
Under review as submission to TMLR

Deep Generative Models through the Lens of the Manifold
Hypothesis: A Survey and New Connections

Anonymous authors
Paper under double-blind review

Abstract

In recent years there has been increased interest in understanding the interplay between deep
generative models (DGMs) and the manifold hypothesis. Research in this area focuses on
understanding the reasons why commonly-used DGMs succeed or fail at learning distribu-
tions supported on unknown low-dimensional manifolds, as well as developing new models
explicitly designed to account for manifold-supported data. This manifold lens provides
both clarity as to why some DGMs (e.g. diffusion models and some generative adversarial
networks) empirically surpass others (e.g. likelihood-based models such as variational au-
toencoders, normalizing flows, or energy-based models) at sample generation, and guidance
for devising more performant DGMs. We carry out the first survey of DGMs viewed through
this lens, making two novel contributions along the way. First, we formally establish that nu-
merical instability of likelihoods in high ambient dimensions is unavoidable when modelling
data with low intrinsic dimension. We then show that DGMs on learned representations
of autoencoders can be interpreted as approximately minimizing Wasserstein distance: this
result, which applies to latent diffusion models, helps justify their outstanding empirical
results. The manifold lens provides a rich perspective from which to understand DGMs,
which we aim to make more accessible and widespread.

1 Introduction

Learning the distribution that gave rise to observed data in RD has long been a central problem in statistics
and machine learning (Lehmann & Casella, 2006; Murphy, 2012). In the deep learning era, there has been
a tremendous amount of research aimed at leveraging neural networks to solve this task, bringing forth deep
generative models (DGMs). This effort has paid off, with state-of-the-art approaches such as diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) and their latent variants (Rombach et al.,
2022) achieving remarkable empirical success (Ramesh et al., 2022; Nichol et al., 2022; Saharia et al., 2022).
A natural question is why these latest models outperform previous DGMs, or more generally:

What makes a deep generative model good?

To answer this fundamental question, a line of research has emerged with the goal of understanding DGMs
through their relationship with the manifold hypothesis, and using the obtained insights to drive empirical
improvements. In its simplest form, this crucial hypothesis states that high-dimensional data of interest
often lies on an unknown d∗-dimensional submanifold M of RD, with d∗ < D. Studying the behaviour
of DGMs when the underlying data-generating distribution is supported on an unknown low-dimensional
submanifold of RD has already proven fruitful: for example, it is precisely those models with the capacity
to learn low-dimensional manifolds (such as diffusion models, latent or otherwise) that tend to work better
in practice. Similarly, various pathologies of DGMs – such as mode collapse in variational autoencoders
(Kingma & Welling, 2014; Rezende et al., 2014; Dai & Wipf, 2019), and numerical instabilities in the
score function of diffusion models (Pidstrigach, 2022; Lu et al., 2023) or in normalizing flows (Dinh et al.,
2014; 2017; Cornish et al., 2020; Behrmann et al., 2021), among others – can be explained as a failure to
properly account for manifold structure within data. Despite the existence of various DGM review papers

1

Under review as submission to TMLR

(Kobyzev et al., 2020; Papamakarios et al., 2021; Bond-Taylor et al., 2022; Yang et al., 2023), to the best of
our knowledge none takes this “manifold lens”. Here, we present the first survey of DGMs from this viewpoint.

The relevance and usefulness of studying DGMs through this lens hinges on a critical assumption: namely,
that the manifold hypothesis actually holds. It is thus relevant to justify this hypothesis. There is a plethora
of arguments supporting the existence of low-dimensional structure in most high-dimensional data of interest,
which we summarize below:

• Intuition Informally, saying that a subset M of RD is a low-dimensional submanifold is a math-
ematical way of capturing two important properties: a sense of sparsity in ambient space (M has
volume, or Lebesgue measure, 0 in RD), and a notion of smoothness. These are properties that one
can commonly expect of high-dimensional data of interest. For example, consider natural images in
[0, 1]D (assume they have been scaled to this range), where D corresponds to the number of pixels.
Imagine sampling uniformly from [0, 1]D until a human deems the resulting sample to be a natural
image. For all intents and purposes, such an image would never be sampled since natural images
are “sparse” in their ambient space. Images are also “smooth” in that, given a natural image, one
can always conceive of slightly deforming it in such a way that the result remains a natural image.
One can also intuitively understand a d∗-dimensional submanifold M of RD as a (smooth in some
way) subset of intrinsic dimension d∗, which can be thought of as the number of factors of variation
needed to characterize a point in M. Again, most machine learning researchers or practitioners who
have worked with natural images will have the tacit understanding that far fewer dimensions than
the ambient dimension, D, are needed to describe an image: for example, images can be successfully
synthesized from low-dimensional latent variables (Rombach et al., 2022; Sauer et al., 2023), and
they can be effectively compressed without affecting how humans perceive them (Wallace, 1992;
Townsend et al., 2019; Ruan et al., 2021). Through this line of thinking, the manifold hypothesis
has been a motivating concept in the field of machine learning from its infancy. Some of the first
autoencoders (Kramer, 1991) aimed to account for data with low intrinsic dimension. Early unsu-
pervised algorithms such as Boltzmann machines (Ackley et al., 1985) were conceived as ways of
learning the constraints that govern complex data distributions. Indeed, the manifold hypothesis is
one of the core intuitions behind why neural networks are so successful at learning low-dimensional
representations in the first place (Bengio et al., 2013).

• Theory The manifold hypothesis helps explain the success of deep learning through more than
just intuition. For example, under standard assumptions, the sample complexity of kernel density
estimation in RD is exponential in D (Wand & Jones, 1994). This well-known result is a manifes-
tation of the curse of dimensionality, and highlights the fundamental hardness of learning arbitrary
high-dimensional distributions. Yet DGMs succeed at this task, suggesting that these standard as-
sumptions are too loose and do not take into account relevant structure present in data of interest.
Making the assumption that the data lies on a submanifold of RD is a sensible way of incorporating
more structure, and is consistent with theory: the sample complexity of kernel density estimation
actually scales exponentially with intrinsic dimensionality (Ozakin & Gray, 2009; Berenfeld & Hoff-
mann, 2021) – even if the data is concentrated around a manifold rather than exactly on one (Divol,
2021). These results suggest that the task of learning distributions when d∗ is much smaller than D
is fundamentally more tractable than when there is no low-dimensional submanifold (i.e. d∗ = D).
This observation is not unique to density estimation: the difficulty of classification and manifold
learning are also known to scale with intrinsic – rather than ambient – dimension (Narayanan &
Niyogi, 2009; Narayanan & Mitter, 2010), making them effectively impossible for high-dimensional
data without additional structure. These results are a sign that manifold structure in data is the
reason why deep learning manages to avoid the curse of dimensionality. The triumph of modern
algorithms on these tasks thus provides strong implicit justification for the manifold hypothesis.

• Empiricism There are various works which use existing intrinsic dimension estimators (Levina
& Bickel, 2004; MacKay & Ghahramani, 2005; Johnsson et al., 2014; Facco et al., 2017; Bac et al.,
2021), or develop their own, and apply them on commonly-used image datasets (Pope et al., 2021;
Tempczyk et al., 2022; Zheng et al., 2022; Brown et al., 2023). These works unanimously estimate

2

Under review as submission to TMLR

the intrinsic dimension of images to be orders of magnitude smaller than their ambient dimension,
and similar studies have been carried out on physics datasets with analogous findings (Cresswell
et al., 2022). All these works provide explicit evidence supporting the manifold hypothesis.

Our goal in this survey is to to present an accessible, yet mathematically precise, view of DGMs from the
perspective of the manifold hypothesis. First, Section 2 characterizes the setup we will consider throughout,
and provides a consistent set of notation and terminology with which to describe DGMs. Section 3 lays
out relevant background, covering manifold learning and divergences between probability distributions –
with a special focus on which ones provide an adequate minimization objective when manifolds are involved.
Section 4 describes popular manifold-unaware DGMs – i.e. models which do not account for the manifold
hypothesis – and in Section 4.1.1 we provide our first novel result, showing that high-dimensional likelihood-
based models are unavoidably bound to suffer numerical instability when the manifold hypothesis holds.
Section 5 covers manifold-aware DGMs – i.e. models which do account for the manifold hypothesis. We
include both popular DGMs which happen to be manifold-aware and models which were explicitly designed
to account for manifold structure. In Section 5.3.1 we provide a new perspective on two-step models, one of the
predominant paradigms of manifold-aware DGMs: we show that, in addition to their common interpretation
as jointly learning a manifold and a distribution, they minimize a (potentially regularized) upper bound
– which can become tight at optimality – of the Wasserstein distance against the true data-generating
distribution. In Section 6 we cover discrete DGMs, before concluding and discussing directions for future
research in Section 7.

2 Notation and Setup

In this section we present the notation and setup that we will use throughout our work. We try to deviate
as little as possible from standard notation, but we nonetheless prioritize precision and consistency across
models. While knowledge of measure theory and differential geometry is needed to understand some technical
details of how DGMs relate to manifolds, the core ideas, methods, and intuitions of this area do not require
mathematics beyond what is typically known by machine learning researchers. Our intention in this survey
is thus to remain accessible to readers with no background in these topics.

Advanced topics In the interest of mathematically-inclined readers, we use grey boxes like this
one throughout the manuscript to present content which does require familiarity with topics such as
measure theory (Billingsley, 2012), topology (Munkres, 2014), or differential geometry (Lee, 2012;
2018). Providing a primer covering all the relevant material from these topics would be prohibitively
lengthy and thus falls outside the scope of our work. Nonetheless, we do include a short summary
of weak convergence of probability measures in Appendix A, as this is a particularly important tool
from measure theory allowing us to formalize the intuition that a model learns its target distribution
throughout training – even when this target is supported on a low-dimensional manifold. The material
within these grey boxes is self-contained and is not necessary to understand the rest of our survey.

2.1 Notation

Ambient and latent spaces We denote the D-dimensional ambient space as X , where depending on
the particular model being discussed, X could be RD or [0, 1]D. Many models use a latent space, which we
denote as Z, where Z = Rd. In most cases the latent space is low-dimensional, i.e. d < D, but in some
instances this need not hold. We use lower-case letters x ∈ X and z ∈ Z to denote points, and upper-case
letters X ∈ X and Z ∈ Z for random variables, on these respective spaces.

Encoders and decoders It will often be the case that we consider an encoder and a decoder between the
aforementioned spaces, which we denote as f : X → Z and g : Z → X , respectively.

Probability We use the letters p and q to denote densities; an exception being the Gaussian density, which
we denote as N (x; µ, Σ) when evaluated at x, where µ and Σ correspond to its mean and covariance matrix,

3

Under review as submission to TMLR

respectively. We write X ∼ p to indicate that X is distributed according to p. Since we will often need
various densities, we use superindices to identify them,1 e.g. pX and pZ will denote densities on X and Z,
respectively. In particular, we write the true data-generating density on X as pX

∗ . For a space S (e.g. Z or
X), we denote the set of all probability distributions on S as ∆(S). We use p ⊛ q to denote the convolution
between the densities p and q, i.e. if X1 ∼ p and X2 ∼ q are independent, p ⊛ q is the density of X1 + X2.
We denote expectations with E, and use a subindex to specify what density the expectation is taken with
respect to, e.g. EX∼pX

∗
[·].

Network parameters All DGMs leverage neural networks, in one way or another, to define a density pX
θ

parameterized by the learnable parameters θ of the neural network(s). We will often abuse notation and use
θ to parameterize all the generative components of the DGM; e.g. some models involve a decoder gθ and a
prior pZ

θ on Z, and we frequently subindex both components with θ even if they do not share parameters.
In some instances it will be necessary to distinguish between generative parameters, in which case we will
explicitly write θ = (θ1, θ2), using e.g. gθ1 and pZ

θ2
instead of gθ and pZ

θ , respectively. We will sometimes
overload notation by using subindices to denote a sequence of model parameters (θt)∞

t=1; the meaning of
parameter subindices will always be clear from context. We use ϕ for all auxiliary parameters; i.e. those that
are not needed for generation. For example, an encoder fϕ could have been learned alongside pZ

θ and gθ,
but it might not be needed to sample from the model. We use θ∗ and ϕ∗ to denote optimal values of these
parameters (with respect to the loss being optimized for the particular model being discussed).

Calculus We denote derivatives (gradients/Jacobians) with ∇, and use a subindex to indicate which
variable the differentiation is with respect to. For example, ∇xfϕ(x) and ∇zgθ(z) respectively denote the
Jacobians of the encoder and decoder with respect to their inputs (not their parameters), evaluated at x and
z; and ∇θ log pX

θ (x) denotes, for a given x, the gradient of the log density of the model with respect to its
parameters, evaluated at θ.

Linear algebra We denote the identity matrix as I, with a corresponding subindex to indicate dimension.
For example, ID corresponds to the D × D identity matrix. For a matrix J , we use det J , tr J , and J⊤

to denote its determinant, trace, and transpose, respectively. We denote the ℓ1 and ℓ2 norms in Euclidean
space as ∥ · ∥1 and ∥ · ∥2, respectively.

Formal notation In order to formally discuss probability distributions on manifolds, we need the
language of measure theory. All the measures we will consider are defined over X or Z, with their
respective Borel σ-algebras. We remind the reader that, since they are Euclidean, X and Z are
not arbitrary probability spaces. For a subset A of X , we denote its closure in X as clX (A). We
denote measures with the same letters as densities, but with uppercase blackboard style, i.e. P and
Q – two exceptions being the Lebesgue and Gaussian measures, which we denote as λ and N (µ, Σ),
respectively. We use a subindex on λ to indicate its ambient dimension; e.g. λD denotes the D-
dimensional Lebesgue measure. We write P ≪ Q to indicate that P is absolutely continuous with
respect to Q. We use # as a subscript to denote pushforward measures; e.g. for a measurable function
g : Z → X and a probability measure PZ on Z, g#PZ is the pushforward probability measure (on X)
of PZ through g. We will write the true data-generating distribution corresponding to pX

∗ as PX
∗ , and

the model distribution corresponding to pX
θ as PX

θ . Finally, we use ω−→ to indicate weak convergence
of probability measures.

2.2 Setup

The main goal of all the models pX
θ considered in this paper is to learn pX

∗ . Two main assumptions, which most
of the works presented throughout our survey follow, are commonly made when attempting to understand
DGMs through the manifold lens:

1That is, we do not use the common overloading of notation where p(x) and p(z) refer to different densities: in our notation
these would correspond to the same density evaluated at two different points.

4

Under review as submission to TMLR

(a) (b) (c)

Figure 1: (a) Depiction of a full-dimensional density (i.e. a density in the “usual sense”) pX on RD, with D =
2. The probability assigned by pX to a region A of RD is its integral over the region, i.e.

∫∫
A

pX(x1, x2)dx1dx2.
(b) When the density pX

∗ is instead supported on a d∗-dimensional manifold M embedded in RD (here, d∗ = 1
and M is a curve), the integral evaluates to zero, and thus pX

∗ is not a density in the “usual sense”. (c)
Formally, in order to recover the probability assigned to A by the manifold-supported density pX

∗ , the density
must be integrated only over M using a volume form (dvolM) on the manifold,

∫
A∩M pX

∗ dvolM – which in
this case simply corresponds to a line integral.

Manifold support As mentioned in the introduction, there is a substantial body of work supporting
the existence of low-dimensional structure in high-dimensional data of interest such as images. One way
of mathematically expressing this structure is by taking a literal interpretation of the manifold hypothesis;
that is, assuming that pX

∗ is supported on a d∗-dimensional submanifold M of X , where 0 < d∗ < D and
both M and d∗ are unknown. Several aspects of this assumption warrant additional discussion. (i) pX

∗ being
manifold-supported implies that it is not a full-dimensional density (i.e. with respect to the D-dimensional
Lebesgue measure) and it is thus not a density in the “usual sense”. See Figure 1 for an explanation. (ii)
This assumption is a choice about how to represent low-dimensional structure, and can be relaxed in various
ways. For example, one could instead assume that the support of pX

∗ has varying intrinsic dimension (Brown
et al., 2023), that it has singularities (Von Rohrscheidt & Rieck, 2023; Wang & Wang, 2024), or that pX

∗
simply concentrates most of its mass around a manifold – rather than all of it (Divol, 2021; Berenfeld et al.,
2022). (iii) The assumption that pX

∗ is supported exactly on a manifold remains nonetheless very useful,
even if we believe it to be “slightly off”; it serves as a first step towards understanding the interplay between
DGMs and the low-dimensional structure of the data they are trained on, and as we will see, insights arising
from this assumption explain various empirical observations. (iv) The requirement that d∗ > 0 simply rules
out pX

∗ being a probability mass function, which are better modelled with discrete DGMs. Our main focus
is thus on continuous models, although we discuss their discrete counterparts in Section 6.

Nonparametric regime We use the term nonparametric regime to refer to the setting where we assume
access to an infinite amount of data, arbitrarily flexible models, and exact optimization. More specifically,
training any of the DGMs that we will consider requires minimizing a loss that depends on model parameters
and which involves an expectation with respect to pX

∗ ; doing so is challenging for various reasons. (i) In
practice, expectations with respect to pX

∗ cannot be computed, and are thus approximated through empirical
averages over the dataset at hand. Writing the losses using expectations with respect to pX

∗ is thus assuming
access to infinite data. (ii) Attempting to reason about optimal parameter values for any given neural
network architecture quickly becomes essentially impossible in all but trivial cases. One way to circumvent
this issue is to assume that all the neural networks involved, or any density model pX

θ used, can represent any
continuous function, or continuous density, respectively. This assumption of arbitrary flexibility is of course
motivated by universal approximation properties of neural networks (Hornik, 1991; Koehler et al., 2021;
Puthawala et al., 2022). (iii) Stochastic gradient-based optimization (Robbins & Monro, 1951) over mini-
batches of the non-convex loss is used in practice (Kingma & Ba, 2015), which is not guaranteed to recover

5

Under review as submission to TMLR

a global optimum. Once again to facilitate analysis, it is convenient to assume that all the optimization
problems can be solved exactly.

Overall, even though these assumptions are optimistic, they remain popular as they allow for mathematical
analysis of DGMs. The nonparametric regime also provides a necessary condition for DGMs to learn pX

∗
in practice; if a model fails to capture pX

∗ even in this idealistic regime – which as we will see happens
surprisingly often for commonly-used DGMs – then there is no hope that the model can empirically recover
pX

∗ in a realistic setting.

Formal setup Throughout our work, M will be a d∗-dimensional embedded submanifold of RD.
We previously mentioned that we will assume PX

∗ is supported on M, and that it admits a density pX
∗ ;

in this grey box we formalize the meaning of these statements, the latter of which can be formalized
either through measure theory or differential geometry (although we will not require this formal
understanding of pX

∗ , we nonetheless include it for completeness):

• Formalizing manifold support Intuitively, the support of a distribution is the “smallest
set of probability 1”. To formally capture this intuition, the support supp(P) of a distribution
P on X is defined as (Bogachev, 2007, Section 2 of Chapter 7, page 77)

supp(P) :=
⋂

C∈C(P)

C, (1)

where C(P) is the collection of closed (in X) sets C such that P(C) = 1. It immediately
follows that the support of a distribution is always a closed set in its ambient space. In
general, M need not be closed in X , in which case it would be impossible for PX

∗ to be
supported on M. We nonetheless abuse language throughout our survey (both in the main
text and in these formal boxes) and say PX

∗ is supported on M when we actually mean that
PX

∗ (M) = 1 and that supp(PX
∗) = clX (M).

• Formalizing manifold-supported densities through measure theory The manifold
M can always be equipped with a Riemannian metric which it inherits from X , making M
into a Riemannian manifold. Riemannian manifolds admit a unique measure (defined over
their Borel sets), λM, which plays an analogous role to that of λD on RD. The measure
λM is called the Riemannian measure (or sometimes the Lebesgue measure) of M. We refer
readers interested in Riemannian measures to the treatments by Dieudonné (1973, Section
22 of Chapter 16) and Pennec (2006). Then PX

∗ can be restricted to M, resulting in the
probability measure PX

∗ |M defined over the Borel sets of M given by

PX
∗ |M(B) = PX

∗ (B) (2)

for any Borel set B of M, and pX
∗ can then be defined as the density (i.e. Radon-Nikodym

derivative) – assuming it exists – of this measure with respect to the corresponding Rieman-
nian measure, i.e.

pX
∗ := dPX

∗ |M
dλM

. (3)

In other words pX
∗ is such that, for any Borel set A of X ,

PX
∗ (A) =

∫
A∩M

pX
∗ (x)dλM(x). (4)

• Formalizing manifold-supported densities through differential geometry When
the Riemannian manifold M is orientable, the manifold admits a Riemannian volume form
dvolM, and pX

∗ is defined as the function – assuming it exists – having the property that

PX
∗ (U) =

∫
U∩M

pX
∗ dvolM (5)

6

Under review as submission to TMLR

for every open set U of X , i.e. dvolM “plays the role” of the Riemannian measure λM in
Equation 4. The technical tool allowing us to establish a correspondence between these two
views of pX

∗ is known as the Riesz-Markov-Kakutani theorem (Rudin, 1987, Theorem 2.14)
– which is sometimes also referred to as the Riesz representation theorem and should not be
confused with a different theorem about Hilbert spaces bearing the same name. The Riesz-
Markov-Kakutani theorem allows us to assign a unique measure to dvolM, namely λM, such
that integrating continuous compactly-supported functions against them is equivalent. In
this sense, λM is the natural measure to “extend” dvolM. We point out that when M is
non-orientable, even though dvolM is not defined, integration on manifolds can still be carried
out through the above measure-theoretic formulation.

3 Background

In this section we cover background topics and standard tools which we make use of throughout the survey.
Expert readers may wish to skip to Section 4.

3.1 Deep Generative Models on Known Manifolds

This work focuses on data governed by the manifold hypothesis, wherein the dataset of interest is constrained
to an unknown d∗-dimensional submanifold of X . However, for some datasets, the manifold is known a
priori, and the challenge lies in designing a generative model which can learn densities within the manifold.
Generative modelling on known manifolds is a distinct task from our focus in this survey, but it is closely
related, and we thus briefly summarize work on this topic below.

Gemici et al. (2016) first identified deep generative modelling on known manifolds as a problem of interest
and showed that the change-of-variables formula (Section 3.3) used to train normalizing flows (Section 4.1.3)
can be generalized to account for manifold structure. However, naïvely applying this idea can be numerically
unstable, so past work has specifically focused on developing this approach further for manifolds such as tori,
spheres, and hyperbolic spaces (Rezende et al., 2020; Bose et al., 2020; Sorrenson et al., 2023). Other works
have designed generative models which preserve the symmetries of data on certain manifolds (Lie groups) of
interest in the natural sciences (Kanwar et al., 2020; Boyda et al., 2021; Katsman et al., 2021). Using ordinary
differential equations (ODEs) or stochastic differential equations (SDEs) to model data on known manifolds
has also been proven to be effective (Mathieu & Nickel, 2020; Rozen et al., 2021; De Bortoli et al., 2022;
Ben-Hamu et al., 2022; Lou et al., 2023; Chen & Lipman, 2024), with the advantage that these approaches
can be defined independently of any parameterization of the manifold. Bonet et al. (2024) recently proposed
an approach based on optimal transport (Section 3.5) for generative modelling on known manifolds.

3.2 Manifold Learning

Learning distributions whose support is an unknown manifold M implies learning M as well, at least implic-
itly. The field of manifold learning is thus closely related to the main topic of our work. The term “manifold
learning” is often treated synonymously with dimensionality reduction, and refers to methods whose goal is
to provide a useful representation of high-dimensional data by transforming it into a lower-dimensional space.
That representation may provide information about the data such as its intrinsic dimension, yield a useful
visualization in two or three dimensions, or serve as a simplified starting point for downstream supervised
learning tasks. Generally, manifold learning methods fall into three categories: spectral methods (Pearson,
1901; Kruskal, 1964; Beals et al., 1968; Schölkopf et al., 1998; Roweis & Saul, 2000; Tenenbaum et al., 2000)
which rely on the eigenvectors and eigenvalues of some matrix related to the data; probabilistic methods
(Tipping & Bishop, 1999; van der Maaten & Hinton, 2008; McInnes et al., 2018), which treat datapoints
as high-dimensional random vectors whose relevant information is contained in some low-dimensional latent
variables; and bottleneck methods (Rumelhart et al., 1988; Kramer, 1991; Tishby et al., 2000; Kingma &
Welling, 2014; Alemi et al., 2017), which rely on passing information through a low-dimensional bottleneck

7

Under review as submission to TMLR

representation, often using neural networks. We refer the reader to the work of Ghojogh et al. (2023) for a
comprehensive review of manifold learning using this tripartite classification.

