
Under review as submission to TMLR

Layered Unlearning for Adversarial Relearning

Anonymous authors
Paper under double-blind review

Abstract

Our goal is to understand how post-training methods, such as fine-tuning, alignment, and
unlearning, modify language model behavior and representations. We are particularly
interested in the brittle nature of these modifications that makes them easy to bypass
through prompt engineering or relearning. Recent results suggest that post-training induces
shallow context-dependent “circuits” that suppress specific response patterns. This could be
one explanation for the brittleness of post-training. To test this hypothesis, we design an
unlearning algorithm, Layered Unlearning (LU), that creates distinct inhibitory mechanisms
for a growing subset of the data. By unlearning the first i folds while retaining the remaining
k − i at the ith of k stages, LU limits the ability of relearning on a subset of data to recover
the full dataset. We evaluate LU through a combination of synthetic and large language
model (LLM) experiments. We find that LU improves robustness to adversarial relearning
for several different unlearning methods. Our results contribute to the state-of-the-art of
machine unlearning and provide insight into the effect of post-training updates.

1 Introduction

Post-training interventions such as fine-tuning, preference learning, and unlearning are widely used to modify
the behavior of pre-trained large language models (LLMs). However, changes introduced in post-training
are often brittle. However, these changes are often shallow or brittle. In many cases, they are bypassed or
reversed by clever adversarial prompting or fine-tuning (Jain et al., 2024; Arditi et al., 2024; Zou et al., 2023;
Greenblatt et al., 2024; Che et al., 2024; Deeb & Roger, 2025; Betley et al., 2025). Our goal is to understand
how post-training methods modify language model behavior and representation and support the design of
more robust post-training methods.

We study this through the lens of machine unlearning, which seeks to remove knowledge or capabilities
from pre-trained models. Deeb & Roger (2025) recently demonstrated that “unlearned” information is easily
re-elicited by fine-tuning on a subset of the removed data. To explain this result, we hypothesize that SoTA
unlearning methods introduce a context-dependent inhibitor mechanism. Efficient “relearning” generalizes
because fine-tuning removes a single shared mechanism and reverses the full post-training modification.

A common way to mitigate single failure points is the famous “Swiss cheese” defense-in-depth model (Reason,
1990). The goal is to combine multiple imperfect defenses. If their failure modes are distinct, the combined
defense is more robust than any individual approach. We implement defense-in-depth through Layered
Unlearning (LU). LU partitions the data into k disjoint folds and applies unlearning sequentially to a
growing subset: at stage i, LU unlearns the union of folds F1 through Fi. Crucially, we retain the data from
Fi+1 through Fk to induce distinct inhibitors at each stage of unlearning. Figure 1 illustrates the algorithm
and the defense-in-depth inspiration.

We investigate the performance of LU on a variety of synthetic tasks and unlearning benchmarks. We consider
a synthetic 2-dimensional classification task and a 3-token sequence generation task. Next, we apply LU to
a variety of unlearning methods on the WMDP, Years, and MMLU datasets. In all settings, LU improves

Synthetic experiment code at: https://anonymous.4open.science/r/layered-unlearning-380C

1

Under review as submission to TMLR

A
183‑27‑5946
415‑98‑2367
762‑41‑0593

B
329‑50‑8761
508‑72‑1943
647‑30‑8251

C
704‑19‑6825
832‑46‑7109
915‑38‑4270

Retain
MMLU

B

R

C

A

St
an

da
rd

 U
nl

ea
rn

in
g

La
ye

re
d

U
nl

ea
rn

in
g

B

A

R

C

B

A

R

C

B

R

C

A

B

R

C

A
A

183‑27‑5946
415‑98‑2367
762‑41‑0593

C
704‑19‑6825
832‑46‑7109
915‑38‑4270

B
329‑50‑8761
508‑72‑1943
647‑30‑8251

IA

A
183‑27‑5946
415‑98‑2367
762‑41‑0593

C
704‑19‑6825
832‑46‑7109
915‑38‑4270

B
329‑50‑8761
508‑72‑1943
647‑30‑8251

A
183‑27‑5946
415‑98‑2367
762‑41‑0593

C
704‑19‑6825
832‑46‑7109
915‑38‑4270

B
329‑50‑8761
508‑72‑1943
647‑30‑8251

A
183‑27‑5946
415‑98‑2367
762‑41‑0593

C
704‑19‑6825
832‑46‑7109
915‑38‑4270

B
329‑50‑8761
508‑72‑1943
647‑30‑8251

IAB IABC

IABC IABC

Standard Unlearning Layered UnlearningInformation FlowForget Retain

The Inhibitor HypothesisUnlearning Process Evaluation

IA IAB IABC

Relearned

Figure 1: Left: An illustration of LU with social security numbers (SSNs). The SSNs are partitioned into
disjoint sets (A, B, C). Top: Standard unlearning minimizes performance on A ∪ B ∪ C while retaining
general capabilities on a retain set R (e.g., MMLU). Bottom: In LU, we sequentially unlearn the sequence
{A, A ∪ B, A ∪ B ∪ C} while retaining the sequence {B ∪ C ∪ R, C ∪ R, R}. Middle: As a result, relearning
B improves performance on C but not A. In contrast, training on any subset improves performance across
the board for standard methods. Right: We hypothesize that unlearning the full set introduces a context-
dependent shared inhibitor IABC that suppresses the information and that subsequent relearning removes
IABC . The structure of LU is designed to create several distinct inhibitors IA, IAB , IABC that cover different
folds of the data. Relearning on B removes IAB and IABC , but leaves IA active.

resistance to fine-tuning-based recovery. In the course of these experiments, we also identify a stronger class
of attack: corpus-based fine-tuning. This attack, which uses raw text rather than structured MCQ-based
prompts, bypasses inhibitors more effectively than standard RTT (Deeb & Roger, 2025). Notably, this
distinction only emerges because LU creates variation in robustness across data folds—an effect that is not
observed with standard unlearning.

We make three contributions: 1) we introduce Layered Unlearning (LU) a method that combines multiple
steps of unlearning to increase robustness; 2) we show in both synthetic and LLM settings that LU improves
resistance to adversarial relearning; and 3) we use LU to reveal a gap in attack strength between MCQ-based
and corpus-based relearning, offering new insight into the limits of post-training behavioral control. Our results
contribute to the state-of-the-art of machine unlearning and provide insight into the effect of post-training
updates.

2 Layered Unlearning

In this section, we introduce LU. We begin with a replication of Deeb & Roger (2025) in two synthetic tasks:
a 2D classification task with mixtures of Gaussians and a bigram completion task with three tokens. Next, we
introduce the LU algorithm. Finally, we investigate the effect of LU in this task. We find that LU improves
robustness in both cases and analyze the sequences of changes that LU induces. First we introduce some
notation to represent a machine unlearning method U .

2

Under review as submission to TMLR

2.1 Machine unlearning notation

The goal of machine unlearning is to remove information F from trained model weights θ ∈ Θ that model a
dataset D in some input space X. With unlimited compute, this would involve retraining from scratch on
D \ F . Due to, e.g., the cost of pretraining, unlearning methods attempt to approximate this result as a
post-training step that maintains performance on a retain set R ⊂ D.

Thus, we can represent a generic unlearning algorithm U as a function that maps model parameters θ, forget
set F , retain set R, and hyperparameters γ ∈ Γ to a new set of model parameters θ′. When clear from
context, we may omit the final argument corresponding to the hyperparameters. Formally

U : Θ × X × X × Γ → Θ.

2.2 Adversarial relearning in synthetic settings

We replicate the results of Deeb & Roger (2025) in two synthetic settings: a 2D classification task and a
bigram language modeling task.

2D logistic regression. Our first task is a 2D logistic regression task, so our input space is X = R2.
The goal is to classify a mixture of Gaussians (class 1) against a uniform background distribution over
U([−60, 60]2) (class 0). We sample the Gaussian means from the uniform distribution U([−50, 50]2) and use
a primarily isotropic covariance matrix with variance σ2 = 4, adding small perturbations of magnitude 0.1
to break exact symmetry. We implement a linear classifier with logistic regression on radial basis functions
(RBF) features.

We partition the Gaussians into subsets A, B, R, where the goal is to unlearn A ∪ B and retain R. Tasks A
and B are defined as the classification accuracy when sets A and B are labeled as class 1, and the retain task
as the joint accuracy on classifying R as class 1 and Null as class 0. We place the RBF centers on an 12 × 12
grid of points, so Θ = R145 (including a bias term). The top left of figure 2 shows the learned weights with 2
folds.

The unlearning primitive U takes as input model parameters θ, a forget set F , a retain set R, and hyperpa-
rameters γ. Each data point in F and R is a 2D input. The objective is to preserve the original classification
for points in R, while reclassifying points in F as class 0. Relearning refers to assigning data points in the
relearned set back to their original classifications. We optimize all objectives using the Adam optimizer.

