 92.1±0.3 93.6±0.2 0.7±0.0 22.2±2.8 7986.1±144.2 1202.2±197.2

LRM
DEEPSEEK-R1-8B 11.5±0.3 15.6±0.3 0.1±0.0 111.0±3.3 3198.5±15.8 2187.6±69.0
DEEPSEEK-R1-70B 26.5±0.4 27.5±0.4 0.2±0.0 209.4±9.2 3198.5±15.8 1679.3±87.5
O3-MINI 78.9±0.4 80.8±0.4 0.5±0.0 18.6±1.7 3214.6±15.7 2113.9±63.2

PLASMA
LLAMA3.2-1B 67.4±0.5 71.9±0.4 0.7±0.0 2.7±0.5 3221.8±45.3 32.7±4.6
LLAMA3.2-3B 70.7±0.4 75.7±0.3 0.7±0.0 7.2±0.7 3247.7±17.2 29.5±5.5
LLAMA3.1-8B 80.5±0.5 89.2±2.3 0.8±0.0 18.4±5.8 3371.0±13.5 122.4±41.6

NESYPR
LLAMA3.2-1B 73.2±0.4 76.0±0.4 0.7±0.0 1.2±0.3 3168.5±0.0 30.1±5.3
LLAMA3.2-3B 83.6±2.0 88.8±2.0 0.8±0.0 3.5±0.3 3169.5±0.0 43.6±5.3
LLAMA3.1-8B 89.0±2.0 93.5±1.8 0.9±0.0 5.2±0.7 3155.5±0.0 41.9±6.0

Analysis on proceduralization. Table 3 presents a comparative analysis of our neurosymbolic proce-
duralization method to existing proceduralization methods, evaluated in terms of task performance
and reasoning efficiency, with a particular focus on enabling timely reasoning through single-step
inference. To ensure a fair comparison, we additionally include a unified setting in which all methods
are evaluated under identical inference conditions using the same LLaMA 3.1-8B backbone, high-
lighted in gray background in the table. NESYPR achieves the lowest average plan generation latency,
the highest task success rate, and the minimal input and output token usage. BoT and LRM exhibit
latencies that are 54.3 and 105.8 seconds longer than NESYPR, respectively, along with 6,125.9 and
2,188.7 more total tokens consumed, due to their reliance on multi-step reasoning. PlaSma, which
distills procedural knowledge from larger to smaller LMs, achieves competitive results with efficient
inference, reaching 80.5% in CSR using an 8B LM. Yet, NESYPR outperforms it with a higher CSR
of 83.6% while operating with only a 3B LM.

(a) Comparison under varying time constraints

Time constraint (s)

C
S

R

(b) Robustness to dynamic conditions

C
S

R

model

Figure 3: Comparison with symbolic planner
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Comparison with online symbolic planner. Figure 3 analyzes the impact of neurosymbolic pro-
ceduralization on automated decision-making in agents. Figure 3(a) compares the task success rate
of NESYPR and a symbolic planner under a strict time constraint, allowing 1% violation. For tasks
where the symbolic planner takes over 10 seconds to find a solution, NESYPR completes planning
within a 5-second constraint while achieving 50.6% in CSR. In comparison, the symbolic planner
takes up to 22 seconds to reach similar performance. Figure 3(b) evaluates robustness on unseen tasks
with dynamic conditions. While the symbolic planner fails when input information is incomplete,
NESYPR maintains stable performance and even outperforms ReAct using GPT-4o [78].

Table 4: Analysis on continual embodied task adaptation scenario. During continual task inference,
the entire test set is periodically evaluated across 15 intermediate continual evaluation phases.