The focus on manifold learning in this work is mostly on bottleneck methods such as autoencoders (Rumelhart
et al., 1988) – and their many variants – whose core idea is to train an encoder-decoder pair of neural networks
to ensure reconstruction, for example through a squared ℓ2 loss:2

min
θ,ϕ

EX∼pX
∗

[
∥X − gθ (fϕ(X)) ∥2

2
]

. (6)

Here, the “bottleneck” refers to the d-dimensional encoder output fϕ(X), which the decoder gθ uses to
reconstruct X. Since pX

∗ is supported on M, the objective in Equation 6 aims to learn the manifold in the
sense that it encourages perfect reconstructions on it, or more formally, if x ∈ M, then x = gθ∗(fϕ∗(x)). We
highlight that perfect reconstructions need not always be achievable – even under the nonparametric regime
(Section 2.2) – due to topological constraints. We discuss this point, which we will revisit in Section 5.4,
in the grey box below. Note that even if perfect reconstructions are achieved, they are not enough to
characterize M, as they are a necessary but not sufficient condition for a point being on the manifold: some
points x ∈ X \ M outside the manifold can in principle still be perfectly reconstructed. We will see in
Section 5.3 that, assuming perfect reconstructions, training a generative model on data encoded by fϕ∗ can
characterize M.

When are perfect reconstructions achievable? Ideally, the loss in Equation 6 achieves a value
of 0 at optimality, which would directly imply that x = gθ∗(fϕ∗(x)),PX

∗ -almost-surely. Under mild
regularity conditions (Loaiza-Ganem et al., 2022a), this in turn implies that x = gθ∗(fϕ∗(x)) for all
x ∈ M, in which case we say that the encoder-decoder pair (fϕ∗ , gθ∗) reconstructs M perfectly.
When this condition is satisfied, the restriction fϕ∗ |M is a (topological) embedding of M into Z,
as is evidenced by the existence of its continuous left-inverse, gθ∗ . In other words, the existence
of some continuous function f that embeds M into Z is a necessary condition to achieve perfect
reconstructions and thus to learn M.

In general, however, such an f may not exist. For example, as we will see in Section 5.3, it is
sometimes desirable to set d, the dimensionality of Z, to be equal to d∗, the dimensionality of M.
This precludes the existence of f for many manifolds M, such as if M is a d∗-dimensional sphere, for
which no embedding f : M → Rd is possible when d = d∗. In cases where no plausible embedding
exists, even networks (fϕ, gθ) which come close to perfectly reconstructing M will incur numerical
instability (Cornish et al., 2020). In some other cases, it is possible to resolve these topological issues
by increasing d. For instance, a dimensionality of d = 2d∗ + 1 is enough to topologically embed any
manifold of dimension d∗ in Rd (Hurewicz & Wallman, 1948, Theorem V 3).

3.3 The Change-of-Variables Formula

It will often be the case that we have a density pZ on Z along with a decoder g : Z → X . Together, these
two components implicitly define the distribution of X = g(Z), where Z ∼ pZ , and it will often be of interest
to explicitly evaluate the density pX of X (formally, pX is the pushforward density of pZ through g). The
suitable tool is the change-of-variables formula, whose simplest form states that, when Z = X = RD, if g is
a diffeomorphism (i.e. a continuously differentiable function with a continuously differentiable inverse), then

pX(x) = pZ(z) |det ∇zg(z)|−1 (7)
= pZ (f(x)) |det ∇xf(x)| , (8)

where f = g−1 and z = f(x), so that ∇zg(z) ∈ RD×D and ∇xf(x) ∈ RD×D. An extension of this formula
that will also be of use applies to the case where Z = Rd with d ≤ D. When d < D, g : Z → X cannot be

2Note that autoencoders are not by themselves generative models, but we nonetheless parameterize g with θ (which we use
for generative parameters) for consistency with other decoders in the rest of the paper.

8

Under review as submission to TMLR

a diffeomorphism, but if it is injective it can be a diffeomorphism onto its image, g(Z), in which case the
density of X is now given by

pX(x) = pZ(z)
∣∣det

(
∇zg(z)⊤∇zg(z)

)∣∣− 1
2 , (9)

where again z = f(x), but now f : g(Z) → Z is the left inverse of g (i.e. z′ = f(g(z′)) for all z′ ∈ Z), and
∇zg(z) ∈ RD×d.

Several remarks about these formulas are worth making. (i) Computationally, it is often the case that
Equation 8 is used, rather than Equation 7, as Equation 8 requires only a forward pass through the encoder
f (as well as computing its Jacobian determinant), whereas Equation 7 requires an additional forward
computation through the decoder g; (ii) Equation 9, which is referred to as the injective change-of-variables
formula, reduces to Equation 7 in the case where d = D, since the determinant distributes over products of
square matrices; and (iii) when d < D, pX in Equation 9 is a manifold-supported density because it is only
defined on a submanifold, g(Z), of X , much like pX

∗ which is only defined on M. We refer the reader to the
work of Köthe (2023) for a review of the uses the change-of-variables formula has within DGMs.

Note that a more formal way of describing the change-of-variables formula is through the language of
pushforward measures, where we have a measure PZ on Z admitting a density pZ with respect to λd,
along with the measurable map g : Z → X . In the case of Equation 7 and Equation 8, pX corresponds
to the density of g#PZ with respect to λD; i.e. pX = dg#PZ/dλD. In the case of Equation 9, when
g is a smooth embedding, pX is now a density with respect to the Riemannian measure on g(Z), i.e.
pX = dg#PZ/dλg(Z), where g(Z) is treated as an embedded submanifold of X .

3.4 Failures of KL Divergence

Despite the KL divergence being widely used throughout machine learning, it is most commonly used with
the implicit assumption that the two involved densities are densities in the “same sense” (i.e. when they
both admit the same dominating measure, see the grey box below). This assumption fails in the manifold
setting when pX

θ is full-dimensional, since pX
∗ is manifold-supported. We thus find it useful to provide the

formal definition of the KL divergence in the grey box below, along with a discussion. In summary, the usual
formula for computing KL divergence,

KL
(
pX

∗ ∥ pX
θ

)
= EX∼pX

∗

[
log pX

∗ (X)
pX

θ (X)

]
, (10)

is only valid when pX
∗ and pX

θ are such that for every subset A of X that is assigned probability 0 by pX
θ , the

density pX
∗ also assigns probability 0 to A. Whenever this property does not hold, KL(pX

∗ ∥ pX
θ) is defined

as infinity. It follows that in the manifold setting, KL(pX
∗ ∥ pX

θ) = ∞ = KL(pX
θ ∥ pX

∗) when pX
θ is full-

dimensional, as illustrated in Figure 2(a). It also follows that KL(pX
∗ ∥ pX

θ) = ∞ even if pX
θ is supported on a

d∗-dimensional manifold – as long as M is not contained in the support of pX
θ – as illustrated in Figure 2(b).

KL divergence and maximum-likelihood The most common way of attempting to minimize the KL
divergence between the true distribution and the model is through maximum-likelihood:

max
θ

EX∼pX
∗

[
log pX

θ (X)
]

. (11)

When the KL divergence between pX
∗ and pX

θ is not trivially equal to infinity, it can be written as

KL(pX
∗ ∥ pX

θ) =
∫

log
(

pX
∗ (x)

pX
θ (x)

)
pX

∗ (x)dx =
∫

pX
∗ (x) log pX

∗ (x)dx −
∫

pX
∗ (x) log pX

θ (x)dx (12)

= EX∼pX
∗

[
log pX

∗ (X)
]

− EX∼pX
∗

[
log pX

θ (X)
]

. (13)

Since EX∼pX
∗

[
log pX

∗ (X)
]

does not depend on θ, this common derivation shows that as long as
|EX∼pX

∗

[
log pX

∗ (X)
]

| < ∞, maximum-likelihood optimization is equivalent to minimizing KL divergence.

9

Under review as submission to TMLR

(a) (b)

Figure 2: Illustration of why KL divergences can be infinite in the manifold setting. (a) pX
θ has full-

dimensional support (light red region), while pX
∗ is supported on a lower-dimensional manifold M (blue

curve). The model pX
θ assigns probability 0 to A, i.e.

∫
A

pX
θ dx = 0, because the region A has zero volume

in X . However, pX
∗ does not, since

∫
A∩M pX

∗ dvolM > 0. We conclude that KL
(
pX

∗ ∥ pX
θ

)
= ∞. Meanwhile,∫

B∩M pX
∗ dvolM = 0 because B ∩ M = ∅, yet we have

∫
B

pX
θ dx > 0, entailing that KL

(
pX

θ ∥ pX
∗
)

= ∞. (b)
Analogous example where now pX

θ and pX
∗ are both supported on low-dimensional manifolds. Since M is

not contained in the support of pX
θ , there exists a set A to which pX

θ assigns probability 0 despite having
positive probability under pX

∗ , so that KL
(
pX

∗ ∥ pX
θ

)
= ∞.

However, a key step in this derivation (the first equality) is the assumption that the KL divergence between
pX

∗ and pX
θ is not trivially infinite. As previously mentioned, in the manifold setting we will generally have

KL(pX
∗ ∥ pX

θ) = ∞. It follows that in this setting, maximum-likelihood is not equivalent to KL divergence
minimization, a point that we will later revisit.

Formally, the KL divergence between two probability measures P and Q, KL(P ∥Q), is defined as

KL(P ∥Q) :=

∫

log
(

dP
dQ (x)

)
dP(x), if dP

dQ exists

∞, otherwise
, (14)

where dP/dQ denotes the Radon-Nikodym derivative of P with respect to Q. By the Radon-Nikodym
theorem, dP/dQ exists if and only if P ≪ Q. Finally, when both P and Q are dominated by the same
measure η – i.e. P ≪ η and Q ≪ η – with corresponding densities p and q with respect to η, the KL
divergence between them simplifies to

KL(P ∥Q) = KL(p ∥ q) =
∫

log
(

p(x)
q(x)

)
p(x)dη(x), (15)

which recovers the commonly-used expressions for KL divergence (Equation 13) whenever η is either
the Lebesgue measure or the counting measure.

3.5 Wasserstein Distances

In Section 3.4, we summarized why KL(pX
∗ ∥ pX

θ) does not provide a useful notion of divergence between
pX

∗ and pX
θ in the manifold setting, and the same is true of many other common divergences between

distributions (see the discussion in Section 4.2). Wasserstein distances, which are based on the optimal
transport problem (Villani, 2009; Peyré & Cuturi, 2019), provide a distance between distributions that
remains meaningful even in the manifold setting. Despite the fact that accurately estimating Wasserstein
distances is challenging (Arora et al., 2017), DGMs based on minimizing these distances tend to work very
well in practice (e.g. Section 5.2.1 and Section 5.3.1).

10

Under review as submission to TMLR

Figure 3: The optimal transport problem can be visualized as the minimum cost of “transporting” the
density p over to the density q. Picturing p and q as piles of dirt, each dirt particle from p must be moved
so that it becomes part of q. Moving dirt from x to y incurs a cost given by c(x, y). The joint distribution γ
of (X, Y) can be thought of as specifying the “transport plan”: the constraint that its X-marginal matches
p ensures the starting pile of dirt is p; the constraint that its Y -marginal matches q ensures the final pile of
dirt is q; and its (Y |X = x)-conditional – illustrated with the black arrows in the figure – specifies how the
dirt at x from p is (potentially stochastically) allocated to dirt from q. The most efficient plan possible for
shifting all the dirt has an overall cost Wc(p, q). This analogy explains why the Wasserstein-1 distance is
sometimes called the earth mover’s distance.

The optimal transport problem between two densities p and q on X is given by

Wc(p, q) := inf
γ∈Π(p,q)

E(X,Y)∼γ [c(X, Y)], (16)

where c : X × X → R is called the cost function, and Π(p, q) is the set of distributions on X × X whose
marginals match p and q, respectively. Intuitively, the optimal transport problem can be understood as
the cost (as measured by c) of “transporting” p to q, as illustrated in Figure 3. When c is given by the ℓ1
distance (i.e. c(x, y) = ∥x − y∥1) Wc is called the Wasserstein-1 distance, and is denoted as W1. The W1
metric admits the following well-known dual formulation:

W1(p, q) = sup
h∈H

EX∼p[h(X)] − EX∼q[h(X)], (17)

where H = {h : X → R | h is Lipschitz and Lip(h) ≤ 1}, and Lip(h) denotes the Lipschitz constant of
h. Analogously, when c is given by the squared ℓ2 distance (i.e. c(x, y) = ∥x − y∥2

2)
√
Wc is called the

Wasserstein-2 distance, and is denoted as W2. The Wasserstein distances W1(pX
∗ , pX

θ) and W2(pX
∗ , pX

θ) re-
main meaningfully defined even in the manifold setting, and thus provide sensible optimization objectives.
For W1, this property can be informally understood through Equation 17, which essentially says that two
distributions are close in Wasserstein distance if no Lipschitz function can discriminate between them. In-
tuitively, if no such function can discern between pX

∗ and pX
θ , then they must be “truly” close, even if one is

manifold-supported and the other full-dimensional (or if both are supported on non-overlapping manifolds).

Formally, Wasserstein distances remain meaningfully defined in the manifold setting because they
metrize weak convergence, which we discuss below. First, we point out that the optimal transport
problem in Equation 16 applies to arbitrary probability measures P and Q on X , not only densities:

Wc(P,Q) := inf
Γ∈Π(P,Q)

E(X,Y)∼γ [c(X, Y)], (18)

where Π(P,Q) = {Γ ∈ ∆(X × X) | Γ(A × X) = P(A) and Γ(X × A) = Q(A) for every measurable set
A ⊂ X }, and c : X × X → R is measurable.

If c is the ℓ1 (or ℓ2) distance, then convergence in Wc is equivalent to convergence in distribution
plus convergence in first (or second) moments (Villani, 2009, Theorem 6.9). In particular, this

11

Under review as submission to TMLR

implies that if X is bounded (and c is either the ℓ1 or ℓ2 distance), then Wc metrizes weak
convergence, meaning that given a sequence (PX

θt
)∞
t=1 of probability measures, Wc(PX

θt
,PX

∗) → 0
as t → ∞ if and only if PX

θt

ω−→ PX
∗ as t → ∞. Arjovsky et al. (2017) identified that metrizing

weak convergence is a desirable property in an optimization objective for training DGMs, as it
ensures that “getting closer and closer” to the target distribution is properly quantified, even in
the presence of dimensionality mismatch (see Appendix A for a more detailed discussion of this point).

Note that the KL divergence does not metrize weak convergence. Let us illustrate why this is prob-
lematic through an example by letting PXσ

∗ = PX
∗ ⊛ N (0, σ2ID), where PX

∗ is supported on M. As
σ → 0+, PXσ

∗ gets closer to PX
∗ , yet this is not reflected in the KL divergence, since KL(PX

∗ ∥PXσ
∗) = ∞

for every σ > 0 (this is because PX
∗ ≪ PXσ

∗ does not hold). Thus KL(PX
∗ ∥PXσ

∗) → ∞ as σ → 0+.
This means that, despite KL(PX

∗ ∥PXσ
∗) being minimized at σ = 0, the KL divergence provides no

learning signal, and the same holds for the reverse KL. On the other hand, Wc(PX
∗ ,PXσ

∗) → 0 as
σ → 0+, provided that Wc metrizes weak convergence.

3.6 Maximum Mean Discrepancy

Similarly to Wasserstein distances (Section 3.5), the maximum mean discrepancy (MMD; Gretton et al., 2006)
provides a notion of distance between probability distributions which remains mathematically meaningful in
the manifold setting. The MMD between two probability densities p and q on X , MMDk(p, q), is given by

MMDk(p, q) =
(
EX,X′∼p[k(X, X ′)] − 2EX∼p,Y ∼q[k(X, Y)] + EY,Y ′∼q[k(Y, Y ′)]

) 1
2
, (19)

where X, X ′, Y, Y ′ are independent, and k : X × X → R is a symmetric positive semi-definite kernel (i.e.
a function having the property that, for any n ∈ N and x1, . . . , xn ∈ X , the n × n matrix K given by
Kij = k(xi, xj) is symmetric positive semi-definite), which is set as a hyperparameter.

The MMD has several desirable mathematical properties. (i) Under some regularity conditions which are
satisfied by many commonly-used kernels, the MMD is a metric in the space of probability distributions
over X . (ii) MMD2

k(p, q) can be straightforwardly estimated in an unbiased manner through Monte Carlo
sampling, making it particularly amenable to gradient-based optimization. (iii) Conditions on k which make
MMDk meaningfully defined in the manifold setting (formally, conditions under which MMD metrizes weak
convergence) are known (Simon-Gabriel & Schölkopf, 2018; Simon-Gabriel et al., 2020). Provided that X
is compact (which is the case for images in [0, 1]D), these conditions hold for most commonly-used kernels,
meaning that MMD can be used to compare distributions regardless of their support.

4 Manifold-Unaware Deep Generative Models

In this section we describe popular deep generative modelling frameworks which were not developed with
the manifold setting in mind, and discuss their inability to learn pX

∗ in this setting.

4.1 The Problem with Likelihood-Based Approaches: Manifold Overfitting

Likelihood-based deep generative models are a broad and popular class of models, which includes variational
autoencoders (VAEs; Kingma & Welling, 2014; Rezende et al., 2014), normalizing flows (NFs; Dinh et al.,
2014; 2017), energy-based models (EBMs; Xie et al., 2016; Du & Mordatch, 2019), continuous autoregressive
models (Uria et al., 2013), and more (Bond-Taylor et al., 2022). At a high-level, these models leverage neural
networks to construct a full-dimensional density pX

θ . The models are trained by maximizing, sometimes
approximately, the log-likelihood:

max
θ

EX∼pX
∗

[log pX
θ (X)]. (20)

When the underlying density pX
∗ is full-dimensional, this objective is equivalent to minimizing the KL

divergence between pX
∗ and pX

θ (Equation 13). However, in our setting of interest pX
∗ is manifold-supported,

12

Under review as submission to TMLR

Figure 4: Illustration of manifold overfitting, where the 1-dimensional pX
∗ (shades of blue) along a curve M

in 2-dimensional ambient space is improperly approximated. Each row shows a sequence of full-dimensional
densities pX

θt
(red surfaces) having the property that their likelihood diverges to infinity on all of M, yet

each sequence approximates a different manifold-supported density pX
† on M: the top sequence will recover

a bimodal distribution on M and the bottom sequence a trimodal one, despite pX
∗ being unimodal.

and as mentioned in Section 3.4, this equivalence breaks down, leading to the natural question: what happens
if the likelihood is optimized when pX

θ is full-dimensional but pX
∗ is not?

The first consequence of this dimensionality misspecification is that the log-likelihood does not admit a
maximum as it can be made arbitrarily large. To see this, consider a sequence of full-dimensional models
(pX

θt
)∞
t=0 which concentrate more and more mass around M during training, as depicted in Figure 4. If M

was full-dimensional, it would be impossible to have pX
θt

(x) → ∞ as t → ∞ for all x ∈ M, as doing so would
quickly violate the requirement that the densities integrate to 1. However, when M is low-dimensional, it
is “infinitely thin” in RD, and thus the model densities can be made to diverge to infinity along the entire
manifold. This phenomenon is illustrated twice in Figure 4.

At a first glance, the fact that the likelihood does not admit a maximum might seem inconsequential, as
one might hope that as long as EX∼pX

∗
[log pX

θt
(X)] → ∞ as t → ∞, then pX

∗ is still being learned. However,
this is not the case, and the reason is once again illustrated in Figure 4: there are many ways in which the
likelihood can diverge to infinity. Loaiza-Ganem et al. (2022a) formalized this intuition by proving that under
mild regularity conditions, for any manifold-supported density pX

† on M, there always exists a sequence of
full-dimensional densities which simultaneously (i) becomes arbitrarily large on the entire manifold, in turn
maximizing likelihood, yet (ii) approximates pX

† rather than the true data-generating density pX
∗ . The latter

condition is formalized using weak convergence in the grey box below, but can be intuitively understood as
saying that samples from pX

θt
and pX

† become indistinguishable as t → ∞.3

3Note that approximating pX
† does not imply that pX

θt
(x) → pX

† (x) as t → ∞ for all x because pX
θt

is full-dimensional,
whereas pX

† is manifold-supported.

13

Under review as submission to TMLR

An immediate consequence of this result is that maximum-likelihood is an ill-posed objective in the manifold
setting, as it simply encourages models to concentrate mass around M with no concern for the distribution
within it. Loaiza-Ganem et al. (2022a) thus call this behaviour manifold overfitting. Several consequences
of manifold overfitting are worth discussing. (i) Manifold overfitting does not imply that model densities
diverge to infinity on all of M; as long as these densities diverge to infinity on a subset of non-zero probability
under pX

∗ and do not converge to zero on the rest of M, the log-likelihood will still be “maximized”, i.e.
EX∼pX

∗
[log pX

θt
(X)] → ∞ as t → ∞. Analogously, densities could diverge to infinity on a superset of M

– such as a manifold of dimension higher than d∗ but lower than D (Koehler et al., 2022). Similarly, the
log-likelihood can be made to diverge to infinity in such a way that the sequence of models pX

θt
does not

learn any distribution pX
† (Loaiza-Ganem et al., 2022a). In other words, the behaviour of models which

“maximize” likelihood in the manifold setting can be pathological beyond pX
θt

(x) diverging to infinity if and
only if x ∈ M. (ii) One might be hopeful that in practice these pathological scenarios are avoided through
the optimization dynamics of gradient descent so that pX

∗ is properly learned, yet this is not the case (Koehler
et al., 2022). (iii) Manifold overfitting cannot be detected by using test likelihoods: as long as the test data
is generated from pX

∗ , then it lies on M with probability 1, and thus test likelihoods are also subject to
degenerate behaviour. This observation highlights that, in the manifold setting, test log-likelihoods should
be avoided as a DGM evaluation metric, and that sample-based metrics (Heusel et al., 2017; Borji, 2019;
Stein et al., 2023) should be favoured instead. This unreliability of test log-likelihoods is consistent with the
fact that they are not always correlated with sample quality when modelling images (Theis et al., 2016).

The manifold overfitting result of Loaiza-Ganem et al. (2022a) can be more formally stated as saying
that, under mild regularity conditions and provided that d∗ < D, for any distribution PX

† on X
supported on M, there exists a sequence of distributions (PX

θt
)∞
t=1 such that:

• PX
θt

is full-dimensional, i.e. PX
θt

≪ λD, for every t.

• For every x ∈ M, it holds that pX
θt

(x) → ∞ as t → ∞, where pX
θt

is a density of PX
θt

with
respect to λD.

• For every x ∈ X \ clX (M), it holds that pX
θt

(x) → 0 as t → ∞.

• PX
θt

ω−→ PX
† as t → ∞.

4.1.1 The Unavoidable Numerical Instability of High-Dimensional Likelihoods

The manifold overfitting result of Loaiza-Ganem et al. (2022a) described in Section 4.1 establishes that
maximum-likelihood is an ill-posed objective for high-dimensional densities in the manifold setting. Before
continuing our review of existing work, we point out that their result does not rule out the possibility of
somehow addressing the pathological behaviour of maximum-likelihood, for example by adding a regularizer.
Here we prove that it is actually impossible to do so, by showing that for any “infinitely thin” subset M of
X (of which M is an example, but here we do not require M to be a manifold), any density pX

† supported
on M , and any sequence of D-dimensional models pX

θt
which learn pX

† , the following holds: (i) for any x ∈ X
outside of M , pX

θt
(x) gets arbitrarily close to 0 as t → ∞; and (ii) for any x ∈ M and any L > 0, for large

enough t it holds that pX
θt

(x′) > L for some x′ ∈ X arbitrarily close to x. We formally state our theorem and
include a technical discussion in the grey box below.

Technicalities aside, our result shows that likelihoods become arbitrarily close to 0 outside M , and that
they become arbitrarily large on it (or arbitrarily close to it). The problem here is twofold: likelihoods are
unstable not only because they become arbitrarily large around M , but also because they must change very
rapidly to approach 0 outside of it. In particular, this implies that if pX

θt
is Lipschitz, the corresponding

Lipschitz constant must blow up as t → ∞.

One way to interpret our result is as a “soft generalization” to the manifold overfitting result of Loaiza-
Ganem et al. (2022a); whereas they show that for any target pX

† there exists a sequence of models which

14

Under review as submission to TMLR

approximates it while exploding on M and converging to 0 elsewhere, we show that any sequence recovering
pX

† will exhibit similar pathological behaviour on M . Two implications of our result are worth discussing:

• Numerical instability of likelihood evaluation Our theorem applies even if the models were
not trained through maximum-likelihood, so that if the target distribution is correctly recovered
through any means, density evaluation will remain numerically unstable – even when training itself
does not involve likelihoods and is numerically stable. To see this, simply apply our theorem with
pX

† = pX
∗ , which immediately yields that any sequence of D-dimensional models which learn pX

∗ will
do so with numerically unstable likelihoods. We can gain intuition as to why this should indeed be
the case through Figure 4: the only way for the red surfaces (pX

θt
) to recover the density on the blue

curve (pX
∗) is by spiking to infinity around it, and by not assigning mass elsewhere.

• Unfixability of maximum-likelihood Another consequence of our result is that maximum-
likelihood cannot be “fixed”; for example, any regularizer added to it which ensures that pX

∗ is learned
(rather than some arbitrary pX

†) would not circumvent the aforementioned numerical instabilities
– provided it does not obviate the need to compute likelihoods (or any surrogates used) during
training (e.g. by cancelling out the log-likelihood, at which point it would not fit the description of a
regularizer anymore). Analogously, any regularizer or architecture guaranteeing numerical stability
of likelihoods would be such that pX

∗ is not learned. In other words, our result ensures that learning
pX

∗ and having numerically stable likelihoods cannot happen simultaneously.