Bigram sequence modeling. Next, we consider a bigram language modeling task with three tokens:
a, b, r. The input space is length 8 token sequences: X = {a, b, r}8. We generate data so that a and b
are followed by r, while r is followed by a and b with equal probability. We combine this with a small
minimum probability ϵ = 0.05 of a uniform transition across tokens to encourage smooth learning dynamics.
This leads to the following conditional probabilities for consecutive tokens: P (r | a) = P (r | b) = 1 − 2ϵ,
P (a | r) = P (b | r) = 1

2 − ϵ
2 , and P (a | a) = P (b | a) = P (a | b) = P (b | b) = P (r | r) = ϵ.

We define tasks A, B, and R as the prediction performance on all consecutive pairs tokens in the bigram sets
{aa, ab, ar}, {ba, bb, br}, and {ra, rb, rr}, respectively. We use a small attention-only, one-layer transformer
with parameter space Θ = R4288. This architecture is simple enough to permit analytical study (Elhage et al.,
2021), while still serving as a useful proxy for the larger models used in our later experiments.

The unlearning primitive U takes as input model parameters θ, a forget set F , a retain set R, and hyperpa-
rameters γ. Data points in F and R are elements of {a, b, r}. For each x ∈ R, the objective is to preserve
the original conditional distribution over consecutive tokens, P (· | x). For each x ∈ F , the goal is to flatten
the distribution to P (· | x) = 1

3 . The retain task prevents the model from collapsing to a trivial uniform
distribution over tokens after unlearning. To implement unlearning, we generate sequences from this modified
transition matrix and optimize the standard language modeling loss. Relearning refers to restoring the
original conditional distribution over tokens for the subset being relearned. We optimize all objectives using
the Adam optimizer.

3

Under review as submission to TMLR

Figure 2: A depiction of Layered Unlearning in our 2D logistic regression (LR) example. Scatter plots
represent the data, which consists of a uniform distribution (Class 0) and a mixture of Gaussians (Class 1)
that is split into three subsets, A, B, and R. The goal of unlearning is to forget A, B while retaining R. Our
classifiers are trained with LR with radial basis functions spaced out in a grid. We show the weights as a
heatmap on the grid. The top left shows θ0, the initial trained model. Across the top row, we illustrate
the effect of joint unlearning θ1 = (θ0, A ∪ B, R) and subsequent relearning on B. Note that relearning B
also relearns A. The corresponding classification logits along Y = 0 are shown below. Notice learning on B
generalizes to the area around (0, 0). In the bottom row, we show the steps of Layered Unlearning. First, we
compute θ′

0 = U(θ0, A, R ∪ B), shown in the bottom left, then we compute θ′
1 = U(θ′

0, A ∪ B, R), shown in
the bottom middle. The logit plot shows the clear effect on the logits near (0, 0). The bottom right shows
the effect of subsequently relearning B, performance on B still improves but it no longer generalizes to A.

Relearning performance. For each task, we first apply the unlearning primitive, followed by relearning
on each subtask. We limit our discussion to relearning on B and evaluating on A for symmetry’s sake. In
2D classification, relearning on B restores 93% of task A’s original performance (Table 1). Figure 2 (top)
illustrates the corresponding weight trajectories. In bigram modeling, we observe similar behavior: relearning
on B recovers 73% of task A’s performance (Table 2).

2.3 The Layered Unlearning algorithm

Next, we present the LU algorithm and evaluate it in these two domains. Algorithm 1 shows the algorithm
details. The algorithm relies on an unlearning primitive U that maps model weights θ, forget set F , retain
set R, and algorithm hyperpararmeters γ

Its primary input is a set of model weights θ0, a sequence of k forget sets {Fi}, a retain set R, an unlearning
algorithm U , and a sequence of algorithm hyperparameters {γi}. LU proceeds through k steps. At step i,
LU computes θi = U(θi−1, F1 ∪ F2 · · · ∪ Fi, R ∪ Fi+1 · · · ∪ Fk, γi) : it unlearns F1 ∪ F2 · · · ∪ Fi while retaining
R ∪ Fi+1 · · · ∪ Fk.

We analyze LU through inhibitors. In the 2-fold case of unlearning tasks A and B, the first stage forgets A
while retaining B, which forces the model to activate an inhibitor IA that selectively suppresses performance

4

Under review as submission to TMLR

on A. In the second stage, the model may activate either an inhibitor IB that targets B specifically, or a
shared inhibitor IAB that suppresses both A and B.

Upon relearning B, any inhibitors affecting B—namely IB or IAB—are deactivated, but IA remains active, so
performance on A stays suppressed. Conversely, when relearning A, the inhibitors IA and IAB are deactivated.
If IAB had been activated, performance on B is also restored; however, if IB had been activated instead,
performance on B remains suppressed. Whether the barrier to adversarial relearning is unidirectional or
bidirectional depends on the unlearning primitive. 3-fold LU is illustrated in Figure 1.

Algorithm 1 Layered Unlearning
Require: Model parameters θ0, forget dataset sequence {F1, . . . , Fk}, retain dataset R0, hyperparameters

{γ1, . . . , γk}, unlearning algorithm U
Ensure: Unlearned model θk

1: F = ∅, R = R0
⋃

i=1,...,k Fi ▷ Initialize incremental forget and retain sets F and R.
2: for i = 1 to k do ▷ Iterate through sequential forget stages
3: F = F ∪ Fi, R = R \ Fi ▷ Update forget and retain sets
4: θi = U(θi−1, F, R, γi) ▷ Apply unlearning to this fold
5: end for
6: return θk

2.3.1 Layered Unlearning for logistic regression

Table 1: LU performance for logistic regression with random Gaussian assignment and 5 Gaussians per
dataset. (10 random seeds average).

Method Relearn A ↓ B ↓ R ↑
Original — 1.00 1.00 0.88
U — 0.02 0.01 0.96
U-LU — 0.01 0.01 0.96
U A — 0.93 0.80
U-LU A — 0.96 0.78
U B 0.93 — 0.80
U-LU B 0.30 — 0.86

The bottom row of Figure 2 shows the sequence of weights that are generated by 2-fold LU. To illustrate
the effect, we arrange A, B, R as concentric circles with A in the center. We can see that the most central
weights (±5, ±5) decrease to forget A while the surrounding circle of weights increases to retain B. This
distinction is preserved when A ∪ B is unlearned and so relearning B does not recover performance on A.
With 5 Gaussians in the dataset, relearning on B increases accuracy on A by only 0.29, compared to a 0.91
increase in accuracy on B when relearning on A (see Table 1).

We conducted experiments varying both the number of Gaussians in the mixture and the procedures used to
assign the Gaussians to A, B, R. We find that increased task overlap leads to more adversarial relearning.
This can occur by increasing the number of Gaussians per cluster (expanding the region of potential overlap)
or by randomly assigning Gaussians to A, B, and R. To reduce overlap, we also cluster Gaussian means and
assign entire clusters to A, B, and R, which significantly reduces adversarial relearning across all unlearning
algorithms.

While the setup in Figure 2 is deliberately simplified to visualize inhibitors, we observe similar trends across
all configurations (Appendix B). In particular, when Gaussian means are randomly sampled—causing more
overlap between A, B, and the retain task—standard unlearning becomes notably less robust. In contrast,
when components are clustered to make folds more distinct, robustness improves, likely due to increased
dataset separation making adversarial relearning more difficult.

5

Under review as submission to TMLR

Table 2: LU performance for bigram language modeling with a 1-layer attention-only transformer. (Results
averaged across 10 random seeds).

Method Relearn A ↓ B ↓ R ↓
Original — 0.91 0.91 0.02
U — 0.33 0.34 0.01
LU — 0.34 0.33 0.02
U A — 0.78 0.06
LU A — 0.53 0.04
U B 0.76 — 0.05
LU B 0.51 — 0.04

2.3.2 Layered Unlearning for bigram modeling

We measure the prediction performance for tasks A, B with prediction accuracy. For the retain task R, we
measure the total variation distance from a uniform distribution over a, b. We show the performance of the
original weights, the unlearned weights with U and LU respectively, and the performance after relearning on
A or B.

In this case, LU also confers bidirectional robustness to relearning generalization. While relearning A or B
after U increases performance on the other task by 0.43 on average. After LU, generalization accuracy only
improves by 0.17 on average. In contrast to our other experiments, we find that LU seems to activate fully
independent inhibitors so that relearning does not transfer A → B or B → A (see Table 2).

