
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONCEPT BOTTLENECK MODELS UNDER LABEL NOISE

Anonymous authors
Paper under double-blind review

ABSTRACT

Concept bottleneck models (CBMs) are a class of interpretable neural network
models that make the final predictions based on intermediate representations known
as concepts. With these concepts being human-interpretable, CBMs enable one
to better understand the decisions made by neural networks. Despite this advan-
tage, we find that CBMs face a critical limitation: they require additional labeling
efforts for concept annotation, which can easily increase the risk of mislabeling,
i.e., CBMs tend to be trained with noisy labels. In this work, we systematically
investigate the impact of label noise on CBMs, demonstrating that it can signif-
icantly compromise both model performance and interpretability. Specifically,
we measure the impact of varying levels of label noise across different training
schemes, through diverse lenses including extensive numerical evaluations, fea-
ture visualizations, and in-depth analysis of individual concepts, identifying key
factors contributing to the breakdowns and establishing a better understanding of
underlying challenges. To mitigate these issues, we propose leveraging a robust
optimization technique called sharpness-aware minimization (SAM). By improving
the quality of intermediate concept predictions, SAM enhances both the subsequent
concept-level interpretability and final target prediction performance.

1 INTRODUCTION

Recent advancements in deep learning have led to significant progress in a wide range of appli-
cations (LeCun et al., 2015; Brown, 2020). However, neural network models often remain as
“black-boxes”, making their decision-making processes challenging to interpret and control (Esteva
et al., 2019; Miller, 2019). To address this, concept bottleneck models (CBMs) stand out as a
promising solution, aiming to enhance model interpretability by introducing an intermediate step that
relates the input and the final target prediction to the human-interpretable concepts (Koh et al., 2020;
Bahadori & Heckerman, 2021; Sawada & Nakamura, 2022). For example, instead of relying solely
on raw pixel data, CBMs can classify an animal’s species based on interpretable concepts such as tail
shape or body color, offering a more transparent and understandable decision-making process.

While CBMs show great promise, they come with a significant challenge: the need for labeled target
and concept data during training, which requires extensive additional concept annotations. This
annotation process is highly susceptible to errors; subjective interpretations of concepts, variability
in annotator expertise, and simple human mistakes can all lead to mislabeled data. These issues
can potentially make CBMs particularly vulnerable to noisy labels, undermining their reliability.
Consequently, the very foundation of CBMs—their interpretability—can be compromised, leading
to unstable target predictions and raising serious concerns about their practical effectiveness and
trustworthiness.

Despite the increased susceptibility of CBMs to label noise, the impact of such noise on these models
has been largely overlooked in existing research. Surprisingly, there has been no systematic study
addressing how label noise affects the performance and interpretability of CBMs. For example,
previous work has predominantly focused on enhancing task performance (Sawada & Nakamura,
2022; Zarlenga et al., 2022), tackling confounding issues such as information leakage (Bahadori
& Heckerman, 2021; Margeloiu et al., 2021a; Mahinpei et al., 2021a), or proposing intervention
methods (Chauhan et al., 2022; Shin et al., 2023), to name a few.
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This paper presents the first systematic study addressing the unexplored issue of label noise in CBMs,
shedding light on its detrimental effects on both model performance and interpretability. We start by
investigating the extent to which label noise impacts CBMs, demonstrating that even moderate levels
of noise can severely undermine their effectiveness (Section 3). To gain deeper insights, we conduct
an in-depth analysis using feature visualizations and concept properties, examining how label noise
disrupts the relationship between input data, intermediate concepts, and final predictions (Section 4).
Last but not least, we evaluate the effectiveness of existing label noise mitigation techniques (?Baek
et al.), with a primary focus on sharpness-aware minimization (SAM) (Foret et al., 2021) (Section 5).
Our findings highlight the specific challenges that CBMs face under noisy conditions and provide
actionable insights into building more stable and reliable interpretable models.

2 SETTINGS

Figure 1: CBM prediction workflow.
CBMs first predict an intermediate set of
human-specified concepts c, an additional
step compared to E2E models, and then use
c to predict the final target y.

Concept bottleneck models. CBMs are supervised
classification models trained on a collection of an input
image x ∈ Rd, concepts c ∈ {0, 1}k, and a target
y ∈ R, where d and k denotes the dimension of input
and the number of concepts, respectively. In general,
CBMs operate in two stages: a concept predictor g maps
input images to concepts, and a target predictor f uses
these concepts to predict the final target (see Figure 1).
Typically, g is implemented as a deep neural network
(e.g., InceptionV3), while f is a shallow neural network
(e.g., simple linear model). This general structure is
common across various CBM variants (Zarlenga et al.,
2022; Yuksekgonul et al., 2023; Kim et al., 2023). A key strength of CBMs is their interpretability,
as they reveal how specific concepts contribute to the final prediction. Instead of relying on raw
data, CBMs make decisions through a clear combination of human-interpretable concepts, enhancing
transparency.

CBM training strategies. To effectively train the g and f models within CBMs, Koh et al. (2020)
introduce three different training strategies, which we also consider in our study:
• Independent(Ind): g and f are trained independently, with f using ground-truth concepts as

inputs for training.
• Sequential(Seq): g is trained first, and then f is trained sequentially. f takes the predicted

concepts as inputs from trained g.
• Joint(Joi): g and f are trained jointly at the same time as a multi-objective.

Experimental setup. To investigate the impact of label noise on CBM performance, we train
CBMs on CUB (Wah et al., 2011) and AwA2 (Xian et al., 2018) datasets. We use Incep-
tionV3 (Szegedy et al., 2016b) pre-trained on ImageNet (Deng et al., 2009) as a backbone for
concept predictor g, and use a one-layer linear model for target predictor f , following previous
standard implementations. Each experiment is repeated with three different random seeds, and we
report the average performance across these runs. Detailed experimental settings are provided in
Appendix G.

Noisy dataset. Here, we want to assess and investigate the impact of the label noise on CBMs.
For investigation, first we have to build a new CBMs dataset, which can mimic the real-world noisy
dataset. Thus, we define different types of noise as follows: concept noise ĉ refers to noise added to
concept labels, while target noise ŷ refers to noise in target labels. Label noise encompasses both ĉ
and ŷ. To generate a noisy dataset, we randomly flip each label with an equal probability γ. For a
dataset with N classes, each incorrect label has a 1/(N − 1) chance of being chosen. Specifically, for
target noise, γ% of target labels are flipped, while for concept noise, γ% of concept labels are flipped
within each target. We vary the noise rate γ across 0%, 10%, 20%, 30%, 40%, where 0% represents
a clean dataset. This systematic approach allows us to assess how increasing levels of noise affect
CBM performance. We describe more detail in Appendix A.
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(a) CUB, Ind (b) CUB, Seq (c) CUB, Joi (d) AWA2, Ind (e) AWA2, Seq (f) AWA2, Joi

Figure 2: Target prediction accuracy of CBMs on noisy CUB and AWA2. In the radar chart, the
graphs of Ind, Seq, and Joi, show the performance of target prediction accuracy, demonstrating
that CBMs are vulnerable to label noise across various noise levels.

Table 1: Concept prediction accuracy of CBMs on noisy CUB and AWA2. Concept accuracies below
75% are highlighted, indicating significantly reduced interpretability under label noise.

