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Analysis of Performance Improvements and Bias Associated

with the Use of Human Mobility Data in COVID-19 Case

Prediction Models
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The COVID-19 pandemic has mainstreamed human mobility data into the public domain, with research

focused on understanding the impact of mobility reduction policies as well as on regional COVID-19 case pre-

diction models. Nevertheless, current research on COVID-19 case prediction tends to focus on performance

improvements, masking relevant insights about when mobility data does not help, and more importantly,

why, so that it can adequately inform local decision making. In this article, we carry out a systematic analysis

to reveal the conditions under which human mobility data provides (or not) an enhancement over individual

regional COVID-19 case prediction models that do not use mobility as a source of information. Our analysis—

focused on U.S. county-based COVID-19 case prediction models—shows that (1) at most, 60% of counties

improve their performance after adding mobility data; (2) the performance improvements are modest, with

median correlation improvements of approximately 0.13; (3) improvements were lower for counties with

higher Black, Hispanic, and other non-White populations as well as low-income and rural populations, point-

ing to potential bias in the mobility data negatively impacting predictive performance; and (4) different mo-

bility datasets, predictive models, and training approaches bring about diverse performance improvements.
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Information systems→ Location based services;
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1 INTRODUCTION

The COVID-19 pandemic has mainstreamed human mobility data into the public domain and

beyond academic networks. During the early stages of the pandemic, the importance of limiting

mobility to contain the epidemic became evident, with cities, states, and countries taking

various non-pharmacological interventions focused on mobility, such as national lockdowns or
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work-from-home approaches [10, 36]. To evaluate the effect of these interventions, public health

experts, the CDC, city departments, and journalists explored the use of mobility data that, at

the time, was made open and freely available. Companies like Apple, Google, SafeGraph, and

Descartes shared different types of aggregated mobility datasets to characterize behaviors such

as the volume of visits to specific places (e.g., schools, workplaces, or restaurants), the volume

of trips between regions (e.g., trips between two counties), or the volume of trips by type of

transportation (e.g., driving vs. public transit).

Beyond understanding the impact of mobility reduction policies, the increased access to mobil-

ity data sources has also supported research on regional COVID-19 case prediction models, with

the assumption that how people moved within a region in the past could potentially provide ad-

ditional information about how people become infected in the future. COVID-19 case prediction

models focus on providing regional-level estimates for future cases in both the short and long

term via lookahead analysis performance—that is, measuring region-level prediction performance

for various temporal windows such as daily, weekly, or monthly [27]. For example, researchers

have shown that SafeGraph data can help predict weekly COVID-19 cases at the county level

in the United States, providing higher accuracy when compared to non-mobility baselines [35].

There exist a wide variety of models to predict regional COVID-19 cases, including epidemiologi-

cal [6, 25, 52], machine learning [17, 33, 47], and statistical models [17, 27]. In this article, we focus

on statistical models (linear regression and ARIMA) because we are interested in the deployment

of models that are interpretable by decision makers rather than implementing black box predictive

approaches that are harder to explain [42].

Nevertheless, there are several gaps in the current state of the art in regional COVID-19 case

prediction using mobility data. First, performance results—measured as RMSE or correlation

between actual and predicted regional COVID-19 cases—are reported as averages across regions,

masking individual region-level performance, which is critical to inform local interventions and

policies [27]. For example, past research has shown that mobility data enhances COVID-19 case

predictions, on average, across counties in the United States; however, that average might be mask-

ing counties for which it did not work [9, 33]. Second, performance results are often not compared

against non-mobility baselines, making it hard to measure the effectiveness of adding mobility

data to the prediction model [9, 33, 47]. Third, prior work has shown that mobility data might

suffer from sampling bias whereby certain demographic groups (e.g., Black, elder, and low-income

individuals) can be under-represented in the data due to lower smartphone and cell phone owner-

ship rates [7, 43]. Nevertheless, prior work focused on building COVID-19 case prediction models

tends to ignore the bias present in the mobility data, which in turn might affect the performance of

regional COVID-19 case prediction models depending on the population of that region [27, 33, 34].

Fourth, current approaches tend to provide narrow evaluations, focused on a few models, or on

one or a few mobility datasets, with little research broadly looking into the impact of different

prediction models, mobility datasets, and training approaches that use more or less data, on model

performance. Given (1) the high cost of acquiring human mobility data for COVID-19 prediction

purposes, now that it is no longer freely accessible, and (2) that COVID-19 case predictions are go-

ing to be used to assess non-pharmacological interventions such as mobility reduction, or vaccine

distribution at the local level, we posit that it is critical to understand the conditions under which

mobility data helps (or not) at the individual regional level so that it can adequately inform local

decision making.

In this article, we aim to analyze the conditions under which human mobility data provides an

enhancement over individual regional COVID-19 case prediction models that do not use mobility

as a source of information. Our main objective is to inform regional decision makers about the

potential of region-level COVID-19 case prediction models that use mobility data, which we posit
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should be well understood given the high cost of human mobility data. The main contributions of

this work are the following:

• Focusing on U.S. counties, we evaluate the number of counties that benefit from adding mo-

bility data and quantify the improvements. Our analyses show that, at most, 60% of counties

improve their performance over non-mobility baselines, and that those improvements are

modest, happening mostly for longer-term predictions. Looking into the counties that bene-

fit from adding mobility data, 50% of those counties show modest correlation improvements

of at most 0.1 and 25% show correlation improvements of at most 0.3.

• We present and discuss an approach to assess whether mobility data bias—characterized by

demographic and socio-economic characteristics of each county—might explain the differ-

ences in the performance of COVID-19 prediction models across counties. We show that

correlation improvements were lower for counties with higher Black, Hispanic, and other

non-White populations as well as low-income and rural populations, pointing to potential

bias in the mobility data negatively impacting predictive performance.

• We analyze whether the differences in the performance of mobility-based models over non-

mobility baselines vary depending on the mobility datasets, the predictive model, or the train-

ing approach. Our results reveal that the improvements brought about by mobility data are

similar across mobility datasets, albeit with slightly better values for Apple and SafeGraph;

linear regressions are associated with larger improvements; and the training approach might

also affect the scale of the improvements.

2 RELATED WORK

2.1 Human Mobility Data and COVID-19 Case Predictions

Human mobility data has been used in the past to model and characterize human behaviors in

the built environment [12, 21, 41, 46, 51], to support decision making for socio-economic de-

velopment [11, 13, 14, 16, 22], for public safety [49, 50], as well as during epidemics and disas-

ters [3, 19, 23, 24, 28, 48]. During the COVID-19 pandemic, human mobility has also played a

central role in driving decision making, for example, with social distancing policies significantly

reducing the spread of the virus [2].

Related work has shown that COVID-19 case prediction models can be enhanced using human

mobility data when compared to non-mobility baselines [5, 27, 35]. For example, Ilin et al. [27]

analyzed the use of mobility data to forecast COVID-19 cases using interpretable statistical

models like regressions [27]. Working at various spatial scales (from county to state to country),

the authors revealed that adding mobility data significantly helps decrease the mean percentage

prediction error, and that the improvements were higher for longer forecasting lengths. Neverthe-

less, a significant amount of papers focused on COVID-19 case prediction using mobility data fail

to compare model performance against non-mobility baselines [9, 33]. More importantly, several

papers have revealed settings in which mobility data did not help. For example, Curtis et al. [8] and

Venter et al. [45] found only a small correlation between COVID-19 cases and mobility in parks and

natural areas (blue-green spaces), and Mehrab et al. [34] showed that the performance of mobility-

based prediction differed considerably across 50 U.S. counties that correspond to land-grant

universities.

Human mobility data is generally collected from smartphones and cell phones; however, due to

the differences in access to that technology, not all individuals are equally represented in mobility

datasets. In fact, prior work has shown that, for example, Black and elder individuals were under-

represented in SafeGraph’s dataset for the state of North Carolina [7]; wealthier individuals tend to

be over-represented in cell phone data from several countries, including Sierra Leone or Iraq [43];
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and the relationship between COVID-19 cases and mobility is stronger in urban areas than in rural

areas [32]. Given this evidence, we posit that the sampling bias found in mobility data might also

affect the performance of regional COVID-19 case prediction models.

In this article, we aim to provide a much needed systematic analysis to evaluate the conditions

under which mobility data can enhance county COVID-19 case prediction models, and to quantify

by how much when compared to non-mobility baselines. Thus, we will extensively evaluate

performance across types of prediction models, temporal prediction windows (lookaheads), mo-

bility datasets, training-testing approaches, and county-level demographic and socio-economic

characteristics associated with potential mobility data bias that could affect performance.

2.2 COVID-19 Prediction Models

A wide variety of models exist to predict regional COVID-19 cases, including epidemiological,

machine learning, and statistical models. Epidemiological models, such as SEIR and SIR models,

have been used to predict infection rates, and in certain cases, related work has shown that the

models can be improved with human mobility data characterizing how people (agents) travel and

might infect others [6, 25, 52]. However, SEIR/SIR models have a number of pitfalls, such as the

large number of parameters that need to be adjusted [54], or the complexities of adding mobility

responses of the population as a function of time and space [40]. For example, Roda et al. [40] found

simpler SIR models to be more effective in predicting COVID-19 cases than the more complex SEIR

models.

A number of machine learning techniques have also been widely applied for regional COVID-19

case prediction with mobility data, including tree-based and K-nearest neighbors models [33].

Furthermore, several works [17, 47] make use of a range of deep learning architectures, including

sequential models like long short-term memory (LSTM) [35], gated recurrent units (GRUs), and

recurrent neural networks (RNNs) [20], as well as spatio-temporal models like graph neural

networks (GNNs) [31]. Some researchers have also incorporated static and dynamic mobility

flows—characterizing average and daily mobility patterns between regions—as well as friendship

networks to understand the spatio-temporal dependencies between regions that might affect

infection rates and which could inform the prediction of regional COVID-19 cases [15, 47].