To better understand the source of LU’s robustness, we conduct ablations on transformer components (see
Appendix B). We find that the components from U and LU models are interchangeable without affecting
task performance, including on the retain set. However, the attention components—specifically the QK and
OV circuits—are essential for resisting adversarial relearning, suggesting that robustness is encoded in the
model’s attention mechanisms.

Consistent with this, retain set performance remains stable under relearning, indicating that the transformer
does not revert to uniform predictions but instead applies targeted inhibition to Tasks A and B. In contrast,
a zero-layer, embedding-only transformer exhibits little to no adversarial relearning, highlighting the role of
depth and attention in shaping inhibitor behavior for this setting. While we do not fully explain this result,
we release all code and data to facilitate future interpretability research.

3 LLM unlearning experiments

Next, we evaluate the performance of LU on LLM unlearning benchmarks. Specifically, we consider unlearning
on the WMDP (Li et al., 2024b), MMLU (Hendrycks et al., 2021), and Years (Deeb & Roger, 2025) datasets.
WMDP consists of dangerous knowledge framed as multiple-choice questions (MCQs). To assess LU’s ability
to remove capability-related information, we also apply unlearning to subsets of MMLU directly. The Years
dataset contains major world events annotated with the year in which they occurred. For retain set evaluation,
we use MMLU; when unlearning on MMLU, we exclude the categories being unlearned from the retain set.

Unlearning. State-of-the-art LLM unlearning methods fall into two categories: representation engineering
and gradient ascent. We select a representative algorithm from each for our unlearning primitive U :
Representation Misdirection Unlearning (RMU) (Li et al., 2024a) for representation engineering, and Simple
Negative Policy Optimization (SimNPO) (Fan et al., 2025) for gradient ascent. We evaluate both methods
with and without LU, denoting the LU variants as L-RMU and L-SimNPO, respectively. For a graphical
overview of the unlearning process, see Appendix Figure 5.

6

Under review as submission to TMLR

Evaluation. Given a dataset F to be unlearned, we uniformly at random split it into k folds, F1, . . . , Fk.
For a fixed k and dataset, this partitioning remains consistent across all experiments for both unlearning and
evaluation. We follow the Language Model Evaluation Harness standards for 0-shot evaluation (Gao et al.,
2023).

To evaluate a model M, we consider all 2k − 2 proper subsets S ⊂ {F1, . . . , Fk} and follow the evaluation
protocol in Deeb & Roger (2025). Specifically, we fine-tune M on either the MCQ data or the corresponding
corpus from S and then evaluate it on the MCQ questions from T := F \ S. We track accuracy on T over
epochs and report the best accuracy as the final forget accuracy. All fine-tuning experiments use the Adam
optimizer (Kingma & Ba, 2017).

To ensure model utility, we only consider unlearned models that experience at most a 10% accuracy drop
on the retain set, see Appendix Table 6. All experiments are conducted using Zephyr-7B-β (Tunstall et al.,
2023).

3.1 Layered Unlearning is more robust to adversarial relearning

Figure 3: Model accuracy after relearning different folds of the data for an experiment with Layered RMU
(L-RMU) and the folds {A, B, C} in order. Each row shows the performance per fold for different relearning
subsets. Notice that values below the diagonal are lower than values above the diagonal. This shows that
L-RMU introduces a one-way barrier to relearning: relearning on B regains performance on C but not on A.

Across our experiments, we find that RMU becomes more robust to adversarial relearning when augmented
with LU (Figure 3). This robustness is sensitive to the order of folds: an adversary with access to fold A can
recover more information about B and C than one with access only to fold C. This reflects a path-dependent
property of LU, where the sequence of unlearning influences the model’s vulnerability to relearning.

SimNPO exhibits a similar, though weaker, improvement in robustness under LU. Notably, L-SimNPO
produces a more symmetric barrier effect, in contrast to the directional robustness seen with RMU. These
results indicate that LU generalizes across different unlearning methods.

3.2 Corpus-based fine-tuning is a stronger adversarial attack

We investigate the limits of LU by replacing MCQ-based prompts with corpus-based fine-tuning. While
MCQ-based fine-tuning is commonly used due to its guaranteed performance improvement on targeted
questions, corpus-based fine-tuning may more directly realign internal representations, making it a potentially
stronger attack—particularly against unlearning methods based on representation engineering.

This substitution reveals a new state-of-the-art attack—one that only becomes apparent because LU enhances
robustness to standard MCQ-based attacks. Although some robustness remains, it is reduced, as shown in
Figure 3 and Table 3. Concretely, RMU’s performance increases by an average of 5% under corpus-based
fine-tuning. For L-RMU, the effect is larger: performance improves by 10% on average when relearning on

7

Under review as submission to TMLR

later folds and evaluating on earlier ones, and by 6% when relearning on earlier folds and evaluating on later
ones. This asymmetry emerges only because LU introduces additional robustness, revealing corpus-based
fine-tuning as a more effective attack in certain cases.

Interestingly, both SimNPO and L-SimNPO are less affected by corpus-based fine-tuning. However, SimNPO
remains more vulnerable to adversarial relearning overall. This contrast shows that unlearning methods differ
not only in their effectiveness, but also in the nature of their vulnerabilities. These findings highlight the
importance of developing unlearning techniques that can withstand a diverse range of relearning attacks.

Relearn Method A ↓ B ↓ C ↓
MCQ Corpus MCQ Corpus MCQ Corpus

A RMU — — 0.41 0.45 0.45 0.49
A L-RMU — — 0.40 0.49 0.50 0.54
A SimNPO — — 0.47 0.45 0.50 0.54
A L-SimNPO — — 0.41 0.35 0.41 0.40
B RMU 0.41 0.48 — — 0.46 0.48
B L-RMU 0.31 0.44 — — 0.50 0.54
B SimNPO 0.54 0.52 — — 0.54 0.53
B L-SimNPO 0.42 0.45 — — 0.40 0.41
C RMU 0.43 0.50 0.39 0.44 — —
C L-RMU 0.26 0.36 0.34 0.42 — —
C SimNPO 0.52 0.55 0.48 0.44 — —
C L-SimNPO 0.42 0.47 0.45 0.42 — —

Table 3: Relearning accuracies on WMDP for RMU, SimNPO, and 3-fold layered variants of both. We
see that layered variants are more robust to relearning. This robustness is one-directional for L-RMU and
partially bidirectional for L-SimNPO. This also shows that corpus attacks are generally more performance
than multiple choice (MCQ) for the RMU variants. Similar results for Years and MMLU are shown in
Appendix E.

4 Related work

Unlearning for LLMs. Machine unlearning for large language models (LLMs) has become an active area
of research (Lu et al., 2022; Jang et al., 2022; Kumar et al., 2022; Zhang et al., 2023; Pawelczyk et al., 2023;
Eldan & Russinovich, 2023; Ishibashi & Shimodaira, 2023; Yao et al., 2023; Maini et al., 2024; Zhang et al.,
2024b; Li et al., 2024b; Wang et al., 2024; Jia et al., 2024; Liu et al., 2024b;a; Thaker et al., 2024; Kadhe et al.,
2024; Fan et al., 2025; Zhang et al., 2024a). Due to the difficulty of exact unlearning, most existing methods
adopt approximate strategies, including model optimization (Ilharco et al., 2022; Liu et al., 2022; Yao et al.,
2023; Eldan & Russinovich, 2023; Jia et al., 2024; Zhang et al., 2024b; Li et al., 2024b) and prompt-based or
in-context learning techniques (Thaker et al., 2024; Pawelczyk et al., 2023; Liu et al., 2024a). However, recent
work has shown that these models often remain vulnerable to adversarial attacks (Schwarzschild et al., 2024;
Patil et al., 2024; Lynch et al., 2024) or to relearning from small fragments of previously seen data (Hu et al.,
2024; Lynch et al., 2024). These findings highlight the persistent challenges in achieving robust unlearning in
LLMs.

Adversarial relearning. Adversarial relearning attacks exploit residual knowledge after unlearning by
fine-tuning on a small subset of forgotten data, aiming to recover information about the full unlearned set.
Che et al. (2024) showed that most existing unlearning methods are vulnerable to such attacks, revealing
a fundamental limitation. Deeb & Roger (2025) further demonstrated that even informationally distinct
examples can induce relearning, indicating failures beyond rote memorization. While several defenses have
been proposed (Rosati et al., 2024; Zou et al., 2024; Tamirisa et al., 2025; Sheshadri et al., 2025), none have
consistently withstood adversarial relearning (Che et al., 2024).

8

Under review as submission to TMLR

Prior work has studied both corpus-based (Che et al., 2024) and MCQ-based (Deeb & Roger, 2025) fine-
tuning. To our knowledge, no comprehensive comparison of the two strategies has been conducted; we find
corpus-based fine-tuning to be a more natural and effective form of adversarial relearning.

