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ABSTRACT

Continuous space-time video super-resolution (C-STVSR) aims to simultaneously
enhance video resolution and frame rate at an arbitrary scale. Recently, im-
plicit neural representation (INR) has been applied to video restoration, repre-
senting videos as implicit fields that can be decoded at an arbitrary scale. How-
ever, the highly ill-posed nature of C-STVSR limits the effectiveness of current
INR-based methods: they assume linear motion between frames and use inter-
polation or feature warping to generate features at arbitrary spatiotemporal po-
sitions with two consecutive frames. This restrains C-STVSR from capturing
rapid and nonlinear motion and long-term dependencies (involving more than
two frames) in complex dynamic scenes. In this paper, we propose a novel C-
STVSR framework, which captures both holistic dependencies and regional mo-
tions based on INR. It is assisted by an event camera – a novel sensor renowned
for its high temporal resolution and low latency. To fully utilize the rich tem-
poral information from events, we design a feature extraction consisting of (1) a
regional event feature extractor – taking events as inputs via the proposed event
temporal pyramid representation to capture the regional nonlinear motion and (2)
a holistic event-frame feature extractor for long-term dependence and continuity
motion. We then propose a novel INR-based decoder with spatiotemporal embed-
dings to capture long-term dependencies with a larger temporal perception field.
We validate the effectiveness and generalization of our method on four datasets
(both simulated and real data), showing the superiority of our method.

1 INTRODUCTION

The real world’s visual information, e.g., edge and object motion, is continuous, spanning both time
and space dimensions. However, the limited I/O bandwidth and sensor size of modern systems (Del-
bracio et al., 2021; Parker, 2010) confines us to record videos at low frame rates and fixed resolutions.
This limitation has profound repercussions across various computer vision applications, e.g., en-
compassing immersive experiences in virtual reality (Zhang, 2020; Lee et al., 2020), traffic analysis
in autonomous driving (Zou et al., 2023; Zhao et al., 2019). To address this limitation, recent research
works (Chen et al., 2022; 2023b) have explored restoring videos with continuous resolutions and frame
rates, referred to as Continuous Space-Time Video Super-Resolution (C-STVSR).

Recently, implicit neural representation (INR) has been applied to video restoration: it represents
images or videos as neural fields that can be decoded at any resolution with a pointwise MLP de-
coder (Cao et al., 2023; Chen et al., 2023a). One of the seminal INR approaches is LIIF (Chen et al.,
2021), which is designed for arbitrary-scale image SR. This line of research soon extended to the
video domain. In this context of C-STVSR, VideoINR (Chen et al., 2022) employs a fixed STVSR
model (Xiang et al., 2020) that extracts features from two consecutive video frames. Then, it in-
troduces a temporal INR to generate inverse backward warping optical flow (Niklaus & Liu, 2020)
to warp features. Lastly, it employs a spatial INR, similar to LIIF, to decode the RGB frame with
arbitrary resolution. Building upon this, MoTIF (Chen et al., 2023b) improves VideoINR by using for-
ward motion estimation, reducing gaps and holes in the temporal INR, which are typically caused
by the randomness and discontinuities associated with backward warping (Park et al., 2021). These
methods depend solely on two successive RGB frames, rendering the task of predicting inter-frame
motions ill-posed. Consequently,, it becomes challenging to accurately capture highly dynamic mo-
tion (e.g., regional high-speed or nonlinear movements) and to model long-term dependencies that
extend across more than four frames.
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Figure 1: With event data as guidance, our method (HR-INR) takes in videos with low frame rates and
resolution (a) and produces continuous space-time videos with arbitrary frame rate and resolution (b). As
shown in (c), our method is able to recover the rotation of the bicycle wheels, which is unachievable by the
prior method VideoINR (Chen et al., 2022).

Motivation and Contributions. Event cameras are bio-inspired sensors, known for their high tem-
poral resolution and low latency (< 1us) (Zheng et al., 2023; Gallego et al., 2020; Wang et al., 2020a).
Recent research has demonstrated the potential of events in guiding various video super-resolution
(VSR) (Lu et al., 2023; Jing et al., 2021) and video frame interpolation (VFI) tasks (Tulyakov et al., 2021;
2022; He et al., 2022; Yu et al., 2021). However, utilizing events to facilitate joint video super-resolution
and frame interpolation is a challenging area yet to be explored.

This paper introduces HR-INR, a novel INR-based method that leverages events for jointly guiding
VSR and VFI. It adeptly captures regional, rapid motion and holistic, long-range motion dependen-
cies, as shown in Fig. 1. To capture the regional motion, we propose Temporal Pyramid Repre-
sentation (TPR) to construct a time-series pyramid structure around the pivotal timestamp of events
(Sec. 3.1). Different from the evenly divided timeline representations, like voxel grids (Tulyakov
et al., 2021; 2022; Gallego et al., 2020), time surfaces (Sironi et al., 2018), time moments (Han et al., 2021;
Lu et al., 2023) and symmetric cumulative (Sun et al., 2022), TPR offers finer temporal granularity with
less complexity and effectively captures rapid motion changes, as shown in Fig. 2 (a). Additionally,
our method is capable of processing multiple frames and their associated events, which empowers it
to estimate holistic, long-range motion that involves more than two frames.

Accordingly, we design two specialized feature extractors: the regional event feature extractor (RE)
and the holistic event-frame feature extractor (HE), see Sec. 3.2. Both extractors are grounded in the
Swin-Transformer architecture (Liang et al., 2021; Liu et al., 2022a; Liang et al.), renowned for its effi-
cacy and efficiency in video enhancement tasks. RE is a lightweight network designed specifically
for extracting local information from our event TPR. Meanwhile, HE employs a more sophisticated
approach, utilizing long-term and multi-scale fusion strategies to integrate both events and frames.
Consequently, our training and inference strategy requires HE to be invoked only once for multi-
frame interpolation. Subsequently, the extracted features from RE and HE are fused as the output of
the feature extraction module.

After fusing the regional and holistic features, we propose a novel INR-based spatial-temporal de-
coding module (Sec. 3.3). Our motivation is to avoid gaps and holes typically found in optical
flow-based warping and multi-frame fusion, as identified in previous research (Chen et al., 2023b;
2022; He et al., 2022; Tulyakov et al., 2022). To accomplish this, we propose an implicit temporal
embedding designed to transform timestamps into focused attention vectors on long-term features.
This approach ensures attention is also given to long-distance dependencies, which is crucial for
effectively modeling long-term temporal dependencies. Subsequently, inspired by LIIF (Chen et al.,
2021), we employ spatial embedding to achieve arbitrary up-sampling in the spatial dimension.

We conducted experiments on two simulated and two real-world datasets. The results validate the
superiority of our method and its excellent generalization capabilities on real-world datasets. Our
approach is the first event-based method to achieve continuous space-time video super-resolution,
surpassing frame-based methods, as shown in Fig. 1. It also excels in individual VSR and VFI
metrics compared to previous event-based methods.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Space-time Video Super-Resolution aims to enhance the resolution and frame rate of a video si-
multaneously (Haris et al., 2020; Kim et al., 2020; Xiang et al., 2020; Xu et al., 2021). In comparison to
two-stage solutions, where VFI (Jiang et al., 2018; Xue et al., 2019; Niklaus & Liu, 2020; Niklaus et al.,
2017; Cheng & Chen, 2020) and VSR (Liu et al., 2018; Yang et al., 2021; Yue et al., 2022; Wang et al.,
2021; Tian et al., 2020; Isobe et al., 2020) methods are applied sequentially, simultaneous space-time
video super-resolution reduces cumulative errors and leverages the natural relations between VFI
and VSR methods. Zooming Slow-Mo (Xiang et al., 2020) uses temporal interpolation to generate
missing frames and aligns temporal information using a deformable ConvLSTM network. Simi-
larly, TMNet (Xu et al., 2021) extracts short-term and long-term motion cues in videos by modulating
convolution kernels. However, these methods cannot simultaneously achieve spatiotemporal resolu-
tion across arbitrary scales.

INR for VFI and VSR have achieved space-time video super-resolution with arbitrary resolu-
tions (Chen et al., 2022; 2023b) by learning videos implicit neural representations (INRs). These
methods primarily estimate optical flows from two consecutive frames to warp features into arbi-
trary space-time coordinates, which are then decoded using MLP layers. However, by relying on just
two consecutive frames, these methods cannot inherently model long-term motions (involving three
or more frames) and fail to accurately capture local, inter-frame, non-linear motions due to missing
inter-frame information.