Statistical models have also been popular for predicting COVID-19 cases because they are

transparent and simple to interpret, which is highly important for decision makers; these models

can also easily incorporate mobility data along with other features. Statistical models such as

autoregressive time series and linear regression have been used for COVID-19 case prediction

showing that—early on during the pandemic—mobility data improved non-mobility baselines

across countries, states, and other administrative levels [17, 27]. In this article, we focus on

statistical models (linear regression and ARIMAX) because we are interested in the deployment of

models that are interpretable by decision makers rather than implementing black box predictive

approaches that are harder to explain [42].

3 DATASETS

To assess the effectiveness of mobility data on county-level COVID-19 case prediction models,

we evaluate model performance across nine mobility datasets from four different companies:

SafeGraph, Google, Descartes, and Apple. We describe each of the COVID-19 and mobility

datasets in detail. All datasets used in this work were freely available during the onset of the

pandemic. We focus on the period from March 18, 2020 to November 30, 2020 (258 days): the

former marks the start of the consistent case data availability in the United States and the latter

the date when vaccines were introduced (the Pfizer-BioNTech COVID-19 vaccine was made

available on December 11, 2020). We focus on the pre-vaccine period to prevent immunity levels
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from acting as a confounder, since the relationship between mobility and infections post-vaccines

is less clear in the literature [18].

COVID-19. We use the COVID-19 case data compiled by the New York Times1 at the county

level. To account for peaks in daily COVID-19 case counts due to delayed reporting, we use the

7-day daily rolling average of COVID-19 cases (computed as the average of its current value and

the prior 6 days) instead of raw counts. We acknowledge that especially during the early stages

of the pandemic, case numbers might not be reflective of the actual spread of COVID-19, in large

part due to the lack of testing resources [39].

SafeGraph. Curated by tracking the movements of millions of anonymized users via mobile app

SDKs, SafeGraph2 open sourced the mobility patterns of app users at the onset of the pandemic.

Based on the data available, we use two types of features from SafeGraph datasets: daily O-D

flows [30] and daily visits to Points of Interest (POIs). O-D (county-to-county) flows represent

daily volumes of trips between pairs of counties across the United States, whereas visits to POIs

represent the daily volume of visits to grocery stores, restaurants, religious organizations, and

schools in a given county. For O-D flows, we retrieve from SafeGraph both Inflows (i.e., incoming

flows to county D from county O) and outflows (i.e., outgoing flows from county O to county D).

All mobility features are measured as changes in volumes with respect to a baseline of normal

behavior computed by SafeGraph using mobility data from February 17, 2020 to March 7, 2020.

Google. Google3 collects mobility data from users who have the location data collection option

selected. During the pandemic, Google provided daily county-level mobility scores across different

POI categories including parks, residential areas, and transit stations. Mobility scores are calculated

as the ratio between the volume of visits on a given day during the pandemic and the volume of

visits during a pre-pandemic baseline, with the baseline computed by Google as the median value

for each day of week in the 5-week period from January 3, 2020 to February 6, 2020. Among all

POI available, we selected workplace, the category with the greatest number of counties with daily

data availability in our chosen time period.

Descartes Labs. This mobility data from Descartes Labs4 is calculated using geolocation data

from mobile devices and captures the median of the maximum distances traveled by individuals in

each county each day. As with Google, this median is converted by Descartes to a ratio of pandemic

mobility to baseline pre-pandemic mobility.

Apple. The mobility data of Apple5 is collected from Apple Maps, and divides its categories by

transportation method: driving, walking, and transit. We selected the driving category to measure

the volume of individuals driving on a daily basis at the county level, because, similar to Google,

this category had more consistent daily data availability than other categories.

Across all datasets, we only consider counties that have COVID-19 case data and mobility data

available daily throughout the time period of study. Table 1 shows the number of counties that fit

this criteria for each dataset; notably, Google has by far the fewest counties with 990 out of the

total 3,143 U.S. counties being represented.

4 METHODOLOGY

In this article, we aim to provide a much needed systematic analysis to evaluate the conditions

under which mobility data can enhance county COVID-19 case prediction models, and to quantify

by how much when compared to non-mobility baselines. Our main objective is to inform regional

1https://github.com/nytimes/COVID-19-data
2https://www.safegraph.com/
3https://www.google.com/covid19/mobility/
4https://github.com/descarteslabs/DL-COVID-19
5https://covid19.apple.com/mobility
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Table 1. Number of Counties Considered for Each Mobility Dataset

Mobility Dataset County Count

Apple 2,064

Descartes 2,551

Google 990

SafeGraph Inflows 3,116

SafeGraph Outflows 3,116

SafeGraph POI (Grocery Stores) 3,065

SafeGraph POI (Religious Organizations) 3,076

SafeGraph POI (Restaurants) 3,091

SafeGraph POI (Schools) 3,084

decision makers about the potential and pitfalls of COVID-19 case prediction models that use

mobility data, given the high cost of acquiring such data. Next, we describe the prediction models

we evaluate and their parameter adjustment, the training-testing approaches, and the overall

evaluation approach.

4.1 Prediction Models

As described in Section 2, we consider two types of predictive models commonly used by decision

makers due to their interpretability: linear regressions and time series. In contrast to more complex

epidemiological models that are hard to tune due to their parametric nature, and to deep learning

models with black box architectures, linear models and time series are easier to interpret providing

decision makers with the ability to clearly explain their policies [40, 42, 54].

To evaluate the effectiveness of mobility data in the prediction of county-level COVID-19 cases,

we analyze the performance of linear regressions and time series using (1) only past county-level

COVID-19 case data as an independent variable to predict future COVID-19 cases (these are the

non-mobility baselines) and (2) both past county-level COVID-19 case data as well as county-level

mobility data as independent variables, with the assumption that how people moved in the past

could potentially provide additional information about how people get infected in the future. Both

non-mobility baselines and mobility-based models will be evaluated across five different temporal

prediction windows (a.k.a. lookaheads): 1-day, 7-days, 14-days, 21-days, and 28-days. Next, we

provide further details for each predictive model, and in Section 4.4, we discuss details about the

parameter tuning.

4.1.1 Linear Regression. We train one linear regression model per county and lookahead. For

the non-mobility baselines, the number of county-level COVID-19 cases for a given lookahead is

predicted using the COVID-19 cases from the previous lookahead value—for example, for looka-

head 1, the COVID-19 cases in day x are used to predict cases for day x+1, whereas for lookahead 14,

the COVID-19 cases in day x are used to predict cases in day x+14. For mobility-based models, the

number of county-level COVID-19 cases for a given lookahead is predicted using (1) the COVID-19

cases from the previous lookahead value as well as (2) the 10-day lagged mobility features—that

is, the mobility features from day x are used to predict COVID-19 cases for day x+10, since the

infection gap (the incubation period from exposed to being able to spread the virus) has been as-

sociated with that lag by many reports in the literature [17, 27, 53]. Lagged mobility data is only

included in the mobility-based models that will be compared against the non-mobility baselines.

4.1.2 ARIMAX. We train one ARIMA time series forecasting model per county and use it to

predict county-level COVID-19 cases for all five lookaheads. Similarly to linear regression, we

ACM Journal on Computing and Sustainable Societies, Vol. 1, No. 2, Article 16. Publication date: December 2023.
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Fig. 1. Training-testing approaches for LTW and STW. The LTW approach for linear regression is not repre-

sented because it is the standard 70/30 approach.

train non-mobility baselines exclusively with COVID-19 case time series, whereas mobility-based

models incorporate 10-day lagged mobility data series. Mobility data is incorporated using ARI-

MAX models that allow to add exogenous covariates into time series forecasting models. ARIMAX

forecasting models have three components that function as parameters: (1) p (autoregressive

order, AR) indicates the number of lag observations that the dependent variable regresses with

in the model, (2) d (integrated order, I) represents the number of times the time series needs

to be differenced to achieve stationarity, and (3) q (moving average, MA) represents the size

of the moving average window that models the relationship between the error terms of the

moving average model and the lagged observations. We discuss the tuning of these parameters in

Section 4.4.

4.2 Training-Testing Approaches

To explore the conditions under which mobility helps in improving predictive performance, we

aim to test two different training-testing approaches that have been used in the literature: the

Long Training Window (LTW) approach and the Short Training Window (STW). The STW

approach focuses on the use of small training datasets to test prediction accuracy for the next

28 days (lookaheads 1, 7, 14, 21, and 28), whereas the LTW approach uses much larger training

datasets to predict values for the five lookaheads. Given the high cost of acquiring human mobil-

ity data—in fact, none of the companies described earlier offer their data for free anymore—the

objective of evaluating these two training approaches is to understand the impact of cost on the

performance of COVID-19 prediction models (i.e., buying more (LTW) versus less mobility data

(STW)). Next, we explain the implementation of LTW and STW for linear regression and ARIMAX

models (also depicted in Figure 1).

4.2.1 Linear Regression. The LTW approach creates one regression model per lookahead per

county, trained on the first 70% of days in our dataset and tested on the remaining 30%. This

splitting approach is consistent across lookaheads, easing interpretability, but also meaning that

the split is not exactly 70/30 for each lookahead—that is, at higher lookaheads, the training set

becomes smaller while the testing set remains the same size. The STW approach uses a 60-day

sliding window for the training set and a sliding 28-day window for the testing set (smaller train-

ing sizes produced extremely low performing results and were not considered). Unlike the LTW

approach, the testing set consists of one date for each lookahead (1 day after the end of the training

set, 7 days after, etc.). Results are reported by averaging performance metrics across all testing

datasets.