Sequential unlearning. Sequential unlearning has been explored in various contexts, such as removing
copyrighted information over time (Dou et al., 2025). Zhao et al. (2024) studied sequential unlearning as
a means to improve forgetting efficiency but did not consider its impact on robustness against adversarial
relearning. In contrast, our work investigates how the order and structure of sequential unlearning influence
robustness, focusing on its potential to mitigate adversarial relearning. Specifically, we analyze the path
dependence of unlearning and propose a novel framework that leverages structured forgetting to enhance
resilience against information leakage.

5 Discussion

LU requires separate hyperparameter tuning at each forgetting stage to balance retention and forgetting. As the
number of folds increases, the model must effectively discriminate between each pair of folds, with complexity
scaling as

(
k
2
)
, which limits scalability to large k. Furthermore, LU is by nature more computationally

intensive. However, in exchange for taking more time, it discovers optima that standard unlearning techniques
are unable to discover no matter how long they train. Future work could consider more efficient methods.

Comprehensive adversarial evaluation is also difficult due to the exponential number of relearning subsets
(2k − 2) and additional attack configurations (e.g., batch size, learning rate, dataset, unlearning method).
While we leave a full analysis to future work, our fixed hyperparameter setting was sufficient to break all
baseline methods (RMU, SimNPO), as detailed in the Appendix.

We do not directly address the challenge of harmless fine-tuning, where the attacker uses data unrelated to
what was unlearned, but we offer an intuition to guide future work. In standard unlearning, relearning is
significantly easier when the attacker has access to data that is similar to the unlearned examples. Even small
amounts of related data can serve as powerful signals, making it surprisingly effective to recover forgotten
information. We hypothesize that LU reduces this vulnerability by making recovery difficult even when
related data is available. As a result, it shrinks the performance gap between fine-tuning with related versus
unrelated data, potentially making both equally ineffective.

Finally, we consider how the structure of LU might inform post-training more broadly. Betley et al. (2025)
show that fine-tuning on a single behavior—such as insecure code—can unintentionally induce harmful
behaviors, suggesting entanglement between seemingly unrelated capabilities and values. One possible
explanation is that a single post-training run introduces a shared inhibitor that influences multiple behaviors
at once. LU, by contrast, creates multiple, distinct inhibitors and may help disentangle these behaviors.
This perspective suggests a potential alignment strategy: first train a model to be harmless but helpless,
then fine-tune it to be helpful while preserving harmlessness. In this setup, our results suggest increasing
helplessness should preserve harmlessness, while increasing harmfulness should increase helplessness. While
we focus on unlearning, we believe this layered approach could extend to alignment and other post-training
interventions, offering a possible path toward more modular and controllable model behavior.

6 Conclusion

We introduced Layered Unlearning, a k-fold sequential unlearning framework that improves robustness
by constructing functionally distinct, context-dependent inhibitors. Our experiments demonstrate that LU
reliably blocks recovery of earlier folds and significantly improves robustness across both synthetic and LLM
benchmarks. While LU strengthens defenses against standard MCQ-based fine-tuning, it also reveals the
limitations of current methods when faced with stronger corpus-based attacks. These results suggest that
forgetting is inherently brittle and that robustness requires structured, layered defenses. More broadly, LU
offers a testbed for mechanistic investigations of inhibitors and a conceptual foundation for more resilient
post-training interventions.

9

Under review as submission to TMLR

References
Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel Nanda.

Refusal in language models is mediated by a single direction. arXiv preprint arXiv:2406.11717, 2024.

Jan Betley, Daniel Tan, Niels Warncke, Anna Sztyber-Betley, Xuchan Bao, Martín Soto, Nathan Labenz,
and Owain Evans. Emergent misalignment: Narrow finetuning can produce broadly misaligned llms, 2025.
URL https://arxiv.org/abs/2502.17424.

Zora Che, Stephen Casper, Anirudh Satheesh, Rohit Gandikota, Domenic Rosati, Stewart Slocum, Lev E
McKinney, Zichu Wu, Zikui Cai, Bilal Chughtai, Furong Huang, and Dylan Hadfield-Menell. Model
manipulation attacks enable more rigorous evaluations of LLM unlearning. In Neurips Safe Generative AI
Workshop 2024, 2024. URL https://openreview.net/forum?id=XmvgWEjkhG.

Aghyad Deeb and Fabien Roger. Do unlearning methods remove information from language model weights?,
2025. URL https://arxiv.org/abs/2410.08827.

Guangyao Dou, Zheyuan Liu, Qing Lyu, Kaize Ding, and Eric Wong. Avoiding copyright infringement via
large language model unlearning, 2025. URL https://arxiv.org/abs/2406.10952.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell,
Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown,
Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 2021. https://transformer-circuits.pub/2021/framework/index.html.

Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, and Sijia Liu. Simplicity
prevails: Rethinking negative preference optimization for llm unlearning, 2025. URL https://arxiv.org/
abs/2410.07163.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12
2023. URL https://zenodo.org/records/10256836.

Ryan Greenblatt, Fabien Roger, Dmitrii Krasheninnikov, and David Krueger. Stress-testing capability
elicitation with password-locked models. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=zzOOqD6R1b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding, 2021. URL https://arxiv.org/abs/2009.03300.

Shengyuan Hu, Yiwei Fu, Zhiwei Steven Wu, and Virginia Smith. Jogging the memory of unlearned model
through targeted relearning attack. arXiv preprint arXiv:2406.13356, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh
Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint arXiv:2212.04089, 2022.

Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models. arXiv preprint
arXiv:2309.11852, 2023.

Samyak Jain, Ekdeep Singh Lubana, Kemal Oksuz, Tom Joy, Philip H. S. Torr, Amartya Sanyal, and
Puneet K. Dokania. What makes and breaks safety fine-tuning? a mechanistic study, 2024. URL
https://arxiv.org/abs/2407.10264.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and Minjoon Seo.
Knowledge unlearning for mitigating privacy risks in language models. arXiv preprint arXiv:2210.01504,
2022.

10

https://arxiv.org/abs/2502.17424
https://openreview.net/forum?id=XmvgWEjkhG
https://arxiv.org/abs/2410.08827
https://arxiv.org/abs/2406.10952
https://arxiv.org/abs/2410.07163
https://arxiv.org/abs/2410.07163
https://zenodo.org/records/10256836
https://openreview.net/forum?id=zzOOqD6R1b
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2407.10264

Under review as submission to TMLR

Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya
Kailkhura, and Sijia Liu. Soul: Unlocking the power of second-order optimization for llm unlearning. arXiv
preprint arXiv:2404.18239, 2024.

Swanand Ravindra Kadhe, Farhan Ahmed, Dennis Wei, Nathalie Baracaldo, and Inkit Padhi. Split, unlearn,
merge: Leveraging data attributes for more effective unlearning in llms. arXiv preprint arXiv:2406.11780,
2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL https:
//arxiv.org/abs/1412.6980.

Vinayshekhar Bannihatti Kumar, Rashmi Gangadharaiah, and Dan Roth. Privacy adhering machine un-
learning in nlp. arXiv preprint arXiv:2212.09573, 2022.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D. Li, Ann-
Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-Burger, Rassin Lababidi,
Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver Zhang, Xiaoyuan Zhu, Rishub
Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel Herbert-Voss, Cort B. Breuer, Samuel
Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zifan Wang, Palash Oswal, Weiran Lin, Adam A. Hunt,
Justin Tienken-Harder, Kevin Y. Shih, Kemper Talley, John Guan, Russell Kaplan, Ian Steneker, David
Campbell, Brad Jokubaitis, Alex Levinson, Jean Wang, William Qian, Kallol Krishna Karmakar, Steven
Basart, Stephen Fitz, Mindy Levine, Ponnurangam Kumaraguru, Uday Tupakula, Vijay Varadharajan,
Ruoyu Wang, Yan Shoshitaishvili, Jimmy Ba, Kevin M. Esvelt, Alexandr Wang, and Dan Hendrycks.
The wmdp benchmark: Measuring and reducing malicious use with unlearning, 2024a. URL https:
//arxiv.org/abs/2403.03218.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li, Ann-
Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring and reducing
malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024b.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Conference on Lifelong
Learning Agents, pp. 243–254. PMLR, 2022.

Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via
embedding-corrupted prompts. arXiv preprint arXiv:2406.07933, 2024a.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun Xu, Yuguang
Yao, Hang Li, Kush R Varshney, et al. Rethinking machine unlearning for large language models. arXiv
preprint arXiv:2402.08787, 2024b.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Ammanabrolu,
and Yejin Choi. Quark: Controllable text generation with reinforced unlearning. Advances in neural
information processing systems, 35:27591–27609, 2022.