Event-guided VFI and VSR seek to boost performance by incorporating the biologically inspired
event cameras (Zheng et al., 2023). Previous works have demonstrated the potential of event-guided
VFI, which mainly focus on modeling non-linear motion with events (Paikin et al., 2021; Tulyakov et al.,
2021; Wu et al., 2022; Tulyakov et al., 2022; He et al., 2022; Song et al., 2022; 2023). EFI (Paikin et al., 2021)
exclusively adopts the synthesis approach for intermediate frame generation. TimeLens (Tulyakov
et al., 2021) and TimeLens++ (Tulyakov et al., 2022) employ events to model nonlinear motion correla-
tions, integrating both synthesis and warping-centric approaches. Building on these advancements,
CBM-Net (Kim et al., 2023), introduces a motion field to handle complex movements. However,
while these VFI methods utilize events to capture inter-frame motion, they fail to establish long-term
dependencies beyond two frames and support simultaneous VSR. The realm of event-guided video
super-resolution has also been explored. E-VSR (Jing et al., 2021) highlights that high-frequency
temporal information from events is beneficial to recovering high-frequency spatial information.
Like our work, EG-VSR (Lu et al., 2023) employs events to comprehend INR, allowing for video
ups-sampling with arbitrary scale. However, the INR of EG-VSR cannot interpolate frames. Con-
trasting these methods, we pioneer using events to enable concurrent VSR and VFI across arbitrary
spatial-temporal scales, i.e.,, C-STVSR.

Video Long-term Dependence Modeling is a crucial aspect of VSR and VFI. For instance, Ba-
sicVSR (Chan et al., 2021) and BasicVSR++(Chan et al., 2022) enhance VSR performance by pro-
cessing multi-frame inputs through an alignment module to model long-term motion correlations.
Similarly, in the VFI domain, many methods (Suzuki & Ikehara, 2020; Nah et al., 2019; Zhang et al., 2020)
employ RNN or LSTM to model sequences of frames, capturing long-term dependencies effectively.
Furthermore, Zooming Slow-Mo (Xiang et al., 2020), TMNet (Xu et al., 2021), and RSST (Liang et al.)
leverage multi-frame inputs in the joint task of VSR and VFI, showcasing the importance of in-
tegrating multiple frames for improved modeling of video dynamics. However, current C-STVSR
methods (Chen et al., 2022; 2023b), and event-based VFI methods (Tulyakov et al., 2021; He et al.,
2022; Tulyakov et al., 2022; Kim et al., 2023), primarily rely on estimating optical flow between two
consecutive frames. Therefore, they are challenging to handle multi-frames as inputs, inherently
undermining their capability to model long-term dependencies.

3 PROPOSED FRAMEWORK

Our proposed HR-INR framework is depicted in Fig. 2. The inputs of this framework are RGB
frames Iin = {Iin}Nin

i ∈ RNin×H×W×3 and associated events E. H and W denote the spatial
resolution of frames and events. 3 means three channels of RGB. Nin denotes the input number
of frames. Furthermore, the framework outputs a video with an arbitrary frame rate and spatial
resolution. In particular, we consider the output video as Iout = {Iout}Nout

i , consists of Nout

3
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Figure 2: Overview of our framework. The inputs are multi-frame images and their corresponding events.
The output is a video with enhanced frame rates and resolutions. Firstly, events proximate to a particular time
point are transformed into Temporal Pyramid Representations (TPR) to capture motion at a more granular
temporal level (a). Secondly, TPRs, the comprehensive set of multi-frames and events, are directed into the
feature extraction part (b). Within this part, the Regional Events Feature Extractor and the Holistic Events
Feature Extractor process the input separately. Lastly, the resulting features are then fused and inputted into
an INR-based spatiotemporal decoding part (c). Within this part, a temporal embedding is executed to capture
features at a specific timestamp t, followed by spatial embedding with an up-sampling factor s and decoding,
culminating in the generation of frames at the desired resolution.

frames, each with a resolution of (s × H) × (s × W ), where s represents the up-sampling scale
greater than 1. For the output Nout frames, we denote the time corresponding to each frame as
T = {t}Nout

i . For convenience, we also record the up-sampling scale s and the time T as a part of
inputs. Therefore, the mapping function fhr(.) of C-STVSR can be described by Eq. 1.

Iout = fhr (Iin,E, s,T ) (1)

Our framework comprises three main components: First, Sec. 3.1 presents the event temporal pyra-
mid representation (TPR), capturing regional dynamic motion and edges. Second, Sec. 3.2 elabo-
rates on the feature extraction process using regional and holistic feature extractors. Third, Sec. 3.3
describes the INR-based spatiotemporal decoding.

Input Frames and Events: Our input frames, Iin, consist of multiple frames with timestamps nor-
malized to the [0, 1] interval. We consider the events, E, occurring within this time range. Each
event point can be represented by (x, y, t, p), signifying a change in pixel intensity at coordinates
(x, y) at time t; here, p is +1 for increased brightness and −1 for a decrease. Benefiting from
the event camera’s high temporal resolution and low latency (< 1us), these event points are effec-
tively considered continuous along the timeline. For a detailed exposition of the principles of event
generation, please refer to the Suppl. Mat..

3.1 TEMPORAL PYRAMID REPRESENTATION

Firstly, we represent the event stream E into a frame-like form that the network can process. To
capture holistic motion, we partition all events during [0, 1] of the timeline into M equal intervals
using a voxel grid (Tulyakov et al., 2021; Gallego et al., 2020), denotes as Ev with dimensions M×H×
W . In practice, event representation methods like voxel grid (Tulyakov et al., 2021; Gallego et al., 2020)
and its extended structure, symmetric cumulative event representation (Sun et al., 2022), achieve time
granularity by uniformly dividing time into intervals with resolutions of 1/M .

However, for C-STVSR, capturing intricate motion and edges requires a finer granularity. Merely
increasing M to enhance detail sharply raises computational costs; for instance, capturing 1/1000
second intervals within a second necessitates expanding M to 1000, which is computationally im-
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practical. To address this, we introduce Temporal Pyramid Representation (TPR), leveraging the
high temporal resolution of events while reducing representation complexity.

Our idea: The core of TPR is constructing a temporal pyramid where each successive layer’s du-
ration is 1/r, (r > 1) of the preceding one, leading to exponentially finer time granularity with
additional layers. For instance, as illustrated in Fig. 2 (a), around any given time t, we define a
surrounding time window ∆t and select an attenuation factor r. At the pyramid’s L-th level, the
events are within the time span of [t − ∆t/rL, t + ∆t/rL]. Each layer is further segmented into
Mp intervals, represented using a voxel grid. Accordingly, for an L-th layer, each layer contains Mp

moments within the TPR, and its finest time granularity, denoted by δt, is as delineated in the Eq. 2:

δt =
2×∆t

Mp × rL
(2)

Therefore, for any time t, we construct the corresponding TPR Ep with shape L ×Mp ×H ×W .
We record the TPRs at all target timestamp as Ep = {Ep}Nout

i .

Discussion: The time granularity δt of TPR exponentially improves with the increase in layers, L.
For an attenuation factor of r = 3 and a goal to detect motions as brief as 1/1000 of a second within
a 1s window (2 × ∆t = 1), we require only 7 TPR layers with each layer divided into 2 intervals
(Mp = 2). Consequently, a TPR with dimensions 7× 2×H ×W suffices to discern motion down
to 1/1000s. Based on the above representation, we obtained Ev , encapsulating holistic motion, and
Ep, which focuses on regional edges and motion.

3.2 HOLISTIC-REGIONAL FEATURE EXTRACTION

This module aims to extract features from regional TPRs Ep, and the frame Iin and the holistic
events Ev for INR-based spatial-temporal decoding. Accordingly, we introduce: (1) the regional
event feature extractor, fre, for dynamic motion and edges detail capture. (2) the holistic event-frame
feature extractor, fhe, for long-term motion dependencies modeling across time and space.
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Figure 3: Holistic event-frame feature extractor. The
down-sample module will halve the resolution. The
up-sample module will double the resolution. The en-
coder and decoder have the same structure as Swin-
Transformer (Liu et al., 2022b; 2021; Geng et al., 2022).

Regional Event Feature Extraction: The
input of fre is TPR Ep ∈ RL×Mp×H×W

in each timestamp t. Given that fre is in-
voked Nout times, its design needs to strike
a balance between efficiency and the ability to
model inter-level relationships to ensure that it
can capture precise regional motion and edge
details effectively. Initially, our method ap-
plies a convolution layer to increase the di-
mensions of the feature. Then, we use four
Swin Transformer Encoder Blocks (STEB)
(Liu et al., 2022b; 2021; Geng et al., 2022) to
model the relationship between different pyra-
mid levels. The STEB enjoys a large view
field and a multi-head attention mechanism
that proficiently models distant dependencies
and conveys edge information across various
pyramid levels, effectively capturing short-
term motion. Notably, STEB is optimized

with fewer parameters, boosting computational efficiency.