ACM Journal on Computing and Sustainable Societies, Vol. 1, No. 2, Article 16. Publication date: December 2023.
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4.2.2 ARIMAX. The ARIMAX LTW approach uses an expanding window protocol [26, 38]

that first trains ARIMAX with a data window that expands over 70% of the entire time series

and is tested for the next 28 days to evaluate accuracy per lookahead. After that, the training

data window is expanded by 1 day at a time, without dropping older data points, and tested for

subsequent 28-day windows to assess accuracy at each lookahead. However, the STW adopts

a sliding window approach [38] whereby the training window length remains fixed at each

train-test step with a length of 60 days. Each training window is computed by shifting by one

with respect to the prior window, effectively discarding older data points. Results are reported by

averaging performance metrics across all testing datasets.

4.3 Model Performance

We measure individual county prediction performance as the correlation between the predicted

volume of COVID-19 cases for that county and its actual case numbers retrieved from the

COVID-19 official report dataset. To assess the effectiveness of enhancing COVID-19 case

prediction models with mobility data, we will report the correlation improvement (ci) of the

mobility-based models over non-mobility baselines. Given that the only difference between

mobility-based models and non-mobility baselines is the mobility data, we posit that ci allows us

to measure the effectiveness of using mobility data in COVID-19 predictive settings. Specifically,

we compute ci as ci = pcorr_Mobility − pcorr_Baseline with pcorr_Mobility representing

model performance (correlation) when mobility data is used and pcorr_Baseline measuring the

correlation when no mobility data is used in the COVID-19 case prediction model. Given that

correlation values go between –1 and +1, ci will be within the (−2, 2) range.

4.4 Adjusting Predictive Models

To identify the best linear regression implementation, we computed the average performance

of Ridge, Lasso, ElasticNet, and OLS trained with and without mobility data for each lookahead

and training approach (LTW and STW), and across all mobility datasets. We then selected the

implementation with the majority of best performance values: Ridge for LTW and ElasticNet for

STW. Appendix Table 7 shows the detailed numbers. However, the optimal p, d, and q values for

the LTW and STW ARIMAX models were chosen based on a grid search and the minimum Akaike

information criterion value. The p, d, and q values were selected across lookaheads, and the same

values were used for mobility-based models and non-mobility baseline models for comparison

analyses. Appendix Table 14 shows a summary of the p, d, and q values identified across all

counties.

4.5 Evaluation Approach

To analyze the conditions under which mobility data provides (or not) an enhancement over

county-level COVID-19 case prediction models that do not use mobility as a source of informa-

tion, we propose to carry out the following analyses (results are presented in Section 5).

In Section 5.1, we analyze the number of counties for which mobility data improved the individ-

ual prediction performance of non-mobility baselines, and we quantify the improvements, with a

focus on models trained with the LTW approach. In Section 5.2, we delve into the demographic

and socio-economic characteristics of these counties to assess if mobility data bias—whereby

certain demographic groups are over- or under-represented in the data—might explain the

differences in the performance of COVID-19 prediction models across counties. We also analyze

whether the differences in the performance of mobility-based models over non-mobility baselines

across counties vary depending on (1) the training approach (STW versus LTW (in Section 5.3)),

(2) the mobility datasets used (10 different data sources (in Section 5.4)), and (3) the predictive
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Fig. 2. Percentage of counties for which adding mobility data to the COVID-19 case prediction model im-

proves the prediction performance (ci ≥ 0). Results are for the LTW approach.

model (linear regression vs. ARIMAX (in Section 5.5)). As stated earlier, our main objective is

to bring light into the use of mobility data in county-level COVID-19 case prediction models,

to understand when it works (or not), and why, so as to inform decision makers assessing

effectiveness-cost tradeoffs given that mobility data is not freely accessible.

5 RESULTS AND ANALYSIS

5.1 Does Mobility Data Help, and by How Much?

Figure 2(a) and (b) show the percentage of counties for which the prediction performance of

mobility-based models improves over its corresponding non-mobility baselines for ARIMAX

and Ridge regression models, respectively, using the LTW approach (a comparison with STW

is discussed in Section 5.3). In other words, these plots show the percentage of counties for the

correlation improvement ci > 0. These plots show several important insights: (1) incorporating

mobility data into county-based COVID-19 case prediction models helps in, at most, 60% of the

counties analyzed, leaving at least 40% or more of the other counties with prediction performances

lower than their non-mobility counterparts (i.e., mobility data is frequently hurting prediction

performance), and (2) mobility data appears to help more in longer-term predictions (lookaheads

14, 21, and 28) than in shorter-term predictions—that is, in the short term, COVID-19 statistics

are generally informative enough and provide predictions that are more accurate than those

when mobility data is added to the model, whereas for longer lookahead predictions, adding

mobility data to predictive COVID-19 case models provides additional information that frequently

improves the predictive accuracy of the non-mobility baseline models. This trend appears clear

in the ARIMAX model, whereas for Ridge, it is more apparent for the Descartes dataset and for

SafeGraph inflow and outflow datasets.

We have shown that adding mobility data to COVID-19 case prediction models improves their

performance for, at most, 60% of the counties, across datasets, models (ARIMAX and Ridge) and
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Fig. 3. Correlation improvements (ci) and baseline correlation distributions (non-mobility) across lookaheads

for ARIMAX with the LTW approach using Apple mobility data (a) and SafeGraph Inflow mobility data (b).

lookaheads for the LTW approach. Next, we aim to quantify the performance improvement—that

is, does mobility data produce small or large prediction improvements when compared to non-

mobility baselines?

Quantifying Improvements. For this analysis, we look into two metrics per dataset and model:

(1) the distribution of the county correlation coefficients ci for each lookahead, to explore the corre-

lation improvements brought about by adding mobility data to the county prediction models (since

we are assessing the improvement over non-mobility baselines, only counties with correlation im-

provements are considered), and (2) to contextualize these numeric improvements, we also look

into the distribution of the correlations (between predicted and actual cases) for the non-mobility

baseline models, and only for the counties that showed a correlation improvement so as to match

the distributions in the first metric. By analyzing both the improvements brought about by adding

mobility data, and by comparing these improvements with the actual baseline correlations, we are

able to provide nuanced insights about when mobility data aids COVID-19 case prediction models.

In this section, we focus on the LTW approach. Discussions about differences across training ap-

proaches, datasets, and models will be covered in Sections 5.3, 5.4, and 5.5. Figures 3 and 4 show an

example of the distribution of the county correlation improvement (ci) and the distribution of the

non-mobility baseline correlation values for Ridge and ARIMAX, respectively, across lookaheads

and using the LTW approach. For clarity purposes, both figures only show distributions for Apple

(a) and SafeGraph Inflow (b) datasets. Plots for the remaining datasets can be found in the appendix

(see Appendix Figures 6 and 7).

The correlation improvements (ci) across datasets show that median ci values are between 0.0

and 0.1—that is, for counties where adding mobility data improves the prediction accuracy, it does

so by a maximum of 0.1 for 50% of the counties, across models (Ridge/ARIMAX), datasets, and

lookaheads (see Figures 3 and 4 as a sample trend, and Appendix Figures 6 and 7 for the full spec-

trum trend)—with the largest correlation improvements associated with higher lookaheads. These

are modest correlation improvements that might not change the strength of the non-mobility base-

line correlation—for example, a baseline moderate correlation of 0.5 will still be moderate after a
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Fig. 4. Correlation improvements (ci) and baseline correlation distributions (non-mobility) across lookaheads

for Ridge regression with the LTW approach using Apple Mobility data (a, b) and SafeGraph Inflow Mobility

data (c, d).

0.1 improvement [1]. Looking at upper quartile values (Q3), we observe slightly better correlation

improvements in the 0.0 to 0.4 range, with the majority of Q3 values under 0.3, across models,

datasets, and lookaheads, revealing ci values that could improve correlation strengths. Maximum

values (Q4) are in the 0 to 0.9 range across models, datasets, and lookaheads, with the majority

of maximum values under 0.5, and outliers can reach correlation improvement values of up to

1.9. These less frequent, and extreme, correlation improvements point to situations were negative

baseline correlations—from the non-mobility models—are being changed to positive correlations,

revealing counties where adding mobility helps reverse bad-performing models to good ones, al-

though these large improvements happen only for a handful of counties.

The correlation improvement plots also show that for higher lookaheads, the median value

and the right skewness of the correlation improvement also increases across datasets and models.

This finding shows that adding mobility data to COVID-19 prediction models produces better

better-performing models over non-mobility baselines for longer-term predictions, whereas short-

term prediction models (next day) barely benefit from adding mobility data, with correlation

improvement values close to zero. We posit that this might be due to the fact that non-mobility

baselines achieve high correlations for lower lookaheads, making it very hard to improve the

baselines when adding mobility data. The baseline correlations plots in Figures 3 and 4 (as well

as Appendix Figures 6 and 7) show that correlations for non-mobility baselines and lookahead 1

(next-day prediction) have median values of at least 0.9, whereas for higher lookaheads (21 and

28), we observe that non-mobility baselines have much lower correlations, with median values in

the range (−0.21, 0.21).
In summary, these findings show that mobility data helps, at most, in 60% of the counties in the

datasets analyzed, and that correlation improvements range from minimal for next-day predictions

to small for higher lookaheads, with 50% of the counties showing modest correlation improvements

of at most 0.1 and with 25% of the counties showing correlation improvements of at most 0.3.

Larger outlier improvements of up to 1.9 in higher lookaheads are found for a handful of counties.
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5.2 What Types of Counties Benefit from Mobility Data? A Mobility Data Bias Analysis

As stated in Section 1, we hypothesize that a major reason adding mobility data is not helping to

improve the accuracy of COVID-19 case prediction models in many more counties might be the

bias present in the mobility data—that is, counties with large percentages of racial minority, elder,

or low-income populations might be under-represented in the mobility datasets, thus negatively

impacting the prediction performance [7, 43]. To assess that hypothesis, we carry out regression

coefficient analysis for each mobility dataset and predictive model using demographic and socio-

economic county characteristics as independent variables and the positive correlation improve-

ments across lookaheads as the dependent variable. Our analysis will reveal the statistically sig-

nificant associations of demographic and socio-economic features with correlation improvements,

and the direction of that association (positive or negative).