CUB AWA2

Noise 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

Ind 96.5 93.8 91.6 89.1 85.4 78.5 78.4 78.1 77.3 75.3
Seq 96.5 93.8 91.6 89.1 85.4 78.5 78.4 78.1 77.3 75.3
Joi 92.4 85.9 78.4 67.6 57.3 77.8 74.2 70.1 65.4 57.4

3 CRITICAL IMPACT OF LABEL NOISE ON CBMS

Understanding the actual impact of label noise on CBMs is critical, and this section is dedicated
to that exploration. To evaluate this impact, we begin by measuring model performance across
various levels of label noise. By systematically analyzing the behavior of CBMs under different noise
conditions, we aim to determine the extent to which label noise adversely affects their performance
and interpretability. Specifically, we train CBMs on noisy versions of the CUB and AWA2 datasets,
introducing noise rates ranging from 0% to 40%. We then assess the models on clean test datasets,
thoroughly investigating both their final performance and the integrity of their interpretability under
increasing noise levels.

Impacts on target performance. We start by examining the impact of label noise on CBM target
performance. In Figure 2, each corner represents the target accuracy at different noise rates γ%, with
larger and more regular pentagonal shapes indicating higher robustness. The results clearly show
that CBMs are highly vulnerable to label noise. As the noise level increases, target performance
significantly declines across all datasets. In the case of Joi model trained on AWA2, the performance
drop might not be immediately apparent, but it still decreases by 7.2% (from 88.9% to 81.7%). The
decline is even more drastic for Ind and Seq models, which almost collapse entirely at a 40% noise
rates on CUB dataset. This substantial decline highlights that label noise severely compromises CBM
target performance, posing a critical challenge to their reliability. We also provide the results for label
noise in E2E models as a reference, which shows better resilience to label noise (see Appendix B).

Impacts on interpretability. Next, we assess interpretability by evaluating concept prediction
accuracy, measuring how closely the predicted concept representations align with the ground-truth
concept labels, as presented in Table 1. Although the Joi model appeared less affected by label
noise in the previous section, a closer examination reveals a different story. Its concept prediction
accuracy is notably worse than that of the Ind and Seq models, particularly at higher noise levels.
For instance, at a 40% noise rate, the concept accuracy of the Joi model drops to nearly 50% across
all datasets, indicating almost random predictions given that the concepts are binary. This outcome
can be expected when considering that the Joi model learns g and f simultaneously, with training
primary focusing on the final prediction. As a result, the concept predictor struggles more under
noisy conditions. This aligns with the performance-interpretability trade-off discussed in prior work
(Rudin et al., 2022). Overall, these results confirm that as label noise increases, CBMs experience
severe compromises to their interpretability despite maintaining some target accuracy.

Where is the source? To identify the source of the detrimental effects observed earlier, we
compare target performance under concept noise, target noise, and combined (i.e., concept + target)
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noise conditions. For evaluation, we measure the target and concept prediction accuracy of Ind
model on the test dataset, trained on the CUB dataset across varying noise levels (see Appendix C.1
for full results).

(a) Target accuracy (b) Concept accuracy

Figure 3: Target and concept prediction
accuracy of Ind model across noise levels.

As seen in Figure 3, the target performance under con-
cept noise alone closely resembles the results under
combined noise. Given the crucial role concepts play
in CBM predictions, the disruption caused by noisy
concepts strongly suggests that concept noise is the
primary factor driving model failure, substantially af-
fecting both target performance and interpretability. In
the next section, we investigate deeper into how concept
noise affects CBMs and the mechanisms behind these
detrimental effects.

4 UNDERSTANDING THE BREAKDOWN

4.1 CONCEPT NOISE DISRUPTS REPRESENTATION CLUSTERING

Previously, we identified that CBM failures are closely linked to concept noise. This leads to the
question of how concept noise specifically disrupts the model. To answer this question, we investigate
its impact on the internal representations of CBMs. Using t-SNE (Van der Maaten & Hinton, 2008),
a dimensionality reduction technique, we project the final layer activations of the model to visualize
how CBMs differentiate between classes under varying noise levels. This approach allows us to
directly observe how concept noise affects feature clustering.

For this experiment, we select three classes: RED-WINGED BLACKBIRD, YELLOW-HEADED BLACK-
BIRD, and BLACK-FOOTED ALBATROSS, and train an Ind CBM model on the CUB dataset with
noise rates of 0%, 20%, and 40%. The first two classes are semantically similar, while the third is
distinct. Ideally, in the feature space, all three classes should form separate clusters, with the similar
classes clustering closer together than the distinct one. The results are shown in Figure 4.

The activation projection from the model trained on the clean dataset (i.e., 0% noise) reveals well-
formed, tight, and distinct clusters, with semantically similar classes close to each other (see Figure 4a).
However, as concept noise is introduced, the model’s ability to form clear clusters diminishes (see
Figure 4b). At a 20% noise level, the clusters become broader and less distinct, with semantically
similar classes starting to overlap. At 40% noise, the clusters collapse entirely, making it difficult
to distinguish between the classes. This indicates that the model struggles to maintain a reliable
mapping between input and target through the intermediate concepts under high concept noise.

Interestingly, when we examine the effects of target noise (see Figure 4c), the model’s clusters remain
tight and well-separated, regardless of the noise rate. This demonstrates that target noise does not
significantly hinder the model from learning meaningful representations. Therefore, it is evident that
concept noise is the primary factor that severely impairs the representation learning of CBMs.

4.2 CONCEPT NOISE DISTORTS CONCEPT-TARGET RELATIONSHIPS

In the previous section, our results reveal that the noise disrupts the mapping from input to target
through the intermediate concepts. First, our goal is to understand how training with noisy concept
data alters the relationship between concepts and their corresponding targets. To investigate this,
we analyze the weight magnitudes of the f model to observe how the importance of each concept
changes under noise. Specifically, we plot the weight assigned to each concept for a particular target
class. For this analysis, we use the Ind model trained on the CUB dataset under concept noise at
levels of 0%, 20%, and 40%. We focus on one class, LE CONTE SPARROW, and identify the top 5
concepts with the highest weights assigned by f .

Changes in concept importance. Figure 5b shows that, in the clean dataset setting, the five most
influential concepts for LE CONTE SPARROW are ‘white upperparts’, ‘grey back’, ‘iridescent breast’,
‘yellow upperparts’, and ‘yellow upper tail’, indicating that f heavily relies on these concepts for
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(a) Clean dataset (b) Concept noise (c) Target noise

Figure 4: t-SNE visualization of the activations at the last layer in Ind model. We visualize three
classes: BLACK-FOOTED ALBATROSS (•), RED-WINGED BLACKBIRD (•), and YELLOW-HEADED
BLACKBIRD (•). The t-SNE plots show models trained on (a) a clean dataset, (b) concept noise, and
(c) target noise, highlighting how noise affects feature representation and class separation.

(a) Le Conte Sparrow (b) Importance shift in key concepts (c) Top concepts under 40% noise

Figure 5: Collapse in concept relationship. (b) shows top 5 most influential concepts for LE CONTE
SPARROW in a clean setting and tracks how their influence shifts as noise increases. (c) presents top 5
influential concepts under 40% noise. In both figures, bars in blue denote positive weights, while red
indicate negative weights, illustrating how noise alters concept relevance and disrupts interpretability.

target prediction. As noise increases, however, these relationships shift drastically, with many of
these concepts losing their importance. For example, while ‘grey back’ is initially the second most
important, it overtakes ‘white upperparts’ at 20% noise but then sharply drops in significance at 40%.
This reveals that concept noise disrupts the model’s ability to maintain a stable connection between
the target and its key concepts.