Aengus Lynch, Phillip Guo, Aidan Ewart, Stephen Casper, and Dylan Hadfield-Menell. Eight methods to
evaluate robust unlearning in llms. arXiv preprint arXiv:2402.16835, 2024.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task of
fictitious unlearning for llms, 2024.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from llms? objectives for
defending against extraction attacks. ICLR, 2024.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models as few
shot unlearners. arXiv preprint arXiv:2310.07579, 2023.

James Reason. Human Error. Cambridge University Press, Cambridge, UK, 1990.

11

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2403.03218
https://arxiv.org/abs/2403.03218

Under review as submission to TMLR

Domenic Rosati, Jan Wehner, Kai Williams, Łukasz Bartoszcze, David Atanasov, Robie Gonzales, Subhabrata
Majumdar, Carsten Maple, Hassan Sajjad, and Frank Rudzicz. Representation noising: A defence
mechanism against harmful finetuning, 2024. URL https://arxiv.org/abs/2405.14577.

Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary C Lipton, and J Zico Kolter. Rethinking llm
memorization through the lens of adversarial compression. arXiv preprint arXiv:2404.15146, 2024.

Abhay Sheshadri, Aidan Ewart, Phillip Huang Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry Sleight,
Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, and Stephen Casper. Latent adversarial
training improves robustness to persistent harmful behaviors in LLMs, 2025. URL https://openreview.
net/forum?id=wI5uHZLeCZ.

Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell Lin, Justin
Wang, Rowan Wang, Ron Arel, Andy Zou, Dawn Song, Bo Li, Dan Hendrycks, and Mantas Mazeika.
Tamper-resistant safeguards for open-weight LLMs. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=4FIjRodbW6.

Pratiksha Thaker, Yash Maurya, and Virginia Smith. Guardrail baselines for unlearning in llms. arXiv
preprint arXiv:2403.03329, 2024.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi
Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero,
Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment, 2023. URL https:
//arxiv.org/abs/2310.16944.

Yu Wang, Ruihan Wu, Zexue He, Xiusi Chen, and Julian McAuley. Large scale knowledge washing. arXiv
preprint arXiv:2405.16720, 2024.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. arXiv preprint arXiv:2310.10683,
2023.

Eric Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-not: Learning to
forget in text-to-image diffusion models. arXiv preprint arXiv:2303.17591, 2023.

Eric Zhang, Leshem Chosen, and Jacob Andreas. Unforgettable generalization in language models, 2024a.
URL https://arxiv.org/abs/2409.02228.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic collapse
to effective unlearning. arXiv preprint arXiv:2404.05868, 2024b.

Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Triantafillou.
What makes unlearning hard and what to do about it, 2024. URL https://arxiv.org/abs/2406.01257.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial attacks
on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, Rowan Wang,
Zico Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness with circuit
breakers, 2024. URL https://arxiv.org/abs/2406.04313.

12

https://arxiv.org/abs/2405.14577
https://openreview.net/forum?id=wI5uHZLeCZ
https://openreview.net/forum?id=wI5uHZLeCZ
https://openreview.net/forum?id=4FIjRodbW6
https://arxiv.org/abs/2310.16944
https://arxiv.org/abs/2310.16944
https://arxiv.org/abs/2409.02228
https://arxiv.org/abs/2406.01257
https://arxiv.org/abs/2406.04313

Under review as submission to TMLR

A Layered Unlearning graphics

We provide graphics to better communicate the main idea.

Figure 4: The performance trajectory of LU on two folds A, B. Normally, unlearning methods lose performance
on A, B jointly and directly head towards the red point. However, we propose performing LU to retain
performance on B while forgetting A and then forgetting both folds.

13

Under review as submission to TMLR

Figure 5: We show the accuracy progression of forgetting three sets A, B, C in that order using RMU on
WMDP. The vertical dotted gray lines show when we move to forgetting the next fold. Note that the A
accuracy drops in the first iteration of forgetting and remains low. The accuracy of B remains high until the
second iteration of forgetting, and then drops and remains low. Finally, the accuracy of C remains high until
the third half of forgetting, when it drops.

B Synthetic ablation experiments

B.1 Logistic regression

We investigate different clustering schemes for grouping Gaussians into tasks A, B, and R. In the K-Means
setup, we first cluster the Gaussian means using K-Means, then solve a linear assignment problem to evenly
assign clusters to tasks based on proximity. Appendix Figures 6 and 7 show that adversarial relearning
becomes more effective as the number of clusters increases. In contrast, LU consistently resists relearning,
though its robustness is somewhat reduced under random clustering.

Our intuition is that adversarial relearning is less effective when task boundaries are more distinct. K-
Means clustering tends to separate tasks more cleanly, thereby limiting overlap. In contrast, random
clustering—especially with a larger number of Gaussians—increases the likelihood of overlap between tasks,
making it more difficult to defend against adversarial relearning. Additionally, increasing the number of
clusters inherently raises the potential for such overlap.

B.2 Bigram modeling

We analyze the effect of substituting components from the LU model into the U model on adversarial
relearning, using the notation of Elhage et al. (2021). Substitutions are grouped as follows:

• QK: Replace WQ and WK .

• OV : Replace WO and WV .

14

Under review as submission to TMLR

Figure 6: Relearning accuracies on A and B using datasets generated via K-Means clustering. Error bars
denote 2-std confidence intervals across 10 random seeds.

Figure 7: Relearning accuracies on A and B using datasets generated via random clustering. Error bars
denote 2-std confidence intervals across 10 random seeds.

• UE: Replace WU and WE .

These groupings reflect functional units in the model. As shown in Appendix Table 4, substituting QK or
OV consistently yields the greatest robustness to adversarial relearning, highlighting the key role of attention
for this setting. This pattern is also visible in Appendix Figure 8. Notably, retain and task accuracies remain
stable across all substitution settings (Appendix Table 5), indicating no degradation in core performance.
Investigating how attention confers this robustness is left for future work.

15

Under review as submission to TMLR

Figure 8: Relearning accuracies on A and B as a function of which components (QK, OV , UE) of the LU
model are substituted in. The x-axis encodes binary masks (e.g., 000 is standard unlearning; 111 is full LU).
Error bars denote 2-std confidence intervals over 10 random seeds. One seed was excluded due to universal
resistance to relearning, which only increased error bar size without affecting trends. “Ideal” denotes perfect
unlearning.

Relearn QK OV UE A ↓ B ↓ Retain ↓
A 0 0 0 — 0.78 0.06
A 0 0 1 — 0.83 0.05
A 0 1 0 — 0.75 0.05
A 0 1 1 — 0.77 0.05
A 1 0 0 — 0.66 0.04
A 1 0 1 — 0.70 0.03
A 1 1 0 — 0.55 0.03
A 1 1 1 — 0.53 0.04
B 0 0 0 0.75 — 0.05
B 0 0 1 0.73 — 0.05
B 0 1 0 0.68 — 0.05
B 0 1 1 0.65 — 0.04
B 1 0 0 0.61 — 0.05
B 1 0 1 0.58 — 0.04
B 1 1 0 0.52 — 0.04
B 1 1 1 0.51 — 0.04

Table 4: Table of relearning accuracies when substituting different model components. A value of 0 indicates
components from the U model, while 1 indicates components from the LU model. The “Retain” column
reports total variation (TV) distance on the retain set. This is an average over 10 random seeds.

16

Under review as submission to TMLR

QK OV UE A ↓ B ↓ Retain ↓
0 0 0 0.33 0.33 0.01
0 0 1 0.36 0.39 0.02
0 1 0 0.31 0.30 0.02
0 1 1 0.32 0.34 0.02
1 0 0 0.33 0.33 0.01
1 0 1 0.36 0.39 0.02
1 1 0 0.32 0.30 0.02
1 1 1 0.34 0.33 0.02

Table 5: Unlearned accuracies after substituting model components. A value of 0 indicates components
from the U model, and 1 indicates components from the LU model. The “Retain” column reports the total
variation (TV) distance on the retain set. This is an average over 10 random seeds.

C Retain accuracies

For evaluation, we either use full MMLU evaluation or we use specific categories for MMLU created in Deeb &
Roger (2025). The retain categories for MMLU consist of questions relating to health, history, law, philosophy,
and the social sciences. The forget categories for MMLU consist of questions relating to geography, culture,
STEM, chemistry, and business.