Based on prior work on mobility data bias, we consider the following demographic and socio-

economic county variables from the 2019 Census data: age 65+ (percentage of county residents

age 65 or older), income (median household income for that county), Black (percentage of county

residents that identify as Black), Hispanic (percentage of county residents that identify as Hispanic),

race-Other (percentage of county population that identifies as not White, Black, or Hispanic), and

urban-rural (National Center for Health Statistics (NCHS) Urban-Rural Classification from 1 to 6,

where 1 is Large Central Metro and 6 is Non-core (extreme rural)). We also consider—as independent

variables in the regression model—all possible paired interactions between the variables described

by multiplying the values of each pair of variables and by standardizing them. For interaction

interpretability, we also ensure that higher values for each feature match with our hypothesis for

lower performance. Thus, we change the directionality of the income by negating its values to

match our hypothesis that lower income might be associated with worse coverage of mobility

data and thus worse performance (all other features stay the same).

Finally, we would like to clarify that the COVID-19 case data itself might also suffer from

different types of bias due to inaccurate data collection processes [43]. Nevertheless, since that

bias affects both mobility-based and non-mobility baseline models, and since we are looking at

the correlation improvement differences between the two, we can claim that any performance dif-

ferences observed can be attributed to the mobility data, which is the only difference between the

two models. Next, we discuss the demographic and socio-economic variables that were found to be

statistically significantly related to correlation improvements for the Ridge and ARIMAX models

with the LTW training approach (results for the STW approach will be discussed in Section 5.3). A

detailed presentation of the coefficients and their significance can be checked in Appendix Tables 8

and 10.

Findings. For the Ridge model, we observe that the percentage of Black and Hispanic pop-

ulation, rurality, and age above 65 years are significantly and negatively related to correlation

improvements across most datasets—that is, counties with higher percentages of minority race

and ethnicity, rural, or elder populations benefit less from the addition of mobility data, with

increases in these populations related to lower performance improvements over the non-mobility

baselines. We posit that this is probably due to potential sampling bias in the mobility datasets,

with under-representation of race, ethnicity, old age, and rurality in mobility datasets pointing to

worse overall predictive performance. Lower income, however, was significantly positively asso-

ciated with higher correlation improvements when mobility was added to individual county-level

COVID-19 case prediction models. In principle, this result was counter-intuitive since we were

expecting that lower incomes would be associated with lower access to smart phones. Neverthe-

less, looking at the interaction terms between low income and age 65+ as well as low income and

race/ethnicity (Black and Hispanic), we observe significant negative coefficients, pointing to the

fact that counties with higher percentages of low-income Black and Hispanic groups, as well as
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a low-income elder population, are associated with lower correlation improvements possibly due

to these groups not being well represented in the datasets.

For the ARIMAX model, the trends were not pervasive across mobility datasets, with specific

coefficients observed for different datasets. Age 65+ and rurality were negatively related to

correlation improvements for the Apple and some SafeGraph datasets, pointing to the fact that

elder and rural populations might not be fairly represented in the datasets, and confirming prior

work on SafeGraph bias analysis [7]. Apple and SafeGraph also show a significant negative

relation between race-Other (not Black, White, or Hispanic) and correlation improvements

potentially pointing to the fact that other minority races/ethnicities might not be as represented

in the mobility datasets as Whites, Blacks, and Hispanics. There were two instances with counter-

intuitive results. First, in the Descartes dataset, race-Other was—unexpectedly—significantly

positively associated with correlation improvements. However, when considering the interaction

between race-Other and rurality, the significant coefficients were negative—that is, counties with

high percentages of other minority races in rural settings are negatively related to correlation

improvements and thus potentially not fairly represented in the Descartes dataset. Second, lower

income had a significant positive coefficient for Apple—that is, counties with lower incomes were

associated with higher correlation improvements. Nevertheless, the interaction term between

low income and race-Other for the Apple dataset has a significant negative coefficient, revealing

worse correlation improvements for counties with high percentages of minority races and low

income, potentially due to sampling bias. It is important to clarify that despite the significance of

many coefficients, the R-square values for the regressions were low, pointing to the fact that there

exist other behavioral or pandemic features that could also explain correlation improvements

such as masking mandates, masking behaviors, or transmission rates, among others. Nevertheless,

statistics for these features at the county level and for our period of study were not accessible.

5.3 Do Correlation Improvements Change across Training Approaches?

In this section, we explore whether the improvements brought about by adding mobility data to

county-based COVID-19 case prediction models are different depending on the type of training ap-

proach. Specifically, we discuss the differences in percentages of counties that benefit from adding

mobility data, quantify correlation improvements, and discuss the impact of mobility data bias on

county-level COVID-19 case prediction models that have been trained with STW as opposed to

LTW approaches. Our main objective is to understand if using short-term training windows (which

requires considerably less data and hence reduces data costs) has an impact on how COVID-19 case

prediction models benefit from mobility data.

Percentage of Counties. Figure 5 shows the percentage of counties whose STW-trained

COVID-19 case prediction performance improves when adding mobility data. Compared to

Figure 2, we can observe that for lower lookaheads (1, 7, and 14), the percentage of counties

that benefit from adding mobility data to STW-trained models is smaller than the percentage for

LTW-trained models, whereas the percentage of counties remains similar for higher lookaheads

(21 and 28) across both linear and ARIMAX models. To assess the statistical significance of

these observations, we run a Mann-Whitney U test between the STW percentages and the LTW

percentages for each lookahead, and across the 10 datasets and two predictive models (Table 2

presents the details). The distributions were found to be statistically significantly different

(p-value < 0.05) for lookaheads 1 and 7, with STW-trained models having significantly smaller

median percentages of counties benefiting from adding mobility data (from 16%–31%) than

LTW-trained models (from 40%–43%).

Correlation Improvements. To quantify correlation improvement differences between STW-

and LTW-trained models, we run a Mann-Whitney U test for each lookahead between the
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Fig. 5. Percentage of counties for which adding mobility data to the COVID-19 case prediction model im-

proves the prediction performance (ci ≥ 0). Results are for the STW approach.

Table 2. Mann-Whitney U Test between the STW and LTW Distributions of

the Percentage of Counties That Benefit from Adding Mobility Data across

the 10 Datasets and Two Models for Each Training Approach

Lookahead p-Value Avg. % Benefit STW Avg. % Benefit LTW

1 0.00002 0.16473 0.40074

7 0.00004 0.31053 0.43324

14 0.08103 0.41427 0.46833

21 0.20845 0.4722 0.49895

28 0.3104 0.48988 0.50206

correlation improvement (ci) distributions for STW and LTW across the 10 mobility datasets

and two predictive models—that is, we measure whether the improvements brought about by

adding mobility data to COVID-19 case prediction models are statistically significantly different

across training approaches, and by how much (distribution plots can be checked in Appendix

Figures 6–9). The tests—shown in Table 3—reveal that the two distributions are statistically

significantly different (p-value < 0.05) across all lookaheads, with lower median correlation

improvement values for LTW-trained models than their STW-trained counterpart (0.0002–0.0442

vs. 0.0018–0.0614), and with a slightly lower maximum median ci value of 0.1, as opposed to

STW-trained maximum ci = 0.13. In other words, although a higher percentage of LTW-trained

counties improved their performance when adding mobility data, the median improvement range

is slightly lower than their STW counterpart.

Mobility Data Bias. We repeat the regression coefficient analysis discussed in Section 5.2 for

the STW training approach, and a comparison with the associations revealed for the LTW training

in that section revealed similar findings. For regression models, similarly to LTW, age 65+, income,
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Table 3. Mann-Whitney U Test Per Lookahead between the STW and LTW

Distributions of the Correlation Improvements across the 10 Datasets and

Two Models for Each Training Approach

Lookahead p-Value Avg. Median ci STW Avg. Median ci LTW

1 0.00334 0.00183 0.00029

7 0.00001 0.01693 0.00738

14 0 0.0321 0.01674

21 0.00009 0.04836 0.02939

28 0.01143 0.06145 0.04425

race Black, race-Other, and rurality are all negatively related to correlation improvement—that is,

counties with higher percentages of elder, rural, low income, or minority populations do not benefit

as much from the use of mobility data, possibly due to lack of representativity of these groups in

the mobility datasets. Nevertheless, the number of significant coefficients across datasets for STW

is lower than for LTW—although all datasets except for Google show one or another type of bias.

This result highlights that mobility data bias might be more constrained when shorter amounts of

training data are used in the model.

For ARIMAX models, and similarly to LTW, we found that age 65+, ethnicity Hispanic, and

race-Other are negatively associated with correlation improvements—that is, adding mobility data

in counties with elder people and other minority race/ethnicity worsens the predictive perfor-

mance when compared to non-mobility baselines, potentially revealing bias in the data collected

for these groups. However, although low income and Black race are positively related to correlation

improvements, interaction terms between these two factors and age 65+ showed that counties with

a high percentage of elder Black population or elder low-income population were significantly neg-

atively related to correlation improvement—that is, the mobility data associated with these groups

might not be representative, thus affecting the quality of the predictions. Finally, the interaction

between rurality and age 65+ partially showed that counties with higher percentages of elder ru-

ral communities did not always benefit from using SafeGraph mobility data. For further details,

we encourage the reader to compare Appendix Table 10 with Appendix Table 11 (for regression

models) and Appendix Tables 8 and 9 for ARIMAX models.

These analyses show that the training-testing approach impacts the number of counties that

benefit from adding mobility data and creates a tradeoff: LTW improves performance for more

counties albeit with smaller correlation improvements with respect to their baselines and with

more bias across socio-economic and demographic variables when compared to STW, which re-

quires less data and constitutes a more affordable approach.