Building an incorrect relationship. At a 40% noise level, we observe that the ranking of im-
portant concepts changes entirely compared to the clean dataset (see Figure 5c), indicating that the
relationships between target and concepts are fundamentally altered by concept noise. Furthermore,
we observed the concept ‘orange uppertail’ emerges but has a negative weight. Here, the negative
weights indicate that the presence of such concepts lowers the probability of predicting the corre-
sponding target. This suggests that the model fails to associate this concept ‘orange uppertail’ with
LE CONTE SPARROW, resulting in the negative influence on making correct task predictions. These
findings highlight that concept noise causes CBMs to build an incorrect relationship with concepts to
targets, resulting in a deterioration of the model’s predictive accuracy.

Our next objective is to investigate how the relationships between the input and its individual concept
are affected by concept noise, thereby providing insights into how g’s output influences f during
evaluation. We assess this by examining the accuracy of each concept predicted by g. For this, we
used the same Ind model trained on the CUB dataset under concept noise levels of 0%, 20%, and
40%. We focused on the concept prediction accuracy for the single class, LE CONTE SPARROW.

Inconsistent individual concept accuracy. As shown in Figure 6, the accuracy differences among
concepts in a clean setting are not severe. However, as concept noise increases, these differences
become much more pronounced, and the accuracy drops for each concept become highly uneven. For
instance, even though all concepts are exposed to a similar level of noise, some concepts experience a
dramatic decline in accuracy compared to others, reflecting that the impact of noise varies significantly
across concepts.
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Figure 6: Impact of noise on individual concept prediction accuracy. We evaluate how noise affects
individual concepts for the LE CONTE SPARROW. As noise levels increase, the accuracy drops across
concepts become highly uneven, and leading to incorrect target predictions.

Impact on target predictions. Critically, when a concept that plays a major role in target predic-
tion suffers a sharp drop in accuracy, it greatly hinders f ’s ability to make correct predictions. For
example, in the case of LE CONTE SPARROW, the top five critical concepts from the clean dataset,
highlighted in red in Figure 6, show significant accuracy declines under noisy conditions. This means
that f ends up relying on inaccurate or less relevant concepts, leading to incorrect target predictions.
Thus, concept noise not only disrupts individual concept accuracy but also severely impacts overall
target prediction accuracy in CBMs.

5 MITIGATING THE NOISE EFFECTS IN CBMS

In this section, we address how to mitigate the detrimental effects of label noise in CBMs, with a
focus on sharpness-aware minimization (SAM) (Foret et al., 2021). We examine the impact of SAM
on improving both target prediction accuracy and model interpretability under noisy conditions. We
begin by providing the background of SAM and how SAM effectively manages noisy dataset training
(Section 5.1). Next, we demonstrate how integrating SAM significantly enhances CBM robustness in
noisy settings, supported by an analysis of the underlying reasons (Section 5.2). Further mitigation
techniques are discussed in Appendix F.

5.1 BACKGROUND: SHARPNESS-AWARE MINIMIZATION

The geometry of the loss landscape is closely linked to a generalization ability of model, with flatter
minima often resulting in better generalization performance, as demonstrated by several studies (Dinh
et al., 2017; Li et al., 2018). Building on this, Foret et al. (2021) introduced SAM, which targets
minimizing the sharpness of the loss landscape to achieve flatter minima. Notably, SAM has proven
effective not only for enhancing generalization but also in managing noisy label settings (Baek et al.),
as it encourages the model to prioritize learning from clean data over fitting to noisy labels.

5.2 SAM IMPROVES ROBUSTNESS OF CBMS

In this section, we investigate how using SAM affects CBM performance under different noise
conditions and whether it effectively improves robustness. For this, we trained CBMs on the CUB
and AwA2 datasets under concept, target, and combined noise settings with noise rates of 0%, 20%,
and 40% across all training strategies. The complete results can be found in Appendix D.1.

Table 2 presents the target and concept prediction performance of SAM under the combined noise
setting. For comparison, we include results from the baseline, i.e., CBM trained with the standard
SGD optimizer. The results indicate that SAM consistently outperforms SGD across almost all noise
settings, significantly enhancing both target and concept prediction performance. On average, SAM
achieves gains of 0.6%, 0.6%, and 0.9% in concept prediction accuracy, and 3.2%, 2.8%, and 2.4%
in target prediction accuracy for the Ind, Seq, and Joi models, respectively. Interestingly, even a
modest improvement in concept prediction accuracy leads to substantial gains in target prediction
accuracy. For example, in the Ind model trained on the AwA2 dataset with a 20% noise ratio, a
mere 0.4% improvement in concept prediction accuracy results in a 3.4% boost in target prediction
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Table 2: Comparison of test accuracy between SGD and SAM. CBMs trained with the SAM optimizer
on CUB and AWA2 datasets under combined noise conditions demonstrate significantly more robust
performance than those trained with SGD. The noise rate is indicated by nr.

CUB AWA2

CBM Type Optimizer Metric nr = 0% nr = 20% nr = 40% nr = 0% nr = 20% nr = 40% ∆

concept acc 96.5±0.0 91.6±0.0 85.4±0.0 78.5±0.8 78.1±0.6 75.3±0.5SGD target acc 74.3±0.3 50.3±0.7 4.0±0.7 86.5±0.8 82.3±1.1 41.9±1.0

concept acc 97.2±0.1 92.5±0.1 86.3±0.1 78.8±0.7 78.5±0.6 75.8±1.2 +0.6Ind
SAM target acc 79.0±0.8 54.2±0.7 5.0±1.4 87.8±0.7 85.7±0.4 46.5±1.6 +3.2

concept acc 96.5±0.0 91.6±0.0 85.4±0.1 78.5±0.8 78.1±0.7 75.3±0.8SGD target acc 74.2±0.2 59.3±0.6 6.1±2.6 88.7±0.2 85.8±0.3 70.1±3.9

concept acc 97.2±0.1 92.5±0.1 86.3±0.1 78.8±0.8 78.5±0.5 75.9±1.3 +0.6Seq
SAM target acc 78.4±0.5 63.5±0.9 10.7±6.0 90.5±0.4 88.0±0.5 69.6±6.3 +2.8

concept acc 91.9±0.7 78.4±0.6 57.3±0.3 77.8±0.5 70.1±0.8 57.4±0.2SGD target acc 81.4±0.1 69.2±0.5 50.1±0.5 88.9±0.1 83.0±0.3 81.7±0.3

concept acc 92.2±0.5 78.5±0.1 57.9±0.3 78.0±0.4 72.7±0.4 58.9±0.9 +0.9Joi
SAM target acc 81.4±0.6 69.9±0.6 50.6±1.5 91.9±0.3 88.4±0.2 86.6±0.3 +2.4
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(b) Target validation accuracy.

Figure 7: Training progress of Ind under combined noise condition. The blue line represents the
model trained with SGD, while the orange line indicates training with SAM.

accuracy. This aligns with our earlier findings that accurately predicted concepts are critical in CBMs,
as they play a direct role in predicting a reliable target.