Holistic Event-Frame Feature Extraction: The inputs of fhe is Iin and Ev , as shown in Fig. 3.
First, a convolutional layer processes both frames and events to increase dimensions. Motivated
by the events feature manifest between successive frames to provide inter-frame motion informa-
tion. We adjusted the first dimension of the event feature to Nin − 1 to account for inter-frame
motion losses. We then incorporate the STEB to facilitate interactions across varied levels and spa-
tial domains. To minimize computational overhead and expand the receptive field, we integrated a
down-sampling module between STEBs, forming a multi-scale encoder. Each down-sampling it-
eration halves the resolution while maintaining the channel dimensions. After three iterations, the
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Figure 4: Temporal embedding. Given the input time t ∈ [0, 1], the output is the temporal attention
Et derived from a two-layer MLP. (b) presents a visualization of the trained Et during [0, 1] on real-world
dataset (Tulyakov et al., 2022).

feature resolution reduces to 1/8 of its initial size, enlarging the receptive field. We then employ a
Swin Transformer Decoder Block (Liu et al., 2022b; 2021; Geng et al., 2022) to fuse features at match-
ing resolutions. Each of the first three STEBs is followed by an upsampling process, which doubles
the resolution while maintaining the channel count. Ultimately, this process outputs the feature Fg .
For more details, see Suppl. Mat..

Notably, to output Nout frames, the holistic event-frame feature extractor fhe is called once, captur-
ing the comprehensive feature F g . Subsequently, for each time t, fre extracts regional features F l

t
from each TPR Ep ∈ Ep. For each regional feature F l

t , we use addition and Cov1 × 1 operation
as fusion function ffu to fuse with holistic feature F g to obtain the output Rt. For each time t, the
whole process can be described by Eq. 3, where Ep ∈ Ep is the TPR at the specific timestamp t.

Rt =ffu
(
F g, F l

t

)
;F g = fhe (Iin,Ev) ;F

l
t = fre (Ep) (3)

3.3 INR-BASED SPATIAL-TEMPORAL DECODING

In this section, we employ INR-based spatial-temporal decoding to effectively retrieve RGB frames
at any desired time and resolution. To achieve this, we leverage a temporal INR to generate features
at any timestamp and a spatial INR to upscale the features to any spatial resolution.

Temporal Embedding: We utilize learned temporal embedding as attention vectors to aggregate
the fused feature in the channel dimension in a time-specific manner. At a given timestamp t, we
first use a two-layer MLP to increase its dimension to Ct, resulting in a temporal attention vector
(as illustrated in Fig. 4 (a)). The visualization of the learned temporal attention is depicted in Fig. 4
(b), exhibiting variations across both time and channel dimensions. This attention vector is then
multiplied directly with Rt to generate the temporal embedded feature Rts. This temporal INR
allows for a larger temporal perception field without the need for estimating optical flows. Next,
a 1 × 1 convolution is applied to compress Rts to Cts dimensions, reducing the complexity of the
spatial embedding and decoding.

Spatial Embedding and Decoding: To upscale the temporal embedded features to any desired
spatial scale, we utilize a similar approach to previous works (Chen et al., 2022; 2023b; 2021). We
query the four nearest neighbors in the temporal embedded feature for each spatial coordinate and
concatenate these with their distances for spatial embedding. A four-layer MLP decoder computes
the RGB values, which are then aggregated through area-weighted interpolation for arbitrary-scale
super-resolution. Similar to (Lu et al., 2023), we use the Charbonnier loss (Lai et al., 2018) as the
fundamental loss function for training.

4 EXPERIMENTS

To facilitate a comprehensive comparison between the frame-base (Chen et al., 2022; 2023b) and event-
guided methods (Lu et al., 2023; Tulyakov et al., 2021; 2022; Jing et al., 2021), we employed two simulated
datasets (Su et al., 2017; Nah et al., 2017) and two real-world datasets (Tulyakov et al., 2022; Scheerlinck
et al., 2019a) for our experiments (1) Adobe240 dataset (Su et al., 2017) includes 133 videos, each with
720 × 1280 resolution and a 240fps frame rate. Following established protocols (Chen et al., 2022;
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Figure 5: 7-skip frame interpolation visualization results in Adobe240 dataset (Su et al., 2017). Our method (c)
more effectively captures the rotating wheels compared to the VideoINR (b), which tends to show noticeable
holes and gaps. Green circles highlight obvious holes and gaps.

2023b; Xu et al., 2021), the dataset is divided into 100 training, 16 validation, and 17 testing subsets.
We employed the widely-used event simulation method vid2e (Gehrig et al., 2020), which accounts
for real noise distribution, enhancing our model’s robustness and generalization capabilities. (2)
GoPro dataset (Nah et al., 2017) featuring the same resolution and frame-rate with Adobe240 dataset,
comprises 22 training and 11 test videos. Given its compact size, previous studies (Chen et al., 2023b;
2022) have primarily employed the test set for quantitative analysis. We follow this to be consistent
with established practice. For datasets (1) and (2) during 7-skip frame interpolation, we input 4
frames where each pair of adjacent frames is separated by 7 frames, allowing a total of 25 frames
to serve as GTs. (3) BS-ERGB (Tulyakov et al., 2022) recorded using a spectroscope, includes real-
world paired events and frames. Previous studies, e.g., TimeLens++(Tulyakov et al., 2022), initially
pre-trained on the Vime90k simulation dataset(Xue et al., 2019) before fine-tuning on BS-ERGB. In
contrast, we opted to pre-train our model on the Adobe240 dataset before fine-tuning. Notably,
the Vime90k dataset is larger in scale than the Adobe240 dataset. During fine-tuning, we also used
perceptual loss (Johnson et al., 2016) with weight 0.1 to be consistent with previous methods (Tulyakov
et al., 2021; 2022) for fair comparison. (4) CED (Scheerlinck et al., 2019a) is a real-world dataset in
VSR. To fairly compare the previous research (Jing et al., 2021; Lu et al., 2023), only this data set is
used for training for VSR comparison.

Implementation Details: Our model is trained using Pytorch (Paszke et al., 2019), employing the
Adam optimizer (Kingma & Ba, 2014). Referring to the VideoINR (Chen et al., 2022), our training
consists of two stages. (1) Train frame interpolation under a fixed spatial up-sampling (4×), over
70 epochs, starting with a learning rate of 5e− 4. (2) Train frame interpolation under random space
upsampling rate in U(1, 8), spanning 30 epochs with the learning rate 5e− 5. We randomly choose
20 frames from a pool of 25 frames as ground truth. Data augmentation is implemented via Random
Crop, extracting 512 × 512 areas from frames and events, with the input resolution dynamically
determined by a randomly chosen upsampling ratio s. To optimize memory usage and accelerate
speed, we implemented the mixed precision strategy (Micikevicius et al., 2017; Das et al., 2018). All
experiments are performed on an NVIDIA A800 computing card. Please refer to the Suppl. Mat.
for more details.

Evaluation: To ensure the fairness, we adopted PSNR (Zhang et al., 2018), SSIM (Wang et al., 2004),
and LPIPS (Zhang et al., 2018) as quantitative evaluation metrics. Aligning with prior works (Chen
et al., 2022; 2023b) for consistency, we use only the Y -channel for GoPro and Adobe datasets and all
three RGB channels for BS-ERGB and CED datasets.
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Table 1: Quantitative metrics (PSNR/SSIM) with 7-skip VFI and 4× VSR. Center Average remain consistent
with previous work (Chen et al., 2022; 2023b).

VFI VSR Params (M ) GoPro-Center GoPro-Average Adobe-Center Adobe-Average

Bicubic 19.8 27.04/0.7937 26.06/0.7720 26.09/0.7435 25.29/0.7279
Su-SloMo EDVR 19.8+20.7 28.24/0.8322 26.30/0.7960 27.25/0.7972 25.95/0.7682

BasicVSR 19.8+6.3 28.23/0.8308 26.36/0.7977 27.28/0.7961 25.94/0.7679
Bicubic 29.2 26.50/0.7791 25.41/0.7554 25.57/0.7324 24.72/0.7114

QVI EDVR 29.2+20.7 27.43/0.8081 25.55/0.7739 26.40/0.7692 25.09/0.7406
BasicVSR 29.2+6.3 27.44/0.8070 26.27/0.7955 26.43/0.7682 25.20/0.7421
Bicubic 24.0 26.92/0.7911 26.11/0.7740 26.01/0.7461 25.40/0.7321

DAIN EDVR 24.0+20.7 28.01/0.8239 26.37/0.7964 27.06/0.7895 26.01/0.7703
BasicVSR 24.0+6.3 28.00/0.8227 26.46/0.7966 27.07/0.7890 26.23/0.7725

TimeLens EG-VSR 72.2+2.45 28.85/0.8678 27.54/0.8293 28.11/0.8441 27.42/0.8269
CBMNet EG-VSR 22.2+2.45 29.22/0.8686 28.51/0.8493 28.28/0.8553 27.89/0.8334
Zooming Slow Mo 11.10 30.69/0.8847 -/- 30.26/0.8821 -/-
TMNet 12.26 30.14/0.8692 28.83/0.8514 29.41/0.8524 28.30/0.8354
Video INR-fixed 11.31 30.73/0.8850 -/- 30.21/0.8805 -/-
Video INR 11.31 30.26/0.8792 29.41/0.8669 29.92/0.8746 29.27/0.8651
MoTIF 12.55 31.04/0.8877 30.04/0.8773 30.63/0.8839 29.82/0.8750
HR-INR (Ours) 8.27 31.97/0.9298 32.13/0.9371 31.26/0.9246 31.11/0.9216

Table 2: More quantitative comparisons using PSNR/SSIM on the GoPro dataset. Bold indicates the best
performance.