5.4 Do Correlation Improvements Change across Mobility Datasets?

In this section, we explore whether the improvements brought about by adding mobility data to

county-based COVID-19 case prediction models are different depending on the type of dataset.

As in previous sections, we will analyze differences across the percentage of counties that benefit

from adding mobility data to their predictive models, analyze differences across correlation im-

provements, and evaluate the role of mobility data bias on those differences. Table 4 summarizes

average improvements per mobility dataset across lookaheads, training approaches, and predictive

models for (1) percentage of counties and (2) correlation improvements. To evaluate statistically

significant differences across datasets, we compute the Friedman test, a non-parametric test that

evaluates whether median values across datasets are statistically significantly different.

Percentage of Counties. We run the Friedman test with the distribution of the percentage

of counties that benefit from adding mobility data across the five lookaheads, two models, and
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Table 4. Improvement Statistics Per Mobility Dataset across Training Approaches and Predictive Models

Dataset Avg. % of Counties Improved Avg. Median ci Improvement
Apple Mobility 0.38107 0.0337
Descartes Mobility 0.42670 0.02363
Google Mobility 0.53613 0.01293
(SafeGraph) Grocery Store Mobility 0.42302 0.01816
(SafeGraph) Religious Org Mobility 0.44899 0.02298
(SafeGraph) Restaurants Mobility 0.42864 0.02375
(SafeGraph) Schools Mobility 0.43075 0.02123
SafeGraph Inflow Mobility 0.42365 0.02751
SafeGraph Intraflow Mobility 0.46907 0.02720
SafeGraph Outflow Mobility 0.43595 0.02938

The percentage of counties column represents the average percentage of counties whose COVID-19 case prediction

models benefit from adding mobility data, whereas the correlation improvement (ci ) column quantifies the average

median ci improvement over the non-mobility baseline.

two training approaches for each mobility dataset. The test was rejected (χ 2 = 28 and p-value

= 0.0009), thus pointing to statistically significant differences between the average percentages

across datasets. The Friedman test does not identify which distribution(s) are different; however,

Table 4 shows that the percentage of counties with improvements is considerably higher for the

Google dataset when compared to others, possibly due to the smaller number of counties used in

the analysis. Thus, we removed the Google dataset from our set of distributions and repeated the

Friedman test, which did not find any statistically significant difference between datasets—that is,

the percentage of counties that benefit from adding mobility data to COVID-19 prediction models

does not significantly change depending on the mobility dataset except for Google (see Appendix

Table 12 for further test details).

Correlation Improvements. We run the Friedman test to evaluate whether the correlation im-

provement brought about by different mobility datasets was statistically significantly different

across datasets. The Friedman test between the median correlation improvements across models,

training approaches, and lookaheads for each dataset rejected the null hypothesis (χ 2 = 182.7, p-

value = 0), thus pointing to statistically significant differences across datasets. Removal of individ-

ual datasets did not change the result of the tests (null hypotheses rejected), revealing that correla-

tion improvements are significantly different across mobility datasets, with Apple and SafeGraph—

which includes O-D flows—having the highest improvements across training approaches and pre-

dictive models. Nevertheless it is important to highlight that despite significant improvements

across datasets were very modest with a maximum value of 0.033 (see Appendix Table 13 for

further test details).

Mobility Data Bias. Finally, in terms of bias, all mobility datasets were associated with bias in

race, age 65+, and income and rurality either as independent features or via feature interactions,

with the exception of the Google dataset and SafeGraph Grocery Stores that were associated only to

race, age, and income bias, but rurality did not appear to play a role in the correlation improvements

(see Appendix Tables 8, 9, 10, and 11 for further details).

To summarize the analysis presented in this section, Apple and SafeGraph datasets appear to

bring about very modest statistically significantly higher correlation improvements (maximum

value of 0.033), but the percentage of counties and the bias identified are similar across mobility

datasets.

5.5 Do Correlation Improvements Change across Predictive Models?

In this section, we explore whether the improvements brought about adding mobility data to

county-based COVID-19 case prediction models are different depending on the type of predictive
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Table 5. Mann-Whitney U Test between the ARIMAX and Linear Distributions of the

Percentage of Counties That Benefit from Adding Mobility Data across the

10 Datasets and Two Training Approaches for Each Predictive Model

Lookahead p-Value Average % ARIMAX Average % Linear Regression

1 0.0002 0.16672 0.39875

7 0.00512 0.32085 0.42292

14 0.00069 0.40169 0.48091

21 0.00004 0.4376 0.53354

28 0.00004 0.45166 0.54029

Table 6. Mann-Whitney U Test Per Lookahead between the ARIMAX and Linear Distributions of

the Correlation Improvements across the 10 Datasets and Two Training Approaches for Each

Model Type

Lookahead p-Value Average Median ci ARIMAX Average Median ci Regression

1 0.00007 0.00196 0.00029

7 0.94738 0.01544 0.0147

14 0.00298 0.02564 0.03478

21 0.00003 0.03196 0.0612

28 0.00001 0.0381 0.08195

model. Revisiting Figures 2 and 5, we can visually observe that the percentage of counties that

benefit from adding mobility data to county-level COVID-19 prediction models is larger when the

models are linear regressions rather than ARIMAX. To assess the statistical significance of this

difference, we run a Mann-Whitney U test for each lookahead, between the percentage of coun-

ties that benefited from adding mobility data to linear models and the percentage of counties that

benefited from adding mobility data to ARIMAX models across the 10 datasets and two training

approaches. The test showed that the differences between the two types of models are statistically

significantly different across all five lookaheads, with the percentage of counties that benefit from

adding mobility data being smaller for ARIMAX models (with values between 0.16% and 0.45%)

than for linear models (0.39%–0.54%). Table 5 shows further details of the statistical test.

However, to assess the statistical significance of the differences in the correlation improvements

(ci) between linear and ARIMAX models, we run a Mann-Whitney U test for each lookahead, be-

tween the ci values associated with adding mobility data to linear models and the ci values asso-

ciated with adding mobility data to ARIMAX models across the 10 datasets and two training ap-

proaches. Except for lookahead 7, all other lookaheads show significantly different ci distributions,

with larger improvements associated with linear regression models at higher lookaheads (0.00029–

0.08195 for linear vs. 0.00196–0.0381 for ARIMAX). Full test details are available in Table 6.

Finally, in terms of bias differences across models, we can observe that both models suffer

from similar types of bias across datasets and training approaches (i.e., income, race, age 65+,

and (a little bit less frequently) rurality). Nevertheless, there is one main difference between

linear regression and ARIMAX models. Linear models trained with Google mobility data (both

with STW and LTW training approaches) did not identify any significant socio-economic or

demographic features in the bias analysis, meaning that these features do not play a role in the

performance improvement of county-level COVID-19 case linear predictions. It is important to

clarify that although some bias was identified for ARIMAX trained with Google mobility data,

the number of features identified was also considerably lower than for any other dataset. We

posit that this could be potentially related to the smaller number of counties available (990, see

ACM Journal on Computing and Sustainable Societies, Vol. 1, No. 2, Article 16. Publication date: December 2023.



16:18 S. Mohammad Abrar et al.

Table 1). Detailed bias numbers can be found in Appendix Tables 8 and 9 (ARIMAX) and Appendix

Tables 10 and 11 (linear regressions). Overall, linear regressions appear to be a better choice,

with a larger number of counties benefiting from adding mobility data, with larger correlation

improvements at higher lookaheads and with similar bias.

6 DISCUSSION

Our analysis on the use of mobility data for COVID-19 case prediction has shown the hetero-

geneity and limitations of the benefits of mobility data inclusion. As discussed in Section 5, at

most 60% of the counties improve their performance when adding mobility data to the prediction

model (top value for linear regressions with the LTW approach). The median correlation improve-

ments across lookaheads, datasets, and models are minimal for next-day predictions and modest

for higher lookaheads, with 50% of the counties showing correlation improvements of at most 0.1
and 25% of the counties showing correlation improvements of at most 0.3.

Our results have shown that, even in the best case, 40% of counties would face no improvement

when mobility data is added to their COVID-19 case prediction models, making the question of

whether or not mobility data would be helpful to county-level decision makers essentially a coin

flip. Although companies made mobility data freely available at the initial height of the COVID-19

pandemic, companies have already begun to discontinue these practices (Apple’s reports are no

longer available, and Google stopped releasing data as of October 15, 2022). As decision makers face

the continued spread of COVID-19 and potential future diseases, they must consider whether it

will be worth purchasing mobility data. Our analysis shows that purchasing county-level mobility

data will not benefit many counties, and decision makers should proceed with caution accordingly.

It is also concerning that the extent to which mobility data improves predictions is in part a func-

tion of the composition of the population in the county. In fact, across most of the mobility datasets,

correlation improvements were lower for counties with higher Black, Hispanic, and other non-

White populations as well as low-income and rural populations. As older and minority patients

have been disproportionately affected by the COVID-19 pandemic, we would hope to provide more

and better resources to these groups to ameliorate the disparities. Instead, we see that mobility data

could serve to entrench these disparities, providing decision makers in counties with more vulner-

able populations with worse-performing models, leading to worse-informed policy decisions.

Our analyses have also demonstrated that linear regression models outperform ARIMAX models

in both (1) the percentage of counties that benefit from adding mobility data and (2) the correlation

improvement when using the same mobility data. These differences are statistically significant.