Theorem 1 (Likelihood Instability of Deep Generative Models). Let M ⊂ X be a Borel set such that
λD(clX (M)) = 0, and let PX

† be a probability measure on X such that PX
† (M) = 1 and supp(PX

†) =
clX (M). Let (PX

θt
)∞
t=1 be a sequence of probability measures on X such that PX

θt

ω−→ PX
† as t → ∞ and

PX
θt

≪ λD, with corresponding densities pX
θt

. Then:

• lim inf
t→∞

pX
θt

(x) = 0, λD-almost-everywhere on X \ clX (M).

• sup
x′∈Bε(x)

pX
θt

(x′) → ∞ as t → ∞ for every x ∈ clX (M) and every ε > 0, where

Bε(x) := {x′ ∈ X | ∥x′ − x∥2 < ε}.

Proof. See Appendix B.1.

We now make some relevant observations about the Likelihood Instability Theorem. (i) Note that we
only require the closure of M to have Lebesgue measure 0, so it need not be a manifold. Our result thus
applies in settings beyond the standard manifold hypothesis, such as when M is given by a union of
manifolds (Brown et al., 2023), or by a non-manifold set with singularities (Von Rohrscheidt & Rieck,
2023; Wang & Wang, 2024). (ii) lim inft→∞ pX

θt
(x) cannot in general be replaced by limt→∞ pX

θt
(x)

since the limit need not exist, but as an immediate corollary, if the limit exists, then it must be 0
λD-almost-everywhere on X \ clX (M). (iii) We also point out that supx′∈Bε(x) pX

θt
(x′) cannot be in

general replaced by pX
θt

(x) either, despite our conclusion holding for every ε > 0. Intuitively, this is
because for any given x ∈ M the divergence to infinity of the density might not happen at x, but
rather on a sequence converging to it: we provide an illustrative example in Appendix B.1. (iv) We
do emphasize that despite not concluding that pX

θt
(x) → 0 outside of M nor that pX

θt
(x) → ∞ in M ,

our result does unequivocally ensure numerical instability of the involved densities.

4.1.2 Variational Autoencoders

Variational autoencoders (VAEs; Kingma & Welling, 2014; Rezende et al., 2014) are a class of likelihood-
based models. The continuous VAEs that we consider here specify a fixed prior density pZ (commonly a
standard Gaussian) on Z, along with a learnable conditional full-dimensional likelihood p

X|Z
θ on X , which

15

Under review as submission to TMLR

is often a parameterized Gaussian:

p
X|Z
θ (x|z) = N

(
x; gθ(z), ΣX|Z

θ (z)
)

, (21)

where ΣX|Z
θ : Z → RD×D is symmetric positive definite, often given by γID, where γ > 0 is treated as a free

parameter rather than the output of a neural network. The conditional likelihood p
X|Z
θ (·|z) in Equation 21

can be understood as a stochastic decoder, whose mean is given by the deterministic decoder gθ(z). Together,
the prior and the conditional likelihood implicitly define the marginal likelihood over data:

pX
θ (x) =

∫
pZ(z)pX|Z

θ (x|z)dz. (22)

Since computing the marginal likelihood involves an intractable integral, a variational posterior density
q

Z|X
ϕ on Z is introduced, and the following objective, called the evidence lower bound (ELBO), is jointly

maximized over θ and ϕ:

LpX
∗

(θ, ϕ) := EX∼pX
∗

[
E

Z∼q
Z|X

ϕ
(·|X)[log p

X|Z
θ (X|Z)] − KL

(
q

Z|X
ϕ (·|X)

∥∥∥ pZ
)]

(23)

= EX∼pX
∗

[
log pX

θ (X) − KL
(

q
Z|X
ϕ (·|X)

∥∥∥ p
Z|X
θ (·|X)

)]
≤ EX∼pX

∗
[log pX

θ (X)], (24)

where p
Z|X
θ denotes the true posterior density, which is implicitly defined by the prior pZ and the conditional

likelihood p
X|Z
θ . Note that Equation 23 is used as the optimization objective, since the true posterior density

cannot be tractably evaluated. While not directly usable as an objective, Equation 24 shows that the ELBO
lower-bounds the log-likelihood EX∼pX

∗
[log pX

θ (X)], and differs from it only by the error incurred by q
Z|X
ϕ to

approximate the true posterior: this is often used as a justification for using the ELBO as an objective, as
it simultaneously encourages learning θ through maximum-likelihood, and ϕ so that q

Z|X
ϕ matches the true

posterior. It is common to also specify q
Z|X
ϕ as a Gaussian:

q
Z|X
ϕ (z|x) = N

(
z; fϕ(x), ΣZ|X

ϕ (x)
)

, (25)

where ΣZ|X
ϕ : X → Rd×d is also symmetric positive definite, and often given by a diagonal matrix with

positive entries along its diagonal. In an analogous manner to the conditional likelihood, the variational
posterior q

Z|X
ϕ (·|x) in Equation 25 can be interpreted as a stochastic encoder, whose mean is given by the

deterministic encoder fϕ(x).

An issue which commonly affects VAEs is posterior collapse (Chen et al., 2017; Wang et al., 2021), where
the learned variational posterior q

Z|X
ϕ∗ partially collapses to the prior pZ . We will shortly explain posterior

collapse in VAEs through the manifold lens, and thus we briefly summarize the phenomenon here: in the
case where ΣZ|X

ϕ∗ is taken as a diagonal matrix, a subset of the diagonal entries of ΣZ|X
ϕ∗ (x) collapses to 1

for x ∈ M, and the corresponding entries of fϕ∗(x) collapse to 0, matching the standard Gaussian prior pZ ;
whereas the remaining diagonal entries of ΣZ|X

ϕ∗ (x) are extremely close to 0, essentially losing stochasticity
along these coordinates. In other words, VAEs tend to only “use” a subset of the coordinates of their latent
space Z to obtain data samples and default the rest to the prior.

VAEs through the lens of the manifold hypothesis Despite the autoencoder-like structure of VAEs
that leverages low-dimensional representations, VAEs as presented above are full-dimensional models. This
is a direct consequence of the choice of p

X|Z
θ , which always assigns strictly positive density to all of X , i.e.

p
X|Z
θ (x|z) > 0 for all x ∈ X and z ∈ Z. This in turn implies that pX

θ (x) > 0 for all x ∈ X , so that the model
density is not supported on a low-dimensional manifold. Thus, since the ELBO is maximized as a proxy for
the log-likelihood, intuitively VAEs should be subject to manifold overfitting. Dai & Wipf (2019) formally
show that this is indeed the case by proving that, subject to some regularity conditions and assuming that
d ≥ d∗, for any manifold-supported density pX

† on M, there exists a sequence of VAE models parameterized

16

Under review as submission to TMLR

by (θt, ϕt)∞
t=1 such that: (i) LpX

∗
(θt, ϕt) → ∞ as t → ∞; (ii) the VAE models pX

θt
learn pX

† instead of pX
∗ ; and

(iii) KL(qZ|X
ϕt

(·|x) ∥ p
Z|X
θt

(·|x)) → 0 as t → ∞ for every x ∈ M. Although this result predates the manifold
overfitting result of Loaiza-Ganem et al. (2022a) from Section 4.1, it can be understood as saying that
maximizing the ELBO instead of the log-likelihood does not prevent manifold overfitting. It is also worth
noting that while the work of Loaiza-Ganem et al. (2022a) extends the result from Dai & Wipf (2019) to
non-VAE models and VAE models with flexible variational posteriors (Rezende & Mohamed, 2015; Kingma
et al., 2016; van den Berg et al., 2018; Caterini et al., 2021a) – since if the variational posterior is flexible
enough, optimizing the ELBO becomes equivalent to maximizing the log-likelihood in the nonparametric
regime (Section 2.2) – it does not immediately imply that manifold overfitting can happen when q

Z|X
ϕ is

Gaussian, which Dai & Wipf (2019) do prove.

Well-known training instabilities of VAEs can be understood as consequences of manifold overfitting. For
example, as previously mentioned, it is common to use ΣX|Z

θ (z) = γID for every z ∈ Z, where γ is a free
parameter (γ is also often treated as a non-learnable hyperparameter instead). This purposely simplistic
choice is made for the sake of training stability, e.g. parameterizing ΣX|Z

θ as a diagonal matrix whose non-
zero entries are given by a neural network can easily result in divergent training (Lin et al., 2019; Rybkin
et al., 2021); the added flexibility of the stochastic decoder of this VAE can be understood as making it
more prone to experience manifold overfitting. We also highlight that, when modelling images, the best
empirically performing VAEs do not use a Gaussian conditional likelihood p

X|Z
θ . Instead, they treat pixels

as discrete and use a categorical p
X|Z
θ (Vahdat & Kautz, 2020). Mathematically, these discrete models are

not afflicted by manifold overfitting (we discuss why in Section 6), which helps explain why they outperform
VAEs with continuous conditional likelihoods.

Dai & Wipf (2019) provide further insights into the interplay between VAEs and the manifold hypothesis
beyond manifold overfitting. In particular, they also show that under appropriate conditions, Gaussian
VAEs such as the ones presented above achieve perfect reconstructions, in the sense that encoding and then
decoding any x ∈ M recovers x. This result justifies using VAEs as autoencoders despite the fact that they
suffer from manifold overfitting. Additionally, Dai & Wipf (2019) also show that only d∗ latent dimensions
are needed to achieve these perfect reconstructions, suggesting that the posterior over the remaining d − d∗

latent dimensions defaults to the standard Gaussian prior pZ due to the KL term in Equation 23. In other
words, the manifold lens helps elucidate why posterior collapse happens.

We now formalize the discussion on the results of Dai & Wipf (2019), which assume Gaussian VAEs
as described above, with the decoder covariance given by ΣX|Z

θ (z) = γID, where γ > 0 is a free
parameter that does not depend on z. They also assume throughout that M is diffeomorphic to
Rd∗ , which is a much stronger assumption than required by Loaiza-Ganem et al. (2022a).

The first result of Dai & Wipf (2019) assumes some regularity conditions, that d∗ < D, that d ≥ d∗,
and that γ is learnable (i.e. it is part of θ). The result then states that for any distribution PX

† on X
supported on M, there exist a sequence of VAE models parameterized by (θt, ϕt)∞

t=1 such that:

• For every x ∈ M, it holds that pX
θt

(x) → ∞ and KL
(

q
Z|X
ϕt

(·|x)
∥∥∥ p

Z|X
θt

(·|x)
)

→ 0 as t → ∞.
Note that together, these two limits imply not only that EX∼PX

∗
[log pX

θt
(X)] → ∞, but also

that LpX
∗

(θt, ϕt) → ∞ as t → ∞.

• PX
θt

ω−→ PX
† as t → ∞, where PX

θt
is the distribution corresponding to the model density pX

θt
.

As previously mentioned, Dai & Wipf (2019) also show that Gaussian VAEs achieve perfect recon-
structions, and they link this behaviour to posterior collapse. To do so, they first consider γ > 0 as a
fixed hyperparameter instead of being learnable, and write the corresponding ELBO as LpX

∗
(θ, ϕ; γ),

with corresponding maximizers θ∗(γ) and ϕ∗(γ). They then prove that, if d ≥ d∗ and under similar

17

Under review as submission to TMLR

regularity conditions to the result above, for every γ > 0 there exists γ′ ∈ (0, γ) such that:

LpX
∗

(θ∗(γ′), ϕ∗(γ′); γ′) > LpX
∗

(θ∗(γ), ϕ∗(γ); γ) . (26)

In particular this shows that, when γ is learnable, it must converge to 0 to make the ELBO diverge
to infinity. An intuitive way to understand this is as saying that, for a small enough decoder variance
γ, it is preferable to maximize the log p

X|Z
θ (X|Z) term in Equation 23 – which in this case boils down

to an ℓ2 reconstruction error weighted by 1/(2γ) – instead of minimizing the KL term. Dai & Wipf
(2019) then leverage this result to show that VAEs achieve perfect reconstructions in the sense that

lim
γ→0

gθ∗(γ)
(
fϕ∗(γ)(x)

)
= x, PX

∗ -almost-surely. (27)

Finally, since PX
∗ is supported on a d∗-dimensional manifold M, perfectly reconstructing a point

x ∈ M requires d∗ dimensions, and not the full d of the latent space Z: this means that d∗ latent
dimensions are used to achieve perfect reconstructions, and thus the respective approximate posterior
variances are sent to 0; whereas the remaining d−d∗ dimensions in the approximate posterior default
to a standard Gaussian to minimize the KL term in the ELBO. This explanation of posterior collapse
was suggested by Dai & Wipf (2019), and it was further formalized by Zheng et al. (2022).

4.1.3 Normalizing Flows

Normalizing flows (NFs; Dinh et al., 2014; 2017; Papamakarios et al., 2017; Kingma & Dhariwal, 2018;
Durkan et al., 2019; Kobyzev et al., 2020; Papamakarios et al., 2021) are a class of DGMs that leverage the
change-of-variables formula to enable maximum-likelihood training. NFs construct a bijective neural network
gθ : Z → X , where Z = X = RD, such that both gθ and its inverse fθ are differentiable.4 A prior density pZ

is specified (often a standard Gaussian), and sampling from the model pX
θ is achieved through X = gθ(Z)

where Z ∼ pZ (formally, pX
θ is the pushforward of pZ through gθ). The change-of-variables formula from

Equation 8 provides the maximum-likelihood objective:

max
θ

EX∼pX
∗

[
log pZ (fθ(X)) + log |det ∇xfθ(X)|

]
. (28)

Constructing the Jacobian ∇xfθ(x) through automatic differentiation to compute the log-likelihood and
then backpropagate with respect to θ is computationally prohibitive. To circumvent this issue, NFs are
constructed in such a way that ensures that det ∇xfθ(x) can be efficiently evaluated in closed-form (or at
least approximated), thus enabling gradient optimization with respect to θ.

A relevant variant of NFs are continuous NFs, where fθ is defined implicitly through an ordinary differential
equation (ODE) rather than explicitly constructed (Chen et al., 2018; Salman et al., 2018; Grathwohl et al.,
2019). More specifically, an auxiliary neural network vθ : X × [0, T] → X is used to specify the ODE:

dxt = vθ(xt, t)dt,

x0 ∈ X .
(29)

Under standard regularity conditions this ODE has a unique and smooth solution on [0, T] (Khalil, 2002),5
i.e. it characterizes the trajectory (xt)t∈[0,T], and thus implicitly defines a mapping from the initial condition
to the final point in the trajectory, namely

fθ : X → Z,

x0 7→ xT ,
(30)

4Note that in NFs, the “encoder” fθ is uniquely determined by the “decoder” gθ. Thus, the “encoder” does not require
auxiliary parameters ϕ, which is why we parameterize it with the generative parameters θ.

5The most notable of these conditions is vθ being Lipschitz in t (with the Lipschitz constant not depending on x), which
will become relevant when we discuss diffusion models in Section 5.1.2.

18

Under review as submission to TMLR

where again Z = X . Furthermore, under the same conditions that guarantee a unique solution to Equa-
tion 29, fθ is invertible and its inverse gθ can be computed by solving the reverse ODE

dyt = −vθ(yt, T − t)dt,

y0 = xT ∈ Z,
(31)

whose solution is the reversed trajectory (yt)t∈[0,T] = (xT −t)t∈[0,T], so that gθ corresponds to the map

gθ : Z → X ,

y0 7→ yT .
(32)

Like standard NFs, continuous NFs are sampled from by first obtaining Y0 ∼ pZ , and then computing
YT = gθ(Y0) – which is now done by numerically solving Equation 31 initialized at y0 = Y0. In this case the
log det term in the change-of-variables formula takes the form (Chen et al., 2018)

log det ∇x0fθ(x0) =
∫ T

0
tr (∇xtvθ(xt, t)) dt, (33)

thus enabling maximum-likelihood training of continuous NFs through

max
θ

EX0∼pX
∗

[
log pZ (fθ(X0)) +

∫ T

0
tr (∇xt

vθ(Xt, t)) dt

]
, (34)

where Xt corresponds to xt when Equation 29 is initialized at x0 = X0 ∼ pX
∗ . While the computations used

to train continuous NFs through Equation 34 are significantly different than those used for standard NFs,
both models are fundamentally doing the same thing: modelling the data as the distribution obtained by
mapping a simple distribution pZ such as a Gaussian through a bijective function gθ (defined explicitly or
implicitly), and training the model via maximum-likelihood.

Normalizing flows through the lens of the manifold hypothesis By construction, NFs – continuous
or not – are full-dimensional models and are thus susceptible to manifold overfitting (Section 4.1). There
are however other pathologies associated with using NFs in the manifold setting. For example, Cornish
et al. (2020) show that if the supports of pZ and pX

∗ are not homeomorphic,6 then any normalizing flow
which approximates pX

∗ must have exploding bi-Lipschitz constant. In the manifold setting, the support
of pX

∗ is the d∗-dimensional manifold M, which is not homeomorphic to the support of pZ , i.e. RD. The
exploding bi-Lipschitz constant implied by the result of Cornish et al. (2020) entails that, if NFs converge
to a distribution on a low-dimensional manifold (whether this is pX

∗ or some other distribution), they must
do so in a numerically unstable way, which is completely consistent with our result in Section 4.1.1. These
theoretical insights are borne out in practice; for example, Behrmann et al. (2021) show that trained NFs
are numerically non-invertible. While perhaps initially surprising, this phenomenon is neatly explained by
considering NFs through the lens of the manifold hypothesis, which we return to in Section 5.3.3.

4.1.4 Energy-Based Models

Energy-based models (EBMs; Xie et al., 2016; Du & Mordatch, 2019) are likelihood-based DGMs which
construct a density pX

θ by specifying it up to proportionality. More specifically, a neural network Eθ : X → R,
called the energy function, is used to define pX

θ through

pX
θ (x) ∝ e−Eθ(x), (35)

where pX
θ is assumed to be well-defined (i.e. its normalizing constant is presumed finite:

∫
X e−Eθ(x)dx < ∞).

While the likelihood of EBMs is unavailable due to the normalizing constant of pX
θ being intractable, the

observation that
∇θ log pX

θ (x) = EX∼pX
θ

[∇θEθ(X)] − ∇θEθ(x) (36)
6Recall that two spaces are homeomorphic when there exists a homeomorphism – i.e. a continuous invertible function with

continuous inverse – between them.

19

Under review as submission to TMLR

enables gradient optimization of the log-likelihood, since

∇θEX∼pX
∗

[
log pX

θ (X)
]

= EX∼pX
θ

[∇θEθ(X)] − EX∼pX
∗

[∇θEθ(X)] , (37)

and the expectation with respect to pX
θ can be estimated through Markov chain Monte Carlo (MCMC)

methods such as Langevin dynamics (Welling & Teh, 2011). In practice, the log-likelihood is maximized by
implementing the loss

min
θ

EX∼pX
∗

[Eθ(X)] − EX∼pX
θ′

[Eθ(X)], (38)

where θ′ = stopgrad(θ), as it provides the correct gradient with respect to θ.7

Energy-based models through the lens of the manifold hypothesis Since by construction pX
θ (x) > 0

for all x ∈ X , EBMs are full-dimensional models and are thus susceptible to manifold overfitting (Section 4.1).
EBM training and sampling are known to be difficult. A common trick to sample from a trained EBM is to
initialize MCMC chains not from noise, but from previous chains held in a replay buffer. The buffer is a set
of MCMC samples from chains that have been advanced by the EBM throughout the entire training process
(Du & Mordatch, 2019; Grathwohl et al., 2020). Alternatively, a mixture of historical training checkpoints
can be used for sampling (Du & Mordatch, 2019). These tricks are necessary because EBMs are prone
to mode collapse, especially in high-dimensional ambient spaces (Arbel et al., 2021; Loaiza-Ganem et al.,
2022a). This mode-collapse behaviour is often blamed on Langevin dynamics and the multimodality of the
target distribution, but can be further explained by the large or unstable gradients in the density landscape
of a model that has undergone manifold overfitting.

One particularly interesting exception is the normalized autoencoder proposed by Yoon et al. (2021), which
employs the reconstruction error of an autoencoder to define the energy function; i.e.

Eθ(x) = ∥x − gθ(fθ(x))∥2
2

T
, (39)

where T > 0 is a hyperparameter.8 Much like variational autoencoders (Section 4.1.2), despite using an
autoencoder-like structure, normalized autoencoders remain full-dimensional models; this is true of EBMs
regardless of the choice of energy function. An interesting observation, which to the best of our knowledge
has not been previously made, is that the energy function in Equation 39 is lower-bounded by 0, which in turn
implies that e−Eθt (x) is upper-bounded, meaning that pX

θt
(x) cannot be sent to infinity by making Eθt

(x)
arbitrarily negative for x ∈ M. In particular, manifold overfitting can only occur when the normalizing
constant

∫
X e−Eθt (x)dx goes to 0. While it is of course possible for this to happen with arbitrarily flexible

networks, we hypothesize that EBMs with lower-bounded energy functions might have an inductive bias
which helps them avoid manifold overfitting in practice, albeit likely at the cost of generative quality. This
might explain their empirical success at density-based out-of-distribution detection (Yoon et al., 2023).

4.2 Generative Adversarial Networks

Generative adversarial networks (GANs; Goodfellow et al., 2014; Radford et al., 2015; Brock et al., 2019) use
a neural network gθ : Z → X called the generator, along with a latent distribution pZ (usually a standard
Gaussian), to specify the model distribution pX

θ . Similarly to normalizing flows (Section 4.1.3), samples
X = gθ(Z) from a GAN are obtained by sampling Z ∼ pZ and transforming the result through gθ (as
in NFs, pX

θ is formally given by the pushforward of pZ through gθ), although unlike NFs, d = D is not
required, and rather d < D is the standard choice for GANs, so that gθ need not be invertible. GANs are
not likelihood-based models, and in order to train gθ, they introduce a binary classifier hϕ : X → (0, 1),

7stopgrad is a computational operator, commonly available in automatic differentiation libraries such as PyTorch (Paszke
et al., 2019), which leaves the forward pass unchanged (θ′ = θ) while ignoring gradients when differentiating (∇θθ′ = 0),
i.e. EX∼pX

θ′
[Eθ(X)] = EX∼pX

θ
[Eθ(X)], yet ∇θEX∼pX

θ′
[Eθ(X)] = EX∼pX

θ
[∇θEθ(X)] even though ∇θEX∼pX

θ
[Eθ(X)] is not in

general equal to EX∼pX
θ

[∇θEθ(X)].
8Note that the distribution of normalized autoencoders depends on the encoder fθ, which is why we parameterize it with

θ instead of auxiliary parameters ϕ. However, unlike with normalizing flows where we also used this parameterization, this
encoder need not share parameters with the decoder gθ.

20

Under review as submission to TMLR

which is trained to distinguish between real samples X ∼ pX
∗ and generated samples X ∼ pX

θ . The generator
gθ is trained alongside hϕ, so as to make the classifier unable to successfully differentiate between real and
generated samples:

min
θ

max
ϕ

EX∼pX
∗

[log hϕ(X)] + EZ∼pZ [log (1 − hϕ(gθ(Z)))] . (40)

Assuming that the classifier is arbitrarily flexible, it can be shown that the above objective is equivalent to
minimizing the Jensen-Shannon divergence, JS, between the true distribution and the model:

min
θ

JS
(
pX

∗ ∥ pX
θ

)
, (41)

where JS(p ∥ q) = 1
2KL(p ∥ 1

2 p + 1
2 q) + 1

2KL(q ∥ 1
2 p + 1

2 q). This result was first shown by Goodfellow et al.
(2014) under the unstated assumption that pX

θ and pX
∗ are densities supported on the same manifold for

all θ. While this assumption is unrealistic in the manifold setting and should not be expected to hold in
practice, the proof provided by Goodfellow et al. (2014) is “correct in spirit”, and was later formalized and
generalized by Donahue et al. (2017).

Generative adversarial networks through the lens of the manifold hypothesis The Jensen-
Shannon divergence JS(p ∥ q) is meaningfully defined even when KL(p ∥ q) = ∞. At a first glance this
might suggest that optimizing the Jensen-Shannon divergence circumvents issues such as manifold overfit-
ting (Section 4.1), which arise from attempting to minimize the KL divergence. However, the gradients of the
Jensen-Shannon divergence JS(pX

∗ ∥ pX
θ) with respect to model parameters θ will be 0 whenever the supports

of pX
∗ and pX

θ do not overlap (formally, the Jensen-Shannon divergence does not metrize weak convergence).
This property makes gradient optimization futile whenever the support of the GAN has no overlap with the
underlying data manifold, which Arjovsky et al. (2017) identify as a cause of training instabilities for GANs.
The Jensen-Shannon divergence is a particular instance of an f -divergence (Polyanskiy & Wu, 2022), and
there is work generalizing GANs to minimize f -divergences (Nowozin et al., 2016). Yet, Arjovsky et al. (2017)
also show that various other f -divergences, such as the total variation distance and KL divergence, suffer
from similar pathologies as the Jensen-Shannon divergence when there is mismatch between the supports of
pX

θ and pX
∗ . In other words, although GANs do not suffer from manifold overfitting, they can still struggle

to model manifold-supported data. It is however worth highlighting that the manifold-related woes of GANs
are fundamentally different than those of likelihood-based models: the former use a proper low-dimensional
model (whenever d < D), and the resulting problems are due only to the optimization objective; whereas
the latter are full-dimensional models, and are thus misspecified. Still, GANs can remain topologically mis-
specified, e.g. when M is disconnected (Section 5.4.3), but again, this is an inherently different situation
than the dimensional misspecification of likelihood-based models.