17

Under review as submission to TMLR

Size Dataset Method Retain ↑
Small — None 0.59
Full — None 0.58
Full WMDP 2 RMU 0.57
Full WMDP 2 RMU-Split 0.58
Full WMDP 2 L-RMU 0.57
Full WMDP 2 L-RMU-Split 0.57
Full WMDP 3 RMU 0.57
Full WMDP 3 RMU-Split 0.57
Full WMDP 3 L-RMU 0.57
Full WMDP 3 L-RMU-Split 0.55
Full WMDP 3 SimNPO 0.57
Full WMDP 3 L-SimNPO 0.55
Full WMDP 4 RMU 0.57
Full WMDP 4 RMU-Split 0.57
Full WMDP 4 L-RMU 0.57
Full WMDP 4 L-RMU-Split 0.57
Small MMLU 3 RMU 0.55
Small MMLU 3 RMU-Split 0.56
Small MMLU 3 L-RMU 0.54
Small MMLU 3 L-RMU-Split 0.55
Full Years 3 RMU 0.58
Full Years 3 RMU-Split 0.58
Full Years 3 L-RMU 0.58
Full Years 3 L-RMU-Split 0.57

Table 6: Retain accuracy by method. We refer to the restricted subset of MMLU questions as the small set
and the full MMLU dataset as the full set. The dataset column indicates which dataset was unlearned for
each method. The first section shows results from the original model before any unlearning was applied.

D Unlearning accuracies

We provide the accuracies after applying the unlearning methods on each fold for each dataset. We also
analyze another variant of RMU, which we term RMU-Split. In RMU-Split, each fold is projected onto a
different random vector, in contrast to the shared projection used in RMU. This isolates the impact of LU
from the confounding effect of using separate random vectors. The results do not change.

18

Under review as submission to TMLR

Dataset Method A ↓ B ↓ C ↓ D ↓
WMDP 2 RMU 0.26 0.29 — —
WMDP 2 L-RMU 0.21 0.28 — —
WMDP 2 RMU-Split 0.25 0.26 — —
WMDP 2 L-RMU-Split 0.24 0.28 — —
WMDP 3 RMU 0.27 0.24 0.33 —
WMDP 3 L-RMU 0.15 0.24 0.33 —
WMDP 3 RMU-Split 0.22 0.18 0.22 —
WMDP 3 L-RMU-Split 0.16 0.19 0.27 —
WMDP 3 SimNPO 0.32 0.24 0.31 —
WMDP 3 L-SimNPO 0.29 0.32 0.33 —
WMDP 4 RMU 0.25 0.27 0.29 0.30
WMDP 4 L-RMU 0.15 0.21 0.25 0.34
WMDP 4 RMU-Split 0.28 0.26 0.23 0.22
WMDP 4 L-RMU-Split 0.18 0.23 0.27 0.34
MMLU 3 RMU 0.28 0.30 0.30 —
MMLU 3 L-RMU 0.23 0.29 0.34 —
MMLU 3 RMU-Split 0.26 0.34 0.30 —
MMLU 3 L-RMU-Split 0.21 0.29 0.32 —
Years 3 RMU 0.30 0.22 0.30 —
Years 3 L-RMU 0.29 0.28 0.31 —
Years 3 RMU-Split 0.33 0.29 0.22 —
Years 3 L-RMU-Split 0.29 0.20 0.27 —

Table 7: Unlearning accuracy by method across datasets and evaluation folds.

E Relearning accuracies

All attacks are performed with learning rate 10−6 and batch size 4. We fine-tune on MCQ for 8 epochs and
fine-tune on corpus for 5 epochs. This difference is because we wish to fine-tune until the accuracy on the
relearn set stops increasing for a while, and by definition fine-tuning on MCQ can reach 1.0 accuracy, so we
fine-tune for longer. We then take the maximum validation accuracy across all epochs.

E.1 WMDP 2 folds

Table 8: Relearning accuracy across methods for WMDP 2 folds.

Relearn Method A ↓ B ↓
MCQ Corpus MCQ Corpus

A RMU — — 0.45 0.48
A L-RMU — — 0.43 0.53
A RMU-Split — — 0.42 0.51
A L-RMU-Split — — 0.42 0.54
B RMU 0.45 0.51 — —
B L-RMU 0.30 0.41 — —
B RMU-Split 0.40 0.53 — —
B L-RMU-Split 0.32 0.48 — —

19

Under review as submission to TMLR

E.2 WMDP 3 folds

Table 9: Relearning accuracy across methods for WMDP 3 folds.

Relearn Method A ↓ B ↓ C ↓
MCQ Corpus MCQ Corpus MCQ Corpus

A RMU — — 0.41 0.45 0.45 0.49
A L-RMU — — 0.40 0.49 0.50 0.54
A RMU-Split — — 0.37 0.44 0.38 0.54
A L-RMU-Split — — 0.35 0.45 0.49 0.55
A SimNPO — — 0.47 0.45 0.50 0.54
A L-SimNPO — — 0.41 0.35 0.41 0.40
B RMU 0.41 0.48 — — 0.46 0.48
B L-RMU 0.31 0.44 — — 0.50 0.54
B RMU-Split 0.42 0.53 — — 0.38 0.54
B L-RMU-Split 0.29 0.43 — — 0.47 0.54
B SimNPO 0.54 0.52 — — 0.54 0.53
B L-SimNPO 0.42 0.45 — — 0.40 0.41
C RMU 0.43 0.50 0.39 0.44 — —
C L-RMU 0.26 0.36 0.34 0.42 — —
C RMU-Split 0.40 0.55 0.39 0.45 — —
C L-RMU-Split 0.25 0.29 0.27 0.34 — —
C SimNPO 0.52 0.55 0.48 0.44 — —
C L-SimNPO 0.42 0.47 0.45 0.42 — —

A, B RMU — — — — 0.48 0.51
A, B L-RMU — — — — 0.49 0.56
A, B RMU-Split — — — — 0.41 0.55
A, B L-RMU-Split — — — — 0.50 0.54
A, B SimNPO — — — — 0.57 0.53
A, B L-SimNPO — — — — 0.43 0.40
A, C RMU — — 0.43 0.47 — —
A, C L-RMU — — 0.38 0.50 — —
A, C RMU-Split — — 0.42 0.45 — —
A, C L-RMU-Split — — 0.34 0.45 — —
A, C SimNPO — — 0.48 0.44 — —
A, C L-SimNPO — — 0.44 0.40 — —
B, C RMU 0.43 0.54 — — — —
B, C L-RMU 0.34 0.47 — — — —
B, C RMU-Split 0.39 0.56 — — — —
B, C L-RMU-Split 0.35 0.42 — — — —
B, C SimNPO 0.52 0.56 — — — —
B, C L-SimNPO 0.44 0.47 — — — —

20

Under review as submission to TMLR

E.3 WMDP 4 folds

Table 10: Relearning accuracy across methods for WMDP 4 folds.

Relearn Method A ↓ B ↓ C ↓ D ↓
MCQ Corpus MCQ Corpus MCQ Corpus MCQ Corpus

A RMU — — 0.41 0.44 0.37 0.44 0.41 0.47
A L-RMU — — 0.38 0.46 0.35 0.46 0.40 0.57
A RMU-Split — — 0.42 0.46 0.38 0.44 0.41 0.51
A L-RMU-Split — — 0.38 0.50 0.39 0.47 0.44 0.56
B RMU 0.46 0.47 — — 0.44 0.41 0.49 0.44
B L-RMU 0.29 0.51 — — 0.36 0.46 0.46 0.56
B RMU-Split 0.42 0.51 — — 0.37 0.45 0.40 0.51
B L-RMU-Split 0.33 0.47 — — 0.37 0.47 0.51 0.56
C RMU 0.44 0.49 0.43 0.47 — — 0.46 0.45
C L-RMU 0.33 0.45 0.37 0.47 — — 0.46 0.57
C RMU-Split 0.43 0.51 0.35 0.46 — — 0.41 0.49
C L-RMU-Split 0.29 0.47 0.35 0.47 — — 0.45 0.55
D RMU 0.43 0.47 0.42 0.47 0.40 0.42 — —
D L-RMU 0.25 0.33 0.27 0.42 0.36 0.47 — —
D RMU-Split 0.37 0.52 0.38 0.45 0.34 0.45 — —
D L-RMU-Split 0.25 0.40 0.32 0.43 0.32 0.40 — —