Based on this, we recommend that decision makers favor linear regression models when inter-

ested in using interpretable models. We have also shown that the performance across datasets

is quite similar, with Apple and some SafeGraph datasets having slightly superior correlation

improvements, albeit still so small that in many cases will not lead to a change in the strength

of the correlation. This result highlights that decision makers looking to use mobility data as a

source of behavioral information should not worry about the dataset they gain access to, since

all seem to similarly improve the correlation over their non-mobility baselines. Finally, we have

discussed how the training-testing approach presents a tradeoff for decision makers, with LTW

approaches increasing the number of counties that benefit from adding mobility data, whereas

STW approaches—that require considerably less data and reduce costs—increase the correlation

improvements (albeit with small values) and have lower bias.

7 LIMITATIONS AND FUTURE WORK

Although we explore many angles of the use of mobility data in COVID-19 case prediction, there

are several limitations and opportunities for further research. One limitation is the reliability of
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our dependent variable—COVID-19 cases. Other research has shown that especially in the early

stages of the pandemic, published case numbers were not reflective of the actual spread of COVID-

19, in large part due to the lack of testing resources [39]. Hospitalization and death counts are more

reliable than case counts as dependent variables, but they also face issues with under-counting [37]

and present further complication with time lags. In future work, we will seek to leverage methods

for case count correction [29] to understand the effects of using corrected cases on COVID-19

prediction models’ accuracy and fairness. Future work should also evaluate changes in the reported

findings in this article when hospitalization and death counts, instead of cases, are considered.

Our study focuses on two prediction models—linear and ARIMAX—and the findings discussed

only apply to these models. Using other modeling and predictive approaches such as compartmen-

tal [44] or multi-population models [4] might reveal different results. However, it is important

to clarify that, unlike the approach proposed in this article, compartmental and multi-population

models rely heavily on the availability of more granular data, either in the form of individual mobil-

ity patterns or mobility data segmented by sub-groups, and that such data is not freely accessible

and often comes at a significant cost.

Finally, a national-level policy maker might be interested in a unified model that learns

COVID-19 trends for all counties. This would allow for inclusion of county-level variables

indicative of population vulnerability directly in the model, potentially yielding more accurate

results. One could also explore methods to ameliorate bias in mobility data, whether through

interventions on the model or development of techniques to identify how mobility data providers

can improve their data collection and transformation procedures.

A APPENDIX

Table 7 shows the average performance—measured as the average correlation between predicted

and actual COVID-19 cases—across lookaheads and linear regression implementations for LTW

and STW training-testing approaches, respectively. We can observe that, on average, Ridge is the

best performing model for three out of the five lookaheads, and ElasticNet is the best performing

model for three out of five lookaheads as well. Given their majority best performance, we select

this as implementations for the analysis. Tables 8, 9, 10, 11 contains the values for the regression

coefficient analysis for ARIMAX LTW, ARIMAX STW, Ridge Regression LTW and ElasticNet

Regression STW respectively. Table 12 contains the non-parametric Friedman test analysis, which

highlights whether the percentage of counties that benefit from adding mobility data is statistically

significantly different or not. Table 13 highlights the results if the ci brought about by different

mobility datasets were significantly different across datasets. Table 14 identifies the p, d , q values

of the ARIMAX models that were used and the counts of counties that had the stated parameters.

Table 7. Average pcorr Value for Each Regularized Method

STW LTW

Lookahead OLS Ridge Lasso ElasticNet OLS Ridge Lasso ElasticNet
1 0.965098 0.965128 0.962530 0.963475 0.952180 0.952182 0.938414 0.945211
7 0.639711 0.640578 0.644599 0.647571 0.572311 0.572374 0.548012 0.560634
14 0.453315 0.454412 0.462288 0.465076 0.366340 0.366426 0.350444 0.361948
21 0.290965 0.292186 0.308287 0.308882 0.214946 0.215025 0.212894 0.218513
28 0.152364 0.153709 0.177438 0.174648 0.121256 0.121314 0.134021 0.132422

The best value for each window and each lookahead is bolded.
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Table 8. Regression Coefficient Analysis for ARIMAX LTW

Feature Apple Descartes Google (SafeGraph) (SafeGraph)
Grocery Store Religious Org

r2 0.0176 0.0157 0.0173 0.0065 0.0094
adjusted_r2 0.013 0.0117 0.0091 0.0032 0.006
const 0.0585 0.0528 0.0342 0.0411 0.0475
age_65+ –0.0493** –0.0032 0.0078 –0.0052 –0.0022
low_income 0.0319* –0.014 0.0097 –0.0007 0.0049
black –0.0102 0.0343** –0.0063 –0.0028 –0.0134
hispanic 0.0195 0.023 0.0032 0.0129 0.0021
race_other –0.0935*** 0.0313* 0.0038 –0.0184 –0.0044
rurality –0.042* 0.0137 0.0046 –0.0093 –0.0035
age_65+:low_income –0.039** –0.0049 0.002 –0.002 –0.001
age_65+:black –0.0006 –0.0042 0.017 –0.0022 –0.0062
age_65+:hispanic –0.0238** –0.0096 –0.0156* –0.005 –0.0035
age_65+:race_other 0.0188 0.0003 0.0139 0.0085* 0.0024
age_65+:rurality 0.0396* 0.0026 –0.0214 0.0143 0.0052
low_income:black 0.0012 0.0259*** –0.0026 –0.0043 –0.0222***
low_income:hispanic 0.0156 0.0013 –0.0179* 0.0083 0.0026
low_income:race_other –0.0381*** 0.0129 0.0035 –0.0033 –0.0051
low_income:rurality –0.0047 0.0053 –0.0147 –0.0011 –0.0006
black:hispanic –0.0019 –0.0063* –0.0055 –0.0025 –0.0077***
black:race_other 0.0019 0.0055* –0.0023 0.0001 –0.0034
black:rurality 0.017* –0.0022 –0.0059 0.0054 0.0088
hispanic:race_other 0.0109** –0.0014 –0.0061 0.001 0.0036
hispanic:rurality 0.0155* –0.0076 0.0003 0.0003 0.0094
race_other:rurality 0.0409*** –0.0223** –0.0078 0.0075 –0.0025

Feature (SafeGraph) (SafeGraph) SafeGraph SafeGraph SafeGraph
Restaurants Schools Inflow Intraflow Outflow

r2 0.0112 0.0111 0.0119 0.0083 0.0089
adjusted_r2 0.0079 0.0078 0.0081 0.0051 0.0055
const 0.0489 5.58e–2 0.0565 0.0568 0.0582
age_65+ –0.029* –0.0075 –0.0298* –0.0152 –0.0343*
low_income –0.0106 0.0106 0.0075 0.0017 0.0097
black 0.0075 –0.0104 –0.0131 0.0036 0.0139
hispanic 0.0045 –0.022 –2.06e–2 –0.0055 –0.0109
race_other –0.0201 –0.0289 –0.0373* –0.0378** –0.0302*
rurality –0.0235* –0.014 –0.0429*** –0.014 –0.0354**
age_65+:low_income –0.0022 0.0017 –0.0025 –0.0043 –0.0158
age_65+:black 0.0058 0.0056 0.0091 0.0101 –0.0062
age_65+:hispanic –0.0025 –0.0007 0.0043 0.0028 0.0019
age_65+:race_other 0.0038 0.0103* 0.0102* 0.0093* 0.007
age_65+:rurality 0.0519*** 0.0122 0.0519*** 0.0231 0.0449**
low_income:black 0.0132* –0.0019 –0.0086 0.0061 0.0088
low_income:hispanic 0.0065 –0.0025 –0.0138 –0.0033 –0.0057
low_income:race_other –0.0099 –8.30e–3 –0.0099 –0.0078 –0.0022
low_income:rurality 0.0106* –0.0017 –0.0079 0.0029 –0.0043
black:hispanic –0.0041 –0.0003 –0.0063* –0.0043 –0.0051*
black:race_other 0.0017 0.0003 –0.0023 0.0019 0.0031
black:rurality 0 0.002 5.70e–3 –0.0007 0.0075
hispanic:race_other –0.0029 0.0032 –0.0012 0.0008 0.0037
hispanic:rurality 0.0067 0.022*** 0.0089 0.0051 0.0097
race_other:rurality 0.0096 0.0087 0.0214 0.0226* 0.0201*

Values highlighted in green represent statistically significant positive coefficients, whereas values

highlighted in red represent statistically significant negative coefficients. Significance level (p–value

smaller than): ***, 0.001 **, 0.01; *, 0.05.
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Table 9. Regression Coefficient Analysis for ARIMAX STW

Feature Apple Descartes Google (SafeGraph) (SafeGraph)
Grocery Store Religious Org

r2 0.0444 0.0617 0.0745 0.0693 0.056
adjusted_r2 0.0371 0.0567 0.0601 0.0649 0.0521
const 0.0743 0.0594 0.039 0.0361 0.0417
age_65+ –0.0192 –0.0071 –0.029* –0.0101 0.0113
low_income 0.0093 –0.0115 0.0209* –0.0002 –0.0175***
black 0.0449*** –0.0088 0.0179 0.0128* 0.0028
hispanic –0.0032 –0.0142 0.0123 –0.0032 –0.0138*
race_other 0.0081 0.0089 0.0017 –0.0088 –0.0087
rurality –0.0124 0.0306** 0.0029 0.0023 0.0188**
age_65+:low_income –0.0241* –0.0166* –0.044*** –0.0116* 0.0038
age_65+:black –0.0176 –0.0108 –0.0174* –0.0044 –0.0136***
age_65+:hispanic –0.0169** –0.0032 –0.0126* 0.0009 0.0069**
age_65+:race_other –0.0136 –0.0138* –0.0161* –0.0007 0.0048
age_65+:rurality 0.0221 –0.0035 0.0129 0.0094 –0.0132*
low_income:black 0.0157* –0.0203*** –0.005 –0.0006 –0.0062
low_income:hispanic –0.001 –0.0058 –0.0011 –0.0016 –0.0014
low_income:race_other –0.006 –0.0034 –0.0073 –0.0171*** –0.0037
low_income:rurality 0.0084 0.0259*** 0.01 0.0088** 0.0142***
black:hispanic 0.0055* 0.0048* –0.0017 0.0002 0.002
black:race_other –0.0046* –0.002 –0.0023 –0.0004 –0.0016
black:rurality –0.0001 0.0035 0.0041 –0.0008 0.0112**
hispanic:race_other –0.0008 –0.0024 0.0032 0.0006 0.0002
hispanic:rurality 0.0191** 0.0089* –0.0004 0.0061* 0.0063*
race_other:rurality 0.0028 0.0054 0.0078 –0.005 0.0009