4.3 Score Matching

Score matching (Hyvärinen, 2005) is a method to learn full-dimensional densities pX
∗ . The main idea is to

learn the (Stein) score function, ∇x log pX
∗ , rather than pX

∗ itself.9 In order to achieve this, a model pX
θ is

implicitly characterized by sX
θ : X → X , whose goal is to approximate the unknown true score function. The

Fisher divergence, which is sometimes referred to as the Fisher information distance (DasGupta, 2008), and
which is defined as

F(p, q) := EX∼p

[
∥∇x log q(X) − ∇x log p(X)∥2

2
]

, (42)

is leveraged for this goal. Ideally the model would be trained by minimizing F(pX
∗ , pX

θ) as

min
θ

EX∼pX
∗

[
∥sX

θ (X) − ∇x log pX
∗ (X)∥2

2
]

, (43)

but naïvely doing so requires evaluating the unknown ∇x log pX
∗ . Hyvärinen (2005) showed that, under mild

regularity conditions,

F(p, q) = EX∼p

[
∥∇x log q(X)∥2

2 + 2 tr ∇2
x log q(X)

]
+ c(p), (44)

9While in machine learning ∇x log pX
θ is often called the score function of a model, in the statistics literature the score

function refers to ∇θ log pX
θ , whereas ∇x log pX

θ is called the Stein score.

21

Under review as submission to TMLR

where c(p) is a term which depends only on p. Since c(pX
∗) is a constant with respect to θ, the objective in

Equation 43 is thus equivalent to

min
θ

EX∼pX
∗

[
∥sX

θ (X)∥2
2 + 2 tr ∇xsX

θ (X)
]

, (45)

which can actually be minimized. Once a model is trained, Markov chain Monte Carlo methods such as
Langevin dynamics can be used to sample from it, similarly to energy-based models (Section 4.1.4).

Score matching through the lens of the manifold hypothesis As mentioned above, score match-
ing is derived under the assumption that the underlying data distribution pX

∗ is full-dimensional. While
score matching has been extended to known manifolds (Mardia et al., 2016), we are not aware of any work
theoretically studying dimensional mispecification within score matching in an analogous manner to how
Loaiza-Ganem et al. (2022a) characterize manifold overfitting (Section 4.1) within likelihood-based models.
Nonetheless, we should intuitively expect score matching to fail under the manifold setting due to this di-
mensional misspecification. To see why this is the case, we begin by noting that pX

θ is indeed full-dimensional
since sX

θ takes inputs from all of X rather than just M (sX
θ is evaluated at potentially any point in X during

sampling when using procedures such as Langevin dynamics). The score functions sX
θ and ∇x log pX

∗ are
thus different types of objects – the former is a full-dimensional score function and the latter is a manifold-
supported one. Comparing the values of dimensionally-mismatched densities is not meaningful, and the
comparison remains equally meaningless between the corresponding score functions. Consequently, there is
no reason to expect Equation 43 to succeed at matching pX

θ to pX
∗ in the presence of dimensional misspec-

ification. This issue was identified by Song & Ermon (2019), who empirically confirm that score matching
struggles in the manifold setting.

5 Manifold-Aware Deep Generative Models

As covered throughout Section 4, many commonly-used DGMs struggle to learn distributions on unknown
manifolds. There are various (not always mutually exclusive) approaches that enable manifold-awareness,
including judiciously adding noise to the target distribution; using support-agnostic optimization objectives
(e.g. those which metrize weak convergence); and two-step models, which carry out generative modelling on
a low-dimensional latent space and then map back to data space. We review these approaches in Section 5.1,
Section 5.2, and Section 5.3, respectively. In Section 5.3.1 we show that (i) two-step models can be interpreted
as (potentially regularized) minimizers of an upper bound of the Wasserstein distance, thus establishing a link
between these different approaches for achieving manifold-awareness, and that (ii) the upper bound becomes
tight at optimality whenever an autoencoder can achieve perfect reconstructions. Finally, in Section 5.4 we
cover methods which make an explicit attempt at properly capturing the topology of M. We take a lax
interpretation of manifold-awareness throughout, and discuss not only DGMs which are formally manifold-
aware, but also those which, while mathematically manifold-unaware, leverage some inductive bias towards
manifold-awareness.

5.1 Manifold-Awareness by Adding Noise

When manifold-unawareness arises due to the mismatch between the dimension of the model and that
of the true distribution – as is the case for likelihood-based models (Section 4.1) – adding noise to the
training data seems like a natural solution; this can make the target distribution full-dimensional (e.g. by
convolving the true distribution with a Gaussian) and thus hopefully avoids manifold-related problems.
Indeed, dequantization – i.e. the practice of adding noise to data that was discretized so as to be able to fit
a continuous density model – is very common (Theis et al., 2016; Dinh et al., 2017; Ho et al., 2019), and can
be further justified as a way to avoid manifold overfitting. Unfortunately, it has been shown that just adding
Gaussian noise is not enough to empirically avoid manifold overfitting (Zhang et al., 2020a; Loaiza-Ganem
et al., 2022a;b). Even though the theoretical conditions for manifold overfitting do not hold anymore, the
new (noisy) target density will be extremely peaked around M (Section 4.1.1), and thus still numerically
exposed to manifold-related woes. This observation is consistent with known convergence rates at which
DGMs trained on noisy data recover pX

∗ (Chae et al., 2023). The lesson here is that adding noise can enable

22

Under review as submission to TMLR

DGMs to learn unknown manifolds, but the noise has to be added carefully. Various methods doing so have
been proposed, which we now review.

5.1.1 Denoising Score Matching

As previously mentioned, Song & Ermon (2019) showed that score matching (Section 4.3) struggles to model
manifold-supported data, and they thus advocate for adding noise and using denoising score matching
(Vincent, 2011) instead. In denoising score matching, the target distribution is not pX

∗ anymore, but rather
the distribution pXσ

∗ obtained by adding independent Gaussian noise N (· ; 0, σ2ID) to samples from pX
∗ ,

where σ2 is a hyperparameter. More formally, pXσ
∗ = pX

∗ ⊛ N (· ; 0, σ2ID). Importantly, adding full-
dimensional Gaussian noise ensures that pXσ

∗ is always full-dimensional, regardless of the support of pX
∗ .

Score matching can then be applied to learn a network sX
θ to approximate ∇xσ

log pXσ
∗ through Equation 45

(with pX
∗ replaced by pXσ

∗). However, Vincent (2011) shows that this objective is equivalent to

min
θ

EX0∼pX
∗

[
E

Xσ∼p
Xσ|X0
∗ (·|X0)

[
∥sX

θ (Xσ) − ∇xσ log p
Xσ|X0
∗ (Xσ|X0)∥2

2

]]
, (46)

where p
Xσ|X0
∗ (xσ|x0) = N (xσ; x0, σ2ID) is the density of noisy data (denoted Xσ) given the (un-noised)

datapoint X0 = x0. Equation 46 is much easier to optimize than the usual score matching objective (Equa-
tion 45), since there is no need to backpropagate through the trace of the Jacobian of sX

θ . Saremi & Hyvärinen
(2019) use the loss function in Equation 46 to learn an energy-based model (Section 4.1.4) on the noised-out
data, but derive the loss from the perspective of empirical Bayes (Robbins, 1956); their approach can in
principle be applied to other noising processes, but only the Gaussian case is implemented in their work.

Despite mathematically avoiding manifold-related pathologies, denoising score matching as presented above
faces a tradeoff; setting σ to a very small value means that the target density pXσ

∗ is closer to the actual
manifold-supported data density pX

∗ , but doing so also means the target density is highly peaked around M
and thus might be harder to properly learn (Section 4.1.1). As a way of being able to use small amounts of
noise while still efficiently learning the resulting distribution, Song & Ermon (2019) propose to use various
noise levels. More specifically, they consider fixed noise levels 0 < σ1 < σ2 < · · · < σT , and modify the score
function to take the noise level as input; i.e. sX

θ : X × [σ1, σT] → X is now such that it aims to approximate
the score function at all the corresponding noise levels: sX

θ (· , σt) ≈ ∇xσt
log p

Xσt
∗ for t = 1, . . . , T . This

new score function is trained with a weighted sum of the corresponding denoising score matching objectives:

min
θ

T∑
t=1

w(t)EX0∼pX
∗

[
E

Xσt ∼p
Xσt |X0
∗ (·|X0)

[
∥sX

θ (Xσt
, σt) − ∇xσt

log p
Xσt |X0
∗ (Xσt

|X0)∥2
2

]]
, (47)

where w(t) > 0 is a pre-specified weight coefficient which aims to keep the T terms in the sum at roughly
equal magnitudes. The intuition behind using varying noise levels is twofold. (i) Learning the score function
for larger values of σ is easier, and thanks to parameter sharing (θ is the same for all noise levels), doing
so is helpful for learning the score function for small values of σ. (ii) Once the model is trained, different
noise levels are also used within an annealed sampling scheme. sX

θ∗(· , σT) is used alongside Markov chain
Monte Carlo to generate a sample, which is then used to initialize another Markov chain that now uses
sX

θ∗(· , σT −1); this process is repeated until sX
θ∗(· , σ1) is used – and works much better than only using

sX
θ∗(· , σ1). Although this scheme produces approximate samples from p

Xσ1
∗ rather than from pX

∗ , as long as
σ1 is small enough, the difference is negligible in practice.

5.1.2 Score-Based Diffusion Models

Song et al. (2021b) proposed score-based diffusion models as an extension of denoising score matching
(Section 5.1.1) where there is a continuum of noise levels. Formally, they achieve this by constructing
(Xt)t∈[0,T], where Xt ∈ X for every t ∈ [0, T], as an Ornstein–Uhlenbeck process given by the Itô stochastic

23

Under review as submission to TMLR

differential equation (SDE)10

dXt = −β(t)
2 Xtdt +

√
β(t)dBt,

X0 ∼ pX
∗ ,

(48)

where β : [0, T] → R+ is a hyperparameter (often an affine function, i.e. β(t) = βmin + (βmax − βmin)t/T ,
where 0 < βmin < βmax), and (Bt)t∈[0,T] denotes a D-dimensional Brownian motion. Other choices of SDE
are possible, but we focus on the one above – which is often referred to as a variance preserving SDE –
since it is assumed in some of the theoretical results that we will shortly discuss. Under mild regularity
conditions, the SDE admits a unique solution (Øksendal, 2003), thus characterizing the density pXt

∗ of Xt

for every t ∈ [0, T], and prescribes how to progressively transform the data density pX0
∗ = pX

∗ into the noisier
density pXT

∗ . Note that, due to the added Gaussian noise (from the Brownian motion in Equation 48), pXt
∗

is a full-dimensional density for every t ∈ (0, T] regardless of the support of pX
∗ .

Reversing (Xt)t∈[0,T] provides a way to transform samples from pXT
∗ into samples from pX

∗ . The reverse
process (Yt)t∈[0,T] = (XT −t)t∈[0,T] also obeys an SDE (Anderson, 1982; Haussmann & Pardoux, 1986):11

dYt = β(T − t)
(

Yt

2 + ∇yt
log p

XT −t
∗ (Yt)

)
dt +

√
β(T − t)dBt,

Y0 ∼ pXT
∗ .

(49)

The main idea of score-based diffusion models is to leverage this reverse SDE to build a generative model. In
order to achieve this, some approximations are needed. First, since pXT

∗ is not known exactly, Equation 49
is initialized at a known distribution pX∞

∗ . Formally, (Yt)t∈[0,T] is approximated by (Ỹt)t∈[0,T], where

dỸt = β(T − t)
(

Ỹt

2 + ∇ỹt
log p

XT −t
∗ (Ỹt)

)
dt +

√
β(T − t)dBt,

Ỹ0 ∼ pX∞
∗ .

(50)

We denote the density of Ỹt as p̃XT −t , and will shortly explain how pX∞
∗ is chosen so as to be close to

pXT
∗ . The score ∇ỹt log p

XT −t
∗ (Ỹt) is also unknown, and thus must be approximated as well. Score-based

diffusion models leverage neural networks to construct sX
θ : X × (0, T] → X with the goal of approximating

this function, i.e. sX
θ (x, t) ≈ ∇x log pXt

∗ (x) for all x ∈ X and t ∈ (0, T]. We will also soon explain how this
network is trained, but for a given sX

θ , (Ỹt)t∈[0,T] is approximated by (Ŷt)t∈[0,T], where

dŶt = β(T − t)
(

Ŷt

2 + sX
θ (Ŷt, T − t)

)
dt +

√
β(T − t)dBt,

Ŷ0 ∼ pX∞
∗ .

(51)

We denote the density of Ŷt as p̂
XT −t

θ . Ideally, a model sample would be obtained by perfectly solving
Equation 51. In practice this SDE must be discretized and a numerical solver must be used. The model
distribution pX

θ is thus given by the approximate solution of Equation 51 at time T .

In summary, diffusion models aim to solve Equation 49, since perfectly doing so would yield samples from
pX

∗ , but this is impossible and three sources of error have to be introduced to approximately solve this
equation. (i) pXT

∗ is unknown, and is thus approximated by pX∞
∗ ; (ii) the true score ∇x log p

XT −t
∗ (x) is also

10Readers unfamiliar with SDEs can understand Equation 48 through its Euler-Maruyama discretization: split [0, T] into n

sub-intervals of equal length ∆t,n = T/n, sample X0,n ∼ pX
∗ , and set Xtk+1,n = Xtk,n − β(tk)

2 Xtk,n∆t,n +
√

β(tk)∆Btk
,n for

k = 0, . . . , n − 1, where tk = k∆t,n, and where ∆Btk
,n = Btk+1 − Btk ∼ N (· ; 0, ∆t,nID) are independent. This procedure

characterizes Xt,n at the times tk for k = 0, . . . , n, and linearly interpolating between them yields a continuous stochastic
process (Xt,n)t∈[0,T], the limit of which as n → ∞ corresponds to the process specified by the SDE.

11Note that the Brownian motions in Equation 48 and Equation 49 are not in general the same Brownian motion (they just
have the same distribution), but we do not differentiate between them for notational simplicity. Note also that Equation 49
differs from the corresponding equation in (Song et al., 2021b) since dt in our notation corresponds to −dt in theirs.

24

Under review as submission to TMLR

unknown, and is thus approximated by sX
θ (x, T − t); and (iii) the resulting SDE in Equation 51 must be

solved numerically, inducing discretization error.

We have not yet discussed how diffusion models are trained. Before doing so, we point out that Equation 48
is known to imply that

p
Xt|X0
∗ (xt|x0) = N

(
xt;
√

1 − σ2
t x0, σ2

t ID

)
, (52)

where p
Xt|X0
∗ (·|x0) is the conditional density of Xt given that X0 = x0, and where

σ2
t = 1 − e

−
∫ t

0
β(s)ds

. (53)

Thanks to Equation 52, ∇xt log p
Xt|X0
∗ (xt|x0) can be evaluated, and sampling from p

Xt|X0
∗ (·|x0) is very

straightforward. Together, these points imply that denoising score matching (Section 5.1.1) provides a
tractable objective for training diffusion models:12

min
θ

∫ T

0
w(t)EX0∼pX

∗

[
E

Xt∼p
Xt|X0
∗ (·|X0)

[
∥sX

θ (Xt, t) − ∇xt
log p

Xt|X0
∗ (Xt|X0)∥2

2

]]
dt, (54)

where w : [0, T] → R+ is a weighting function (set as a hyperparameter).

Additionally, as long as β is such that σ2
T → 1 as T → ∞, Equation 52 also implies that pXT |X0(·|x0) stops

depending on x0 in the sense that it converges to N (· ; 0, ID) as T → ∞: this observation provides an
avenue for approximately sampling from pXT

∗ , namely by setting pX∞
∗ to a standard Gaussian.

Finally, Song et al. (2021b) also show that the SDE in Equation 48 is intimately linked to the ODE

dxt = −β(t)
2
(
xt + ∇xt log pXt

∗ (xt)
)

dt,

x0 ∈ X .
(55)

These equations are related in that, under some regularity conditions, if the ODE is initialized at x0 = X0 ∼
pX

∗ , then xT will have the same distribution as XT . Equation 55 can of course not be solved because the
true score function is unknown, but it can be approximated by replacing it with the learned score function,
resulting in the new ODE:

dx̂t = −β(t)
2
(
x̂t + sX

θ∗(x̂t, t)
)

dt,

x̂0 ∈ X .
(56)

This equation allows us to interpret diffusion models as continuous normalizing flows (Section 4.1.3): vθ∗(x, t)
in Equation 29 is given by − β(t)

2 (x + sX
θ∗(x, t)). The connection between diffusion models and continuous

NFs has two relevant consequences. (i) It allows for an alternative way of sampling from them: instead of
solving Equation 51, the ODE in Equation 56 can be reversed in time as in Equation 31 to obtain

dŷt = β(T − t)
2

(
ŷt + sX

θ∗(ŷt, T − t)
)

dt,

ŷ0 ∈ X .
(57)

Initializing this ODE at ŷ0 = Ŷ0 ∼ pX∞
∗ (which plays the role of pZ in continuous NFs) and solving it will

then result in samples from pX
∗ if the score function was properly learned, and provided that Equation 56

and Equation 57 admit unique solutions which are inverses of each other. (ii) The connection to continuous
NFs is also used to justify using the change-of-variables formula (Equation 33) for evaluating the density pX

θ∗

implicitly defined by sX
θ∗ .

12While the target conditional densities in Equation 47 and Equation 54 – i.e. N (xσt ; x0, σ2
t ID) and N (xt;

√
1 − σ2

t x0, σ2
t ID),

respectively – differ in that the mean of the latter is scaled by
√

1 − σ2
t , the result of Vincent (2011) which justifies denoising

score matching can be easily adapted to this scaled setting, so that Equation 54 is minimized when sX
θ (· , t) matches the true

score function ∇xt log pXt
∗ .

25

Under review as submission to TMLR

Diffusion models through the lens of the manifold hypothesis There are deep connections between
diffusion models and manifolds. First, score-based diffusion models are linked to maximum-likelihood. For
example, Sohl-Dickstein et al. (2015) and Ho et al. (2020) formulate diffusion models not through SDEs, but
through variational inference. In this formulation, the time interval [0, T] is discretized, X0 still corresponds
to data, and Xt for t > 0 is treated as a latent variable. Then, the (discretized) forward process from
Equation 48 corresponds to a fixed variational approximation to the posterior distribution (of latents given
data), and the backward process from Equation 50 provides a likelihood term (of data given latents). The
resulting model, which is reminiscent of a variational autoencoder (Section 4.1.2), can be trained either by
maximizing an ELBO (similar to Equation 23) or a reweighted version of it. Song et al. (2021a) establish
another connection between score-based diffusion models and maximum-likelihood: under the assumption
that pX

∗ is a full-dimensional density (which does not hold in the manifold setting) and some other regularity
conditions, the denoising score matching objective from Equation 54, with a specific choice of weighting
function w, becomes equivalent to minimizing an upper bound of KL(pX

∗ ∥ p̂X0
θ) which becomes tight at

optimality.13 In other words, when pX
∗ is full-dimensional and for a particular choice of w, diffusion models

are likelihood-based models (provided that one ignores the approximation error between pXT
∗ and pX∞

∗ , and
the discretization error, but intuitively both of these errors can be made small by choosing a large T and
making the discretization sufficiently fine, respectively).

Naïvely, both of these views of diffusion models suggest that they are a likelihood-based method and thus
susceptible to manifold overfitting (Section 4.1). However, a competing intuition is that the denoising carried
out through the backward SDE (Equation 49 or its approximation Equation 51) effectively projects noisy data
onto M by removing the noise (Kadkhodaie & Simoncelli, 2021). Fortunately, it is the latter intuition that
turns out to be correct: note that diffusion models do not only aim to learn the true manifold-supported
data density pX

∗ = pX0
∗ , but also its noisy full-dimensional versions pXt

∗ for every t ∈ (0, T]. Indeed, the
objective in Equation 54 recovers the score function for all t ∈ (0, T], and stopping the reverse process from
Equation 49 at time T − t instead of T results in a sample from pXt

∗ . Since pXt
∗ is full-dimensional for

t > 0, we should not expect maximum-likelihood to fail at learning it, and by continuity of the solutions
of Equation 49, we should expect pX0

∗ to be properly learned, even under the manifold setting. Pidstrigach
(2022) formalizes this intuition, proving that under mild assumptions, p̃X0 and pX

∗ have the same support, and
that KL(pX

∗ ∥ p̃X0) ≤ KL(pXT
∗ ∥ pX∞

∗).14 Since p̃X0 is the distribution of the model under the assumptions of
no discretization error and having perfectly recovered the true score function (justified by the nonparametric
regime assumption from Section 2.2), the fact that KL(pXT

∗ ∥ pX∞
∗) → 0 as T → ∞ then implies that

perfectly trained score-based diffusion models properly learn pX
∗ . Pidstrigach (2022) also shows that if the

score function is well approximated, in the sense that ∥sX
θ∗(x, t) − ∇x log pXt

∗ (x)∥2 is upper-bounded (with
the bound not depending on x nor t), then p̂X0

θ∗ has the same support as pX
∗ , i.e. the model (assuming no

discretization error) has the same support as the data. Although this result does not guarantee that diffusion
models recover their target distribution, it does ensure that they recover the correct manifold, even if there
is some error in the learned score function. De Bortoli (2022) further refined these results, finding an upper
bound for W1(pX

∗ , pX
θ) under reasonable assumptions (recall that pX

θ corresponds to the approximate solution
of Equation 51 at time T). This upper bound depends on T , the error between the true and modelled score
functions, and the step size of the discretization used to solve Equation 51; the upper bound goes to 0 as
these quantities go to ∞, 0, and 0 at appropriate rates, respectively. All of this entails that score-based
diffusion models can learn distributions on unknown manifolds.

Pidstrigach (2022) also argues that to properly learn the manifold the score ∇x log p
XT −t
∗ (x) must explode

to infinity at time T , i.e. ∥∇x log p
XT −t
∗ (x)∥2 → ∞ as t → T − for every x outside of M. This behaviour,

which we illustrate in Figure 5(a), is easy to understand intuitively: Equation 49 results in YT ∼ pX
∗ , which

must be in M because, as discussed in the previous paragraph, diffusion models learn manifolds. Now, fix
x outside of M. Since Yt is full-dimensional for every t < T , it follows that x is in its support, so that

13It is worthwhile to highlight that Kwon et al. (2022) proved a similar result with Wasserstein distance (Section 3.5), namely
that the denoising score matching objective used to train diffusion models provides, up to scaling and constant factors, an upper
bound of the W2 distance between the model and pX

∗ which becomes tight at optimality. Unfortunately, Kwon et al. (2022)
also assume pX

∗ is full-dimensional, and thus their result cannot be used to justify the manifold-awareness of diffusion models.
14Note that even though pX

∗ and p̃X0 are not full-dimensional densities, the KL divergence between them is meaningfully
defined because they have the same support (Section 3.4).

26

Under review as submission to TMLR

(a) (b)

Figure 5: (a) Informal illustration of why the score function explodes. Consider Yt = x for some fixed x
outside of M as t increases from 0 to T . Since diffusion models learn manifolds, YT must be in M. Thus, when
t gets “infinitesimally” close to T , the diffusion must push x onto M by moving it in the direction of the drift
term in Equation 49, i.e. µ(Yt, t) := β(T − t)(Yt/2 + ∇yt

log p
XT −t
∗ (Yt)), but using only an “infinitesimally”

small step size. Since x is not “infinitesimally” close to M, it needs to move a “non-infinitesimal” amount
in an “infinitesimal” time step: the only way in which this can happen is if the norm of the drift, and thus
of the score as well, explodes to infinity. (b) In practice, the norm of the score function diverges not only
for fixed points (∥sX

θ∗(x, T − t)∥2 → ∞), but also along generated trajectories (∥sX
θ∗(Yt, T − t)∥2 → ∞).

x is a possible value for Yt. This means that when t is “infinitesimally close” to T , the norm of the drift
in Equation 49, i.e. β(T − t)∥x/2 + ∇x log p

XT −t
∗ (x)∥2, must be “infinitely large” to move x to M, since x

is outside of M. In other words, the score must explode to infinity. It follows that if sX
θ∗(x, T − t) closely

matches ∇x log p
XT −t
∗ (x), it must also diverge as t → T −. Lu et al. (2023) formalize this intuition, showing

that under some regularity conditions, not only does the score function explode when d∗ < D, but also
that it does not when d∗ = D. This phenomenon justifies an often used parameterization of score functions:
rather than directly taking sX

θ as a neural network (which would be continuous on the compact interval [0, T]
and would thus achieve its maximum, making it impossible for the function to diverge and approximate the
true score function), sX

θ is taken as sX
θ (x, t) = ŝX

θ (x, t)/σt, where ŝX
θ is the neural network. Empirically, it

has been observed that diffusion models produce trajectories with exploding score functions (Figure 5(b)),
i.e. that ∥sX

θ∗(Yt, T − t)∥2 → ∞ as t → T − (Kim et al., 2022), which explains the common practice of not
running Equation 51 until time T , and instead stopping at time T − ε for some small ε > 0 (Vahdat et al.,
2021). The results of Pidstrigach (2022) and Lu et al. (2023) showing that the score is unbounded in the
manifold setting thus strongly hint at why these trajectories have exploding scores.15

We also highlight that there is no contradiction between diffusion models being able to learn distributions
on unknown manifolds and the fact that they can be interpreted as continuous normalizing flows (which
cannot do so because of manifold overfitting, see Section 4.1); the former are trained through denoising score
matching instead of maximum-likelihood. We note as well that the function vθ∗(x, t) = − β(t)

2 (x + sX
θ∗(x, t))

which allows us to interpret diffusion models as continuous NFs through the ODE in Equation 29 is not
Lipschitz in t when the score function blows up to infinity at time 0. In turn, there is no immediate
guarantee that Equation 56 has a unique solution, so that diffusion models need not be properly defined as
continuous NFs; this is of course consistent with the numerical instabilities which render their likelihoods
unreliable (Section 4.1.1 and Section 4.1.3).