In the noise setting, the effectiveness of SAM is mainly driven by finding flatter minima in the loss
landscape, which reduces sensitivity to noisy labels and allows the model to focus on learning cleaner
concept representations. By doing so, SAM ensures that even under noisy conditions, CBMs maintain
more reliable and robust connections between concepts and target predictions, resulting in overall
enhanced performance.

To demonstrate SAM’s impact on improving concept prediction reliability during evaluation, we
analyzed the performance of individual concepts (see Figure 17 in Appendix E). We observe that SAM
improves accuracy across nearly all concepts, particularly in noisy settings. Notably, key concepts crit-
ical for target prediction, such as those for classifying LAYSAN ALBATROSS—eyeline (102), brown
wing (10), hooked seabird-shaped bill (4), brown upperparts (25), and dagger-shaped bill (1)—show
substantial accuracy gains with SAM. These improvements may contribute to more accurate target
predictions, as SAM helps the model learn more reliable and distinct concept representations, even
under noisy settings.

Figure 7 compares the training progress of SAM and SGD, showing that SAM trains more accurate
concepts under noisy label settings (see Appendix D.2 for full results). While the target prediction
model performs similarly with both SAM and SGD, SAM significantly outperforms SGD in training
the concept prediction model. SGD initially learns faster but tends to overfit to noise, resulting in
poorer validation accuracy over time. In contrast, SAM effectively mitigates overfitting and achieves
better validation performance for concept predictions. This indicates that even when the target
prediction model captures the concept-to-target relationship equally well, the reliability of concepts
predicted by model trained on SAM leads to substantial improvements in overall target accuracy.
These findings further validate our earlier insights, emphasizing that accurate concept predictions
are crucial for CBM performance. SAM’s ability to generate clearer concept representations directly
enhances target accuracy, while SGD’s vulnerability to noise undermines model reliability.
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Table 3: Impact of label noise on different architectures. CBMs with ResNet-18 and ViT-B/16 exhibit
significant vulnerability to label noise, but SAM effectively mitigates this performance drop across
noise settings.

SGD SAM

Backbone Noise Loc Metric nr = 0% nr = 20% nr = 40% nr = 0% nr = 20% nr = 40% ∆

concept acc 95.23 90.40 81.28 95.98 92.70 81.78 +1.19ResNet-18 Combined target acc 69.14 49.14 0.90 73.32 60.55 0.52 +5.07
concept acc 96.04 89.06 82.76 96.74 90.95 85.84 +1.89ViT-B/16 Combined target acc 73.66 31.05 1.69 77.87 47.26 3.19 +7.31

6 FURTHER ANALYSIS

6.1 CBM VARIANTS

We examine how label noise affects CBM variants, specifically Concept Embedding Models
(CEMs) (Zarlenga et al., 2022) and Energy-based Concept Bottleneck Models (ECBMs) (Xu et al.,
2024). CEMs use positive and negative embeddings to capture meaningful concepts, while ECBMs
employ a joint energy model encompassing input, concepts, and the target. Both models are trained
under combined noise at varying level on the CUB dataset, following their original training protocols.

(a) CEM (b) ECBM

Figure 8: Target prediction accuracy of
CEM and ECBM on noisy CUB.

Figure 8 displays the results, revealing both models are
vulnerable to label noise, confirming that concept-based
models are significantly affected by label noise. Although
these variants aim to enhance interpretability and target
classification, they struggle to maintain robustness against
label noise, indicating that even advanced concept-based
models remain susceptible to noise disruption. These
results emphasize the critical need to further investigate
the effects of label noise on concept-based models.

6.2 OTHER TYPES OF NOISE

In real-world settings, label noise often stems from ambiguous or systematically mislabeled data,
which can significantly degrade model performance. To evaluate the impact of more practical label
noise on CBMs, we introduce pairwise noise, where label i flips to i + 1 (mod N ), forming a
structured cyclical pattern of label corruption. This simulates a more realistic, non-random label
noise scenario compared to symmetric noise. We trained CBMs on the CUB dataset across varying
noise levels using this pairwise noise.

Figure 9: Target prediction
accuracy on pairwise noise.

Figure 9 shows the results for the Ind model trained under different
noisy conditions. The findings reveal that CBMs are also vulnerable to
pairwise noise, exhibiting significant performance drops, particularly
under combined and concept noise settings. This aligns with the earlier
symmetric noise results, but with even lower performance. Notably,
under class noise, the performance of model deteriorates sharply, when
noise reaches 40%. This suggests that the structured noise hinders
the model’s ability to learn true label distributions, making pairwise
noise more detrimental than random symmetric noise. These results
emphasize the need for effective strategies to handle label noise in
CBMs (see Appendix C.2 for full results).

6.3 DIFFERENT ARCHITECTURES

Given that each backbone architecture possesses distinct training capabilities, their sensitivity to label
noise in CBMs may vary. To investigate this, we evaluated the impact of label noise on CBMs trained
with convolutional networks, such as ResNet-18 (He et al., 2016), and transformer networks, such as
ViT-B/16 (Dosovitskiy et al., 2021), across noisy CUB datasets with noise ratios of 0%, 20%, and
40%. Furthermore, we compared the performance of the SAM optimizer with SGD across these
architectures to evaluate its effectiveness.

8
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Table 3 shows the target and concept prediction accuracy of Ind models trained with different
backbones using both SGD and SAM under combined noise settings. Despite the architectural
differences, all CBMs struggled to maintain their performance under label noise, consistent with the
degradation observed in InceptionV3. Notably, SAM consistently mitigates performance drops across
all architectures, yielding average improvements of 5.07% for ResNet-18 and 7.31% for ViT-B/16
compared to SGD. These results indicate that while the choice of backbone architecture has a relatively
minor impact on noise robustness, the SAM optimizer plays a crucial role in enhancing resilience to
label noise, suggesting it as a promising training strategy for CBMs in noisy environments.

7 RELATED WORKS

Concept bottleneck models. Koh et al. (2020) introduced Concept Bottleneck Models (CBMs),
which generate a “bottleneck concept” to predict the final target based on that concept, which improves
the interpretability of standard end-to-end models. Building on this foundational work, CBMs have
been studied and further developed in various ways. These include improving task performance
(Zarlenga et al., 2022; Yuksekgonul et al., 2023; Kim et al., 2023; Xu et al., 2024), enhancing
intervention capabilities (Xu et al., 2024; Chauhan et al., 2022; Sheth et al., 2022; Shin et al., 2023),
and improving interpretability (Mahinpei et al., 2021b; Margeloiu et al., 2021b; Marconato et al.,
2022) in supervised learning settings. Despite these advancements, most prior work has primarily
focused on studying CBMs in clean, noise-free datasets, limiting their applicability to real-world
conditions where data is often noisy or mislabeled. In this work, we aim to address this limitation by
investigating the impact of label noise on CBMs across various scenarios, and further analyzing their
influence on various aspects.