Temporal
Scale

Spatial
Scale

Su-SloMo
+ LIIF

DAIN
+ LIIF TMNet Video INR MoTIF Ours

12× 4× 25.07/0.7491 25.14/0.7497 26.38/0.7931 27.32/0.8141 27.77/0.8230 28.87/0.8854
12× 6× 22.91/0.6783 22.92/0.6785 - 24.68/0.7358 26.78/0.7908 27.14/0.8173
16× 4× 24.42/0.7296 24.20/0.7244 24.72/0.7526 25.81/0.7739 25.98/0.7758 27.29/0.8556
16× 6× 23.28/0.6883 22.80/0.6722 - 23.86/0.7123 25.34/0.7527 26.09/0.7954
6× 1× - - - 32.34/0.9545 34.77/0.9696 38.53/0.9735
1× 4× - - 33.02/0.9206 32.26/0.9198 33.84/0.9328 33.51/0.9417

4.1 COMPARISON EXPERIMENTS

Space-time Super-resolution: We conduct space-time super-resolution comparison experiments on
the Adobe240 and GoPro datasets. We categorized the comparison methods into three groups. (I)
Frame-based cascade methods: VFI methods, e.g., Super SloMo (Jiang et al., 2018) and DAIN (Bao
et al., 2019) followed by VSR methods, e.g., EDVR (Wang et al., 2019) and BasicVSR (Chan et al., 2021).
(II) Fixed STVSR methods: e.g., Zooming Slow-Mo (Xiang et al., 2020) and TMNet (Xu et al., 2021).
(III) Frame-based C-STVSR methods: VideoINR (Chen et al., 2022) and MoTIF (Chen et al., 2023b).
The numerical comparison is presented in Tab. 1. It is evident that C-STVSR methods consistently
outperform cascade and fixed STVSR methods.Our method achieves the highest performance in
both datasets with the smallest model size. In the GoPro dataset, our method improves the center
frame by 0.93 dB and 0.0415 SSIM, and on average by 2.09 dB and 0.0598 SSIM compared to the
best method, MoTIF (Chen et al., 2023b). Similarly, in the Adobe240 dataset, our method outperforms
MoTIF (Chen et al., 2023b) by 0.63 dB and 0.0407 SSIM for the -center, and on -average by 1.29
dB and 0.0466 SSIM. It is worth noting that the difference between our method and other methods
is more pronounced for the -average frames than the -center frame. This observation suggests
that our method demonstrates enhanced temporal stability and superior adaptability across varying
interpolation intervals, an advantage not shared by previous methods (Chen et al., 2022; 2023b). For
more analysis, please refer to Sec. 4.2 and Fig. 12 in appendix.

Tab. 2 presents additional comparative experiments for arbitrary spatial and temporal super-
resolution. Our method consistently outperforms other methods, even in extreme space-time up-
sample scales, such as 16× temporal upscale and 6× spatial upscale. The visualization results,
Fig. 1 (c) and Fig. 5, also demonstrate that our method effectively models regional nonlinear mo-
tion, e.g., the wheel rotation — a capability not achieved by previous method VideoINR (Chen et al.,
2022). For more visualization results, please refer to the Suppl. Mat.
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Table 3: Temporal super-resolution results, i.e.,, VFI, on BS-ERGB dataset (Tulyakov et al., 2022).
1-skip 3-skip

Methods Params (M ) Event PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
FLAVR (Kalluri et al., 2023) - ✗ 25.95 - 0.086 20.90 - 0.151
DAIN (Bao et al., 2019) 24.0 ✗ 25.20 - 0.067 21.40 - 0.113
Super SloMo (Jiang et al., 2018) 19.8 ✗ - - - 22.48 - 0.115
QVI (Xu et al., 2019) 29.2 ✗ - - - 23.20 - 0.110
TimeLens (Tulyakov et al., 2021) 72.2 ✓ 28.36 - 0.026 27.58 - 0.031
TimeLens++ (Tulyakov et al., 2022) 53.9 ✓ 28.56 - 0.022 27.63 - 0.026
CBMNet (Kim et al., 2023) 15.4 ✓ 29.32 0.815 - 28.46 0.806 -
CBMNet-Large (Kim et al., 2023) 22.2 ✓ 29.43 0.816 - 28.59 0.808 -
HR-INR (Our) 8.3 ✓ 29.66 0.828 0.011 28.59 0.814 0.021

Table 4: Spatial super-resolution results on CED (Scheerlinck et al., 2019b). * denotes values from pre-trained
models.

4× 2×
Methods Params (M ) Events PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
RBPN (Haris et al., 2019) 12.18 ✗ 29.80 0.8975 36.66 0.9754
VideoINR* (Chen et al., 2022) 11.31 ✗ 25.53 0.7871 26.77 0.7938
E-VSR (Jing et al., 2021) 412.42 ✓ 30.15 0.9052 37.32 0.9783
EG-VSR (Lu et al., 2023) 2.45 ✓ 31.12 0.9211 38.69 0.9771
HR-INR (Our) 8.27 ✓ 32.15 0.9658 42.01 0.9905

(a) Events (b) LR Frame (c) VideoINR (d) EG-VSR (e) HR-INR (Ours) (f) GT (g) Error map (Ours)

Figure 6: 4× video super-resolution visualization results in CED dataset (Scheerlinck et al., 2019b).
Separate Comparison of Event-based VFI and VSR: We also compared our method with pre-
vious approaches in separate VFI (Tulyakov et al., 2022; 2021; Kim et al., 2023) and VSR (Lu et al.,
2023; Jing et al., 2021) tasks. The results can be seen in Tab. 3 and Tab. 4 respectively. In the VFI
task, our method surpasses TimeLens++ (Tulyakov et al., 2022) by 1.1 dB for 1-skip and 0.17 dB for
3-skip VFI, and CBMNet (Kim et al., 2023) by 0.23 dB for 1-skip. Additionally, our model’s size is
merely 1/7 and 1/3 that of TimeLens++ (Tulyakov et al., 2022) and CBMNet (Kim et al., 2023), respec-
tively. In the visualization aspect, our approach excels in modeling non-linear motion and long-term
dependencies, as evident in Fig. 13 in appendix. It precisely forecasts the positions of small balls
(Fig. 13 (1.d)) and the soccer ball (Fig. 13 (2.d)) at intermediate timestamps, outperforming previous
methods.

For the VSR task, our method outperforms EG-VSR (Lu et al., 2023) by 1.03 dB and 0.447 SSIM for 4
× super-resolution, and by 3.02 dB and 0.0134 SSIM for 2 × super-resolution. Fig. 6 demonstrates
our model’s effective VSR performance on the real-dataset CED, highlighting its ability to reproduce
sharp edges and robustness to noise. For more visualization results, see the Suppl. Mat.

4.2 ABLATION AND ANALYTICAL STUDIES

Ablation and analytical studies conducted on the Adobe240 (Su et al., 2017) and BS-ERGB (Tulyakov
et al., 2022) datasets unveiled several critical insights. On the Adobe240 dataset, we executed simulta-
neous 7-skip VFI and 4× VSR tests, as shown in Tab. 5 and Tab. 6, while on the BS-ERGB dataset,
1-skip and 3-skip VFI were performed in Tab. 7. Events Gain: Tab. 5-Case#1 shows that with
events input replaced as zero and unchanged network architecture, PSNR and SSIM significantly
drop, highlighting the importance of events for temporal motion learning. Adding events alone sub-
stantially raised PSNR by 2.85dB and SSIM by 0.06. Event TPR Enhancement: Incorporating
event TPR enhances performance, with PSNR and SSIM increasing with layer count, peaking at
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Table 5: Ablation studies in Adobe-Average Su et al. (2017) (4× and 7-skip). The † symbol marks the line
for comparison with other lines.

Case Events TPR Temporal
Embedding

Temporal
Dim (Ct)

Input
Frames PSNR ↑ SSIM ↑

Case#1 ✗ ✗ Learning 640 4 26.84 (−4.27) 0.8366 (−0.0850)
Case#2 ✓ ✗ Learning 640 4 29.69 (−1.41) 0.8974 (−0.0242)
Case#3 † ✓ ✓ Learning 640 4 31.11 0.9216
Case#4 ✓ ✓ Sinusoid 640 4 30.42 (−0.69) 0.9120 (−0.0096)
Case#5 ✓ ✓ Learning 320 4 28.44 (−2.67) 0.8700 (−0.0516)
Case#6 ✓ ✓ Learning 640 2 30.41 (−0.70) 0.9151 (−0.0065)
Case#7 ✓ ✓ Learning 640 3 30.72 (−0.39) 0.9174 (−0.0042)-

Table 6: Ablation studies for TPR levels and moments in Adobe-Average Su et al. (2017) (4× and 7-skip).
The † symbol marks the line for comparison with other lines. ”Captured Moment” refers to the temporal
resolution of the last layer of the TPR, which is calculated by Eq. 2.