Overall, we believe this view of score-based diffusion models through the manifold setting is particularly
illuminating, as it justifies their strong empirical performance (unlike many other popular models, diffusion
models can properly learn manifold-supported distributions) and a popular parameterization of the score
function, while also explaining its exploding behaviour at time 0. Finally, we also point out that the noise

15Note that the result that ∥sX
θ∗ (x, T − t)∥2 → ∞ as t → T − for every x outside of M does not formally imply that

∥sX
θ∗ (Yt, T − t)∥2 → ∞ with probability 1, even if Yt is outside of M for t < T , since Yt converges to YT ∈ M. Nevertheless

the score function exploding at fixed points shows it is unbounded, which is necessary for the trajectories to blow up as well.

27

Under review as submission to TMLR

schedule from Equation 52 has been employed outside the context of diffusion models to facilitate maximum-
likelihood training of DGMs by smoothing their loss landscape (Tran et al., 2023).

Here we briefly formalize some of the conclusions of Pidstrigach (2022) discussed above. The statement
that p̃X0

∗ and pX
∗ have the same support is formalized as P̃X0

∗ ≪ PX
∗ and PX

∗ ≪ P̃X0
∗ , where P̃X0

∗ is the
probability measure corresponding to p̃X0

∗ . Note that this statement implies that P̃X0
∗ and PX

∗ must
have the same sets of measure 0, and thus of measure 1 as well, and since the support of a distribution
depends only on the sets to which it assigns probability 1 (Equation 1), these two probability measures
must have the same support. Similarly, the statement that p̂X0

θ∗ and pX
∗ have the same support is

formalized as P̂X0
θ∗ ≪ PX

∗ and PX
∗ ≪ P̂X0

θ∗ , where P̂X0
θ∗ is the probability measure corresponding to p̂X0

θ∗ .

5.1.3 Conditional Flow Matching

Continuous normalizing flows (Section 4.1.3) as defined through Equation 29 were originally trained through
maximum-likelihood. As discussed in Section 5.1.2, diffusion models can be interpreted as providing an
alternative training objective for continuous NFs. Conditional flow matching (CFM; Liu et al., 2023; Albergo
& Vanden-Eijnden, 2023; Lipman et al., 2023) provides additional alternatives, the main variant of which
we cover here.

Recall that diffusion models parameterize and learn a vector field (sX
θ , approximating the score function) by

attempting to regress against the true score:

min
θ

∫ T

0
w(t)E

Xt∼p
Xt
∗

[∥sX
θ (Xt, t) − ∇xt

log pXt
∗ (Xt)∥2

2]dt, (58)

where we will assume w(t) = 1 to better highlight their similarities to CFM. As discussed in Section 4.3 and
Section 5.1.1, directly optimizing Equation 58 cannot be done in practice because pXt

∗ is unknown. However,
by conditioning on X0, the equivalent – yet tractable – objective in Equation 54 is obtained.

Consider a “true” vector field v∗ : X × [0, T] → X in the sense that its corresponding forward ordinary
differential equation (Equation 29) maps samples from pX

∗ at time t = 0 to samples from pZ at t = T . Note
that even when such a vector field exists, it is not in general unique. Similarly to diffusion models, CFM
learns a vector field vθ by attempting to regress against v∗, i.e.

min
θ

∫ T

0
E

Xt∼p
Xt
∗

[∥vθ(Xt, t) − v∗(Xt, t)∥2
2]dt, (59)

where pXt
∗ now corresponds to the density of xt if dxt = v∗(xt, t)dt is initialized at x0 = X0 ∼ pX

∗ . Again,
Equation 59 cannot be directly optimized because v∗, and hence also pXt

∗ , are unknown. Conditioning is once
again the solution, except now conditioning is done on both X0 and XT which allows for explicit construction
of a target vector field that maps X0 to XT . There are many such vector fields, but the simplest is the
vector field (XT − X0)/T (Tong et al., 2024). Since this vector field is time-independent, sampling from the
corresponding pXt

∗ becomes easy as one can take Xt = ((T − t)X0 + tXT)/T , where X0 ∼ pX
∗ and XT ∼ pZ

are independently sampled. In summary, vθ is trained through

min
θ

∫ T

0
EX0∼pX

∗ ,XT ∼pZ

[∥∥∥∥vθ

(
(T − t)X0 + tXT

T
, t

)
− XT − X0

T

∥∥∥∥2

2

]
dt. (60)

Remarkably, when pX
∗ and pZ are both full-dimensional, and under some other regularity conditions, the

conditional optimization problem in Equation 60 turns out to be equivalent to the unconditional optimization
problem in Equation 59 for a particular v∗. Hence, under these conditions, the vector field vθ∗ optimized
under Equation 60 can still be used for generation with the reverse ODE in Equation 31.

Conditional flow matching through the lens of the manifold hypothesis We begin by pointing
out that Lipman et al. (2023) add a small amount of noise to the data while applying CFM, which enforces

28

Under review as submission to TMLR

full-dimensionality of the target density. However, if no noise is added, the known correctness guarantees for
CFM break down when pX

∗ is supported on a low-dimensional manifold. Kingma & Gao (2023) proved that,
surprisingly, the objectives in Equation 54 for diffusion models and Equation 60 for CFM are equivalent given
an appropriate choice of w. Since diffusion models are manifold-aware, at first glance this result might seem to
imply that CFM must also learn distributions on unknown manifolds. However, this does not follow from the
result of Kingma & Gao (2023): the manifold-awareness of diffusion models is guaranteed when the backward
stochastic differential equation (Equation 51) is used to sample from the model, whereas CFM always uses
an ODE (Equation 31).16 To the best of our knowledge, there is currently no formal analysis of CFM under
the manifold hypothesis analogous to that of Pidstrigach (2022) or De Bortoli (2022) for diffusion models.17

Nonetheless, due to its similarities with diffusion models, we conjecture that CFM is indeed manifold-aware,
which would be consistent with its strong empirical performance. We do however point out that if CFM
successfully learns its target distribution in the manifold setting, then it must experience the numerical
instabilities of likelihood evaluation that we established in Section 4.1.1, even if these instabilities do not
manifest themselves during training since likelihoods do not appear in Equation 60. Finally, we also highlight
the work of Kapusniak et al. (2024), who point out that Xt linearly interpolating between data X0 and noise
XT has some undesirable properties; they thus propose a modification of CFM with the goal of ensuring
that the interpolations remain close to geodesics in M, which they show leads to empirical improvements.

5.1.4 Noisy Normalizing Flows

Several models have been proposed based on the idea of adding noise to the data, training a normalizing
flow (Section 4.1.3) on this noisy data, and then having a “deflation” procedure whose goal is to sample
from pX

∗ rather than its learned noisy version. One such model is the denoising NF of Horvat & Pfister
(2021), which itself is heavily based on the theoretical results of Horvat & Pfister (2023).18 Motivated by
the inherent struggles of flow-based architectures on manifold-supported data (described in Section 4.1 and
Section 4.1.3), denoising NFs attempt to model an “inflated” version of the data distribution with added
noise, and then provide conditions under which this noise can be “deflated” to recover the true on-manifold
density. Similar to denoising score matching (Section 5.1.1), the inflation step of Horvat & Pfister (2021)
consists of simply adding full dimensional Gaussian noise to the data, and building a density model for
pXσ

∗ = pX
∗ ⊛ N (· ; 0, σ2ID), where σ > 0 is a hyperparameter. On the other hand, Horvat & Pfister (2023)

discuss a more theoretically-grounded inflation step, where (D − d∗)-dimensional Gaussian noise is added
to X ∼ pX

∗ along the normal space of M at X.19 While determining the normal space is only possible for
known manifolds, the authors argue that when d∗ is much smaller than D, using full-dimensional Gaussian
noise is a good approximation of (D − d∗)-dimensional noise in the normal space. We will shortly review the
deflation step.

To model pXσ
∗ , Horvat & Pfister (2021) use a full-dimensional DGM pXσ

θ . Their specific choice is a D-
dimensional NF, albeit with a non-standard learnable latent distribution pZ

θ . For some hyperparameter d
meant to approximate d∗, the first d latent coordinates are themselves modelled by a d-dimensional NF, and
the remaining D − d latent coordinates use a zero-mean Gaussian with covariance σ2ID−d, matching the
noise level of the inflation step above. The overall likelihood for their full-dimensional model is thus

pXσ

θ (x) = pZ1
θ (z1)pZ2(z2) |det ∇xfθ(x)| , (61)

where: fθ = g−1
θ with gθ being the D-dimensional NF, z = (z1, z2) = fθ(x) with z1 ∈ Rd and z2 ∈ RD−d,

and the latent density pZ
θ is given by pZ

θ (z) = pZ1
θ (z1)pZ2

θ (z2), where pZ1
θ is the density corresponding to the

d-dimensional NF model, and pZ2(·) = N (· ; 0, σ2ID−d) with no trainable parameters. The idea is that the
16In turn, the result of Kingma & Gao (2023) does ensure that if the vector field learned through CFM is converted back to a

score function and used alongside the backward SDE for sampling, then the resulting model will be manifold-aware. However,
this is not how CFM is sampled from in practice. Note also that any result ensuring that Equation 57 can indeed produce
samples from pX

∗ in the manifold setting would in turn guarantee the manifold-awareness of CFM.
17The closest analysis we are aware of is due to Gao & Zhu (2024), who provide a Wasserstein distance bound for the ODE

sampler. However, this bound requires assumptions which are incompatible with the manifold setting, and thus does not ensure
manifold-awareness. This stands in contrast with the analogous bound for the SDE sampler by De Bortoli (2022), which does
guarantee manifold-awareness.

18Horvat & Pfister (2023) was released first on arXiv despite having a later publication date than Horvat & Pfister (2021).
19“Normal” in the geometric sense, not the Gaussian sense.

29

Under review as submission to TMLR

first d latent coordinates are noise-insensitive – i.e. they are meant to denoise the data – while the remaining
D − d coordinates are noise-sensitive. The model pXσ

θ defined above has no explicit manifold-awareness.
Horvat & Pfister (2021) thus add an injective flow construction (reviewed further in Section 5.3.3) into the
mix, defining the actual (denoised) manifold-supported generative process pX

θ by first sampling Z1 ∼ pZ1
θ

and then setting X = gθ((Z1, 0)), where 0 ∈ RD−d and (·, ·) denotes concatenation so that (Z1, 0) ∈ RD.
Horvat & Pfister (2021) refer to using the manifold-supported pX

θ rather than the full-dimensional pXσ

θ as
“deflating” pXσ

θ .

Horvat & Pfister (2021) also follow injective flows (Equation 96) in adding a reconstruction term as a
regularizer to encourage manifold-awareness of the overall objective, which can be written as

max
θ

EXσ∼pXσ
∗

[
log pXσ

θ (Xσ)
]

− β EXσ∼pXσ
∗

[
∥Xσ − gθ ((fθ(Xσ)1, 0)) ∥2

2
]

, (62)

where β > 0 is a hyperparameter, fθ(Xσ)1 ∈ Rd corresponds to the first d coordinates of fθ(Xσ), and once
again 0 ∈ RD−d. The regularizer encourages gθ to not need Z2 = fθ(Xσ)2 (i.e. the last D − d coordinates
of fθ(Xσ)) to perfectly reconstruct Xσ: this can be intuitively understood as providing an inductive bias
which promotes capturing the added noise only through Z2, thus justifying the use of pX

θ instead of pXσ

θ .

We now discuss the “deflation” aspect of this approach. Horvat & Pfister (2023) prove that a trained
denoising normalizing flow pX

θ∗ recovers pX
∗ under the following conditions: (i) the noise added to X ∼ pX

∗
is only added along the (D − d∗)-dimensional normal space to the true manifold M at X, (ii) the noise
parameter σ is sufficiently small, and (iii) the manifold M is “sufficiently smooth and disentangled” (this
condition is properly formalized by Horvat & Pfister (2023)).

Condition (i) is not satisfied by the denoising normalizing flow, although Horvat & Pfister (2021) argue
that when D is much larger than d∗, N (· ; 0, σ2ID) is a good approximation for the (D − d∗)−dimensional
Gaussian noise in the normal space; it is also worth reiterating that it would not be possible to add noise
in the normal space without knowing the true manifold exactly in the first place. Condition (iii) is also
worth discussing: it is entirely unclear if natural data observed “in the wild” is sufficiently smooth and
disentangled, so we may not have any guarantee of retrieving the true manifold-supported data distribution
even in the nonparametric regime. In summary, despite denoising NFs being an elegant approach, their
manifold-awareness can only be ensured under potentially strong and hard-to-verify assumptions.

Postels et al. (2022) proposed a very similar approach to denoising NFs, except the latent density used to
define pXσ

θ is fixed as a standard Gaussian, no regularizer is used during training, and the “deflation” step
is done by first sampling Xσ ∼ pXσ

θ∗ and then solving

X = arg max
x

log pXσ

θ∗ (x) − β∥x − Xσ∥2
2. (63)

Although Postels et al. (2022) do not rigorously justify their method, the intuition behind this “deflation”
step is sensible; since pXσ

θ∗ should spike around M when σ is small enough, Equation 63 can be informally
interpreted as pulling Xσ closer to M.

Finally, Kim et al. (2020) use a continuum of noise levels in a manner reminiscent of diffusion models
(Section 5.1.2). More specifically, they first construct a conditional normalizing flow gθ : Z × [0, σmax] → X ,
where σmax > 0 is a hyperparameter. For every σ ∈ [0, σmax], the flow gθ(·, σ) must be a diffeomorphism,
whose inverse we denote as fθ(·, σ). They then condition the NF on the amount of added noise and train
through (conditional) maximum-likelihood:

max
θ

∫ σmax

0
EXσ∼pXσ

∗

[
log pZ (fθ(Xσ, σ)) + log |det ∇xσ fθ(Xσ, σ)|

]
dσ. (64)

Since the conditional NF is trained so that Xσ = gθ∗(Z, σ), where Z ∼ pZ , is distributed according to pXσ
∗ ,

the “deflation” step here simply consists of using σ = 0 when sampling from the model, i.e. X = gθ∗(Z, 0).

Finally, we highlight that although the three methods presented above entail fitting full-dimensional
likelihood-based models to full-dimensional target densities, the target densities consist of the convolution
of manifold-supported densities with small amounts of noise. As a result, these methods are still exposed to
the numerical pathologies described in Section 4.1.1.

30

Under review as submission to TMLR

5.1.5 Spread Divergences

As previously mentioned, attempting to minimize KL divergence through maximum-likelihood in the man-
ifold setting can result in manifold overfitting (Section 4.1), and while adding a small amount of noise to
the data can circumvent the problem in theory, it might not in practice. Zhang et al. (2020a) propose to
not only add noise to the data, but to add the same amount of noise to the model as well. They formalize
this idea by introducing spread divergences. Here we will focus exclusively on the spread KL divergence
and Gaussian noise, but highlight that the same ideas can be applied to other divergences and (potentially
learnable) noise distributions. Formally, for a fixed σ > 0, the spread KL divergence KLσ(p ∥ q) between
probability densities p and q is given by

KLσ(p ∥ q) := KL (pσ ∥ qσ) , (65)

where pσ = p⊛N (· ; 0, σ2ID) and qσ = q⊛N (· ; 0, σ2ID), i.e. the spread KL divergence is the KL divergence
between noisy versions of p and q. The spread KL divergence has two important properties: KLσ(p ∥ q) ≥ 0,
with equality if and only if p = q; and it is always meaningfully defined, since the noisy versions of the
original distributions are always full-dimensional (Section 3.4). Together, these properties imply that the
spread KL divergence provides a mathematically sensible objective to train generative models under the
manifold setting.

While the noisy model pX
θ ⊛N (· ; 0, σ2ID) always has a full-dimensional density, this density cannot in general

be evaluated, and thus minimizing KLσ(pX
∗ ∥ pX

θ) is not immediately trivial. Zhang et al. (2020a) propose
a very similar model to a variational autoencoder (Section 4.1.2), called the δ-VAE, where the conditional
distribution of X given Z is now a point mass at gθ(Z), instead of a Gaussian as in Equation 21. In other
words, this model is like a Gaussian VAE, except no additional noise is added to gθ(Z), i.e. all the noise in
this model comes from the low-dimensional Z. Note that, unlike VAEs, this model is not full-dimensional.
Much like VAEs are trained to minimize an upper bound of KL(pX

∗ ∥ pX
θ) (or equivalently, maximizing the

lower bound to the log-likelihood from Equation 23), δ-VAEs minimize an upper bound of KLσ(pX
∗ ∥ pX

θ),
which as we will see ends up amounting to a simple modification to standard VAE training. Importantly,
even if the supports of pX

θ and pX
∗ do not overlap, their spread KL divergence is meaningfully defined and

thus provides a valid objective that enables δ-VAEs to properly learn distributions on unknown manifolds.
More specifically, δ-VAEs use a variational posterior density q

Z|Xσ

ϕ and are trained through

max
θ,ϕ

EXσ∼pXσ
∗

[
E

Z∼q
Z|Xσ
ϕ

(·|Xσ)[log N (Xσ; gθ(Z), σ2ID)] − KL
(

q
Z|Xσ

ϕ (·|Xσ)
∥∥∥ pZ

)]
, (66)

where pXσ
∗ = pX

∗ ⊛ N (· ; 0, σ2ID). Note that this objective is equivalent to that of VAEs from Equation 23,
except Gaussian noise is added to the data, and the covariance of the decoder is not learnable, but rather
made to match the covariance of the noise that was added to the data.

A point about δ-VAEs warrants discussion. A common “cheat” when sampling from a trained Gaussian VAE
model is to sample Z ∼ pZ , and then output the decoder mean gθ∗(Z), rather than outputting a sample
from a Gaussian centered at this point (i.e. the noise from the stochastic decoder is ignored). The use of
the spread KL divergence elegantly justifies this common practice, since the noise (corresponding to the
N (Xσ; gθ(Z), σ2ID) term in Equation 66) here is added due to the spread KL divergence, rather than being
part of the model itself. Zhang et al. (2020a) did not make this observation when introducing δ-VAEs, and
to the best of our knowledge, we are the first to point this out.

Finally, Zhang et al. (2023) aim to extend the use of the spread KL divergence beyond VAEs, and propose a
procedure to use it within the context of normalizing flows (Section 4.1.3). Since the spread KL divergence
remains intractable, they introduce another bound as the training objective. Unlike other variational bounds
such as the ELBO (Equation 23) or Equation 66, the bound of Zhang et al. (2023) does not become tight at
optimality, so it lacks the theoretical guarantees of δ-VAEs which ensure manifold-awareness.

5.2 Manifold-Awareness through Support-Agnostic Optimization Objectives

In Section 5.1 we showed various DGMs which learn manifolds by first adding noise to pX
∗ , and then using a

full-dimensional objective like score matching or KL minimization (i.e. maximum-likelihood). An alternative

31

Under review as submission to TMLR

to these approaches is using an objective that is agnostic to the supports of the underlying distributions being
compared. In particular, divergences between probability distributions which metrize weak convergence, such
as Wasserstein distances (Section 3.5) or maximum mean discrepancy (Section 3.6), provide such support-
agnostic objectives. We now cover DGMs which are trained through these objectives.

5.2.1 Wasserstein Generative Adversarial Networks

Arjovsky et al. (2017) proposed to minimize Wasserstein distance (Section 3.5) between pX
∗ and pX

θ as a
way to address the issues arising from attempting to train generative adversarial networks using various
f -divergences outlined in Section 4.2, resulting in strong empirical performance (Karras et al., 2018; 2019;
2020). In the GAN context considered by Arjovsky et al. (2017), where pX

θ is again given by the distribution
of X = gθ(Z), where Z ∼ pZ (once more, formally, pX

θ is given by the pushforward of pZ through gθ) and
pZ is fixed (e.g. standard Gaussian), this means changing the GAN objective from Equation 40 to

min
θ

max
ϕ

EX∼pX
∗

[hϕ(X)] − EZ∼pZ [hϕ(gθ(Z))] , (67)

where the neural network hϕ : X → R is no longer a classifier and is now constrained to be Lipschitz.
If, as with standard GANs, the network hϕ is assumed to be arbitrarily flexible, the objective reduces to
minimizing the W1 distance between the true distribution and the model (Equation 17):

min
θ

W1(pX
∗ , pX

θ), (68)

which as mentioned in Section 3.5, provides a support-agnostic optimization objective for training pX
θ . Ar-

jovsky et al. (2017) enforce the Lipschitz constraint on hϕ through weight clipping, which was later improved
upon by Gulrajani et al. (2017a) and by Miyato et al. (2018). The former use a regularizer encouraging
∥∇xhϕ(x)∥2 to be close to 1, while the latter regularizes the spectral norm of the weight parameters of hϕ;
both obtain much better empirical performance than weight clipping.

5.2.2 Wasserstein Autoencoders

As described in Section 5.2.1 for Wasserstein generative adversarial networks, Arjovsky et al. (2017) leveraged
the dual formulation of W1 (Equation 17). Tolstikhin et al. (2018) proposed Wasserstein autoencoders
(WAEs), which instead leverage the definition of Wc (Equation 16) – which remains a support-agnostic
objective for training DGMs. In particular, they proved that when pX

θ is given by the distribution of
X = gθ(Z) where Z ∼ pZ (once again, pX

θ formally corresponds to the pushforward of pZ through gθ), the
optimal transport cost can be written as

Wc(pX
∗ , pX

θ) = inf
qZ|X ∈Q(pX

∗ ,pZ)
EX∼pX

∗

[
EZ∼qZ|X (·|X) [c(X, gθ(Z))]

]
, (69)

where Q(pX
∗ , pZ) is the set of conditional (on X) densities on Z whose marginal matches pZ , i.e. Q(pX

∗ , pZ) =
{qZ|X : X → ∆(Z) | qZ = pZ}, where qZ = EX∼pX

∗
[qZ|X(·|X)]. Tolstikhin et al. (2018) propose two losses

to train WAEs, both inspired by this property: analoguously to variational autoencoders, a conditional
distribution q

Z|X
ϕ is parameterized (e.g. Equation 25), and the first loss is given by

min
θ,ϕ

max
ϕ′

EX∼pX
∗

[
E

Z∼q
Z|X

ϕ
(·|X)[c(X, gθ(Z))]

]
+ β

(
EZ∼qZ

ϕ
[log hϕ′(Z)] + EZ∼pZ [log (1 − hϕ′(Z))]

)
, (70)

where hϕ′ : Z → (0, 1), and β > 0 is a hyperparameter. The first term in the above objective can be
understood as minimizing the cost in Equation 69 with no regard for the constraint that q

Z|X
ϕ ∈ Q(pX

∗ , pZ),
whereas the second term encourages this constraint to be satisfied through an adversarial loss (Equation 40)
that aims to minimize JS(qZ

ϕ ∥ pZ); thus, Equation 70 does indeed aim to minimize the optimal transport
cost in Equation 69. Note that even though qZ

ϕ cannot be evaluated, it is trivial to obtain a sample Z from it
by first sampling X ∼ pX

∗ , and then sampling Z|X ∼ q
Z|X
ϕ (·|X), so that optimizing Equation 70 is tractable.

We find it relevant to highlight some differences between WAEs and other DGMs. (i) Unlike GANs (Sec-
tion 4.2) and Wasserstein GANs, WAEs use an adversarial loss on the latent space Z rather than on ambient

32

Under review as submission to TMLR

space X . This helps stabilize WAEs, as adversarial losses on ambient space can be notoriously unstable.
Nonetheless, properly trained Wasserstein GANs tend to empirically outperform WAEs. (ii) WAEs are also
very similar to variational autoencoders (Section 4.1.2) – e.g. if c(x, y) = ∥x − y∥2

2, the WAE and Gaussian
VAE losses become extremely alike – but the KL term in the VAE loss (Equation 23) encourages q

Z|X
ϕ (·|X)

to match pZ for every X sampled from pX
∗ , whereas WAEs only encourage this to happen on average, i.e.

EX∼pX
∗

[qZ|X
ϕ (·|X)] = qZ

ϕ = pZ .