Noisy label learning. Since noisy labels can significantly impair the generalization ability of deep
neural networks, developing robust training techniques to handle noisy data has become a crucial
challenge in modern deep learning applications. To address this issue, various approaches have been
proposed to mitigate the detrimental effects of label noise. Earlier approaches primarily focus on
adjusting the loss function to mitigate the effects of noise. One strategy involves modifying the loss
by applying an estimated noise transition matrix (Patrini et al., 2017; Hendrycks et al., 2018; Xia
et al., 2019; Yao et al., 2020), while others re-weight the loss to help deep neural networks focus on
correctly labeled samples (Liu & Tao, 2015). Robust loss functions (Natarajan et al., 2013; Ghosh
et al., 2017; Zhang & Sabuncu, 2018; Wang et al., 2019; Amid et al., 2019; Liu & Guo, 2020), robust
regularizers (Liu et al., 2020; Xia et al., 2020; Cheng et al., 2021), and robust optimizer (Baek et al.;
Tanaka et al., 2018) have also been studied to handle label noise effectively.

8 CONCLUSION

Conclusion. The impact of label noise on CBMs is critical yet previously underexplored, par-
ticularly concerning how it affects interpretability and reliability in real-world applications. Our
comprehensive study reveals that CBMs are highly sensitive to label noise, with concept label noise
being a primary factor that significantly impairs both target prediction accuracy and interpretability.
We demonstrated that this noise undermines the representation learning, and find that it disrupts not
only the concept-target relationship, but also the input-concept relationship, leading to degraded
model performance. By incorporating the SAM optimizer, we effectively mitigated these detrimental
effects, enhancing both concept prediction and target accuracy across varying noise levels. Our find-
ings emphasize the need for noise-aware training strategies in CBMs to maintain their interpretability
and reliability, suggesting SAM as a promising solution.

Limitations and future works. While our study offers a comprehensive analysis of the impact
of label noise on CBMs, there are several limitations: (i) Our work primarily focuses on analyzing
the effects of label noise, with the exploration of mitigation techniques being less extensive. Al-
though we show that SAM effectively mitigates some negative effects, further investigation into
alternative optimization methods or training strategies remains an open avenue for future research.
(ii) We restricted our experiments to certain datasets (e.g., CUB and AwA2) and architectures (e.g.,
InceptionV3, ResNet-18, ViT-B/16). Future work could explore other datasets and more diverse
architectures to understand how label noise impacts CBMs in various settings. Addressing these
limitations could further advance our understanding and robustness of CBMs under noisy conditions.

9
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we provide a comprehensive description of our experi-
mental setup and evaluation procedures in Appendix G. This study utilizes publicly available datasets,
and detailed preprocessing instructions are also included. Upon publication, the source code, along
with implementation details and hyperparameter configurations, will be made available in a public
repository. Furthermore, we will specify all software dependencies, version details, and hardware
configurations used in our experiments to facilitate accurate reproduction of our results.
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A LABEL NOISE SETTING

We explore two types of synthetic label noise: symmetric noise and pairwise noise, as illus-
trated in Figure 10. These noise models are commonly employed in existing literature (Ma
et al., 2018; Thulasidasan et al., 2019; Pleiss et al., 2020; Wang et al., 2021; Gui et al., 2021).
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(a) Symmetric Noise.
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Figure 10: Two types of synthetic label noises.

The noise settings are defined as follows:
1. Symmetric noise: This noise type is

introduced by randomly flipping labels
in each class to any other class label
with equal probability. For example,
in a dataset with N classes, each label
has a 1

N−1 chance of being incorrectly
reassigned to any of the remaining N−
1 classes (See Figure 10a).

2. Pairwise noise: This noise model in-
volves flipping each label to its adja-
cent class label. For instance, if the
classes are ordered sequentially from 1
to N , a label i will be flipped to i+ 1 (mod N ), creating a cyclical pattern (See Figure 10b).

The symmetric noise setting simulates a scenario where annotation errors are uniformly distributed
across all classes, representing general labeling uncertainty. In contrast, the pairwise noise setting
reflects situations where labels are systematically confused with their nearest counterparts, a common
occurrence in tasks involving ordinal data or closely related categories. In previous studies, a dataset
was created through majority voting and assumed to be the true dataset. Following this approach,
we inject noisy labels into the majority-voted dataset to generate the noisy dataset. Specifically, to
create the concept noisy data, for a given sample xi, ci, yi, we alter the concept labels by γ% within
the concept set ci under the concept noise setting. For target noise, we modify the class label by γ%
across the entire dataset. By integrating these noise models, we aim to evaluate the robustness of
CBMs under varying types of label corruption.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B COMPARISON CBMS BETWEEN E2E MODELS

(a) CUB, Ind (b) CUB, Seq (c) CUB, Joi (d) AWA2, Ind (e) AWA2, Seq (f) AWA2, Joi

Figure 11: Target prediction accruacy of CBMs and E2E on noisy CUB and AWA2. In the radar chart,
the graphs of Ind, Seq, Joi, and E2E, showing the performance of target prediction accuracy.

Figure 11 represents target and concept prediction accuracy under different noise settings compared
with the End-to-End model. E2E models demonstrate greater resilience to noise, due to their over-
parameterized nature, which allows them to fit noisy data more effectively (Zhang et al., 2021; Liu
et al., 2022). We provide these results to demonstrate that such breakdowns do not always occur,
contrary to what is often observed in CBMs. Here, we note that the direct comparison between CBMs
and E2E models is not fair.

C IMPACT OF DIFFERENT NOISE TYPE ON CBM

C.1 RESULTS ON SYMMETRIC NOISE SETTING

(a) CUB, Ind (b) CUB, Seq (c) CUB, Joi (d) AWA2, Ind (e) AWA2, Seq (f) AWA2, Joi

Figure 12: Target prediction accuracy of CBMs on noisy concept/target/combined CUB and AWA2.
These results offer insight into how different noise types affect target prediction performance.

Table 4: Concept prediction accuracy of CBMs on noisy concept/target/combined CUB and AWA2.
Concept accuracies below 75% are highlighted, indicating significantly reduced interpretability in the
presence of label noise.

CUB AWA2

Concept Class Combined Concept Class Combined

Noise Ind Seq Joi Ind Seq Joi Ind Seq Joi Ind Seq Joi Ind Seq Joi Ind Seq Joi

0% 96.6 96.6 92.4 96.5 96.5 91.9 96.5 96.5 92.4 78.6 78.6 77.9 78.5 78.5 77.7 78.5 78.5 77.8
10% 93.8 93.8 87.9 96.6 96.6 90.3 93.8 93.8 85.9 78.2 78.2 77.4 78.3 78.3 77.7 78.4 78.4 74.2
20% 91.7 91.7 82.2 96.6 96.6 89.2 91.6 91.6 78.4 78.1 78.1 77.4 78.3 78.3 74.2 78.1 78.1 70.1
30% 89.0 89.0 71.5 96.6 96.6 88.4 89.1 89.1 67.6 77.3 77.3 76.8 78.5 78.5 74.1 77.3 77.3 65.4
40% 85.4 85.4 60.3 96.6 96.6 87.0 85.4 85.4 57.3 75.2 75.2 73.9 78.4 78.4 73.2 75.3 75.3 57.4

We further examine the influence of different types of noise on CBMs and analyze how concept and
target noise affect the performance of CBMs. Figure 12 shows the final target accuracy of CBMs on
the CUB and AWA2 datasets, and Table 4 represents the concept prediction accuracy under different
noise types.