Case TPR Level (L) TPR Moments (Mp) Captured Moment PSNR ↑ SSIM ↑
Case#1 3 3 1 / 81 29.93 (−1.18) 0.9011 (−0.0205)
Case#2 5 3 1 / 729 30.32 (−0.79) 0.9165 (−0.0051)
Case#3 7 3 1 / 6561 30.78 (−0.33) 0.9187 (−0.0029)
Case#4 † 7 9 1 / 19683 31.11 0.9216
Case#5 7 18 1 / 39366 31.18 (+0.07) 0.9228 (+0.0012)

Table 7: Ablation in BS-ERGB (TimeLens++) dataset Tulyakov et al. (2022).
1-skip 3-skip

TPR PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
✗ 28.25 0.8187 0.018 26.65 0.7867 0.039
✓ 29.66 (+1.41) 0.8281 (+0.0094) 0.011 (−0.007) 28.59 (+1.94) 0.8140 (+0.0273) 0.021 (−0.018)

seven layers, as shown in Tab. 5-Case#2 and Tab. 6. Specifically, in Tab. 5, as the TRP Level L
increases, the moments captured by the TPR become more precise. When the TRP Level rises from
3 to 7, the PSNR exhibits an increase of approximately 1.18. Furthermore, the model’s performance
also improves with the increase in TPR Moments Mp. However, during the phases where both L and
Mp are relatively high, this improvement tends to plateau. The TPR also demonstrates enhancement
on the BS-ERGB dataset, as shown in Tab. 7, yielding an increase of 0.92dB for 1-skip and an im-
provement of 1.13dB for 3-skip. This indicates that the benefits of TPR become more pronounced
with the increase in the number of skips. Time Embedding Method: Table 5-Case#3#4 shows
Sinusoid embedding’s results. It’s outperformed by learning-based methods, confirmed by previous
research (Ramasinghe & Lucey, 2023; Attal et al., 2022), due to their superior high-frequency informa-
tion capture. Temporal Dimension Impact: The INR temporal dimension significantly influences
performance. Lowering the dimensions from 640 to 320 degrades performance in Tab. 5-Case#3#5,
suggesting a reduction in temporal detail capture. Conversely, expanding the dimension to 960 poses
instability risks (e.g., NAN errors). This highlights the need to balance dimensionality and training
stability. Input Frames: Tab. 5-Case#3#6#7 illustrates the impact of varying input frame counts
on the final results. We observed a performance decrease of 0.70 dB and 0.39 dB when inputting
two and three frames, respectively, compared to four frames. This indicates a clear advantage of
multi-frame inputs in modeling longer-term dependencies. Moreover, even with two frames, our
method also outperforms previous works (Chen et al., 2022; 2023b).

5 CONCLUSION

Our work introduced the first event-guided continuous space-time video super-resolution method.
The main contributions are: (I) Event temporal pyramid representation for capturing short-term dy-
namic motion; (II) A feature extraction process combining holistic and regional features to manage
motion dependencies; (III) A spatiotemporal decoding process based on implicit neural represen-
tation, avoiding traditional optical flow and achieving stable frame interpolation through temporal-
spatial embedding.
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APPENDIX OVERVIEW

The appendix of this paper consists of five sections:

1. (Sec. A) Imaging Principle of Events and the Guidance of C-STVSR Task:
This section introduces the event generation model, providing insights into why events are
effective for C-STVSR.

2. (Sec. B) More Details about the Network Structure:
Detailed information on the network architecture is provided, including comprehensive
descriptions of the inputs, outputs, and intermediate processes of each module.

3. (Sec. C) More Details about the Experimental Settings:
This section describes additional experimental settings to ensure the accurate replication of
our method.

4. (Sec. D) Additional Experimental Results and Analysis: Further experimental analysis
and results are offered, demonstrating the superiority of our approach. The key subsections
include:

• More Visualization with Compare Methods: Visual comparisons highlighting the
advantages of our method over competing approaches.

• Capturing Millisecond Motion with Event TPR: Analysis of TPR’s capability to
capture fine-grained local motion.

• Analysis of Input Frames and Long-Distance Motion Modeling: Study of the im-
pact of multi-frame inputs on interpolation performance.

• More Metric Evaluation Results on Real-World Datasets: Quantitative compar-
isons using no-reference metrics (NIQE and PI).

• More Experiments on the APLIX-VSR Dataset: Extended evaluations on various
upscaling factors.

• Stability of VFI in Various Timestamps: Analysis of temporal coherence across
different timestamps.

• Bad Case Analysis: Identification and discussion of failure cases.
• Inference Time Analysis: Evaluation of inference efficiency.

5. (Sec. E) Additional Visualization Results:
This section presents more visual materials, including images and videos.

A IMAGING PRINCIPLE OF EVENTS AND THE GUIDANCE OF C-STVSR
TASK

Events are discrete points capturing the positive and negative changes in pixel brightness. Their
generation hinges on brightness alterations within the logarithmic domain. Specifically, an event
point e = (x, y, t, p) is triggered and logged upon meeting certain criteria. Suppose L(x, y, t)
represents the brightness at point (x, y) at any given time t. The event is recorded if the absolute
difference ∆L = log (L(x, y, t)) − L (x, y, t−∆t) surpasses a predetermined threshold C, as
formulated as Eq. 4.

p =

{
+1,∆L > C

−1,∆L < −C
(4)

Utilizing Eq. 4, the processing pipeline for a specified pixel at coordinates (x, y) at any given time t
and t′ can be delineated by Eq. 5.

L(x, y, t) = I(x, y, t′)× exp(C

∫ t

t′
p dt) (5)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Utilizing Eq. 5, coupled with corresponding events, the intensity frame at a given time enables the
computation of intensity frames for alternate times, facilitating video frame interpolation. However,
events typically contain noise, and employing Eq. 5 directly cannot produce optimal outcomes (Pan
et al., 2019).

Numerous studies (Paikin et al., 2021; Tulyakov et al., 2021; Zhang & Yu, 2022) have demonstrated the
effectiveness of employing neural networks to guide event-based modeling in robust frame interpo-
lation. Additionally, the high temporal resolution of events aids in high spatial resolution conversion,
a finding corroborated by prior research (Lu et al., 2023; Jing et al., 2021).

In conclusion, comprehending the event generation model reveals its substantial benefits for frame
interpolation and VSR tasks, making it a natural guide for continuous space-time video super-
resolution (C-STVSR) tasks.

B MORE DETAILS ABOUT NETWORK STRUCTURE

Owing to space constraints in the main text, this section provides a more detailed account of the net-
work’s results. The description begins with the Regional Event Feature Extraction component, cov-
ering its preprocessing steps and the architecture of the Swin Transformer Encoder Blocks (STEB).
Subsequently, the Holistic Event-Frame Feature Extraction is detailed, which, besides STEB, incor-
porates the Swin Transformer Decoder Block (STDB). In summary, this section elaborates on the
preprocessing for both feature extraction components and details the structures of STEB and STDB.

B.1 REGIONAL EVENT FEATURE EXTRACTION:

This section delves into Regional Event Feature Extraction, denoted as fre. fre receives Tempo-
ral Pyramid Representation (TPR) Ep corresponding to timestamp t, formatted as RL×Mp×H×W .
Here, L signifies the number of TPR layers, while Mp indicates the count of moments within each
layer. fre involves two primary stages: preprocessing and feature extraction via STEB. Specifically,
this preprocessing first increases its dimension to Cr through a 1 × 1 convolution operation. This
preprocessing alters the TPR’s shape to L × Cr × H × W . Feature extraction is then performed
using STEB, where both the input and output retain their shape throughout the process.

Swin Transformer Encoder Blocks (STEB): The STEB structure, proven effective in video super-
resolution and frame interpolation (Liu et al., 2022b; 2021; Geng et al., 2022), is adopted in our design.
The input and output shapes of STEB are represented as L × C ×H ×W for clarity. Initially, for
a window size of M × M , specifically 4 × 4 in our implementation, the input is partitioned into
disjoint windows of (M × M) × N × (H/M) × (W/M) × C dimensions. Then, each window
is compressed to form a feature map of shape (M × M) × (N × H × W/M2) × C. Following
this, Layer Normalization (Ba et al., 2016) and window-based multi-head self-attention (Liu et al.,
2021; Geng et al., 2022) are computed for each window, succeeded by further transformation via
another Layer Normalization and a Multi-Layer Perception. Shifted window-based multi-head self-
attention (Liu et al., 2021; Geng et al., 2022) is then employed to establish cross-window connections.
After applying one STEB structure, a second STEB is introduced with an identical configuration,
except the input feature window is offset by (M/2) × (M/2). In total, four STEBs are utilized for
comprehensive feature extraction in the Regional Event Feature Extraction.