METHOD METRIC
CONTINUAL EVALUATION PHASE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LONGMEM
SR (↑) 57.1 56.0 58.6 54.6 47.5 51.1 52.4 51.5 52.2 52.4 53.0 53.6 55.7 54.4 53.8

FWT (↑) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BWT (↑) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LM2

SR (↑) 64.3 52.0 55.2 57.6 52.5 53.3 50.8 50.0 49.3 48.8 49.4 50.0 52.3 52.2 51.6

FWT (↑) 0.0 0.0 0.0 0.0 -2.5 2.2 1.6 1.5 1.4 1.2 1.2 1.2 1.1 1.1 2.2
BWT (↑) 0.0 0.0 0.0 0.0 0.0 -4.4 -3.2 -3.0 -2.9 -2.4 -2.4 -1.2 -2.3 -1.1 -2.2

FR (↓) 0.0 0.0 0.0 0.0 9.1 8.0 6.1 5.9 5.7 4.9 4.8 4.7 4.3 4.2 4.0
RR (↑) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 2.4 0.0

NESYPR

SR (↑) 64.3 64.0 62.1 63.6 65.0 66.7 61.9 60.6 60.9 61.0 61.5 61.9 63.6 62.2 61.3

FWT (↑) 7.1 4.0 3.4 3.0 3.3 2.2 1.6 1.5 1.4 1.2 1.2 1.2 1.1 2.2 3.2
BWT (↑) 0.0 4.0 3.4 3.0 1.7 2.2 4.8 4.5 4.3 4.9 4.8 4.8 4.5 4.4 4.3

FR (↓) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RR (↑) 0.0 12.5 10.0 9.1 7.7 7.1 13.0 12.0 11.5 12.9 12.9 12.9 12.9 12.5 12.1

Analysis on continual task adaptation. Table 4 presents continual adaptation results, highlighting
NESYPR’s adaptive reasoning using metrics from continual learning [79]. Forward Transfer (FWT)
measures how newly acquired procedures improve performance on future tasks by comparing average
per-task SR with overall CSR. Backward Transfer (BWT) compares current CSR with that obtained
when re-evaluating earlier tasks using retained procedures. Forgetting Rate (FR) is the proportion of
previously successful tasks that fail upon re-evaluation, while Recovery Rate (RR) is the proportion
of previously failed tasks that later succeed. LongMem, which stores key-value states for retrieval,
shows no improvement in FWT and no degradation in BWT. In contrast, LM2, which implicitly
maintains a working memory to extend context, shows moderate improvement in FWT but fails
to preserve BWT. By leveraging both valid and invalid procedures, NESYPR achieves superior
performance in both FWT and BWT. Notably, its FR converges to zero, and it attains about 12.0%
RR, demonstrating effective adaptation without symbolic tools.

Task type 2 Task type 4

Code Id Code Id

Task type 1 Task type 3

Figure 4: Analysis on procedural memory interpretability

Analysis on procedural memory interpretation. Figure 4 shows a heatmap of procedure-unit c
(in Eq. (6)) usage across 4 task types and scenes. Task types 1 and 2 share similar solution and
exhibit consistent c usage patterns across different scenes. In contrast, task types 3 and 4 involve
object-specific actions (e.g., picking up or turning on items), which are more sensitive to scene
variations and lead to more divergent patterns.

Application with different LMs. Table 5 reports the performance of NESYPR using three LM
families across five model sizes [80, 81, 73, 82], evaluated on the Minecraft domain. Across all LMs,
NESYPR achieves an average CSR improvement of 10.0% over BUTLER. Performance generally
improves with model size, although the degree of improvement varies across different LM families.
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Table 5: Application with different LMs

METHOD LM CSR (↑) CGC (↑)

BUTLER QWEN2-0.5B 41.3±1.0 54.7±3.3
NESYPR QWEN2-0.5B 51.7±1.7 60.7±2.9
BUTLER LLAMA3.2-1B 51.4±1.9 66.7±2.6
NESYPR LLAMA3.2-1B 65.2±1.4 68.9±2.4
BUTLER QWEN2.5-1.5B 50.3±1.5 58.6±3.4
NESYPR QWEN2.5-1.5B 56.7±1.3 59.0±1.5
BUTLER GEMMA2-2B 57.5±1.3 59.9±0.5
NESYPR GEMMA2-2B 66.4±4.1 73.8±0.5
BUTLER LLAMA3.2-3B 64.2±1.2 73.8±2.5
NESYPR LLAMA3.2-3B 74.9±2.4 77.1±1.8