Feature (SafeGraph) (SafeGraph) SafeGraph SafeGraph SafeGraph
Restaurants Schools Inflow Intraflow Outflow

r2 0.0727 0.0345 0.0529 0.0323 0.0376
adjusted_r2 0.0679 0.03 0.0482 0.0274 0.033
const 0.0453 0.0479 0.0514 0.0474 0.0531
age_65+ 0.0085 –0.002 0.0056 –0.0013 –0.0158
low_income –0.0168** –0.0049 –0.0114 –0.0033 0.0007
black 0.0003 –0.0014 0.0201* 0.0083 0.002
hispanic –0.0058 –0.0274*** –0.0087 0.0008 –0.0211**
race_other –0.0089 –0.0241** –0.0273* 0.0001 –0.0104
rurality 0.0124 0.0013 0.0214** 0.0006 0.0019
age_65+:low_income 0.0028 –0.0024 –0.0119 –0.0058 –0.0145*
age_65+:black 0.0128** –0.0023 –0.0116* –0.0054 –0.0137**
age_65+:hispanic 0.0062* 0.0049 –0.0082* –0.0049 –0.0011
age_65+:race_other 0.0035 0.0011 –0.0019 –0.0034 –0.003
age_65+:rurality –0.0054 0.0024 –0.0091 0.0084 0.0182*
low_income:black –0.0101** 0.0022 0.009* 0.0019 –0.0077
low_income:hispanic 0.005 –0.0048 –0.0064 –0.0022 –0.0063
low_income:race_other –0.0037 –0.0079* –0.0109** –0.0057 –0.0092*
low_income:rurality 0.0136*** 0.009** 0.0215*** 0.0078* 0.0169***
black:hispanic 0.0007 0.0056*** –0.0001 –0.0001 0.0017
black:race_other –0.0012 –0.0018 0.0017 –0.0009 –0.0032*
black:rurality 0.0133*** 0.0098** 0.0086* 0.0079 0.0113**
hispanic:race_other 0.0034* 0.0023 0.0012 –0.0001 0.0007
hispanic:rurality 0.0073* 0.0184*** 0.0162*** 0.0064 0.0187***
race_other:rurality 0.0006 0.0138* 0.0194* –0.0001 0.0051

Values highlighted in green represent statistically significant positive coefficients, whereas values

highlighted in red represent statistically significant negative coefficients. Significance level (p–value

smaller than): ***, 0.001; **, 0.01 *, 0.05.
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Table 10. Regression Coefficient Analysis for Ridge Regression LTW

Feature Apple Descartes Google (SafeGraph) (SafeGraph)
Grocery Store Religious Org

r2 0.0297 0.0218 0.0054 0.0195 0.0102
adjusted_r2 0.0229 0.0184 –0.001 0.0164 0.0076
const 0.101*** 0.064*** 0.061*** 0.071*** 0.063***
age_65+ –0.027 –0.017 0.01 –0.018 –0.012
low_income 0.055* 0.033* 0.024 0.032* 0.015
black –0.067 –0.013 –0.046 –0.042* –0.003
hispanic –0.072* –0.017 0.02 –0.038* –0.017
race_other –0.049 –0.015 –0.082 –0.041 –0.031
rurality –0.039 –0.031 –0.003 –0.005 –0.004
age_65+:low_income –0.033 –0.016 –0.002 –0.02 –0.013
age_65+:black 0.038 –0.028* 0.002 0.028* 0
age_65+:hispanic –0.029 0.022* 0.001 0.021* 0.007
age_65+:race_other –0.036 –0.003 0.026 –0.003 –0.002
age_65+:rurality 0.039 0.021 –0.026 0.002 0.012
low_income:black –0.026 –0.036*** –0.033 –0.015 –0.006
low_income:hispanic –0.079*** –0.021 0.01 –0.025* –0.018
low_income:race_other –0.011 –0.004 –0.032 –0.013 –0.008
low_income:rurality 0.002 –0.011 –0.017 0.001 0.006
black:hispanic –0.012 –0.009* –0.006 –0.006 0
black:race_other 0.009 –0.002 0.007 0.004 0.003
black:rurality 0.024 0.031*** 0.017 0.017 0.007
hispanic:race_other 0.028*** 0.007 0.013 0.004 0
hispanic:rurality 0.035* –0.008 –0.012 0.001 0.002
race_other:rurality 0.05* 0.013 0.013 0.026 0.022

Feature (SafeGraph) (SafeGraph) SafeGraph SafeGraph SafeGraph
Restaurants Schools Inflow Intraflow Outflow

r2 0.0208 0.0056 0.0217 0.0154 0.0204
adjusted_r2 0.018 0.0025 0.0192 0.0131 0.0181
const 0.069*** 0.058*** 0.07*** 0.07*** 0.066***
age_65+ –0.041* –0.01 –0.035* –0.038* –0.043*
low_income 0.047*** 0.017 0.035** 0.037** 0.039***
black –0.039* 0.01 –0.051** –0.029 –0.04*
hispanic –0.038* –0.048* –0.035* –0.031* –0.041**
race_other –0.057** –0.043 –0.023 –0.027 –0.033
rurality –0.037* 0.006 –0.036* –0.03 –0.019
age_65+:low_income –0.04* –0.021 –0.028* –0.025* 0.033**
age_65+:black 0.003 –0.003 0.009 –0.011 0.011
age_65+:hispanic 0.011 0.015 0.014* 0.022*** 0.014*
age_65+:race_other –0.005 –0.005 –0.005 0.004 0.003
age_65+:rurality 0.033 –0.005 0.04* 0.03 0.029
low_income:black –0.03** –0.003 –0.034*** –0.031*** –0.029***
low_income:hispanic –0.021* –0.025* –0.024* –0.02* –0.026**
low_income:race_other –0.01 –0.004 –0.006 –0.012 –0.013
low_income:rurality –0.004 0.008 –0.002 –0.007 0.004
black:hispanic –0.001 –0.004 0 –0.003 0.002
black:race_other 0.001 0 0.001 0.003 0.004
black:rurality 0.024** –0.003 0.03*** 0.027** 0.016
hispanic:race_other 0.02*** 0.012** 0.001 –0.005 –0.003
hispanic:rurality 0.013 0.011 0.008 0 0.01
race_other:rurality 0.042** 0.032 0.021 0.012 0.016

Values highlighted in green represent statistically significant positive coefficients, whereas values

highlighted in red represent statistically significant negative coefficients. Significance level

(p–value smaller than): ***, 0.001; **, 0.01; *, 0.05.
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Table 11. Regression Coefficient Analysis for ElasticNet Regression STW

Feature Apple Descartes Google (SafeGraph) (SafeGraph)
Grocery Store Religious Org

r2 0.012576 0.022346 0.017356 0.008641 0.009302
adjusted_r2 0.008654 0.01869 0.0085 0.00556 0.006092
const 0.1071*** 0.0708*** 0.0656*** 0.0591*** 0.0689***
age_65+ –0.0306 –0.0208 –0.0126 –0.0064 –3.10e–3
low_income 0.0077 0.0098 –5.58e–5 –0.0054 0.0024
black –0.0443* 0.0088 –0.0147 0.0134 –0.0199
hispanic 0.0115 –0.01 –0.0134 0.0034 –0.0215
race_other –0.0064 –0.0273* 0.0017 –0.0111 –0.0033
rurality –0.0684** 0.0094 –0.0231 –0.0005 –0.0218
age_65+:low_income –0.0119 –0.0181 –0.0033 –0.0075 0.0044
age_65+:black 0.0303* –0.0025 –0.0014 –0.0009 0.0015
age_65+:hispanic –0.0252** 0.0056 0.0138 –0.0012 0.0016
age_65+:race_other –0.0119 0.0117 –0.0215 0.0056 0.0079
age_65+:rurality 0.059** 0.0092 0.0288 0.008 0.0117
low_income:black –0.0069 –0.0133* –0.0139 0.0046 –0.0145*
low_income:hispanic 0.013 –0.0193* –0.0028 0.0018 –0.0096
low_income:race_other –0.0035 –0.0055 –0.0092 1.60e–3 0.0009
low_income:rurality –0.0153 0.0134* 0.0011 0.0005 –0.004
black:hispanic 0.0064 –0.0115*** –0.0022 –0.0023 –0.0035
black:race_other 0.0031 0.0039 0.0025 4.00e–4 0.0015
black:rurality 0.0133 –0.0083 0.0105 –0.0015 0.0113
hispanic:race_other 0.0085 0.0051 –0.0012 –0.0008 –1.70e–3
hispanic:rurality 0.0189* –0.0034 –0.0006 0.0017 0.0125*
race_other:rurality 0.0095 0.0056 0.0115 0.008 –0.0028