B.2 HOLISTIC EVENT-FRAME FEATURE EXTRACTION:

This section details the Holistic Event-Frame Feature Extraction (fhe) module. The fhe module
processes inputs vIin and vEv to generate the output F g . Input vIin has a shape of N×3×H×W ,
whereas vEv is structured as M×H×W , with M indicating the count of moments derived from the
events. The output, F g , has a structure of Cg×H×W . Initially, fhe transforms vIin and vEv . vIin
and vEv are transformed into features with dimensions N ×C ×H ×W and N − 1×C ×H ×W
using 1×1 convolution and reshaping, followed by processing through a STEB module. The process
then employs a combination of downsampling and STEB to extract features across multiple scales,
each possessing a distinct view field. Notably, STEB maintains the same resolution and channel
count in both its input and output. Next, the Swin Transformer Decoder (STDB) is utilized for
fusing and decoding the dual-modal features. Each STDB block receives three types of inputs: the
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preceding STDB’s output and the outputs from the vIin and vEv encoder sections, all at a matching
resolution. In practice, the outputs from the vIin and vEv encoders are concatenated, transformed
into queries via an MLP layer, and then fused utilizing a multi-head attention mechanism. Notably,
the first STDB module lacks a preceding STDB output, hence defaulting this input to zero. The
final output, F g , is derived from the last STDB’s output, post reshaping and 1 × 1 convolution. In
summary, fhe employs a sequence of intricate yet efficacious transformation and fusion procedures,
designed to extract multifaceted features from inputs vIin and vEv for subsequent tasks in video
super-resolution and frame interpolation.

C MORE DETAILS ABOUT EXPERIMENTS SETTING

C.1 MORE DETAILS ABOUT DATASETS

To facilitate a comprehensive comparison between the frame-base (Chen et al., 2022; 2023b) and event-
guided methods (Lu et al., 2023; Tulyakov et al., 2021; 2022; Jing et al., 2021), we employed four datasets:
two simulated (Adobe240 (Su et al., 2017) and GoPro (Nah et al., 2017)) and two real-world (HS-
ERGB (Tulyakov et al., 2022) and CED (Scheerlinck et al., 2019a)) for our experiments.

1) Adobe240 Dataset (Su et al., 2017): This dataset comprises 133 videos, each with a resolution
of 720 × 1280 and a frame rate of 240. We follow (Chen et al., 2022; 2023b; Xu et al., 2021) to split
this dataset into 100 training, 16 validation, and 17 test sets. Upon frame extraction, we employed
the widely-used event simulation method vid2e (Gehrig et al., 2020), which accounts for real noise
distribution, ensuring robust neural network training with enhanced generalization. In generating
the inputs and ground truth of the network, we adopted and extended the previous works (Chen et al.,
2023b; 2022) to accommodate multi-frame input. Specifically, input and ground truth (GT) frames
are selected via sliding windows. We define the window size as W , the number of input frames as
Nin, and the interval as S. They interrelate as: W = (Nin − 1) ∗ (S + 1) + 1 For instance, with 4
frames input at 7-frame intervals, 25 frames are chosen. The 1st, 9th, 17th, and 25th frames become
the input after down-sampling, while frames 1-25 serve as the GT. We adopted two strategies in line
with prior works (Chen et al., 2022; 2023b): I) A fixed magnification set at 4× the input resolution, and
II) A variable enlargement strategy, wherein the scaling factor is governed by a U(1, 8) distribution.

2) GoPro Dataset (Nah et al., 2017): Both the GoPro and Adobe240 datasets share a resolution of
720 × 1280 and a frame rate of 240 fps. However, the GoPro dataset is more compact, encom-
passing 22 training videos and 11 for testing. Owing to this, prior research (Chen et al., 2023b; 2022)
predominantly utilized the GoPro test set for quantitative evaluations, neglecting its training set. In
the interest of fairness, we adopted the same approach.

3) BS-ERGB (Tulyakov et al., 2022): This dataset, captured with a spectroscope, comprises paired
events and RGB frames from real-world scenarios. It has a resolution of 970×625 with RGB frames
captured at 28 fps. Of the 123 videos in the dataset, 47 are allocated for training, 19 for validation,
and 26 for testing. Each video contains between 100 to 600 frames. Despite being a real-world
dataset, its size is inadequate for standalone training of a frame interpolation network. In previous
work, e.g.TimeLens++ (Tulyakov et al., 2022), the Vime90k (Xue et al., 2019) simulation dataset was
initially utilized for pre-training, followed by fine-tuning using this real-world dataset. We, on the
other hand, opted for a model pre-trained on Adobe240 for our fine-tuning.

4) CED dataset (Scheerlinck et al., 2019a): This is another real-world dataset in SR research where
both frames and events exhibit a resolution of 346×260. Following the previous research (Jing et al.,
2021), we conducted preprocessing on this dataset.

C.2 MORE DETAILS ABOUT IMPLEMENTATION DETAILS

Our experiments encompass four datasets, compared against a variety of benchmark methods. To
guarantee fairness in these comparisons, we provide additional details regarding our experimen-
tal approach. For the Adobe240 and GoPro datasets, our training and testing protocols adhere to
methods established in prior research (Chen et al., 2023b; 2022). Specifically, our approach diverges
from prior studies in handling the smaller-scale BS-ERGB dataset. Unlike previous methods that
pre-trained on the larger Vime90k dataset before fine-tuning on BS-ERGB, we opted for a different
strategy. Our method involves pre-training on the Adobe240 dataset. During this phase, we input
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Figure 7: More visualization results on real-world data set (Tulyakov et al., 2021).

four video frames, with a gap of seven frames between each pair. From a total of 25 frames, 20 are
randomly chosen as the ground truth. In the pre-training phase, our focus is solely on modules re-
lated to frame insertion, omitting any upsampling procedures. Consequently, the spatial embedding
aspect is excluded, and the decoding is performed using only a four-layer MLP decoder. For the
super-resolution experiments on the CED dataset, we deviated from pre-training and instead trained
our model exclusively on the CED dataset. A more detailed comparison of the 2× VSR is shown in
Tab. 10. This approach was chosen to maintain a fair comparison with other works (Lu et al., 2023;
Jing et al., 2021).
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Figure 8: More visualization results on real-world data set (Tulyakov et al., 2021)

D MORE EXPERIMENTS RESULTS AND ANALYSIS

D.1 MORE VISUALIZATION WITH COMPARE METHODS

The visual comparisons provided in Fig.7, 8, and 9 illustrate the superiority of our method in recov-
ering large-scale and long-distance motions across a variety of real-world scenarios. These results
demonstrate the efficacy of our approach in fusing regional and holistic information to address com-
plex motion dynamics, while also reducing ghosting artifacts that are commonly present in compet-
ing methods.

Fig.7 (Localized Long-Distance Motion): Our method excels in reconstructing fine-grained mo-
tion details, such as the movement of the horse’s legs. Unlike CBMNet and TimeLens, which either
fail to capture the intricate details or introduce significant motion blur, our approach accurately re-
stores the distinct positions of the horse’s hooves. This capability stems from the integration of local
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Figure 9: More visualization results on real-world data set (Tulyakov et al., 2021)

motion features captured by the regional branch and long-term temporal dependencies modeled by
the holistic branch.

Fig.8 (Small Object Long-Distance Motion): In this example, where the subject is juggling, the
motion of small, fast-moving objects (balls) is challenging to capture. Our method successfully
tracks the trajectory of each ball, producing sharp and well-aligned results. Competing methods
exhibit noticeable ghosting and fail to preserve the spatial consistency of the balls. This demon-
strates our model’s ability to handle small-scale, high-speed motion effectively by leveraging its
dual-branch feature extraction.

Fig.9 (Large Object Long-Distance Motion): For large-scale dynamic motion, such as the horse
and rider jumping, our method demonstrates clear advantages. The horse’s silhouette and rider’s
position are reconstructed with remarkable clarity and consistency. In contrast, competing methods
introduce significant blurring and fail to preserve the integrity of the subject’s shape, highlighting
their limitations in managing large-scale motion over time.
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Across all scenarios, our method generates outputs with fewer ghosting artifacts, as evidenced in
the reduced double-exposure effects visible in the reconstructed frames. The integration of regional
and holistic features enables our approach to capture both short-term and long-term motion depen-
dencies, resulting in more realistic and temporally coherent video outputs. These results substantiate
the robustness and generalizability of our method across diverse motion patterns and scales.