When target noise is injected, all CBMs show a slight performance decrease in concept and final target
accuracy compared to the results under combined noise. In detail, Ind maintains its performance
and even improves its results in some cases while maintaining concept accuracy. Although Seq
experiences some performance degradation as noise increases, it retains its concept and class accuracy,
demonstrating different behavior with the combined noise setting. Joi also shows some performance
drops in class accuracy.
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In contrast, under concept noise, CBMs exhibit substantial vulnerability, similar to the results observed
on the combined noisy dataset. Specifically, for models trained separately, such as Ind and Seq,
class performance drops significantly as noise increases, eventually collapsing at high noise levels on
the CUB dataset. Additionally, Ind degrades more rapidly than Seq in general. Even though the
Joi model shows better resilience to noise in terms of class accuracy, especially on the CUB dataset,
its concept prediction accuracy deteriorates faster than that of Ind and Seq, indicating that incorrect
concepts are being used to predict classes.

We hypothesize that the f model trained with the Ind type learns the relationship between noisy
concepts and the final target labels, however, during the evaluation, f receives concept predictions c̃
from g, which differ from ĉ, leading to inaccurate predictions and eventual collapse at high noise
levels. While the Seq model learns the relationship between the predicted concepts from the g model
and the final target labels, allowing it to maintain better performance than the Ind model, it still
collapses when concept errors become too large. Since Joi type trains both models jointly, even
if it mispredicts the concepts, it can still achieve good performance by relying on patterns in the
data that directly lead to correct class predictions. This leads the Joi type model to achieve higher
target accuracy than the other types but has poor concept accuracy. Overall, these results suggest
that concept noise introduces a trade-off between interpretability and final performance, ultimately
compromising the performance of CBMs.

C.2 RESULTS ON PAIRWISE NOISE SETTING

(a) CUB, Ind (b) CUB, Seq (c) CUB, Joi (d) AWA2, Ind (e) AWA2, Seq (f) AWA2, Joi

Figure 13: Target prediction accuracy in CBMs on concept/target/combined pairwise noisy CUB.
These results offer insight into how different noise types affect target prediction performance.

We trained CBMs on the CUB dataset under various noise types, using pairwise noise settings across
Ind, Seq, and Joi models as shown in Figure 13. The overall results support our message that
CBMs are highly vulnerable to label noise, which causes significant performance degradation and
also causes the model collapse. We also observe similar behavior under symmetric noise, further
indicating that concept noise has a substantial impact on final target performance and concept
prediction accuracy. Here, we note that in some cases, pairwise noise led to a further decline in
accuracy, i.e., in the Ind and Seq models under target noise. These results suggest that it is more
challenging for CBMs to handle the pairwise noise compared to the symmetric noise type.

D COMPARISON OF ACCURACY: SGD AND SAM

D.1 COMPARISON OF FINAL PREDICTION ACCURACY BETWEEN SGD AND SAM

In Table 5, we evaluate the overall target and concept prediction accuracy of CBMs trained with
SAM and SGD on the CUB dataset across various noise types, with noise rates ranging from 0% to
40%. Across all noise rates, SAM consistently outperforms SGD in both concept and target accuracy
under various noise types, i.e., concept, target, and label noise. These results suggest that SAM is
more effective at handling label noise than SGD, maintaining higher accuracy levels across different
training types. Notably, SAM proves highly effective in both Ind and Seq models, showing average
performance gains across different noise levels of 0.7% and 3.9% for Ind, and 0.7% and 3.7% for
Seq in concept and target accuracy, respectively.

We also evaluate the concept and final target accuracy of CBMs trained with SAM and SGD on the
AWA2 dataset, as presented in Table 6. We find that even on the AWA2 dataset, SAM further enhances
performance, demonstrating that SAM can mitigate the detrimental effects on CBMs regardless of
the dataset. On the AWA2 dataset, SAM shows better improvement in the Joi type model, which is
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slightly different from previous results, where the average performance gains across different noise
levels are 0.2% and 4.0% in concept and target accuracy for Joi type, respectively.

Table 5: Comparison of test accuracy between SGD and SAM on the CUB dataset.

Noise Rate

Noise Loc Optimizer Metric nr = 0% nr = 10% nr = 20% nr = 30% nr = 40% ∆

Independent Bottleneck
concept acc 96.6±0.1 93.8±0.0 91.7±0.1 89.0±0.1 85.4±0.1SGD target acc 74.7±0.8 61.9±1.7 52.0±2.1 33.1±1.7 10.8±2.1

concept acc 97.2±0.1 94.6±0.1 92.5±0.0 89.7±0.1 86.3±0.0 +0.8Concept (X → C)
SAM target acc 78.9±1.0 65.7±1.6 56.9±1.4 38.1±2.7 11.0±0.2 +3.6

concept acc 96.5±0.0 96.6±0.1 96.6±0.0 96.6±0.0 96.6±0.0SGD target acc 74.2±0.1 74.6±0.3 74.4±0.2 74.6±0.3 74.4±0.0

concept acc 97.2±0.0 97.2±0.1 97.2±0.0 97.2±0.0 97.2±0.0 +0.6Target (C → Y)
SAM target acc 78.7±0.5 78.9±0.2 78.4±0.3 78.3±0.5 79.0±0.3 +4.2

concept acc 96.5±0.0 93.8±0.1 91.6±0.0 89.1±0.0 85.4±0.0SGD target acc 74.3±0.3 57.7±2.0 50.3±0.7 23.3±1.2 4.0±0.7

concept acc 97.2±0.1 94.6±0.1 92.5±0.1 89.7±0.1 86.3±0.1 +0.6Combined (X → C, C → Y)
SAM target acc 79.0±0.8 61.8±1.8 54.2±0.7 28.5±1.4 5.0±1.4 +3.8

Sequential Bottleneck
concept acc 96.6±0.1 93.8±0.0 91.7±0.1 89.0±0.1 85.4±0.1SGD target acc 74.6±0.4 68.4±0.2 62.2±0.5 55.0±0.3 14.7±12.4

concept acc 97.2±0.1 94.6±0.1 92.5±0.0 89.7±0.1 86.3±0.0 +0.8Concept (X → C)
SAM target acc 78.7±0.4 72.0±0.2 66.9±0.5 57.7±1.3 17.4±6.1 +3.6

concept acc 96.5±0.0 96.6±0.1 96.6±0.0 96.6±0.0 96.6±0.0SGD target acc 74.0±0.6 71.3±1.0 68.8±0.6 64.6±1.0 59.3±2.5

concept acc 97.2±0.0 97.2±0.1 97.2±0.0 97.2±0.0 97.2±0.0 +0.6Target (C → Y)
SAM target acc 77.9±0.3 75.1±0.2 71.3±1.1 66.7±1.0 63.3±0.9 +3.6

concept acc 96.5±0.0 93.8±0.0 91.6±0.0 89.1±0.0 85.4±0.1SGD target acc 74.2±0.2 66.6±0.4 59.3±0.6 47.0±1.7 6.1±2.6

concept acc 97.2±0.1 94.6±0.1 92.5±0.1 89.7±0.1 86.3±0.1 +0.6Combined (X → C, C → Y)
SAM target acc 78.4±0.5 70.5±0.6 63.5±0.9 50.1±1.1 10.7±6.0 +4.0