The second WAE loss is completely analogous, except it uses maximum mean discrepancy (Section 3.6)
instead of an adversarial loss to encourage satisfying the constraint that qZ

ϕ = pZ :

min
θ,ϕ

EX∼pX
∗

[
E

Z∼q
Z|X

ϕ
(·|X)[c(X, gθ(Z))]

]
+ βMMD

(
qZ

ϕ , pZ
)

, (71)

which results in an objective with no adversarial component. The choice of which objective to use on latent
space to enforce qZ

ϕ = pZ has also been expanded in follow-up work, for example Kolouri et al. (2018) use
the sliced Wasserstein distance, and Patrini et al. (2020) use relaxed (Sinkhorn) optimal transport.

Finally, we point out that Tolstikhin et al. (2018) found that using arbitrarily distributions q
Z|X
ϕ was not key

for good empirical performance, and they thus restrict Q(pX
∗ , pX

θ) to only contain point masses, i.e. q
Z|X
ϕ (·|x)

is given by a point mass at fϕ(x). This choice, which amounts to using deterministic rather than stochastic
encoders, reduces the first term in Equation 70 and Equation 71 to a reconstruction error (as measured by
c), EX∼pX

∗
[c(X, gθ(fϕ(X)))].

Here we simply highlight that since the distributions involved need not necessarily admit Lebesgue
densities, Equation 69 must be formalized by using measures instead of densities:

Wc(PX
∗ ,PX

θ) = inf
QZ|X ∈Q(PX

∗ ,PZ)
EX∼PX

∗

[
EZ∼QZ|X (·|X) [c(X, gθ(Z))]

]
, (72)

where Q(PX
∗ ,PZ) = {QZ|X : X → ∆(Z) | QZ = PZ} with QZ = EX∼PX

∗
[QZ|X(·|X)].

5.2.3 Generative Moment Matching Networks

Dziugaite et al. (2015) and Li et al. (2015) propose another way to train the model pX
θ corresponding to

X = gθ(Z) and Z ∼ pZ (again, we point out that formally, this model corresponds to the pushforward of pZ

through gθ): by minimizing maximum mean discrepancy (Section 3.6). Although their motivation was to
avoid the adversarial training involved in generative adversarial networks (Section 4.2) rather than to model
manifold-supported data, the resulting objective provides a mathematically principled way of training DGMs
under the manifold setting. The training objective of generative moment matching networks is simply

min
θ

MMD2
k

(
pX

∗ , pX
θ

)
(73)

for a pre-specified kernel k. Although minimizing MMD is straightforward, generative moment matching
networks are not known for achieving good empirical performance: this highlights that, even though manifold-
awareness should be considered a necessary condition for strong empirical results, it is not sufficient.

5.2.4 Maximum Mean Discrepancy Generative Adversarial Networks

To improve the empirical performance of generative moment matching networks (Section 5.2.3), Li et al.
(2017) propose maximum mean discrepancy generative adversarial networks (MMD GANs), where the main
idea is to reintroduce adversarial training to learn the kernel. First, for a fixed auxiliary latent space
Z ′ = Rd′ , a given a kernel k : Z ′ × Z ′ → R, and a neural network hϕ : X → Z ′, Li et al. (2017) defined the
kernel kϕ : X × X → R as kϕ(x, y) = k(hϕ(x), hϕ(y)). They then showed that, if some regularity conditions
hold and hϕ is injective, then maxϕ MMD2

kϕ
metrizes weak convergence, thus making it a mathematically

sensible objective to train DGMs. In order to enforce injectivity of hϕ, Li et al. (2017) leverage the fact that

33

Under review as submission to TMLR

a function h : X → Z ′ is injective on X if and only if it admits a left inverse h† : Z ′ → X , i.e. h†(h(x)) = x

for all x ∈ X . They thus introduce an auxiliary network h†
ϕ (which need not share parameters with hϕ), and

train MMD GANs through

min
θ

max
ϕ

MMD2
kϕ

(
pX

∗ , pX
θ

)
− βEX∼ 1

2 pX
∗ + 1

2 pX
θ

[
∥X − h†

ϕ (hϕ(X)) ∥2
2

]
, (74)

where pX
θ is still given by the distribution of X = gθ(Z) for Z ∼ pZ (i.e. the pushforward of pZ through gθ),

β > 0 is a hyperparameter, and the second term encourages hϕ to admit h†
ϕ as a left inverse on the supports

of pX
∗ and pX

θ . Similarly to Wasserstein GANs (Section 5.2.1), the empirical performance of MMD GANs
benefits from gradient regularization during training (Bińkowski et al., 2018; Arbel et al., 2018).

5.2.5 Generalized Energy-Based Models

Generalized energy-based models (GEBMs; Arbel et al., 2021) combine generative adversarial networks
(Section 4.2) with energy-based models (Section 4.1.4). GEBMs consist of a fixed prior pZ on Z, a generator
gθ1 : Z → X , and an energy function Eθ2 : X → R, where we explicitly distinguish between the parameters
of these components as θ = (θ1, θ2). As in GANs, the prior along with the generator implicitly define the
density pg

θ1
of X = gθ1(Z), where Z ∼ pZ .20 This is not a full-dimensional density, but rather it is supported

on the model manifold Mθ1 = gθ1(Z).21 GEBMs define an EBM on Mθ1 by re-weighting pg
θ1

through the
use of Eθ2 as an energy function:

pX
θ (x) ∝ pg

θ1
(x)e−Eθ2 (x). (75)

Despite Eθ2 being defined over X , the above density is only defined on Mθ1 and is thus also not a full-
dimensional density.22 The intuition behind GEBMs is that the generator can easily learn to map to M,
whereas the energy function helps correct the distribution within the learned manifold.

In order to train GEBMs, Arbel et al. (2021) define the quantity

KALE
(
pX

∗ ∥ pg
θ1

)
:= sup

E∈E,ϕ∈R
1 − ϕ − EX∼pX

∗
[E(X)] − EZ∼pZ

[
e−E(gθ1 (Z))−ϕ

]
, (76)

where E is a set of Lipschitz energy functions satisfying certain regularity conditions (which are satisfied by
feed-forward neural networks). They then show that KALE(pX

∗ ∥ pg
θ1

) is a meaningfully defined divergence
between pX

∗ and pg
θ1

, even when their supports do not perfectly overlap (i.e. it metrizes weak convergence,
more details are provided in the grey box below), so that it provides a sensible objective to train the generator.
As a divergence, KALE is intimately related to the KL divergence: Arbel et al. (2021) also show that if Eθ2

achieves the supremum in Equation 76, then KL(pX
∗ ∥ pX

θ) ≤ KL(pX
∗ ∥ pg

θ1
).23 Therefore, the re-weighting

done in Equation 75 to pg
θ1

indeed improves upon simply using pg
θ1

. Putting these properties together, Arbel
et al. (2021) train GEBMs through

min
θ1

max
θ2,ϕ

1 − ϕ − EX∼pX
∗

[Eθ2(X)] − EZ∼pZ

[
e−Eθ2 (gθ1 (Z))−ϕ

]
, (77)

where the Lipschitz constraint on Eθ2 is enforced as in Wasserstein GANs (Section 5.2.1) and ϕ ∈ R is a free
auxiliary parameter.

Arbel et al. (2021) also show that in order to sample from a GEBM as defined through Equation 75, one
can first sample Z from the EBM pZ

θ on Z given by

pZ
θ (z) ∝ pZ(z)e−Eθ2 (gθ1 (z)), (78)

20Note that in Section 4.2 we denoted pg
θ1

as pX
θ , but we use different notation here as GEBMs further modify pg

θ1
.

21Formally Mθ1 need not be a manifold, even if gθ1 is smooth, as it might have points of self-intersection. The measure-
theoretic formulation of GEBMs in the grey box below remains nonetheless valid.

22More formally, the ∝ symbol in Equation 75 should be understood as proportional within Mθ1 , only integrating over the
model manifold, i.e. pX

θ (x) = pg
θ1

(x)e−Eθ2 (x)/
∫

X pg
θ1

e−Eθ2 dvolMθ1
.

23Note that none of the involved densities – namely pX
∗ , pX

θ , and pg
θ1

– are full-dimensional densities, so the KL divergence
between them could be infinite (Section 3.4). The inequality is thus trivially true when the support of pX

θ and pg
θ1

, i.e. Mθ1 ,
does not match M. Nonetheless, when the generator perfectly recovers M, the inequality does justify the use of the energy
function in GEBMs.

34

Under review as submission to TMLR

and then setting X = gθ1(Z) will produce a sample from pX
θ . Note that pZ

θ is now a full-dimensional density
in Z, and it can thus be sampled through Markov chain Monte Carlo as standard in EBMs. We point out
that GEBMs are intimately linked to two-step models, which we discuss in Section 5.3.

Finally, we highlight two related works. Che et al. (2020) proposed a similar model to GEBMs, but their
model is trained as a standard GAN (Equation 40), and the EBM is defined post-hoc by using the discrim-
inator hϕ∗ ; despite the similarity with GEBMs, this procedure does not endow manifold-unaware GANs
with manifold-awareness. Birrell et al. (2022) constructed a class of divergences, to which KALE belongs,
by extending its relationship with the KL divergence to general f -divergences. While this class of diver-
gences can be used to train DGMs, Birrell et al. (2022) do not empirically evaluate their performance on
high-dimensional data as their focus is theoretical.

We now formalize the presentation of GEBMs. Here we denote pg
θ1

as a probability measure, gθ1#PZ ,
instead of as a density. The model distribution PX

θ is then defined through its Radon-Nikodym
derivative with respect to gθ1#PZ :

pX
θ (x) = dPX

θ

dgθ1#PZ
(x) := e−Eθ2 (x)

EX∼gθ1#PZ [e−Eθ2 (X)]
, (79)

where the expectation is assumed to be finite. Arbel et al. (2021) proved under mild conditions that:
(i) KALE(PX

∗ ∥ gθ1#PZ) ≥ 0 with equality if and only if PX
∗ = gθ1#PZ ; and that (ii) for a sequence of

generators (gθ1,t)∞
t=1, KALE(PX

∗ ∥ gθ1,t#PZ) → 0 as t → ∞ if and only if gθ1,t#PZ ω−→ PX
∗ as t → ∞.

5.2.6 Principal Component Flows

Principal component flows (PCFs; Cunningham et al., 2022) are a variant on standard normalizing flows
(Section 4.1.3) that seek to uncover manifold structure in a manner analogous to principal component
analysis (PCA) and related to disentanglement (Bengio et al., 2013). If gθ : Z → X is a normalizing
flow, the eigenvectors {ν1(x), . . . , νD(x)} of ∇zgθ(z)∇zgθ(z)⊤ are said to be the principal components of gθ

at x = gθ(z) and can be ordered using the corresponding eigenvalues as in standard PCA. The principal
components at x represent the principal axes of variation in the flow’s density pX

θ . In a manifold-learning
context, principal axes with small eigenvalues represent off-manifold directions, while those with the highest
eigenvalues represent primary directions of variation along the manifold, as illustrated in Figure 6(a): we
highlight that here pX

∗ is assumed full-dimensional and to concentrate around M, rather than being strictly
manifold-supported.

We now discuss a special case of PCFs as an introduction; for a presentation of the method in more generality,
see the work of Cunningham et al. (2022). PCFs involve the notion of contour log-likelihoods, which here
can be interpreted as the likelihood along the ith coordinate curve of the flow, for i ∈ {1, 2, . . . , D}:

log pZi(zi) − log (∇zgθ(x)ii) , (80)

where pZ(z) =
∏D

i=1 pZi(zi) is a coordinatewise factorization of the latent prior (which is typically Gaussian),
and ∇xgθ(x)ii is the ith entry on the diagonal of ∇xgθ(x).

The goal of training a PCF is to align the principal components of gθ with its latent coordinates on the
manifold (Figure 6(b)). One of the key insights of Cunningham et al. (2022) is that the difference between
the model’s log density log pX

θ (x) and the sum of its contour log-likelihoods measures the diagonality of
∇zgθ(z)∇zgθ(z)⊤ and hence how well the model’s latent coordinates are aligned with its principal compo-
nents. From this, a regularizer can be derived:

I(θ) = EX∼pX
∗

[
log pX

θ (X) −
D∑

i=1
log pZi (fθ(X)i) + log (∇xfθ(X)ii)

]
, (81)

35

Under review as submission to TMLR

(a) (b)

Figure 6: The motivation behind PCFs. (a) The principal components, ν1(x) and ν2(x), of a trained NF with
density pX

θ∗ , taken at a point x ∈ X . These principal components are scaled according to their eigenvalues:
here, ν1(x) is the primary direction of variation along the manifold M. (b) A comparison between the
contours of two NFs: pX

θ∗
NF

and pX
θ∗

PCF
, trained as a standard NF and as a PCF, respectively. Contours are

visualized by the way each NF maps the grid lines of Z. Since the contours mapped by gθ∗
PCF

correspond to
the principal components of pX

θ∗
PCF

, the NF model pX
θ∗

PCF
is formally a principal component flow.

where fθ(X)i denotes the ith coordinate of fθ(X).24 I(θ) is a non-positive quantity such that I(θ) = 0 if and
only if the latent coordinates are perfectly aligned with the flow’s principal components at each point x ∈ X .
Maximizing I(θ) as a regularizer while maximizing the likelihood aligns the flow’s latent coordinates with
the principal manifolds of the data. We highlight that while this objective was derived to provide a useful
inductive bias when manifolds are involved, it remains nonetheless based on full-dimensional likelihoods, and
is thus subject to the corresponding pathologies (Section 4.1 and Section 4.1.1).

Canonical manifold flows (CMFs; Flouris & Konukoglu, 2023) take a related approach which directly penalizes
off-diagonal elements of ∇zgθ(fθ(X))∇zgθ(fθ(X))⊤. This results in a potentially looser regularizer which
is designed to achieve the same goal at optimality as PCFs. Both PCFs and CMFs have been shown to
naturally represent M using a subset of the flow’s latent coordinates, meaning they automatically discover
an estimate d of the dimension d∗ of M without the practitioner having to set it as a hyperparameter.

5.3 Manifold-Awareness through Two-Step Models

Except for generative adversarial networks, all the DGMs described in Section 4 are manifold-unaware as
a direct consequence of misspecified dimensionality: the data is d∗-dimensional, whereas the model is D-
dimensional. The methods described in Section 5.1 address this misspecification by adding noise to the
data, making it D-dimensional, whereas those from Section 5.2 use manifold-appropriate losses. Another
approach to enable manifold-awareness, which we cover here, is to instead reduce the ambient dimension
of the data to match its intrinsic dimension before learning its distribution. Two-step approaches do this
by separating the overall generative modelling process into two distinct steps. Manifold learning (step 1)
typically involves some form of encoding-decoding, which uncovers a lower-dimensional representation space
Z whose dimension d ideally matches the intrinsic dimension d∗ of the given data. Distribution learning
(step 2) is then carried out on the obtained manifold, which often takes the form of generative modelling of

24Note that the meaning of fθ(X)1 is different here than in Section 5.1.4, where it refers to the first d coordinates of fθ(X).

36

Under review as submission to TMLR

the d-dimensional representations learned in the previous step. Importantly, this two-step procedure aims
to remove the dimensionality mismatch between the data and the model, and thus circumvent any woes
caused by it, such as manifold overfitting (Section 4.1). When discussing two-step models, it will be useful
to distinguish between the generative parameters of each step, and we thus write θ = (θ1, θ2), where θ1 are
the generative parameters required for the first step, and θ2 those for the second one. We now outline these
two steps in more detail.

Manifold learning Most two-step models use autoencoder-based methods for manifold learning (Sec-
tion 3.2) as in Equation 6:

min
θ1,ϕ

EX∼pX
∗

[
∥X − gθ1 (fϕ(X)) ∥2

2
]

, (82)

or any variant such as variational autoencoders (Section 4.1.2), although we will see in Section 5.4.1 that
non-autoencoder-based choices are also possible. Importantly, the goal in this step is to perform manifold
learning rather than generative modelling, so e.g. even if a VAE is used, it is interpreted as a regularized
autoencoder rather than a generative model.

Distribution learning This step consists of learning the distribution on the manifold obtained in the
previous step. In the standard setup where manifold learning is performed with an autoencoder-based
model, a pre-trained encoder fϕ∗ and decoder gθ∗

1
pair is available. The encoder defines a distribution qZ

ϕ∗ of
encoded data fϕ∗(X) where X ∼ pX

∗ (formally, qZ
ϕ∗ is the pushforward density of pX

∗ through fϕ∗), which can
be learned by instantiating a DGM pZ

θ2
on Z, and training it with any of the methods covered in this survey

(but of course changing the target distribution from the D-dimensional pX
∗ to the d-dimensional qZ

ϕ∗), while
keeping the encoder fϕ∗ and decoder gθ∗

1
frozen. Then, once this low-dimensional DGM is trained, resulting

in pZ
θ∗

2
, the distribution of the two-step model on the learned manifold can be sampled through X = gθ∗

1
(Z),

where Z ∼ pZ
θ∗

2
(i.e. pX

θ is formally given by the pushforward of pZ
θ∗

2
through gθ∗

1
).

Importantly, by solving the generative modelling task in Z instead of X , the support of the target distribution
qZ

ϕ∗ is fϕ∗(M) ⊆ Z, whose dimension should intuitively be given by min(d, d∗). If the latent dimension d

is chosen properly (i.e. d = d∗), we should then expect qZ
ϕ∗ to be full-dimensional within Z. This full-

dimensionality stands in contrast to the case discussed in Section 4.1 where the target distribution pX
∗ is d∗-

dimensional but its corresponding ambient space X is D-dimensional. Furthermore, even if d is overspecified
as d∗ < d < D, the “dimensionality gap” – i.e. the ambient dimension of the model minus that of the true
manifold – of the second step model is d − d∗, which is smaller than D − d∗.25 Thus, we should intuitively
expect any manifold-related woes arising from dimensionality mismatch to be milder than the corresponding
full-dimensional issues.

Many two-step models have been proposed in the literature, sometimes with the manifold setting in mind,
and some other times simply for tractability, as training DGMs on a low-dimensional latent space is
cheaper than doing so in high-dimensional ambient space. Loaiza-Ganem et al. (2022a) provided a the-
oretical justification for all of these models, proving that under mild regularity conditions, when d = d∗ and
EX∼pX

∗
[∥X − gθ∗

1
(fϕ∗(X))∥2

2] = 0 (i.e. perfect reconstructions), then: (i) qZ
ϕ∗ is indeed full-dimensional, and

thus pZ
θ2

can be any DGM, even if manifold-unaware (e.g. trained through maximum-likelihood), and still
learn qZ

ϕ∗ ; and (ii) transforming samples from pZ
θ∗

2
through gθ∗

1
is equivalent to sampling from pX

∗ , i.e. two-
step models recover pX

∗ . This result – which we discuss further in the next grey box – implies that two-step
models learn M, which is an interesting observation since autoencoders by themselves need not, despite
being referred to as manifold learning methods (this is because points outside M might also be perfectly
reconstructed, see Section 3.2). As illustrated in Figure 7, when pZ

θ∗
2

is perfectly trained it must be supported
on fϕ∗(M), and since gθ∗

1
(fϕ∗(M)) = M, the support of pZ

θ∗
2

and the decoder gθ∗
1

jointly characterize M.

Here we briefly summarize two-step models which are straightforward combinations of an autoencoder-based
model with any other generative model on latent space; two-step models warranting additional discussion are
covered in Section 5.3.2 and Section 5.3.3. Dai & Wipf (2019) use a VAE for manifold learning and another

25The case where d is underspecified, i.e. d < d∗, is less interesting, as in this case M, and thus pX
∗ , cannot be recovered.

37

Under review as submission to TMLR

Figure 7: Illustration of how gθ∗
1

and the support of pZ
θ∗

2
characterize M. Even when the encoder-decoder

pair achieves perfect reconstructions, these are only ensured on M. For example, data in X outside of M
need not be perfectly reconstructed, nor mapped to fϕ∗(M) by the encoder fϕ∗ . Similarly, latents in Z
outside of fϕ∗(M) need not be mapped to M by the decoder gθ∗

2
. However, knowledge of both fϕ∗(M) –

which is ideally learned as the support of pZ
θ∗

2
– and gθ∗

1
characterizes M.

VAE for distribution learning on latent space. Xiao et al. (2019) use an autoencoder and a normalizing
flow (Section 4.1.3), as do Boehm & Seljak (2022). Ghosh et al. (2020) use an autoencoder with an added
regularization term, along with a Gaussian mixture model (which, while not deep, remains a generative
model and thus fits the two-step framework). Li et al. (2015) use an autoencoder and then train a generative
moment matching network (Section 5.2.3) on the recovered latents, and Dao et al. (2023) use a regularized
VAE along with conditional flow matching (Section 5.1.3). The improved generative performance reported
in many of these works compared to their full-dimensional counterparts may be attributed to the reduction
of dimension mismatch.

We also point out that generalized energy-based models (Section 5.2.5) are very similar to autoencoder-based
two-step models, since GEBMs instantiate an energy-based model (Section 4.1.4) on a low-dimensional latent
space, whose samples are then mapped through a decoder. GEBMs are nonetheless not autoencoder-based
two-step models, the differences being that: GEBMs do not require an encoder, the distribution used by
GEBMs on Z (Equation 78) shares parameters with the decoder, GEBMs are trained end-to-end, and they
can only use EBMs on latent space.

End-to-end training Although the two-step models described above are manifold-aware, the objective
in the first step does not necessarily promote representations that are conducive to distribution learning in
the second step. Therefore, one might expect that training these models in an end-to-end manner could
further improve their performance. Albeit not always inspired by this motivation, several works have pro-
posed end-to-end objectives, some in the context of variational autoencoders, and some in the context of
injective normalizing flows; we discuss the former here and the latter in Section 5.3.3. VAEs as described in
Section 4.1.2 assume a fixed prior pZ on the latent space Z. However, the prior pZ

θ2
can be made trainable,

in which case maximizing the ELBO (Equation 23), i.e.

max
θ,ϕ

EX∼pX
∗

[
E

Z∼q
Z|X

ϕ
(·|X)[log p

X|Z
θ1

(X|Z)] − KL
(

q
Z|X
ϕ (·|X)

∥∥∥ pZ
θ2

)]
, (83)

remains a valid objective (assuming pX
∗ is full-dimensional) for end-to-end training of p

X|Z
θ1

and pZ
θ2

. Depend-
ing on the choice of pZ

θ2
additional computational tricks might be required to efficiently optimize the ELBO.

Tomczak & Welling (2018) instantiate pZ
θ2

as a Gaussian mixture model; Sønderby et al. (2016), Vahdat &
Kautz (2020), and Child (2021) use learnable hierarchical priors; Chen et al. (2017) use normalizing flows;
Pang et al. (2020) use energy-based models; and Vahdat et al. (2021) use diffusion models (Section 5.1.2).
When p

X|Z
θ1

is a flexible enough full-dimensional density as in Equation 21, all these models remain suscepti-
ble to the manifold overfitting issues discussed in Section 4.1 and Section 4.1.2, despite directly encouraging
the encoder to learn representations whose distribution can be easily recovered by pZ

θ2
.

38

Under review as submission to TMLR

Even though designing an end-to-end objective for training in a manifold-aware fashion is intuitively desirable,
doing so is not always straightforward. To see why, consider a two-step model whose first-step loss is
given by Equation 82, and whose second-step model is trained by minimizing D(qZ

ϕ∗ , pZ
θ2

) over θ2 for some
divergence D between probability distributions. Let us further assume that D(qZ

ϕ∗ , pZ
θ2

) cannot be computed
without evaluating qZ

ϕ∗ , but that D(qZ
ϕ∗ , pZ

θ2
) = L(pZ

θ2
; qZ

ϕ∗) + c(qZ
ϕ∗), where L(pZ

θ2
; qZ

ϕ∗) can be computed
without evaluating qZ

ϕ∗ , and where c(qZ
ϕ∗) does not depend on pZ

θ2
. Divergences with these properties are

prevalent; the KL divergence (Section 3.4) is an instance, where L(pZ
θ2

; qZ
ϕ∗) = −EZ∼qZ

ϕ∗
[log pZ

θ2
(Z)] and

c(qZ
ϕ∗) = EZ∼qZ

ϕ∗
[log qZ

ϕ∗(Z)], as well as the Fisher divergence (Section 4.3) which underpins score matching
and thus diffusion models. In this case, the second-step model is trained by using the loss L(pZ

θ2
; qZ

ϕ∗), which
is equivalent to minimizing D(qZ

ϕ∗ , pZ
θ2

). Naïvely combining the losses of this two-step model into a single loss
for end-to-end training would result in the objective

min
θ,ϕ

EX∼pX
∗

[
∥X − gθ1(fϕ(X))∥2

2
]

+ βL
(
pZ

θ2
; qZ

ϕ

)
(84)

for some β > 0. This naïve objective ignores c(qZ
ϕ), so that it is not equivalent to

min
θ,ϕ

EX∼pX
∗

[
∥X − gθ1(fϕ(X))∥2

2
]

+ βD
(
qZ

ϕ , pZ
θ2

)
. (85)

In short, Equation 84 does not provide a valid objective for manifold-aware end-to-end training since c(qZ
ϕ)

cannot be ignored when ϕ is not fixed after the first step of training. Unfortunately, although Equation 85
specifies a principled objective to address the issue, it remains intractable when c(qZ

ϕ) cannot be computed.