Feature (SafeGraph) (SafeGraph) SafeGraph SafeGraph SafeGraph
Restaurants Schools Inflow Intraflow Outflow

r2 0.011075 0.009231 0.008333 0.004581 0.008229
adjusted_r2 0.007945 0.006016 0.0052 0.001467 0.005037
const 0.0731*** 0.1135*** 0.0663*** 0.061*** 0.0655***
age_65+ –0.0167 0.029 –0.0089 –0.0232* 0.0038
low_income 0.0111 –0.0298* 0.0034 0.0098 –0.0035
black –0.0171 0.0283 0.0005 –0.0036 0.0068
hispanic –0.003 –0.0331 –0.0076 –0.0082 –0.0014
race_other –0.0084 –0.0202 –0.0161 –0.0056 0.0259
rurality –2.07e–2 0.0155 –0.0174 –0.0147 –0.0044
age_65+:low_income –0.0154 0.0209 –0.0059 –0.0132 0.003
age_65+:black 0.0046 0.0034 0.0005 –0.0033 –0.0015
age_65+:hispanic –0.0038 –0.0018 0.0043 0.0018 0.0009
age_65+:race_other 0.003 0.008 –0.0025 –0.0076* –0.0099*
age_65+:rurality 0.02 –0.0186 0.0166 0.0285* 0.0075
low_income:black –0.0133 0.0224* –0.0023 –0.0049 –0.0021
low_income:hispanic –0.0086 –0.007 –0.0005 –0.004 –0.0039
low_income:race_other –0.0004 0.0037 –0.0055 –0.0074 –0.0009
low_income:rurality –0.0047 0.0101 –0.0071 0.0031 –0.0036
black:hispanic –0.0038 0.0018 –0.0013 –0.0022 –0.002
black:race_other 0.0024 –0.0004 0.0023 0.0013 –0.0001
black:rurality 0.0109 –0.0157 0.0043 0.0051 0.0014
hispanic:race_other –0.0008 –0.0037 0.0001 –0.0011 –0.0022
hispanic:rurality 0.0044 0.022* 0.0056 0.0028 0.0016
race_other:rurality 0.006 0.0126 0.0133 0.0058 –0.0151

Values highlighted in green represent statistically significant positive coefficients, whereas values

highlighted in red represent statistically significant negative coefficients. Significance level (p-value

smaller than): ***, 0.001; **, 0.01; *, 0.05.
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Table 12. Non-Parametric Friedman Test Analysis with

Distributions Containing the Percentage of Counties Where

Mobility Data Improved COVID-19 Case Prediction Models

without Mobility Data across Datasets, Lookaheads, Training

Approaches, and Models

Dataset Considered All Datasets Google Excluded

Chi-square 28.2873 9.6000

p-Value 0.0009 0.2942

Table 13. Non-Parametric Friedman Test Analysis with Distributions Containing the

Median Correlation Improvement Values of Counties Where Mobility Data Improved

COVID-19 Case Prediction Models without Mobility Data across Datasets, Lookaheads,

Training Approaches, and Models

Chi-Square p-Value

Dataset Considered

All datasets 182.7029 0.0

Restaurants Mobility excluded 164.0857 0.0

Religious Organization Mobility excluded 164.0603 0.0

Schools Mobility excluded 166.6444 0.0

Grocery Stores Mobility excluded 164.6127 0.0

SafeGraph Inflows Mobility excluded 164.1492 0.0

SafeGraph Outflows Mobility excluded 164.6000 0.0

SafeGraph Intraflows Mobility excluded 164.2508 0.0

Apple Mobility excluded 164.5937 0.0

Descartes Mobility excluded 164.0603 0.0

Google Mobility excluded 164.0794 0.0

Apple, Google, and SafeGraph Inflow Mobility excluded 108.6286 0.0

Each test is run with one or a few mobility datasets excluded.
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Fig. 6. Correlation improvements (ci) and baseline correlation distributions (non-mobility) across lookaheads

for ARIMAX with LTW approach using Apple Mobility data (a, b), Descartes Mobility data (c, d), Google Mo-

bility data (e, f), SafeGraph Inflow Mobility data (g, h), SafeGraph Outflow Mobility data (i, j), SafeGraph

Intraflow Mobility data (k, l), Restaurants Mobility data (SafeGraph POI) (m, n), Religious Mobility data

(SafeGraph POI) (o, p), Schools Mobility data (SafeGraph POI) (q, r), and Grocery Stores Mobility data (Safe-

Graph POI) (s, t).
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Fig. 7. Correlation improvements (ci) and baseline correlation distributions (non-mobility) across lookaheads

for Ridge regression with the LTW approach using Apple Mobility data (a, b), Descartes Mobility data (c, d),

Google Mobility data (e, f), SafeGraph Inflow Mobility data (g, h), SafeGraph Outflow Mobility data (i, j),

SafeGraph Intraflow Mobility data (k, l), Restaurants Mobility data (SafeGraph POI) (m, n), Religious Mobil-

ity data (SafeGraph POI) (o, p), Schools Mobility data (SafeGraph POI) (q, r), and Grocery Stores Mobility

data (SafeGraph POI) (s, t).
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Fig. 8. Correlation improvements (ci) and baseline correlation distributions (non-mobility) across lookaheads

for ARIMAX with STW approach using Apple Mobility data (a, b), Descartes Mobility data (c, d), Google Mo-

bility data (e, f), SafeGraph Inflow Mobility data (g, h), SafeGraph Outflow Mobility data (i, j), SafeGraph

Intraflow Mobility data (k, l), Restaurants Mobility data (SafeGraph POI) (m, n), Religious Mobility data

(SafeGraph POI) (o, p), Schools Mobility data (SafeGraph POI) (q, r), and Grocery Stores Mobility data (Safe-

Graph POI) (s, t).
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Fig. 9. Correlation improvements (ci) and baseline correlation distributions (non-mobility) across lookaheads

for elastic regression with the STW approach using Apple Mobility data (a, b), Descartes Mobility data (c,

d), Google Mobility data (e, f), SafeGraph Inflow Mobility data (g, h), SafeGraph Outflow Mobility data (i,

j), SafeGraph Intraflow Mobility data (k, l), Restaurants Mobility data (SafeGraph POI) (m, n), Religious Mo-

bility data (SafeGraph POI) (o, p), Schools Mobility data (SafeGraph POI) (q, r), and Grocery Stores Mobility

data (SafeGraph POI) (s, t).
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Table 14. Summary of the Combinations of p,d,q Values

Identified for the ARIMAX Models Using Grid Search and

the Akaike Information Criterion

ARIMAX (p,d,q) # Counties

(0, 0, 0) 13
(0, 1, 0) 1,263
(0, 1, 1) 189
(0, 1, 2) 18
(0, 1, 3) 4
(0, 1, 4) 8
(0, 1, 5) 12
(0, 2, 0) 1
(0, 2, 1) 25
(0, 2, 2) 5
(0, 2, 3) 3
(1, 0, 0) 108
(1, 0, 1) 25
(1, 0, 2) 4
(1, 0, 3) 3
(1, 0, 4) 3
(1, 0, 5) 1
(1, 1, 0) 201
(1, 1, 1) 263
(1, 1, 2) 44
(1, 1, 3) 22
(1, 1, 4) 9
(1, 1, 5) 9
(1, 2, 1) 2
(1, 2, 2) 6
(1, 2, 3) 3
(1, 2, 4) 2
(2, 0, 0) 31
(2, 0, 1) 73
(2, 0, 2) 18
(2, 0, 3) 5
(2, 0, 4) 3
(2, 1, 0) 100
(2, 1, 1) 59
(2, 1, 2) 103
(2, 1, 3) 19
(2, 1, 4) 15
(2, 1, 5) 15
(2, 2, 1) 7
(2, 2, 3) 2
(2, 2, 4) 1
(2, 2, 5) 1
(3, 0, 0) 9
(3, 0, 1) 6
(3, 0, 2) 24
(3, 0, 3) 4
(3, 0, 4) 5
(3, 0, 5) 1
(3, 1, 0) 32
(3, 1, 1) 19
(3, 1, 2) 36
(3, 1, 3) 23
(3, 1, 4) 14
(3, 1, 5) 12
(3, 2, 0) 2
(3, 2, 1) 1
(3, 2, 2) 2
(3, 2, 5) 1
(4, 0, 0) 7
(4, 0, 1) 6
(4, 0, 2) 5
(4, 0, 3) 3

ARIMAX (p,d,q) # Counties

(4, 0, 4) 3
(4, 1, 0) 19
(4, 1, 1) 10
(4, 1, 2) 18
(4, 1, 3) 11
(4, 1, 4) 3
(4, 1, 5) 1
(4, 2, 0) 1
(4, 2, 1) 1
(4, 2, 2) 1
(4, 2, 3) 1
(4, 2, 4) 1
(5, 0, 0) 2
(5, 0, 1) 4
(5, 0, 2) 7
(5, 1, 0) 4
(5, 1, 1) 3
(5, 1, 2) 10
(5, 1, 3) 9
(5, 1, 4) 5
(5, 2, 2) 2
(5, 2, 3) 3
(5, 2, 5) 1
(6, 0, 3) 1
(6, 1, 3) 2
(6, 1, 4) 1
(6, 1, 5) 3
(7, 0, 2) 1
(7, 0, 3) 1
(7, 1, 0) 17
(7, 1, 1) 3
(7, 1, 2) 5
(7, 1, 3) 2
(7, 1, 4) 2
(7, 1, 5) 1
(7, 2, 1) 2
(7, 2, 3) 2
(8, 0, 0) 3
(8, 0, 2) 1
(8, 1, 0) 5
(8, 1, 1) 4
(8, 1, 2) 2
(8, 1, 3) 2
(8, 1, 4) 2
(9, 0, 0) 3
(9, 0, 1) 1
(9, 0, 3) 1
(9, 1, 1) 3
(9, 1, 2) 1
(9, 1, 4) 1
(10, 0, 0) 2
(10, 0, 4) 1
(10, 1, 1) 1
(10, 1, 2) 2
(10, 1, 3) 1
(11, 0, 0) 1
(11, 1, 0) 1
(12, 0, 3) 1
(12, 1, 0) 1
(12, 1, 1) 1
(14, 1, 0) 1
(15, 1, 0) 1

The table represents the number of counties whose p, d, q values

are the ones listed in the left column.
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