A, B RMU — — — — 0.41 0.47 0.48 0.53
A, B L-RMU — — — — 0.43 0.49 0.46 0.56
A, B RMU-Split — — — — 0.38 0.45 0.43 0.53
A, B L-RMU-Split — — — — 0.39 0.48 0.57 0.56
A, C RMU — — 0.41 0.49 — — 0.50 0.49
A, C L-RMU — — 0.43 0.48 — — 0.46 0.57
A, C RMU-Split — — 0.38 0.48 — — 0.39 0.53
A, C L-RMU-Split — — 0.41 0.52 — — 0.48 0.56
A, D RMU — — 0.43 0.49 0.40 0.45 — —
A, D L-RMU — — 0.35 0.48 0.38 0.46 — —
A, D RMU-Split — — 0.46 0.49 0.41 0.47 — —
A, D L-RMU-Split — — 0.44 0.51 0.40 0.48 — —
B, C RMU 0.47 0.53 — — — — 0.48 0.51
B, C L-RMU 0.30 0.53 — — — — 0.46 0.56
B, C RMU-Split 0.43 0.55 — — — — 0.40 0.53
B, C L-RMU-Split 0.35 0.49 — — — — 0.56 0.56
B, D RMU 0.45 0.56 — — 0.44 0.46 — —
B, D L-RMU 0.35 0.51 — — 0.42 0.47 — —
B, D RMU-Split 0.45 0.55 — — 0.39 0.46 — —
B, D L-RMU-Split 0.34 0.49 — — 0.39 0.49 — —
C, D RMU 0.43 0.54 0.42 0.48 — — — —
C, D L-RMU 0.27 0.47 0.35 0.45 — — — —
C, D RMU-Split 0.36 0.55 0.38 0.48 — — — —
C, D L-RMU-Split 0.29 0.48 0.41 0.51 — — — —

Continued on next page

21

Under review as submission to TMLR

Continued from previous page

Relearn Method A ↓ B ↓ C ↓ D ↓
MCQ Corpus MCQ Corpus MCQ Corpus MCQ Corpus

A, B, C RMU — — — — — — 0.46 0.52
A, B, C L-RMU — — — — — — 0.49 0.56
A, B, C RMU-Split — — — — — — 0.42 0.53
A, B, C L-RMU-Split — — — — — — 0.59 0.56
A, B, D RMU — — — — 0.44 0.48 — —
A, B, D L-RMU — — — — 0.42 0.51 — —
A, B, D RMU-Split — — — — 0.42 0.47 — —
A, B, D L-RMU-Split — — — — 0.45 0.49 — —
A, C, D RMU — — 0.48 0.49 — — — —
A, C, D L-RMU — — 0.39 0.48 — — — —
A, C, D RMU-Split — — 0.49 0.49 — — — —
A, C, D L-RMU-Split — — 0.43 0.51 — — — —
B, C, D RMU 0.47 0.55 — — — — — —
B, C, D L-RMU 0.31 0.51 — — — — — —
B, C, D RMU-Split 0.44 0.57 — — — — — —
B, C, D L-RMU-Split 0.37 0.48 — — — — — —

22

Under review as submission to TMLR

E.4 MMLU 3 folds

Table 11: Relearning accuracy across methods for MMLU 3 folds.

Relearn Method A ↓ B ↓ C ↓
MCQ Corpus MCQ Corpus MCQ Corpus

A RMU — — 0.49 0.66 0.51 0.64
A L-RMU — — 0.40 0.61 0.56 0.64
A RMU-Split — — 0.52 0.63 0.48 0.62
A L-RMU-Split — — 0.40 0.57 0.50 0.64
B RMU 0.52 0.65 — — 0.51 0.62
B L-RMU 0.30 0.54 — — 0.59 0.64
B RMU-Split 0.50 0.63 — — 0.49 0.62
B L-RMU-Split 0.38 0.61 — — 0.49 0.63
C RMU 0.53 0.64 0.52 0.64 — —
C L-RMU 0.33 0.39 0.39 0.46 — —
C RMU-Split 0.55 0.65 0.57 0.64 — —
C L-RMU-Split 0.36 0.48 0.38 0.50 — —

A, B RMU — — — — 0.54 0.63
A, B L-RMU — — — — 0.60 0.64
A, B RMU-Split — — — — 0.61 0.64
A, B L-RMU-Split — — — — 0.53 0.63
A, C RMU — — 0.55 0.64 — —
A, C L-RMU — — 0.44 0.61 — —
A, C RMU-Split — — 0.61 0.66 — —
A, C L-RMU-Split — — 0.48 0.59 — —
B, C RMU 0.52 0.65 — — — —
B, C L-RMU 0.32 0.55 — — — —
B, C RMU-Split 0.53 0.67 — — — —
B, C L-RMU-Split 0.38 0.60 — — — —

23

Under review as submission to TMLR

E.5 Years 3 folds

Table 12: Relearning accuracy across methods for Years 3 folds.

Relearn Method A ↓ B ↓ C ↓
MCQ Corpus MCQ Corpus MCQ Corpus

A RMU — — 0.55 0.57 0.55 0.58
A L-RMU — — 0.47 0.45 0.50 0.53
A RMU-Split — — 0.55 0.48 0.54 0.48
A L-RMU-Split — — 0.43 0.36 0.51 0.50
B RMU 0.56 0.59 — — 0.55 0.58
B L-RMU 0.40 0.33 — — 0.51 0.51
B RMU-Split 0.59 0.48 — — 0.49 0.52
B L-RMU-Split 0.37 0.33 — — 0.52 0.52
C RMU 0.54 0.58 0.58 0.58 — —
C L-RMU 0.29 0.32 0.43 0.42 — —
C RMU-Split 0.54 0.46 0.54 0.47 — —
C L-RMU-Split 0.29 0.31 0.42 0.38 — —

A, B RMU — — — — 0.61 0.58
A, B L-RMU — — — — 0.51 0.52
A, B RMU-Split — — — — 0.59 0.54
A, B L-RMU-Split — — — — 0.56 0.53
A, C RMU — — 0.61 0.57 — —
A, C L-RMU — — 0.52 0.45 — —
A, C RMU-Split — — 0.60 0.51 — —
A, C L-RMU-Split — — 0.51 0.42 — —
B, C RMU 0.62 0.59 — — — —
B, C L-RMU 0.43 0.32 — — — —
B, C RMU-Split 0.59 0.50 — — — —
B, C L-RMU-Split 0.40 0.34 — — — —

24

Under review as submission to TMLR

F Hyperparameters

We set the forgetting threshold to 0.35, motivated by the following statistical reasoning.

For multiple-choice questions (MCQ) with 4 choices, assuming random guessing, the expected accuracy is
0.25. Each dataset contains a total of 735 questions, and the smallest fold we consider consists of 735

4 . By
applying the central limit theorem, the expected final accuracy follows approximately a normal distribution:

N

(
1
4 ,

√
1
4 · 3

4 · 4
735

)
≈ N (0.25, 0.032) .

A three-standard-deviation event corresponds to:

3 × 0.032 + 0.25 ≤ 0.35.

Since we do not reject the null hypothesis of random guessing if accuracy remains within three standard
deviations of 0.25, we set the forgetting threshold to approximately 0.35. Note that this bound does get
tighter if we consider bigger folds, but in practice, we find that this threshold does not significantly impact
results, so we standardize it across all instances of LU.

For all models, we use Zephyr-7B-β (Tunstall et al., 2023).

F.1 RMU hyperparameters

WMDP: official model checkpoint from (Li et al., 2024a). MMLU:

• Activation layer: 7.

• Layers fine-tuned: 5, 6, 7.

• Magnitude: 10.

• Forget coefficient: 2.00.

• Retain coefficient: 16.00.

• Learning rate: 5 × 10−5.

• Batch size: 4.

Years:

• Activation layer: 7.

• Layers fine-tuned: 5, 6, 7.

• Magnitude: 15.

• Forget coefficient: 0.25.

• Retain coefficient: 1.00.

• Learning rate: 5 × 10−5.

• Batch size: 4.

25

Under review as submission to TMLR

F.2 RMU-Split hyperparameters

WMDP 2 folds:

• Activation layer: 7.

• Layers fine-tuned: 5, 6, 7.

• Magnitude: 10.

• Forget coefficients: 1.00, 1.00.

• Retain coefficient 32.

• Learning rate: 1 × 10−5.

• Batch size: 4.

WMDP 3 folds:

• Activation layer: 7.

• Layers fine-tuned: 5, 6, 7.

• Magnitude: 10.

• Forget coefficients: 1.00, 1.00, 1.00.

• Retain coefficient 16.

• Learning rate: 1 × 10−5.

• Batch size: 4.

WMDP 4 folds:

• Activation layer: 7.

• Layers fine-tuned: 5, 6, 7.

• Magnitude: 10.

• Forget coefficients: 1.00, 1.00, 1.00, 1.00.

• Retain coefficient 32.

• Learning rate: 1 × 10−5.

• Batch size: 4.

MMLU 3 folds:

• Activation layer: 7.

• Layers fine-tuned: 5, 6, 7.

• Magnitude: 10.

• Forget coefficients: 2.00, 2.00, 2.00.

• Retain coefficient 24.

26

Under review as submission to TMLR

• MMLU retain coefficient: 12.0.

• Learning rate: 1 × 10−5.

• Batch size: 8.

Years 3 folds:

• Activation layer: 7.

• Layers fine-tuned: 5, 6, 7.

• Magnitude: 10.