More formally, a trained autoencoder-based two-step model is given by a distribution PZ
θ∗

2
on Z along

with a decoder gθ∗
1

: Z → X , and the model distribution is given by PX
θ∗ = gθ∗

1 #PZ
θ∗

2
. The result of

Loaiza-Ganem et al. (2022a) justifying two-step models states that, under mild regularity conditions,
if d = d∗ and EX∼PX

∗
[∥X − gθ∗

1
(fϕ∗(X))∥2

2] = 0, then:

• QZ
ϕ∗ ≪ λd, where QZ

ϕ∗ = fϕ∗#PX
∗ is the distribution of encoded data.

• gθ∗
1 #QZ

ϕ∗ = PX
∗ .

The first point ensures QZ
ϕ∗ admits a density with respect to λd, so that it is full-dimensional. The

second point ensures that if the target distribution QZ
ϕ∗ is properly learned during the second step

then two-step models recover the true data-generating distribution, i.e. if PZ
θ∗

2
= QZ

ϕ∗ then PX
θ∗ = PX

∗ .

5.3.1 Two-Step Models Minimize Wasserstein Distance

Before continuing our review of existing two-step models (Section 5.3), we highlight that these models can be
interpreted through an optimal transport lens (Section 3.5). To the best of our knowledge, this observation
has not been made in the literature, and constitutes a novel contribution of our work. Here we still consider
the model pX

θ given by the two learnable components gθ1 and pZ
θ2

, and will use the notation introduced
for Wasserstein autoencoders (Section 5.2.2). Key to our insight is Equation 69, which, for the model pX

θ

considered here, can be rewritten as

Wc(pX
∗ , pX

θ) = inf
qZ|X ∈Q(pX

∗ ,pZ
θ2

)
EX∼pX

∗

[
EZ∼qZ|X (·|X) [c(X, gθ1(Z))]

]
. (86)

This equality then implies that

Wc(pX
∗ , pX

θ) ≤ inf
f∈F(pX

∗ ,pZ
θ2

)
EX∼pX

∗
[c (X, gθ1(f(X)))] , (87)

where F(pX
∗ , pZ

θ2
) is the set of functions f : X → Z such that if X ∼ pX

∗ , then f(X) ∼ pZ
θ2

. To see that
Equation 86 indeed implies Equation 87, simply note that if f ∈ F(pX

∗ , pZ
θ2

), then the conditional (on X = x)

39

Under review as submission to TMLR

distribution on Z given by the point mass at f(x) is in Q(pX
∗ , pZ

θ2
). Equation 87 is used to justify the use

of deterministic encoders within WAEs: doing so minimizes an upper bound of Wc(pX
∗ , pX

θ). We also point
out that, assuming c(x, y) is minimal if and only if x = y, the bound becomes tight at optimality as long as
perfect reconstructions are achievable with a deterministic autoencoder (i.e. X = gθ∗

1
(fϕ∗(X)), see Section 3.2

and Section 5.4 for discussions of when this is possible with continuous autoencoders).

For an encoder fϕ, we let qZ
ϕ be the distribution of fϕ(X) where X ∼ pX

∗ (formally, qZ
ϕ is the pushforward

density of pX
∗ through fϕ), and note that fϕ ∈ F(pX

∗ , pZ
θ2

) is equivalent to qZ
ϕ = pZ

θ2
. In turn, Equation 87

justifies training the model pX
θ by minimizing an upper bound of its optimal transport cost through

min
θ,ϕ

EX∼pX
∗

[c (X, gθ1 (fϕ(X)))]

subject to qZ
ϕ = pZ

θ2
.

(88)

The key difference between this objective and that of WAEs is that the distribution on latent space is
now learnable instead of being fixed. While this distinction with WAEs might seem conceptually trivial, it
enables minimizing optimal transport cost through a two step process: in the first step, θ1 and ϕ are trained
to minimize the reconstruction error, EX∼pX

∗
[c(X, gθ1(fϕ(X)))], with no regard for the constraint. This step

results in a now fixed distribution qZ
ϕ∗ on Z, which of course need not match pZ

θ2
. Thanks to pZ

θ2
being

learnable and θ2 not appearing in the first step objective, this mismatch can be addressed in the second step,
where any objective over θ2 to match pZ

θ2
and qZ

ϕ∗ can be used. For example, if the second step model were
trained through maximum-likelihood, its objective would be26

min
θ2

KL
(
qZ

ϕ∗ ∥ pZ
θ2

)
, (89)

which indeed satisfies the constraint in Equation 88 at optimality. In other words, two-step models solve
Equation 88 by optimizing an unconstrained version of the objective during the first step, and then ensuring
the constraint is actually satisfied during the second step. Crucially, the second step does not affect the
optimality of the first step because EX∼pX

∗
[c(X, gθ1(fϕ(X)))] does not depend on θ2, so that two-step models

indeed provide a valid way of solving Equation 88.

We now make some additional observations. (i) When c is given by the squared Euclidean distance, the
corresponding loss for the first step model is exactly that of a standard autoencoder (Equation 6 and
Equation 82). When the first step model is trained through a different autoencoder-based objective, e.g.
Equation 23, we can simply interpret the model as a regularized autoencoder as long as it encourages perfect
reconstructions at optimality. (ii) Although two-step models are often trained using deterministic encoders,
using arbitrarily flexible stochastic encoders would imply that Wc(pX

∗ , pX
θ) is being minimized rather than

an upper bound.

In summary, we have justified the manifold-awareness of autoencoder-based two-step models through optimal
transport. We believe that this result is not only interesting on its own, but also hope that by establishing a
connection between seemingly unrelated manifold-aware model classes – namely two-step models and those
which are trained through support-agnostic optimization objectives (Section 5.2), such as WAEs – it will
enable future improvements to both.

Equation 87 is formalized as follows:

Wc(PX
∗ ,PX

θ) ≤ inf
f∈F(PX

∗ ,PZ)
EX∼pX

∗
[c (X, gθ(f(X)))] , (90)

where F(PX
∗ ,PZ) = {f : X → Z | f is measurable, and f#PX

∗ = PZ}. As a technical point, note that
the unconstrained version of the right hand side of this equation – upon which the interpretation of

26Note that the second step objective could itself require additional auxiliary parameters but we omit this possibility for
notational simplicity.

40

Under review as submission to TMLR

two-step models as Wasserstein distance minimizers is based – i.e.

inf
f∈F

EX∼PX
∗

[c (X, gθ1 (f(X)))] , (91)

where F = {f : X → Z | f is measurable}, involves an infimum over measurable functions (which is
then minimized over θ1 during the first step). In the nonparametric regime (Section 2.2) we assume
that neural networks are flexible enough to approximate any continuous function arbitrarily well,
but this property need not a priori extend to measurable functions. Intuitively this should however
not be a problem thanks to Lusin’s theorem – which, informally, states that in certain settings
any measurable function can be approximated by a continuous one. It is nonetheless pertinent to
show that the infimum in Equation 91 can actually be replaced by a corresponding infimum over
continuous functions, which we do below.

Proposition 1. Let PX
∗ be a probability measure on X , gθ1 : Z → X be measurable, and c : X ×X → R

be measurable and such that there exists C > 0 such that

sup
(x,y)∈X ×X

|c(x, y)| < C. (92)

Then,
inf

f∈F
EX∼PX

∗
[c (X, gθ1 (f(X)))] = inf

f∈C
EX∼PX

∗
[c (X, gθ1 (f(X)))] , (93)

where C = {f : X → Z | f is continuous}.

Proof. See Appendix B.2.

This result allows us to formally interpret two-step models as minimizers of an upper bound of the
Wasserstein distance in the nonparametric regime when the assumption in Equation 92 holds. We
point out that this is a mild regularity condition, as it is always satisfied in the common case where
X is compact and c is continuous (since continuous functions always achieve their supremums over
compact sets).

Finally, we point out that Patrini et al. (2020) claimed that, as long as PX
∗ is non-atomic, then the

inequality in Equation 90 is actually an equality. This would allow us to interpret two-step models
as minimizing Wasserstein distance – not an upper bound – even when using deterministic encoders.
However, Lee et al. (2024) found an error in the proof of Patrini et al. (2020), so that only the upper
bound interpretation remains valid.

5.3.2 Latent Diffusion Models

Latent diffusion models (Rombach et al., 2022; Peebles & Xie, 2023; Zhang et al., 2024) are another class
of two-step models (Section 5.3). They first train a regularized autoencoder, which combines a Gaussian
variational autoencoder objective (Section 4.1.2) with various potential regularizers (Larsen et al., 2016;
Higgins et al., 2017; van den Oord et al., 2017). Once this autoencoder-based model is trained and the
corresponding low-dimensional representations obtained, a diffusion model (Section 5.1.2) sZ

θ2
: Z × (0, T] →

Z is trained on them as the second step model.

As previously discussed, diffusion models can learn manifolds, but their score function must diverge to infinity
at the end of the backward process (Equation 51) as a consequence of the mismatch between the intrinsic and
ambient dimensions of the data. To test that latent diffusion models are not as sensitive to this numerical
pathology, we trained a diffusion model and a latent diffusion model on the CIFAR-10 dataset (Krizhevsky &
Hinton, 2009), with all experimental details provided in Appendix C. We plot the average squared Euclidean

41

Under review as submission to TMLR

0.002 0.004 0.006 0.008 0.010
T− t

0

1000

2000

3000

4000

5000

‖s
θ
∗
(Ŷ

t,
T
−
t)
‖2 2

d
im

Diffusion model
Latent diffusion model

Figure 8: Average squared norm of the learned score function on CIFAR-10 over 100 generated paths from
Equation 51, normalized by dimension (i.e. dim = D = 3072 for diffusion models, and dim = d = 256 for
latent diffusion models); the shaded area corresponds to one standard deviation. The paths are stopped at
time T − ε, with ε = 0.001.

norm of the score functions, normalized by their dimension,27 along generated paths in Figure 8: it is evident
that the score function of diffusion models on latent space exhibits much better numerical behaviour than
when these models are trained on ambient space. This result is suggested by theory, and to the best of our
knowledge, we are the first to empirically confirm it.

Currently, latent diffusion models are amongst the best performing DGMs empirically, and the manifold lens
provides a convincing explanation for this: (i) they can learn manifolds; (ii) they alleviate the numerical
issues of diffusion models; and (iii) they are robust to misspecification of the dimension of the latent space,
in the sense that even if d∗ < d (i.e. the latent dimension is specified as larger than the true intrinsic
dimension), they still learn their target distribution – albeit with an exploding score function. To see this,
simply note that setting d∗ < d results in a second step model whose target distribution qZ

ϕ∗ is still supported
on a manifold fϕ∗(M) of lower-than-ambient dimension, which the diffusion model from the second step can
still learn. Although in this case the score function would also diverge to infinity, the fact that the difference
between the ambient and intrinsic dimensions for the latent model (d − d∗) remains much smaller than for
a model on ambient space (D − d∗) intuitively suggests that the numerical issues should nonetheless be
diminished for latent diffusion models. Indeed, despite the latent diffusion model shown in Figure 8 using
d = 256, which is likely larger than the true intrinsic dimension d∗ of CIFAR-10 (Pope et al., 2021), it has a
numerically much better behaved score function than the diffusion model on ambient space.

5.3.3 Injective Normalizing Flows

Ordinary normalizing flows (Section 4.1.3) are full-dimensional density models with D-dimensional latent
spaces, conflicting with the d∗-dimensional nature of pX

∗ . To correct this mismatch, a line of research started
by Kumar et al. (2020) has proposed to shrink the NF’s latent space dimensionality to d < D, allowing the
model to represent densities on a low-dimensional submanifold of X . Whereas standard NF architectures
must be bijective, gθ1 now cannot be bijective because it maps from d to D dimensions. The most one can
ask is that gθ1 be injective, resulting in the injective normalizing flow (INF).

27Note that normalizing squared Euclidean norm by dimension is the most natural way of enabling comparisons across
dimensions. To see this consider a constant vector with all entries equal to 1, which has a squared ℓ2 norm equal to its
dimension; or consider a standard Gaussian vector, whose expected squared Euclidean norm also matches its dimension.

42

Under review as submission to TMLR

Figure 9: Pathology of naïvely maximizing Equation 94. In this case, the true density is a standard Gaussian
along M = {(0, x2) ∈ R2 | x2 ∈ R}, here shown in blue with darker values indicating higher density. The
model can maximize likelihood by aligning gθ1(Z) perpendicular to M, and then learning a density along
gθ1(Z) that becomes infinitely peaked at the projection x̂θ1(x) onto M; in this example the projection will
always lie at the origin for any x ∈ R2. In the figure, we show gθ1(Z) = {(x1, 0) ∈ R2 | x1 ∈ R} with the
black line, the projection with the red dot, and increasing peakedness of pX

θ with increasing opacity.

Brehmer & Cranmer (2020) enforce injectivity architecturally, by constructing gθ1 as a zero-padding opera-
tion followed by a D-dimensional NF, in which case the left inverse fθ1 is given by inverting this NF and ap-
plying a projection operation; this is the same construction as the one used by denoising NFs (Section 5.1.4).28

Injectivity enables density evaluation through the injective change-of-variables formula (Equation 9):

pX
θ (x) = pZ

θ2
(z)
∣∣det

(
∇zgθ1(z)⊤∇zgθ1(z)

)∣∣− 1
2 , (94)

where z = fθ1(x). Unlike standard NFs, INFs cannot be naïvely trained through maximum-likelihood for two
main reasons: (i) the involved determinant is much more computationally challenging to compute and opti-
mize than in standard NFs, and more importantly (ii) Brehmer & Cranmer (2020) showed that doing so would
result in pathological solutions. To understand why, recall that Equation 94 is only valid when x ∈ gθ1(Z).
When x lies outside gθ1(Z), the right hand side of Equation 94 evaluates to pX

θ (x̂θ1(x)), where x̂θ1(x) =
gθ1(fθ1(x)) can be thought of as a projection of x onto gθ1(Z). Since gθ1(Z) need not perfectly match the data
manifold M, attempting to maximize EX∼pX

∗
[log pZ

θ2
(fθ1(X)) − 1

2 log | det(∇zgθ1(fθ1(X))⊤∇zgθ1(fθ1(X)))|]
over θ would thus result in maximizing the likelihood of projected data. As illustrated in Figure 9, this ob-
jective can admit pathological solutions where the projections collapse onto a single point whose likelihood
is sent to infinity.

To circumvent this issue, Brehmer & Cranmer (2020) propose to train INFs as two-step models (Section 5.3),
where gθ1 and fθ1 are trained to minimize an ℓ2 reconstruction error as in Equation 82; this training procedure
also obviates the need to optimize through the determinant in Equation 94. Brehmer & Cranmer (2020)
then instantiate pZ

θ2
as a d-dimensional NF, which is trained on encoded data fθ∗

1
(X), where X ∼ pX

∗ .
Kothari et al. (2021) follow up on this work by proposing a more efficient architecture for gθ1 . Kumar
et al. (2020) originally proposed relaxed INFs, for which the encoder fϕ is parameterized separately (and
encouraged to invert the decoder on M through a reconstruction error), and where injectivity is instead
encouraged by regularizing the singular values of ∇zgθ1(fϕ(X)) for X ∼ pX

∗ . They then take the second
step density pZ

θ2
as a Gaussian mixture model. By virtue of being two-step models, all these DGMs are

manifold-aware.

28Like in standard NFs, here the encoder fθ1 is determined by the decoder gθ1 , and it is thus parameterized by the same
parameters (i.e. θ1), so no auxiliary parameters ϕ are needed to parameterize it.

43

Under review as submission to TMLR

End-to-end training As mentioned in Section 5.3, it is intuitively desirable to find an end-to-end objec-
tive to train two-step models, and INFs provide particularly interesting opportunities. To circumvent the
pathological behaviour of naïve maximum-likelihood training of INFs outlined above, several works encourage
perfect reconstructions to ensure that the model manifold matches the true data manifold:

max
θ

EX∼pX
∗

[
log pZ

θ2
(fθ1(X)) − 1

2 log
∣∣det

(
∇zgθ1(fθ1(X))⊤∇zgθ1(fθ1(X))

)∣∣]
subject to EX∼pX

∗

[
∥X − gθ1(fθ1(X))∥2

2
]

= 0.
(95)

In practice, the constraint can be encouraged by adding an ℓ2 regularization term to the likelihood:

max
θ

EX∼pX
∗

[
log pZ

θ2
(fθ1(X)) − 1

2 log
∣∣det

(
∇zgθ(fθ1(X))⊤∇zgθ1(fθ1(X))

)∣∣− β∥X − gθ1(fθ1(X))∥2
2
]

, (96)

where β > 0 is a hyperparameter. Much like how normalizing flows focus on tractability of the log-det-
Jacobian term, a central theme of end-to-end injective flows is tractability of the second term in Equation 96,
which we will refer to as the “log-det-J⊤J” term. One approach is to impose structural constraints on gθ1 to
make the log-det-J⊤J term easily computable, albeit at the cost of expressiveness, for example using confor-
mal embeddings (Ross & Cresswell, 2021). A concurrent approach, pursued by Caterini et al. (2021b), is to
approximate the gradient of the log-det-J⊤J term with respect to θ1 through a combination of Hutchinson’s
estimator (Hutchinson, 1989) and various tricks from linear algebra and automatic differentiation (Baydin
et al., 2018). Despite these approximations, tractability remains an issue with this technique and it struggles
to scale to datasets of higher ambient dimensionality than CIFAR-10 (Krizhevsky & Hinton, 2009).

Denoising NFs (Horvat & Pfister, 2021) – detailed in Section 5.1.4 – perform single-step training of a flow
with an injective component for generation, but with a full-dimensional model pXσ

θ of a noised-out data
density pXσ

∗ = pX
∗ ⊛ N (· ; 0, σ2ID). The objective for denoising NFs (Equation 62) ends up quite similar

to Equation 96, although with two important differences: (i) the expectation is over pXσ
∗ rather than pX

∗ ,
and (ii) the formulation of pXσ

θ as a model for pXσ
∗ eliminates the need to optimize over the costly log-det-

J⊤J term. However, the computational benefit comes at the cost of introducing a disconnect between the
injective generator and the full-dimensional density model. In particular, the numerical instabilities described
in Section 4.1.1 do not apply to INFs trained through Equation 96 since no full-dimensional densities are
involved, whereas they do apply denoising NFs.

Cunningham et al. (2022) and Flouris & Konukoglu (2023) both propose injective variants of the flow models
described in Section 5.2.6 using similar objectives to Caterini et al. (2021b). Cunningham et al. (2022) in
particular use a regularizer that, with a certain hyperparameter setting, cancels out the log-det-J⊤J term
in the likelihood, making likelihood-based optimization of injective flows more efficient.

Meanwhile, several works parameterize the encoder fϕ separately, as Kumar et al. (2020) did. Zhang et al.
(2020b) proposed a similar objective to Equation 96 in the context of variational autoencoders (Section 4.1.2).
Sorrenson et al. (2024) argue that the objective in Equation 96 is subject to similar pathologies to those
outlined by Brehmer & Cranmer (2020) for naïve maximum-likelihood training if the encoder and decoder
are flexible enough. This is interesting as it highlights that despite being directly motivated to account for
the low-dimensional structure of the data, INFs trained through Equation 96 can nonetheless still fail to
learn manifolds. Sorrenson et al. (2024) and Draxler et al. (2024) propose an intuitively well-motivated but
theoretically ad-hoc modification to the objective, along with an improved gradient estimator over that of
Caterini et al. (2021b), for end-to-end training of INFs. Their model no longer falls under the umbrella of
two-step models, and hence its ability to learn the manifold is unclear, but it does inherit computational
benefits as it circumvents calculation of the challenging log-det-J⊤J term (Brehmer & Cranmer, 2020).
Finally, Nazari et al. (2023) proposed an autoencoder for manifold learning (not generative modelling) which
penalizes the variance of the log-det-J⊤J term during training, and which results in a smoother and more
interpretable latent space as compared to standard autoencoders.

5.4 Overcoming Topological Obstacles to Manifold Learning

As mentioned in Section 5.3, one might want to set the latent dimension d of an autoencoder to d∗. Yet, as
discussed in Section 3.2, when d = d∗, perfect manifold learning is not always achievable through bottleneck

44

Under review as submission to TMLR

(a)

(c)

(b)

Figure 10: Models for M = {(x1, x2) | x2
1 + x2

2 = 1}, the unit circle in X = R2. (a) Using a single
encoder-decoder pair to model the circle. The pair approaches numerical non-invertibility since the encoder
fϕ must map two nearby points in M (in black) to two distant latent points in Z (also in black). (b)
Illustration of implicit manifolds. Here, M is characterized as the 0-level set of F : R2 → R. Specifically,
F (x1, x2) = 1 − (x2

1 + x2
2) is shown in red, and the grey plane corresponds to {x ∈ R3 | x3 = 0}. Neural

implicit manifolds use no autoencoders, and instead attempt to learn Fθ so that its 0-level set, F −1
θ ({0}),

matches M. (c) The problem depicted in (a) can also be circumvented by employing multiple encoder-
decoder pairs, each one using its own latent space and covering a different part of M.

methods for topological reasons. We illustrate this problem, which can cause downstream issues with density
estimation, in Figure 10(a). In particular, if M has any non-Euclidean topological properties such as holes
or disconnected components, any attempt to model M as the image of a decoder gθ will cause numerical
instability in gθ (Cornish et al., 2020; Salmona et al., 2022). This problem was originally identified in the
context of normalizing flows (Section 4.1.3), with a line of work that first appends additional dimensions
to X , and then trains a normalizing flow on the augmented space (Dupont et al., 2019; Chen et al., 2020;
Huang et al., 2020). While these techniques indeed increase the stability and expressiveness of the flow itself,
they still produce full-support densities that can never truly model non-trivial topological structures in data.
Alternatively, to more faithfully tackle topological issues, some works have proposed to restructure the
manifold-learning step to better reflect the ways manifolds are defined in theory; we cover these approaches
in detail below.

5.4.1 Neural Implicit Manifolds

Under some conditions, manifolds with non-trivial topologies can be defined using level sets of functions.
In particular, a level set of a smooth function F : RD → RD−d∗ represents a d∗-dimensional manifold if
its Jacobian has full rank on that level set (Lee, 2012). We illustrate such an implicitly defined manifold –
which cannot be characterized with a single encoder-decoder pair – in Figure 10(b).

Neural implicit manifold learning (Ross et al., 2023) operationalizes this fact by modelling M as the zero
set of a neural network Fθ1 : X → RD−d. The network Fθ1 is trained to align its zero set F −1

θ1
({0}) with M

45

Under review as submission to TMLR

while being regularized to have full rank on M. The following loss is used,

min
θ1

EX∼pX
∗ ,Y ∼qX

θ′
1

,V ∼U(· ;SD−d−1)

[
∥Fθ1(X)∥2 − α∥Fθ1(Y)∥2 + β

(
η − ∥V ⊤∇xFθ1(X)∥2

)2
+

]
, (97)

where: Y is independent of X; qX
θ′

1
(y) ∝ e

−∥Fθ′
1

(y)∥2
2 with θ′

1 = stopgrad(θ1) (as in energy-based models,
see Section 4.1.4); U(· ; SD−d−1) is the uniform distribution over SD−d−1 := {y ∈ RD−d | ∥y∥2 = 1}, the
(D−d−1)-sphere in RD−d; α > 0, β > 0, and η > 0 are hyperparameters; and (·)+ = max(· , 0). In this
loss, the first term ensures that F −1

θ1
({0}) contains M, the second term prevents F −1

θ1
({0}) from containing

off-manifold samples, and the third term regularizes the Jacobian of Fθ1 to have full rank on M.

Importantly, Fθ1 here is not an encoder; it is best interpreted as defining D − d non-linear constraints on
the data, thus leaving d degrees of freedom for the data manifold. The full-rank requirement can then be
interpreted as ensuring none of these constraints is redundant, thereby ensuring the learned manifold has
the correct dimensionality. This constraint-based learning procedure for M makes implicit manifold learning
unusual among two-step models (Section 5.3) in that it is not autoencoder-based. The lack of encoder in
this method means there is no latent space, which presents a challenge for learning the distribution on the
model manifold, F −1

θ∗
1

({0}).

Ross et al. (2023) propose to learn this distribution with the constrained energy-based model, which repre-
sents an EBM constrained to the learned manifold, E : F −1

θ∗
1

({0}) → R. This is parameterized in practice by
a neural network Eθ2 : X → R, for which values are ignored outside of the learned manifold F −1

θ∗
1

({0}). To
sample from constrained EBMs, constrained Langevin dynamics (Brubaker et al., 2012) is used to generate
samples from Eθ2 constrained to the manifold. This allows for likelihood maximization via Equation 37, as
with ordinary EBMs – except constrained EBMs are manifold-supported.

5.4.2 Multi-Chart Manifolds

Typical techniques model the manifold globally using a single encoder-decoder pair. In general, however,
manifolds can consist of a patchwork of many charts: mathematical objects that each serve roughly the same
function as a single encoder-decoder pair (for a formal definition, please see Lee (2012)). Some manifolds
may thus require many encoder-decoder pairs (f (i)

ϕ , g
(i)
θ)n

i=1 – each using its latent space Zi to locally describe
some subset of the manifold – rather than a single one: we illustrate this fact in Figure 10(c).