D.2 CAPTURING MILLISECOND MOTION WITH EVENT TPR

In the main paper, we conducted Ablation Studies to validate the effectiveness of the Temporal
Pyramid Representation (TPR) in capturing both short- and long-term motion dynamics. To fur-
ther analyze and understand the feature extraction process, this section provides a visualization of
TPR’s capability to capture local motion dynamics in extreme temporal conditions. Specifically, we
explore the regional and holistic features derived from the event data, showcasing their complemen-
tary strengths in capturing motion and static information.

As shown in Figure 10, the event data provides a unique advantage in capturing rapid, millisecond-
scale motion that cannot be effectively represented by frame-based methods alone. For instance, the
regional features derived from TPR (Fig. 10 (g)) focus on localized, short-term motion, while the
holistic features (Fig. 10 (f)) encapsulate global, long-term context. This dual representation allows
our method to effectively disentangle motion information from static background details.

Key Observations:

Scenario 1: Traffic Scene with Localized Dynamics In a scene where vehicles are moving in a
stationary urban background, the regional features capture the intricate, millisecond-level motion of
the vehicles, whereas the holistic features retain the overall scene structure, including static elements
like traffic signs and buildings. This dual capability allows our method to handle dynamic scenes
with both fast-moving and stationary elements seamlessly.

Scenario 2: Basketball Player in Motion In the visualization of a basketball player dribbling the
ball, the Holistic Features predominantly encode static background details, such as trees and other
stationary objects in the scene. Meanwhile, the Regional Features emphasize the dynamic movement
of the basketball, effectively isolating the short-term motion signals caused by its rapid movement.
This highlights TPR’s strength in focusing on localized motion, even for objects moving at high
speeds.

These visualizations provide strong evidence of TPR’s capability to model fine-grained, short-term
motion by leveraging its hierarchical structure. The event data complements frame-based informa-
tion by focusing on temporal granularity, enabling the extraction of rich local motion features.

We encourage readers to refer to the supplementary videos, where these cases are further demon-
strated, showcasing how TPR effectively integrates event and frame data to handle complex mo-
tion patterns. This visualization underscores the unique advantages of TPR as a novel event rep-
resentation that combines regional and holistic information, enabling robust spatiotemporal super-
resolution.

D.3 ANALYSIS OF INPUT FRAMES AND LONG-DISTANCE MODELING

In the main paper, our ablation studies demonstrated that increasing the number of input frames
significantly improves interpolation performance. Figure 11 compares the outputs of two models:
one using two input frames (0, 1) and another using four input frames (-1, 0, 1, 2).

With two input frames, the model struggles to capture complex motion, as seen in the less accurate
predictions of the basketball’s trajectory in Fig.11 (b). In contrast, the four-frame model leverages
additional temporal information to model longer-term motion, producing smoother and more accu-
rate results, as shown in Fig.11 (c). The holistic feature visualizations further highlight the richer
temporal dependencies captured by the four-frame model, allowing it to handle challenging motion
scenarios more effectively.

This analysis underscores the strength of our method in utilizing multi-frame inputs to improve
temporal coherence and enhance interpolation quality, particularly for long-distance or rapid motion.
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𝑡 = 0.25 𝑡 = 0.5 𝑡 = 0.75

(a) Inputs Frames (c) GT

(d) Events with long-term

(b) Our Outputs

(e) Events with short-term

(f) Holistic Feature (g) Regional Feature

𝑡 = 0.25 𝑡 = 0.5 𝑡 = 0.75

(a) Inputs Frames (c) GT

(d) Events with long-term

(b) Our Outputs

(e) Events with short-term

(f) Holistic Feature (g) Regional Feature

Figure 10: Feature visualization on real data (Tulyakov et al., 2022): (f) shows the holistic feature,
F g , derived from multiple frames and events; (g) depict the regional features (F g

t ), highlighting the
capability to capture local motion.
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(b) Inputs with Two Frames (0, 1) Holistic Feature Visualization and Prediction Results

-1 0 1 2
(a) Inputs frames

(c) Inputs with Four Frames (-1,0, 1,2) Holistic Feature Visualization and Prediction Results

Figure 11: Visualization of Holistic Features for multi-frame input.

D.4 MORE METRIC EVALUATION RESULTS ON REAL-WORLD DATASET

Table 8: No-reference metric evaluation results on real-world dataset (Tulyakov et al., 2021) using
Skip-3 testing. Lower values indicate better performance.

Method Average NIQE Average PI
TimeLens 4.6855 3.9610
CBMNet 3.2006 2.8634
Ours 3.1483 2.6397

Table 8 compares the perceptual quality of TimeLens, CBMNet, and our method on the real-world
dataset using NIQE and PI metrics. Both metrics evaluate image quality without reference to ground
truth, making them ideal for real-world scenarios.

NIQE: Our method achieves the lowest NIQE score of 3.1483, indicating the most natural-looking
outputs. While CBMNet performs significantly better than TimeLens, its score of 3.2006 is slightly
higher than ours, showing the advantages of our approach in restoring naturalness.

PI: Similarly, our method outperforms CBMNet and TimeLens in perceptual realism, with the low-
est PI score of 2.6397. The gap between our method and CBMNet (0.2237) highlights our improved
capacity to generate realistic outputs, particularly in challenging real-world conditions.

These results demonstrate that our method effectively leverages SOTA event-based methods to sur-
pass the competing approaches in generating both natural and perceptually realistic results.

D.5 MORE EXPERIMENTS IN APLIX-VSR DATASET

The ALPIX-VSR (Lu et al., 2023) dataset consists of 26 videos, each containing aligned video
frames and events. However, note that the event data in this dataset is not in a stream format but
is in the form of event-images. Therefore, the Temporal Pyramid Representation (TPR) structure
cannot be directly applied. Instead, for the regional branch, we use the closest event-image as input
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Table 9: Quantitative comparison (PSNR/SSIM) of our methods and other methods on the ALPIX-
VSR dataset. * denotes the values obtained from the official pre-trained models.

Scale Methods PSNR SSIM

×2
E-VSR 36.10 0.9761
EG-VSR 38.25 0.9822
Ours 38.32 0.9891

×4

E-VSR 32.54 0.9163
BasicVSR++ 35.30 0.9353
EG-VSR 37.12 0.9503
Ours 37.96 0.9682

×6
VideoINR* 31.15 0.9084
EG-VSR 31.85 0.9267
Ours 33.60 0.9421

×8
VideoINR* 28.11 0.8625
EG-VSR 28.53 0.8901
Ours 29.31 0.8922

for the regional branch. Following previous methods such as EG-VSR (Lu et al., 2023), we trained
our model for 100 epochs.

As shown in Table 9, our model outperforms previous methods across all scales, and its advantage
becomes more pronounced as the upscaling factor increases. At lower upscaling factors (e.g., 2×),
the performance gap between our model and competing methods is modest but significant, reflecting
our ability to recover fine-grained details. Specifically, we achieve an improvement of 0.07 dB in
PSNR compared to EG-VSR, while also demonstrating better structural similarity, as shown by the
higher SSIM values.

However, as the upscaling factor increases, the superiority of our method becomes more evident.
For instance, at 4× upscaling, our approach surpasses EG-VSR by 0.84 dB in PSNR, and the SSIM
improves significantly from 0.9503 to 0.9682. This indicates that our framework effectively ad-
dresses the challenges posed by higher resolutions, where maintaining temporal consistency and
spatial detail becomes increasingly difficult for traditional methods.

At the extreme upscaling factors of 6× and 8×, the robustness of our method becomes particularly
apparent. For 6× super-resolution, our method achieves a PSNR improvement of 1.75 dB over
EG-VSR, and the SSIM increases from 0.9267 to 0.9421. Similarly, at 8× upscaling, our model
outperforms EG-VSR by 0.78 dB in PSNR and achieves a higher SSIM, overcoming the limitations
of competing approaches like VideoINR and demonstrating a clear advantage in preserving both
visual quality and structural integrity under challenging conditions.

These results illustrate that our method not only excels at lower upscaling factors but also maintains
its effectiveness as the resolution demands increase, thereby setting a new benchmark for event-
guided video super-resolution. The improvements at higher scales underscore the strength of our
architectural innovations, particularly in leveraging event-image inputs to effectively address long-
term dependencies and fine-grained motion dynamics.

D.6 STABILITY OF VFI IN VARIOUS TIMESTAMPS:

Our method demonstrates temporal stability, accurately estimating motion states at each time point
during frame interpolation. Specifically, whether in the GoPro-Average and Adobe-Average of
Tab. 1, or the 12-skip and 16-skip tests of Tab. 2, our method significantly outperforms previous
methods by at least 1.2dB with 4× VSR.