Joint Bottleneck
concept acc 92.4±0.5 87.9±0.1 82.2±0.5 71.5±0.1 60.3±0.3SGD target acc 81.3±0.2 81.4±0.2 81.6±0.2 81.3±0.2 81.4±0.0

concept acc 92.2±0.3 87.8±0.5 82.0±0.4 71.0±0.7 60.3±0.5 -0.2Concept (X → C)
SAM target acc 81.4±0.4 81.4±0.4 81.9±0.2 81.4±0.3 81.6±0.4 +0.2

concept acc 91.9±0.7 90.3±0.1 89.2±0.2 88.4±0.4 87.0±1.1SGD target acc 81.0±0.3 76.0±0.2 71.4±0.6 64.5±0.5 57.0±0.5

concept acc 92.3±0.7 90.7±0.4 89.4±0.0 88.2±0.4 86.5±0.6 +0.1Target (C → Y)
SAM target acc 81.5±0.1 77.1±0.3 71.0±0.7 65.0±0.6 57.7±0.6 +0.5

concept acc 91.9±0.7 85.9±0.5 78.4±0.6 67.6±1.2 57.3±0.3SGD target acc 81.4±0.1 75.2±0.3 69.2±0.5 59.8±0.3 50.1±0.5

concept acc 92.2±0.5 86.0±0.2 78.5±0.1 68.0±0.8 57.9±0.3 +0.3Combined (X → C, C → Y)
SAM target acc 81.4±0.6 76.1±0.4 69.9±0.6 60.8±0.4 50.6±1.5 +0.6
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Table 6: Comparison of test accuracy between SGD and SAM on the AWA2 dataset.

Noise Rate

Noise Loc Optimizer Metric nr = 0% nr = 10% nr = 20% nr = 30% nr = 40% ∆

Independent Bottleneck
concept acc 78.6±1.1 78.2±0.6 78.1±0.7 77.3±0.5 75.2±0.8SGD target acc 87.1±2.0 85.0±0.2 83.5±1.2 77.9±1.2 43.1±2.8

concept acc 79.0±0.9 78.5±0.6 78.4±0.5 77.8±0.8 76.0±1.1 +0.5Concept (X → C)
SAM target acc 87.6±0.9 87.2±1.4 86.2±0.2 81.2±0.7 47.7±3.1 +2.7

concept acc 78.5±0.9 78.3±0.9 78.3±1.0 78.5±0.9 78.4±1.0SGD target acc 86.4±2.1 86.0±1.8 85.4±1.9 84.9±2.1 84.4±1.9

concept acc 78.8±0.8 78.9±0.9 78.7±0.8 78.7±0.9 78.8±0.8 +0.5Target (C → Y)
SAM target acc 87.3±0.5 88.1±0.8 87.2±1.5 85.4±0.5 85.0±1.7 +1.2

concept acc 78.5±0.8 78.4±0.8 78.1±0.7 77.3±0.3 75.3±0.8SGD target acc 86.5±0.9 85.5±0.3 82.3±1.4 77.1±0.5 41.9±1.0

concept acc 78.8±0.8 78.6±0.7 78.5±0.5 77.9±0.7 75.9±1.3 +0.4Combined (X → C, C → Y)
SAM target acc 87.8±0.8 88.1±0.1 85.7±0.4 78.6±2.8 46.5±1.4 +2.7

Sequential Bottleneck
concept acc 78.6±1.1 78.2±0.6 78.1±0.7 77.3±0.5 75.2±0.8SGD target acc 89.2±0.6 87.9±0.4 86.1±0.3 82.2±0.9 73.8±1.0

concept acc 79.0±0.9 78.5±0.6 78.4±0.5 77.8±0.8 76.0±1.1 +0.5Concept (X → C)
SAM target acc 90.8±0.1 89.4±1.1 88.6±0.2 83.2±4.2 74.8±1.2 +1.5

concept acc 78.5±0.8 78.3±0.9 78.3±1.0 78.5±0.9 78.4±1.0SGD target acc 88.5±0.6 87.3±0.3 86.6±0.6 86.6±1.2 83.8±1.1

concept acc 78.8±0.8 78.9±0.9 78.7±0.8 78.7±0.9 78.8±0.8 +0.4Target (C → Y)
SAM target acc 90.5±0.3 89.2±0.9 90.0±0.5 87.7±0.4 84.3±0.8 +1.8

concept acc 78.5±0.8 78.4±0.8 78.1±0.7 77.3±0.3 75.3±0.8SGD target acc 88.7±0.2 87.6±0.3 85.8±0.3 81.8±1.1 70.1±3.9

concept acc 78.8±0.8 78.6±0.7 78.5±0.5 77.9±0.7 75.9±1.3 +0.4Combined (X → C, C → Y)
SAM target acc 90.5±0.4 89.5±0.5 88.0±0.5 82.6±3.1 69.6±6.3 +1.2

Join Bottleneck
concept acc 77.9±0.5 77.4±0.0 77.4±0.0 76.8±0.1 73.9±0.2SGD target acc 88.9±0.2 88.3±0.1 89.5±0.1 89.4±0.1 89.6±0.1

concept acc 77.7±0.8 77.5±0.7 77.2±0.8 76.7±0.5 74.5±0.6 +0.0Concept (X → C)
SAM target acc 91.4±0.1 91.9±0.1 92.1±0.1 92.2±0.0 92.3±0.2 +2.9

concept acc 77.7±0.6 77.7±0.1 74.2±0.5 74.1±0.5 73.2±0.5SGD target acc 88.9±0.1 84.7±0.4 82.5±0.3 81.2±0.6 80.9±0.4

concept acc 78.0±0.7 76.4±0.4 75.4±0.7 75.1±0.7 74.8±0.6 +0.0Target (C → Y)
SAM target acc 91.8±0.2 88.8±0.2 87.7±0.2 86.7±0.3 85.8±0.5 +4.5

concept acc 77.8±0.5 74.2±0.4 70.1±0.8 65.4±0.3 57.4±0.2SGD target acc 88.9±0.1 84.2±0.1 83.0±0.3 82.2±0.1 81.7±0.3

concept acc 78.0±0.4 74.9±0.4 72.7±0.6 67.7±0.7 58.9±0.9 +0.6Combined (X → C, C → Y)
SAM target acc 91.9±0.3 89.0±0.1 88.4±0.2 87.3±0.2 86.6±0.3 +4.6

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.2 COMPARISON OF TRAINING PROGRESS BETWEEN SGD AND SAM

In Figure 14, 15, and 16, we provide the overall validation accuracy during training for the Ind, Seq,
and Joi type models, trained with SGD and SAM on the CUB dataset, across noise rates ranging
from 0% to 40%. Overall, while the g model trained with SGD tends to overfit to concept noise,
the g model trained with SAM shows better generalization by mitigating the effects of noise and
maintains more stable validation accuracy throughout the training process. For f model, since it is a
linear model, SAM did not exhibit significant effects. However, it improved the g model, and thus, it
ultimately enhanced the training of the f model, as demonstrated by the Seq type and Joi type.
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(a) Concept (i.e., X to C) validation accuracy.
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(b) Target (i.e., C to Y) validation accuracy.

Figure 14: Results on Ind. under concept and target noise with noise rate 00% (left) - 40% (right).
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(a) Concept (i.e., X to C) validation accuracy.
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(b) Target (i.e., C to Y) validation accuracy.