Table 6: Ablation study of NESYPR

METHOD CSR (↑) CGC (↑)

NESYPR (FULL) 65.2±1.4 68.9±2.4
NESYPR W/O EMA UPDATE OF C 63.0±3.1 64.8±3.7
NESYPR W/O C 47.9±8.4 56.5±4.6
NESYPR W/ M+ ONLY 63.2±1.3 65.1±2.4
NESYPR W/ M− ONLY 63.3±1.4 66.4±2.5
NESYPR W/O CP 59.9±1.4 62.9±2.4
NESYPR W/O CP, FOLLOW M+ 60.9±1.1 64.4±2.2
NESYPR W/O CP, FOLLOW M− 59.7±1.4 62.2±2.3

Ablation study. Table 6 presents an ablation study that evaluates the contribution of each component
in NESYPR, using Minecraft. Using the procedure-book C without EMA updates (i.e., NESYPR
W/O EMA UPDATE OF C) results in a performance drop of 2.2% in CSR and 4.1% in CGC. When C
is removed entirely (i.e., NESYPR W/O C), the performance drops by 17.3% in CSR and 12.4% in
CGC, demonstrating the importance of a learned C. Models using only successful proceduresM+

(i.e., NESYPR W/M+ ONLY) or only failure proceduresM− (i.e., NESYPR W/M− ONLY)-where
the original composed procedure is used as the counterpart in contrastive planning, perform 2.0%
and 1.9% worse in CSR, respectively, compared to the full version. Disabling contrastive planning
(i.e., NESYPR W/O CP) leads to a further performance drop of 5.3% in CSR. Without CP, simply
following eitherM+ orM− (i.e., NESYPR W/O CP, FOLLOWM+ and NESYPR W/O CP, FOLLOW
M−) leads to less reliable plan generation, with CSR reductions of 4.3% and 5.5%, respectively.

Low Middle High

(a) Hyperparameter sensitivity (b) Data efficiency
Train dataset size

C
SR

C
SR

Figure 5: Ablation study on procedural memory hyperparameters and learning data efficiency

Hyperparameter sensitivity and data efficiency. Figure 5(a) shows that a small size of C limits
task coverage, while a sufficiently large one enables consistently high performance. In contrast,
increasing the size of each procedure-unit c reduces diversity in the composed procedures, leading to
performance degradation. We also observe that setting a low reconstruction threshold υ causes over-
generalization by accepting low-similarity procedures, while a high υ leads to under-generalization by
rejecting valid ones. Figure 5(b) shows the data efficiency of each method by reporting task success
rates across varying training dataset sizes. NESYPR consistently achieves higher CSR with less data,
indicating superior learning efficiency compared to BUTLER and DT-Mem.

6 Conclusion

We presented the NESYPR framework that employs neurosymbolic proceduralization inspired by
ACT theory. It performs knowledge compilation by abstracting and generalizing multi-step symbolic
path-finding and reasoning into single-step inference within an LM. This enables LM-based agents to
conduct embodied reasoning efficiently, without relying on large-scale inference engines or online
access to symbolic tools. Experimental results on PDDLGym, ALFWorld, and VirtualHome show
that NESYPR enables structured, adaptive, and timely reasoning in dynamic embodied environments.

Limitation and future direction. As shown in Table 5, NESYPR’s performance partially depends
on the pretrained knowledge of the LM. To mitigate this, we plan to explore a joint learning strategy
that combines knowledge distillation from larger LMs with neurosymbolic proceduralization. This
approach has the potential to enhance generalization to more complex, real-world scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include implementation details in Appendix, and include source codes in
supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We include the source codes in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars for all experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We include information on the computer resources in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: We use LLM for the baselines and proposed method. Detailed implementations
are described in Appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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