Fig. 12 shows the relationship between timestamps and PSNR, validating the greater stability of our
method compared to VideoINR (Chen et al., 2022), especially around the 0.5s mark, where VideoINR
experiences a notable decrease. This observation is also reflected in the visualization results of Fig. 1
and Fig. 5 in main paper and Fig. 13 and Fig. 14 in appendix. In Fig. 13 and Fig. 14, whether us-
ing real-world or simulated data, our method demonstrates superior temporal consistency, exhibit-
ing fewer artifacts compared to previous methods such as VideoINR (Chen et al., 2022) and Time-
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Figure 12: Timestamps and corresponding PSNR for each frame during 4× VSR and 7-skip VFI on the
Adobe240 dataset (Su et al., 2017).
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Figure 13: 3-skip frame interpolation visualization results in BS-ERGB dataset (Tulyakov et al., 2022).
Our method accurately captures local non-linear motion (e.g., balls in (1.d) and (2.d)), surpassing Time-
Lens (Tulyakov et al., 2022), which exhibits ghosting and holes (green circles). A yellow arrow shows Time-
Lens’s inaccurate ball positioning.

Lens (Tulyakov et al., 2021). This showcases the real-world effectiveness of our method’s temporal
stability.

The main reason is that optical flow-based methods (Chen et al., 2022; 2023b; Tulyakov et al., 2021) suf-
fer from instability in flow estimation at time far from the reference frames (at 0 and 1 timestamp),
which impacts the motion estimation. In contrast, this limitation does not affect our method and
maintains higher stability throughout the temporal sequence.

D.7 VIDEO SUPER-RESOLUTION WITH 2× IN CED DATASET

In Tab. 10, our proposed method demonstrates the highest performance across various clips in the
CED dataset, significantly outperforming previous methods, including EG-VSR. Our approach con-
sistently achieves higher PSNR and SSIM values, indicating superior visual quality and reconstruc-
tion accuracy. For instance, on average, our method improves PSNR by 3.32 dB and SSIM by
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Figure 14: 4× VSR and 7-skip VFI visualization results. Please refer to the supplementary material
for the video of this case.

Table 10: Quantitative results (PSNR/SSIM) of the proposed our framework and other methods on
the CED dataset for ×2. Because the official training code is not available, * denoted values were
acquired from the pre-trained model that the authors have released.

Clip Name TDAN
(Tian et al., 2020)

SOF
(Wang et al., 2020b)

RBPN
(Haris et al., 2019)

VideoINR*
(Chen et al., 2022)

E-VSR
(Jing et al., 2021)

EG-VSR
(Lu et al., 2023) Ours

people dynamic wave 35.83 / 0.9540 33.32 / 0.9360 40.07 / 0.9868 27.47 / 0.8229 41.08 / 0.9891 38.78 / 0.9794 41.50 / 0.9901
indoors foosball 2 32.12 / 0.9339 30.86 / 0.9253 34.15 / 0.9739 26.03 / 0.7766 34.77 / 0.9775 38.68 / 0.9750 42.17 / 0.9904

simple wires 2 31.57 / 0.9466 30.12 / 0.9326 33.83 / 0.9739 26.77 / 0.8321 34.44 / 0.9773 38.67 / 0.9815 42.21 / 0.9922
people dynamic dancing 35.73 / 0.9566 32.93 / 0.9388 39.56 / 0.9869 27.36 / 0.8202 40.49 / 0.9891 39.06 / 0.9798 42.02 / 0.9913
people dynamic jumping 35.42 / 0.9536 32.79 / 0.9347 39.44 / 0.9859 27.24 / 0.8183 40.32 / 0.9880 38.93 / 0.9792 42.09 / 0.9916

simple fruit fast 37.75 / 0.9440 37.22 / 0.9390 40.33 / 0.9782 27.21 / 0.8456 40.80 / 0.9801 41.96 / 0.9821 43.96 / 0.9912
outdoor jumping infrared 2 28.91 / 0.9062 26.67 / 0.8746 30.36 / 0.9648 26.88 / 0.8226 30.70 / 0.9698 38.03 / 0.9755 42.68 / 0.9902

simple carpet fast 32.54 / 0.9006 31.83 / 0.8774 34.91 / 0.9502 24.21 / 0.5909 35.16 / 0.9536 36.14 / 0.9635 39.80 / 0.9853
people dynamic armroll 35.55 / 0.9541 32.79 / 0.9345 40.05 / 0.9878 27.26 / 0.8193 41.00 / 0.9898 38.84 / 0.9787 41.99 / 0.9915

indoors kitchen 2 30.67 / 0.9323 29.61 / 0.9192 31.51 / 0.9551 26.44 / 0.7502 31.79 / 0.9586 37.68 / 0.9726 41.61 / 0.9901
people dynamic sitting 35.09 / 0.9561 32.13 / 0.9367 39.03 / 0.9862 27.63 / 0.8230 39.97 / 0.9884 38.86 / 0.9810 41.99 / 0.9917
average PSNR/SSIM 33.74 / 0.9398 31.84 / 0.9226 36.66 / 0.9754 26.77 / 0.7938 37.32 / 0.9783 38.69 / 0.9771 42.01 / 0.9905

(a) Original temporal embedding visualization (b) Sorted by the first element

Figure 15: Visualization of Temporal Embedding. Figure (a) shows the original visualization of
Temporal Embedding, while figure (b) displays the results after sorting. The sorting is based on the
size of the first element, arranged in ascending order. We use MLP decoding, where the order is not
crucial. However, to more clearly demonstrate the outcomes of Temporal Embedding learning, we
have chosen to present the sorted results.

0.0134 compared to EG-VSR. These results highlight the effectiveness of our framework in han-
dling complex scenes, showcasing its robustness and reliability in video super-resolution tasks.

D.8 TIME EMBEDDING FEATURE VISUALIZATION

Fig.15 illustrates the visualization of time embedding features. Compared to traditional sine-cosine
embedding features, the learning-based approach performs better, as shown in Tab. 5. The visualized
learning-based embedding features not only demonstrate the capability to learn periodic positional
representations but also provide a richer expression of exposure information.
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Figure 16: Comparison of total and average time for 34× frame interpolation by different meth-
ods. Our method takes less time than TimeLens (Tulyakov et al., 2021), but slightly more time than
VideoINR (Chen et al., 2022).

D.9 BAD CASE ANALYSIS

We have observed that our method has certain limitations in some cases (Fig. 14). For example,
when restoring color information, although our model can accurately reconstruct the contours of
objects, the color information is often distorted or missing. This issue primarily arises due to the
lack of color information in the event stream. We believe that with future advancements in color
event technology, this problem will be effectively addressed.

D.10 INFERENCE TIME ANALYSIS

In Fig. 15, we analyze the inference times of three different methods. Both our method and
VideoINR achieve an average frame time of less than 100 ms for 34× frame interpolation. In
contrast, TimeLens (Tulyakov et al., 2021) has an average frame time of 187 ms, which is more than
double that of our method. The tests were conducted on a high-performance computer, and each
method was tested 30 times, with the final inference time being the average of these 30 trials.

E MORE VISUALIZATION RESULTS

Additional videos have been included in the supplementary materials to provide a more comprehen-
sive demonstration of our method’s visual results. Below, we enumerate these videos and briefly
describe their key features. We then present more visualizations to demonstrate the generalization
of our method on real data.

• 1-Adobe240: This video contains the following five clips.
– IMG 0013-7skip4xsr-Cyclist: In this video, the camera and the people in

the background are in motion, creating a complex scene. Our method successfully
recovers the locally moving bicycle, demonstrating exceptional video frame interpo-
lation and super-resolution capabilities.

– IMG 0037-7skip4xsr-
TrafficIntersectionManyCars: The video demonstrates a camera with
slight movement, capturing a busy intersection bustling with vehicles. Our method
is capable of accurately recovering vehicles in motion within the scene, including the
intricate details of rotating tires.

– IMG 0037a-7skip-
MovingForegroundAndBackground: The video includes both distant and
close-up elements. In the close-up scenes, the comparative methods resulted in sig-
nificant deformations and distortions.

– IMG 0045-7skip-
PortraitSculpture: This video demonstrates the effects under significant
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camera movement. When the camera moves rapidly, frame-based methods tend to
underperform.

– IMG 0175-7skip4xsr-
LawnAndCar: The same scene occurs when the camera moves violently.

– IMG 0175-7skip4xsr-
TreeComplexTexture: This video captures leaves, demonstrating that methods
based on optical flow tend to fail in the presence of complex textures.

• 2-TimeLensPP-Ours-1: This video shows the performance of our method on real-
world data sets and the visualization of features. Demonstrates that we effectively capture
local motion.

• 3-Our-vs-Timelens: This video shows the results of comparing our method with
Timelens (Tulyakov et al., 2021).
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Figure 17: More visualization results on real-world data set (Tulyakov et al., 2021).
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Figure 18: More visualization results on real-world data set (Tulyakov et al., 2021).
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Figure 19: More visualization results on real-world data set (Tulyakov et al., 2021).
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Figure 20: More visualization results on real-world data set (Tulyakov et al., 2021).
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Figure 21: More visualization results on real-world data set (Tulyakov et al., 2021).
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Figure 22: More visualization results on real-world data set (Tulyakov et al., 2021).
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