• Forget coefficients: 1.00, 1.00, 1.00.

• Retain coefficient 32.

• Learning rate: 1 × 10−5.

• Batch size: 4.

F.3 L-RMU hyperparameters

WMDP 2 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.39, 0.00.
– Retain coefficients: 0.00, 13.52.
– Retain set coefficient: 1.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.10, 1.00.
– Retain coefficients: 0.00, 0.00.
– Retain set coefficient: 24.
– Learning rate: 1 × 10−5.
– Batch size: 8.

WMDP 3 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.39, 0.00, 0.00.

27

Under review as submission to TMLR

– Retain coefficients: 0.00, 6.76, 6.76.
– Retain set coefficient: 1.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.05, 0.50, 0.00.
– Retain coefficients: 0.00, 0.00, 8.00.
– Retain set coefficient: 16.
– Learning rate: 1 × 10−5.
– Batch size: 8.

• Stage 3:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.00, 0.03, 0.33.
– Retain coefficients: 0.00, 0.00, 0.00.
– Retain set coefficient: 24.
– Learning rate: 1 × 10−5.
– Batch size: 8.

WMDP 4 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.39, 0.00, 0.00, 0.00.
– Retain coefficients: 0.00, 10.67, 10.67, 10.67.
– Retain set coefficient: 1.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.10, 1.00, 0.00, 0.00.
– Retain coefficients: 0.00, 0.00, 4.00, 4.00.
– Retain set coefficient: 16.
– Learning rate: 1 × 10−5.
– Batch size: 8.

• Stage 3:

28

Under review as submission to TMLR

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.01, 0.07, 0.67, 0.00.
– Retain coefficients: 0.00, 0.00, 0.00, 8.00.
– Retain set coefficient: 16.
– Learning rate: 1 × 10−5.
– Batch size: 8.

• Stage 4:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.01, 0.03, 0.15, 0.75.
– Retain coefficients: 0.00, 0.00, 0.00, 0.00.
– Retain set coefficient: 32.
– Learning rate: 1 × 10−5.
– Batch size: 8.

MMLU 3 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 2.00, 0.00, 0.00.
– Retain coefficients: 0.00, 8.00, 8.00.
– Retain set coefficient: 2.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.10, 2.00, 0.00.
– Retain coefficients: 0.00, 0.00, 4.00.
– Retain set coefficient: 32.
– MMLU retain coefficient: 8.0.
– Learning rate: 1 × 10−5.
– Batch size: 8.

• Stage 3:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.01, 0.13, 2.67.
– Retain coefficients: 0.00, 0.00, 0.00.

29

Under review as submission to TMLR

– Retain set coefficient: 36.
– MMLU retain coefficient: 18.0.
– Learning rate: 1 × 10−5.
– Batch size: 8.

Years 3 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 4.00, 0.00, 0.00.
– Retain coefficients: 0.00, 16.00, 16.00.
– Retain set coefficient: 2.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 2.25, 22.50, 0.00.
– Retain coefficients: 0.00, 0.00, 16.00.
– Retain set coefficient: 16.
– Learning rate: 1 × 10−5.
– Batch size: 8.

• Stage 3:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.15, 1.50, 15.00.
– Retain coefficients: 0.00, 0.00, 0.00.
– Retain set coefficient: 32.
– Learning rate: 1 × 10−5.
– Batch size: 8.

F.4 L-RMU-Split hyperparameters

WMDP 2 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.39, 0.00.
– Retain coefficients: 0.00, 13.52.
– Retain set coefficient: 1.

30

Under review as submission to TMLR

– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.10, 0.20.
– Retain coefficients: 0.00, 0.00.
– Retain set coefficient: 14.51609.
– Learning rate: 1 × 10−5.
– Batch size: 4.

WMDP 3 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.39, 0.00, 0.00.
– Retain coefficients: 0.00, 6.76, 6.76.
– Retain set coefficient: 1.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 1.00, 4.00, 0.00.
– Retain coefficients: 0.00, 0.00, 13.52.
– Retain set coefficient: 32.
– Learning rate: 3 × 10−6.
– Batch size: 4.

• Stage 3:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.33, 1.33, 5.33.
– Retain coefficients: 0.00, 0.00, 0.00.
– Retain set coefficient: 45.51609.
– Learning rate: 3 × 10−6.
– Batch size: 12.

WMDP 4 folds:

• Stage 1:

31

Under review as submission to TMLR

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.39, 0.00, 0.00, 0.00.
– Retain coefficients: 0.00, 10.67, 10.67, 10.67.
– Retain set coefficient: 1.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.10, 0.20, 0.00, 0.00.
– Retain coefficients: 0.00, 0.00, 16.00, 16.00.
– Retain set coefficient: 8.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 3:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.03, 0.07, 0.13, 0.00.
– Retain coefficients: 0.00, 0.00, 0.00, 32.00.
– Retain set coefficient: 16.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 4:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.03, 0.06, 0.12, 0.25.
– Retain coefficients: 0.00, 0.00, 0.00, 0.00.
– Retain set coefficient: 32.
– Learning rate: 1 × 10−5.
– Batch size: 4.

MMLU 3 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 2.00, 0.00, 0.00.
– Retain coefficients: 0.00, 8.00, 8.00.
– Retain set coefficient: 2.

32

Under review as submission to TMLR

– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 0.10, 2.00, 0.00.
– Retain coefficients: 0.00, 0.00, 8.00.
– Retain set coefficient: 32.
– MMLU retain coefficient: 8.0.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 3:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 10.
– Forget coefficients: 0.00, 0.07, 1.33.
– Retain coefficients: 0.00, 0.00, 0.00.
– Retain set coefficient: 40.
– MMLU retain coefficient: 10.0.
– Learning rate: 1 × 10−5.
– Batch size: 4.

Years 3 folds:

• Stage 1:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 6.5.
– Forget coefficients: 4.00, 0.00, 0.00.
– Retain coefficients: 0.00, 16.00, 16.00.
– Retain set coefficient: 2.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 2:

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 12.
– Forget coefficients: 1.20, 4.00, 0.00.
– Retain coefficients: 0.00, 0.00, 32.00.
– Retain set coefficient: 2.
– Learning rate: 1 × 10−5.
– Batch size: 4.

• Stage 3:

33

Under review as submission to TMLR

– Activation layer: 7.
– Layers fine-tuned: 5, 6, 7.
– Magnitude: 12.
– Forget coefficients: 0.17, 0.67, 2.67.
– Retain coefficients: 0.00, 0.00, 0.00.
– Retain set coefficient: 36.
– Learning rate: 1 × 10−5.
– Batch size: 4.

F.5 SimNPO hyperparameters

WMDP:

• Beta: 0.1.

• Forget coefficients: 8.00.

• Retain coefficients: 1.00.

• Learning rate: 4 × 10−6.

• Batch size: 4.

We reran SimNPO with our own implementation as the checkpoint online did not sufficiently unlearn the
data on our folds.

F.6 L-SimNPO hyperparameters

WMDP 3 folds:

• Stage 1:
– Beta: 0.1.
– Forget coefficients: 3.00, 0.00, 0.00.
– Retain coefficients: 0.00, 1.00, 1.00.
– Retain set coefficient: 4.
– Learning rate: 4 × 10−6.
– Batch size: 4.

• Stage 2:
– Beta: 0.1.
– Forget coefficients: 0.60, 3.00, 0.00.
– Retain coefficients: 0.00, 0.00, 1.00.
– Retain set coefficient: 6.
– Learning rate: 4 × 10−6.
– Batch size: 4.

• Stage 3:
– Beta: 0.1.
– Forget coefficients: 5.00, 5.00, 5.00.
– Retain coefficients: 0.00, 0.00, 0.00.
– Retain set coefficient: 6.
– Learning rate: 4 × 10−6.
– Batch size: 4.

34

	Introduction
	Layered Unlearning
	Machine unlearning notation
	Adversarial relearning in synthetic settings
	The Layered Unlearning algorithm
	Layered Unlearning for logistic regression
	Layered Unlearning for bigram modeling

	LLM unlearning experiments
	Layered Unlearning is more robust to adversarial relearning
	Corpus-based fine-tuning is a stronger adversarial attack

	Related work
	Discussion
	Conclusion
	Layered Unlearning graphics
	Synthetic ablation experiments
	Logistic regression
	Bigram modeling

	Retain accuracies
	Unlearning accuracies
	Relearning accuracies
	WMDP 2 folds
	WMDP 3 folds
	WMDP 4 folds
	MMLU 3 folds
	Years 3 folds

	Hyperparameters
	RMU hyperparameters
	RMU-Split hyperparameters
	L-RMU hyperparameters
	L-RMU-Split hyperparameters
	SimNPO hyperparameters
	L-SimNPO hyperparameters