Figure 15: Results on Seq. under concept and target noise with noise rate 00% (left) – 40% (right).
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(a) Target (i.e., X to C to Y) validation accuracy.

Figure 16: Results on Joi. under concept and target noise with noise rate 00% (left) – 40% (right).
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E COMPARING INDIVIDUAL CONCEPT ACCURACY: SGD VS. SAM

We analyze the individual concept accuracy of CBMs trained with SGD and SAM, as illustrated in
Figure 17. Our findings reveal that SAM consistently enhances individual concept accuracy across
both clean and 40% noise conditions. Notably, the improvement is more pronounced under the 40%
noise setting, demonstrating the effectiveness of SAM in mitigating label noise and maintaining more
reliable concept predictions. This highlights SAM’s ability to better preserve the integrity of concept
representations even in noisy environments.
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Figure 17: Impact of noise on concept predict accuracy with SGD vs. SAM. The result shows the
difference of individual concept prediction accuracy (SAMacc − SGDacc) under noise rate of 0%
(blue line) and noise rate of 40% (red line).

F MITIGATING THE LABEL NOISE USING LABEL SMOOTHING

Label smoothing overview. Label smoothing is commonly used to improve the performance of
various deep learning models (Szegedy et al., 2016a; Pereyra et al., 2017; Vaswani, 2017; Müller
et al., 2019). It computes the loss not with the “hard” targets from the dataset, but with the “soft”
target which is a weighted mixture of the targets with a uniform distribution:

yri := (1− r) · yi +
r

K
· 1, (1)

Here, y refers to the one-hot vector of the hard label, K is the number of classes, and r is the
smoothing rate in the range [0, 1]. Label smoothing has been shown to prevent overconfidence and
improve generalization (Lukasik et al., 2020). It also enhances model robustness to label noise by
reducing confidence in noisy labels, similar to the effects of shrinkage regularization.

Table 7: Comparison of test accuracy between base with label smoothing on the CUB dataset.

Symmetric Noise Pairwise Noise

Noise Location Optimizer Metric nr = 0.0 nr = 0.2 nr = 0.4 nr = 0.0 nr = 0.2 nr = 0.4 ∆

Independent Bottleneck
concept acc 96.5±0.1 91.6±0.0 85.4±0.1 96.6±0.1 91.5±0.1 73.7±0.2SGD target acc 74.3±0.3 50.4±0.7 4.0±0.7 74.7±0.6 49.4±1.6 6.2±1.6

concept acc 96.6±0.1 91.7±0.1 85.5±0.0 96.6±0.1 91.5±0.1 73.7±0.3 +0.0Combined (X → C, C → Y)
Label smoothing target acc 74.3±0.2 49.6±0.5 4.1±0.1 75.0±0.2 49.1±1.1 6.7±1.5 +0.0

Sequential Bottleneck
concept acc 96.5±0.1 91.6±0.0 85.4±0.1 96.6±0.1 91.5±0.1 73.7±0.2SGD target acc 74.2±0.2 59.4±0.6 6.1±2.6 74.8±0.2 57.5±0.9 7.4±7.0

concept acc 96.6±0.0 91.6±0.0 85.4±0.1 96.6±0.1 91.5±0.1 73.7±0.3 +0.0Combined (X → C, C → Y)
Label smoothing target acc 74.7±0.1 63.0±0.3 16.4±6.8 75.0±0.5 65.4±1.5 14.9±12.0 +5.0

Joint Bottleneck
concept acc 91.9±0.7 78.4±0.6 57.3±0.3 92.2±0.3 78.9±0.8 56.6±0.4SGD target acc 81.4±0.1 69.2±0.5 50.1±0.5 81.3±0.1 69.9±0.4 49.7±0.4

concept acc 92.0±0.2 79.3±0.3 57.8±0.2 92.3±0.5 79.1±0.7 56.5±0.5 +1.2Combined (X → C, C → Y)
Label smoothing target acc 81.7±0.3 71.1±0.4 53.2±1.5 81.5±0.3 70.8±0.1 50.7±0.5 +2.1

Results. We investigate the effectiveness of label smoothing in CBM under noisy label conditions
in both symmetric and pairwise noise. Specifically, we smooth both concept labels with r = 0.001
and class labels r = 0.1 during training. We find that label smoothing does not show significant
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improvement for Ind type, where the averaged improvement was 0%. However, for Seq and
Joi, we find that as the noise increases, the improvement in performance tends to become even
more pronounced. Specifically, we find that when noise occurs in the Seq model, label smoothing
effectively enhances performance the most. At a noise rate of 40%, the target accuracy in both
symmetric and pairwise noise settings is more than double compared to the existing baseline. Overall,
these results indicate that label smoothing effectively mitigates the detrimental effects of label noise.

G EXPERIMENTAL DETAILS

G.1 DATASET

Overall, Each example is a triplet of (image x, concepts c, target y) corresponding to a target class,
where the concepts have binary values: 1 for true or 0 for false.
CUB CUB (Wah et al., 2011) is a standard dataset commonly used to study Concept Bottleneck
Models (Koh et al., 2020; Zarlenga et al., 2022; Xu et al., 2024), consisting of 5,994 training examples
and 5,794 test examples, with input images of 224 × 224 pixels. Following the original work (Koh
et al., 2020), the final dataset includes only 112 of the 312 most prevalent binary attributes.
AWA2 AWA2 (Xian et al., 2018) is a zero-shot learning dataset consisting of 37,322 images across
50 classes, with input images of 224 × 224 pixels. Each sample is associated with 85 binary concepts.

G.2 TRAINING

For our CBM training process, we utillize InceptionV3 (Szegedy et al., 2016b) as the backbone,
pre-trained on ImageNet (Deng et al., 2009) and subsequently fine-tuned on the CUB (Wah et al.,
2011) and AWA2 (Xian et al., 2018) dataset. In line with previous work Koh et al. (2020); Xu et al.
(2024), we select the 112 concepts for training CUB dataset, and 85 concepts for training AWA2
dataset. We follow to the preprocessing techniques outlined by Koh et al. (2020), applying data
augmentation to each training image with random color jittering, horizontal flipping, and cropping to
a resolution of 224. During inference, images are center-cropped and resized to 224 pixels.

The Ind and Seq models are trained using a learning rate of 0.01, while the Joi model was set to
0.001. We set learning rate schedules, reducing it by a factor of 10 every 10, 15, or 20 epochs until
it reaches 0.0001. A regularization strength of 0.0004 is used, and model selection is based on the
highest validation accuracy.

Training is conducted using a batch size of 64, with the optimizer being SGD with a momentum of
0.9 for all models except those trained with SAM, where we use a sharpness parameter ρ set to 0.1
for Ind and Seq and Joi for 0.01 by grid search over [0.01, 0.05, 0.1]. For bottleneck models, each
concept’s contribution to the overall loss is weighted equally. For the Joi moddel, the task-concept
trade-off hyperparameter is guided by λ set as 0.001 by grid search over [0.1, 0.01, 0.005, 0.001]
in the overall noise setting. Additionally, binary cross-entropy loss for each concept prediction is
adjusted for class imbalance, following the normalization approach in Koh et al. (2020) This approach
ensure that the models were rigorously trained, balancing between target accuracy and concept
interpretability across various training strategies.
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