Several works have taken this route to learn the data manifold. Schonsheck et al. (2019) first proposed a
multi-chart latent space using multiple encoder-decoder pairs in a non-generative modelling context. For
each incoming datapoint, the correct chart is selected dynamically using a prediction head for the encoder-
decoder pair with the smallest reconstruction error. Kalatzis et al. (2021) propose multi-chart flows, in which
likelihoods are defined using a mixture of injective normalizing flows (Section 5.3.3), with mixture weights
again computed using a prediction head. On the other hand, Sidheekh et al. (2022) propose a mixture of
INFs in which chart membership for an incoming datapoint is computed using discrete latent assignments.

Modelling a manifold with multiple charts imposes drawbacks. For one, each encoder-decoder pair has
its own latent space, so for a given datapoint x ∈ M, choosing the correct encoder can be a challenge.
This makes it unclear how to perform tasks involving the manipulation of latent representations, such as
interpolation. In many cases, there is no single correct encoder, as the images of various decoders need
to overlap to correctly define topologically complex manifolds (such as in Figure 10(c)). The ambiguity of
choosing the correct encoder is underlined by how differently each of the aforementioned methods attempt
to do so.

5.4.3 Disconnected Manifolds

Another common source of topological complexity in the data manifold is when it consists of more than one
connected component. This situation occurs, for example, in datasets with multiple disjoint classes. In this
context, theoretical analyses have shown that any decoder-based model will suffer from training instability

46

Under review as submission to TMLR

(Salmona et al., 2022) and poor sample quality (Luzi et al., 2020).29 One technique to improve sample
quality is to avoid sampling from latent regions where the network gθ∗ is unstable; Tanielian et al. (2020)
propose to reject samples X = gθ∗(Z), where Z ∼ pZ , for which ∇zgθ∗(Z) has a high Frobenius norm, which
they show indicates an off-manifold sample. Other work, discussed below, seeks to avoid instability entirely
during training.

A few general techniques have been proposed for modelling disconnected manifolds. One way is to use
disconnected (or near-disconnected) latent distributions, which aims to match the topology of the support
of pZ

θ with that of M. This is typically done with a Gaussian mixture model for pZ
θ and has been proposed

for multiple classes of generative model (Nalisnick et al., 2016; Dilokthanakul et al., 2016; Jiang et al., 2017;
Ben-Yosef & Weinshall, 2018; Izmailov et al., 2020).

A related approach is to use multiple decoder networks in a similar manner to the aforementioned multi-
chart methods from Section 5.4.2. The model then becomes a mixture pX

θ (x) =
∑n

i=1 πip
X
θ,i(x) of generative

submodels pX
θ,i, where π1, . . . , πn are the mixture weights (sometimes trainable). For example, Arora et al.

(2017) propose to directly train a mixture of generative adversarial networks (Section 4.2 and Section 5.2.1)
to stabilize training, wherein the entire mixture is learned with backpropagation. Cornish et al. (2020)
use a hierarchical continuously-indexed mixture of NFs. Other work uses techniques based on expectation-
maximization (Dempster et al., 1977) to train the mixture (Banijamali et al., 2017; Locatello et al., 2018).
A key challenge in this line of work is to encourage different submodels to model distinct parts of the dis-
tributions. This can be done by partitioning the data beforehand, by class (Luzi et al., 2020) or through
unsupervised clustering (Brown et al., 2023), and training a model on each partition. A more flexible ap-
proach is to backpropagate through an ancillary classification model to encourage each submodel to generate
data from distinct manifolds (Hoang et al., 2018; Khayatkhoei et al., 2018; Ghosh et al., 2018).

While all the models mentioned above can properly account for some topological features of M such as
disconnectedness, we highlight that most are nonetheless manifold-unaware. For example, full-dimensional
models trained through maximum-likelihood remain exposed to the corresponding pathologies (Section 4.1),
even when they are mixture models.

6 Discrete Deep Generative Models

Since this survey’s focus is on the manifold hypothesis, all of the models presented thus far are for contin-
uous distributions. Nonetheless, many DGMs assume that the ambient space X is discrete. For example,
images can be modelled as having pixels which take only finitely many different values, rather than a con-
tinuum of them. In this case, pX

∗ and pX
θ are both probability mass functions over X , and M ⊂ X denotes

the support of pX
∗ . Formally, in this setting X is a 0-dimensional manifold, so that even when M is a

strict subset of X , it remains a 0-dimensional submanifold. In other words, there can be no dimension-
ality mismatch for discrete data since D = d∗ = 0. In turn, this implies that mathematically, discrete
likelihood-based DGMs are not exposed to problems such as manifold overfitting (Section 4.1) which arise
from dimensionality mismatch. This view of discrete DGMs through the manifold lens is useful, since it
suggests that whenever a manifold-unaware DGM admits a straightforward discrete analogue, the latter
should be preferred as it will be unaffected by manifold-related woes. Indeed, as mentioned in Section 4.1.2,
discrete variational autoencoders (Gulrajani et al., 2017b; Vahdat & Kautz, 2020; Vahdat et al., 2021)
empirically outperform their continuous variants. Similarly, discrete incarnations of likelihood-based autore-
gressive DGMs (Germain et al., 2015; van den Oord et al., 2016; Salimans et al., 2017; Parmar et al., 2018)
outperform continuous ones (Uria et al., 2013). In contrast, discrete versions of diffusion models (Austin
et al., 2021; Campbell et al., 2022; Meng et al., 2022) do not outperform their manifold-aware continuous
counterparts (Section 5.1.2) when modelling images.

Discrete and continuous DGMs nonetheless have similarities, despite the differences outlined above. As
discussed in Section 1, a key motivation behind the manifold hypothesis is to capture the intuition that M,
the support of pX

∗ , is somehow sparse within X . This intuition often remains true in the discrete case: using

29Note that the theoretical analysis of Salmona et al. (2022) shows numerical instability when pX
∗ is multimodal, in which

case its support M can be considered as numerically disconnected.

47

Under review as submission to TMLR

images as an example once again, there are 256D possible discrete images (assuming each pixel entry takes
one of 256 possible values), yet the subset of natural images is vanishingly small in comparison and contains
orders of magnitude fewer elements. The main idea of continuous two-step models (Section 5.3), namely to
first approximate the support of pX

∗ and then learn the distribution within, remains equally sensible in the
discrete case. van den Oord et al. (2017) proposed an autoencoder which recovers discrete representations
over which they train a discrete DGM; this idea that has been further developed, with strong empirical
results (Razavi et al., 2019; Esser et al., 2021; Ramesh et al., 2021; Chang et al., 2022). We finish by
pointing out that the discussion in Section 5.3.1 applies to all these discrete two-step models, so that they
can be interpreted as minimizing a potentially regularized upper bound of the Wasserstein distance between
pX

∗ and pX
θ which becomes tight at optimality, because in the discrete case, perfect reconstructions are always

achievable given enough capacity of the encoder and decoder.

7 Conclusions and Future Outlook

Conclusions In this survey we have carried out a review of deep generative models through the lens of the
manifold hypothesis. This viewpoint presents a mathematically elegant perspective of DGMs, and suggests
that manifold-awareness is an important necessary condition for strong empirical performance. We thus
encourage researchers who are developing new DGMs to consider manifold-awareness as a desideratum, and
ask themselves: Can my deep generative model learn distributions supported on unknown low-dimensional
manifolds? When the answer is yes, demonstrating this fact will strengthen the work’s motivation; and when
the answer is no, this suggests that the DGM can be improved by endowing it with manifold-awareness –
either through a model-specific fix, or at least by training it on latent space as a two-step model (Section 5.3).
We also showed that numerical instabilities of likelihood-evaluation are unavoidable in the manifold setting
(Section 4.1.1) and that two-step models can be interpreted as minimizing a (potentially regularized) upper
bound of the Wasserstein distance objective (Section 5.3.1).

Future outlook Finally, we outline a non-exhaustive list of research directions involving deep generative
models and their interplay with the manifold hypothesis. We believe these lines of inquiry are interesting,
and mostly unexplored at the time of writing:

• Improved training of DGMs with two-step architectures Two-step models as presented in
Section 5.3 are manifold-aware. Yet, as also discussed in Section 5.3, two-step training does not
encourage the encoder from the first step to represent the data in a way conducive to distribution
learning in the second step. Intuitively, this means there is room for improvement in how these
models are trained, and since the end-to-end approaches described at the end of Section 5.3 are
in general manifold-unaware, several avenues remain open. For example, despite the existence of
regularizers for training autoencoders (Larsen et al., 2016; Higgins et al., 2017; Nazari et al., 2023),
there is very little work explicitly designing autoencoders for two-step training. The only work we
are aware of in this direction is by Hu et al. (2023), who propose to split the first step into two
sub-steps: in the first sub-step the encoder is trained along with a low-capacity decoder, and in
the second sub-step the encoder is frozen and a more flexible decoder is trained. Another avenue is
finding an end-to-end objective to train this type of model in a manifold-aware fashion. Current end-
to-end methods are manifold-unaware, despite providing a desirable inductive bias – an exception
being generalized energy-based models (Section 5.2.5) which cannot be readily extended beyond
using energy-based models (Section 4.1.4) as the latent distribution. We thus hypothesize that
any end-to-end, or improved two-step, manifold-aware procedure which can train diffusion models
(Section 5.1.2) in latent space while scaling to massive datasets (Schuhmann et al., 2022) is likely
to improve upon current commercial versions of latent diffusion models (Section 5.3.2).

• Extracting and leveraging manifold information Any manifold-aware DGM which succeeds
at learning its target distribution pX

∗ must have learned its support M as well, albeit perhaps
implicitly. Extracting information about M from a trained DGM is thus a natural problem, as
is leveraging this information for any practical use. Arvanitidis et al. (2018) and Chadebec &
Allassonnière (2022) showed that trained variational autoencoders (Section 4.1.2) implicitly provide

48

Under review as submission to TMLR

Riemannian metrics over their latent spaces, which they show can be leveraged for interpolating
between datapoints and for improved sampling procedures. Several works have already shown that
DGMs can be used to estimate the intrinsic dimension of M (Tempczyk et al., 2022; Zheng et al.,
2022; Stanczuk et al., 2022; Horvat & Pfister, 2024; Kamkari et al., 2024b), and Kamkari et al.
(2024a) showed that these estimates can be successfully used for unsupervised out-of-distribution
detection. The field of topological data analysis (Chazal & Michel, 2021) aims to extract topological
and geometric features of M – such as intrinsic dimension – from an observed dataset, conventionally
without the use of DGMs. A fruitful direction for future research will involve further exploiting
DGMs for topological data analysis.

• Further understanding dimensionality mismatch The effects of using a full-dimensional
model when the ground truth distribution is manifold-supported are well understood for likelihood-
based models (Section 4.1) and diffusion models (Section 5.1.2), yet our grasp of the interplay
between DGMs and the manifold hypothesis remains incomplete. For example, a theoretical un-
derstanding of score matching (Section 4.3) and conditional flow matching (Section 5.1.3) under
misspecified dimension is lacking, as is the effect of using lower-bounded energy functions in energy-
based models (Section 4.1.4).

• Finite-sample convergence rates All the analyses presented here assumed the nonparametric
regime (Section 2.2). As we have seen throughout our survey, this simplifying assumption enables a
useful and practical understanding of DGMs through the lens of the manifold hypothesis. Yet, this
assumption remains unrealistic since in practice expectations with respect to pX

∗ cannot be computed;
pX

∗ must thus be approximated via its empirical distribution – i.e. a mixture of (equally weighted)
point masses at the (finitely many) observed datapoints. Formally, the empirical distribution is
supported on a 0-dimensional submanifold of X – namely, the observed dataset – so that any
flexible enough and sufficiently well optimized manifold-aware DGM should simply memorize its
entire training dataset. Evidently manifold-awareness remains a desirable property – statistical
consistency under the manifold hypothesis is impossible without it – but the fact that state-of-the-art
DGMs do not suffer from total memorization cannot be explained while assuming the nonparametric
regime. Thus, understanding what drives DGMs to generalize rather than memorize remains a
relevant problem. Kadkhodaie et al. (2024) study these questions for diffusion models through the
lens of the inductive biases provided through the architecture of the score network. More formal
explanations of generalization are provided by statistical learning theory in the form of finite-sample
convergence rates. Although these results often do not assume the manifold hypothesis, a recent
line of work has, obtaining in turn much faster convergence rates which depend on intrinsic rather
than ambient dimension (Schreuder et al., 2021; Huang et al., 2022; Tang & Yang, 2023; Chae et al.,
2023; Chen et al., 2023; Oko et al., 2023; Vardanyan et al., 2023; Chakraborty & Bartlett, 2024b;a;
Hu et al., 2024). We believe that this research direction provides a challenging but highly promising
avenue for a full theoretical understanding of deep generative models.

References
David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for Boltzmann machines.

Cognitive Science, 9(1):147–169, 1985.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. In
International Conference on Learning Representations, 2023.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information bottle-
neck. In International Conference on Learning Representations, 2017.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,
12(3):313–326, 1982.

Michael Arbel, Danica J Sutherland, Mikołaj Bińkowski, and Arthur Gretton. On gradient regularizers for
MMD GANs. In Advances in Neural Information Processing Systems, 2018.

49

Under review as submission to TMLR

Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models. In International Con-
ference on Learning Representations, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, pp. 214–223, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium in
generative adversarial nets (GANs). In International Conference on Machine Learning, pp. 224–232,
2017.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: On the curvature of deep
generative models. In International Conference on Learning Representations, 2018.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing Systems,
2021.

Jonathan Bac, Evgeny M Mirkes, Alexander N Gorban, Ivan Tyukin, and Andrei Zinovyev. Scikit-dimension:
A python package for intrinsic dimension estimation. Entropy, 23(10), 2021.

Ershad Banijamali, Ali Ghodsi, and Pascal Poupart. Generative mixture of networks. In International Joint
Conference on Neural Networks (IJCNN), pp. 3753–3760, 2017.

Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. Journal of Machine Learning Research, 18:1–43, 2018.

Richard Beals, David H Krantz, and Amos Tversky. Foundations of multidimensional scaling. Psychological
Review, 75(2):127, 1968.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik Jacobsen. Understanding
and mitigating exploding inverses in invertible neural networks. In International Conference on Artificial
Intelligence and Statistics, pp. 1792–1800, 2021.

Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximillian Nickel, Aditya Grover, Ricky TQ
Chen, and Yaron Lipman. Matching normalizing flows and probability paths on manifolds. In International
Conference on Machine Learning, pp. 1749–1763, 2022.

Matan Ben-Yosef and Daphna Weinshall. Gaussian mixture generative adversarial networks for diverse
datasets, and the unsupervised clustering of images. arXiv:1808.10356, 2018.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

Clément Berenfeld and Marc Hoffmann. Density estimation on an unknown submanifold. Electronic Journal
of Statistics, 15(1):2179 – 2223, 2021.

Clément Berenfeld, Paul Rosa, and Judith Rousseau. Estimating a density near an unknown manifold: A
Bayesian nonparametric approach. arXiv:2205.15717, 2022.

Patrick Billingsley. Probability and Measure. Wiley, 2012.

Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD GANs.
In International Conference on Learning Representations, 2018.

Jeremiah Birrell, Paul Dupuis, Markos A Katsoulakis, Yannis Pantazis, and Luc Rey-Bellet. (f, γ)-
Divergences: Interpolating between f -divergences and integral probability metrics. The Journal of Ma-
chine Learning Research, 23:1816–1885, 2022.

Vanessa M Boehm and Uros Seljak. Probabilistic autoencoder. Transactions of Machine Learning Research,
2022.

50

Under review as submission to TMLR

Vladimir Igorevich Bogachev. Measure Theory, volume 2. Springer, 2007.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. Deep generative modelling: A compara-
tive review of VAEs, GANs, normalizing flows, energy-based and autoregressive models. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(11):7327–7347, 2022.

Clément Bonet, Lucas Drumetz, and Nicolas Courty. Sliced-Wasserstein distances and flows on Cartan-
Hadamard manifoldss. arXiv:2403.06560, 2024.

Ali Borji. Pros and cons of GAN evaluation measures. Computer Vision and Image Understanding, 179:
41–65, 2019.

Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. Latent variable modelling
with hyperbolic normalizing flows. In International Conference on Machine Learning, pp. 1045–1055, 2020.

Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S Albergo, Kyle Cran-
mer, Daniel C Hackett, and Phiala E Shanahan. Sampling using SU(N) gauge equivariant flows. Physical
Review D, 103(7):074504, 2021.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation. In
Advances in Neural Information Processing Systems, 2020.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2019.

Bradley CA Brown, Anthony L Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel Loaiza-Ganem.
Verifying the union of manifolds hypothesis for image data. In International Conference on Learning
Representations, 2023.

Marcus Brubaker, Mathieu Salzmann, and Raquel Urtasun. A family of MCMC methods on implicitly
defined manifolds. In International Conference on Artificial Intelligence and Statistics, pp. 161–172, 2012.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and Arnaud
Doucet. A continuous time framework for discrete denoising models. In Advances in Neural Information
Processing Systems, 2022.

Anthony L Caterini, Rob Cornish, Dino Sejdinovic, and Arnaud Doucet. Variational inference with
continuously-indexed normalizing flows. In Uncertainty in Artificial Intelligence, pp. 44–53, 2021a.

Anthony L Caterini, Gabriel Loaiza-Ganem, Geoff Pleiss, and John P Cunningham. Rectangular flows for
manifold learning. In Advances in Neural Information Processing Systems, 2021b.

Clément Chadebec and Stéphanie Allassonnière. A geometric perspective on variational autoencoders. In
Advances in Neural Information Processing Systems, 2022.

Minwoo Chae, Dongha Kim, Yongdai Kim, and Lizhen Lin. A likelihood approach to nonparametric esti-
mation of a singular distribution using deep generative models. Journal of Machine Learning Research,
24(77):1–42, 2023.

Saptarshi Chakraborty and Peter Bartlett. A statistical analysis of Wasserstein autoencoders for intrinsically
low-dimensional data. In International Conference on Learning Representations, 2024a.

Saptarshi Chakraborty and Peter L Bartlett. On the statistical properties of generative adversarial models
for low intrinsic data dimension. arXiv:2401.15801, 2024b.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. MaskGIT: Masked generative image
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11315–11325, 2022.

Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: Fundamental and
practical aspects for data scientists. Frontiers in Artificial Intelligence, 4:667963, 2021.

51

Under review as submission to TMLR

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, and Yoshua
Bengio. Your GAN is secretly an energy-based model and you should use discriminator driven latent
sampling. In Advances in Neural Information Processing Systems, 2020.

Jianfei Chen, Cheng Lu, Biqi Chenli, Jun Zhu, and Tian Tian. VFlow: More expressive generative flows
with variational data augmentation. In International Conference on Machine Learning, pp. 1660–1669,
2020.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and dis-
tribution recovery of diffusion models on low-dimensional data. In International Conference on Machine
Learning, pp. 4672–4712, 2023.

Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In International Conference on
Learning Representations, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, 2018.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. Variational lossy autoencoder. In International Conference on Learning Representa-
tions, 2017.

Rewon Child. Very deep VAEs generalize autoregressive models and can outperform them on images. In
International Conference on Learning Representations, 2021.

Rob Cornish, Anthony L Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity constraints
with continuously indexed normalising flows. In International Conference on Machine Learning, pp. 2133–
2143, 2020.

Jesse C Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto Reyes-Gonzalez, Marco Letizia,
and Anthony L Caterini. CaloMan: Fast generation of calorimeter showers with density estimation on
learned manifolds. arXiv:2211.15380, 2022.

Edmond Cunningham, Adam D Cobb, and Susmit Jha. Principal component flows. In International Con-
ference on Machine Learning, pp. 4492–4519, 2022.

Bin Dai and David Wipf. Diagnosing and enhancing VAE models. In International Conference on Learning
Representations, 2019.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv:2307.08698,
2023.

Anirban DasGupta. Asymptotic Theory of Statistics and Probability. Springer, 2008.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis. Transactions
on Machine Learning Research, 2022.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and Arnaud
Doucet. Riemannian score-based generative modeling. In Advances in Neural Information Processing
Systems, 2022.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22, 1977.

Jean Dieudonné. Treatise on Analysis, volume 3. Academic Press, 1973.

Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Salimbeni, Kai Arulku-
maran, and Murray Shanahan. Deep unsupervised clustering with Gaussian mixture variational autoen-
coders. arXiv:1611.02648, 2016.

52

Under review as submission to TMLR

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components estimation.
arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In International
Conference on Learning Representations, 2017.

Vincent Divol. Reconstructing measures on manifolds: An optimal transport approach. arXiv:2102.07595,
2021.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In International Con-
ference on Learning Representations, 2017.

Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, and Ullrich Köthe. Free-form flows:
Make any architecture a normalizing flow. In International Conference on Artificial Intelligence and
Statistics, pp. 2197–2205, 2024.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. In Advances in
Neural Information Processing Systems, 2019.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. In Advances in Neural
Information Processing Systems, 2019.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In Advances in
Neural Information Processing Systems, 2019.

Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural networks
via maximum mean discrepancy optimization. In Uncertainty in Artificial Intelligence, pp. 258–267, 2015.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–
12883, 2021.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimension of
datasets by a minimal neighborhood information. Scientific Reports, 7(1):12140, 2017.

Kyriakos Flouris and Ender Konukoglu. Canonical normalizing flows for manifold learning. In Advances in
Neural Information Processing Systems, 2023.

Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow ODEs of diffusion models
in Wasserstein distances. arXiv:2401.17958, 2024.

Mevlana C Gemici, Danilo Jimenez Rezende, and Shakir Mohamed. Normalizing flows on Riemannian
manifolds. arXiv:1611.02304, 2016.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pp. 881–889, 2015.

Benyamin Ghojogh, Mark Crowley, Fakhri Karray, and Ali Ghodsi. Elements of Dimensionality Reduction
and Manifold Learning. Springer Nature, 2023.

Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri, Philip HS Torr, and Puneet K Dokania. Multi-agent
diverse generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8513–8521, 2018.

Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From variational
to deterministic autoencoders. In International Conference on Learning Representations, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, 2014.

53

Under review as submission to TMLR

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
Free-form continuous dynamics for scalable reversible generative models. In International Conference
on Learning Representations, 2019.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and
Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like one. In
International Conference on Learning Representations, 2020.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel method
for the two-sample-problem. In Advances in Neural Information Processing Systems, 2006.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of Wasserstein GANs. In Advances in Neural Information Processing Systems, 2017a.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David Vazquez, and
Aaron Courville. PixelVAE: A latent variable model for natural images. In International Conference on
Learning Representations, 2017b.

UG Haussmann and E Pardoux. Time reversal of diffusions. The Annals of Probability, 14(4):1188–1205,
1986.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778,
2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances in Neural
Information Processing Systems, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mo-
hamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational
framework. In International Conference on Learning Representations, 2017.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-based
generative models with variational dequantization and architecture design. In International Conference
on Machine Learning, pp. 2722–2730, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, 2020.

Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. MGAN: Training generative adversarial nets
with multiple generators. In International Conference on Learning Representations, 2018.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–257,
1991.

Christian Horvat and Jean-Pascal Pfister. Denoising normalizing flow. In Advances in Neural Information
Processing Systems, 2021.

Christian Horvat and Jean-Pascal Pfister. Density estimation on low-dimensional manifolds: An inflation-
deflation approach. Journal of Machine Learning Research, 24(61):1–37, 2023.

Christian Horvat and Jean-Pascal Pfister. On gauge freedom, conservativity and intrinsic dimensionality
estimation in diffusion models. In International Conference on Learning Representations, 2024.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Zhao Song, and Han Liu. On statistical rates and provably
efficient criteria of latent diffusion transformers (DiTs). arXiv:2407.01079, 2024.

Tianyang Hu, Fei Chen, Haonan Wang, Jiawei Li, Wenjia Wang, Jiacheng Sun, and Zhenguo Li. Com-
plexity matters: Rethinking the latent space for generative modeling. In Advances in Neural Information
Processing Systems, 2023.

54

Under review as submission to TMLR

Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging the gap
between generative flows and latent variable models. arXiv preprint arXiv:2002.07101, 2020.

Jian Huang, Yuling Jiao, Zhen Li, Shiao Liu, Yang Wang, and Yunfei Yang. An error analysis of generative
adversarial networks for learning distributions. Journal of Machine Learning Research, 23(1):5047–5089,
2022.

Witold Hurewicz and Henry Wallman. Dimension Theory (PMS-4). Princeton University Press, 1948.

M F Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines.
Communications in Statistics - Simulation and Computation, 18(3):1059–1076, 1989.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine
Learning Research, 6(24):695–709, 2005.

Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-supervised learning with
normalizing flows. In International Conference on Machine Learning, pp. 4615–4630, 2020.

Varuna Jayasiri and Nipun Wijerathne. Annotated paper implementations, 2020. URL https://nn.labml.
ai/.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep embedding:
An unsupervised and generative approach to clustering. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

Kerstin Johnsson, Charlotte Soneson, and Magnus Fontes. Low bias local intrinsic dimension estimation
from expected simplex skewness. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37
(1):196–202, 2014.

Zahra Kadkhodaie and Eero P Simoncelli. Stochastic solutions for linear inverse problems using the prior
implicit in a denoiser. In Advances in Neural Information Processing Systems, 2021.

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in diffusion
models arises from geometry-adaptive harmonic representations. In International Conference on Learning
Representations, 2024.

Dimitris Kalatzis, Johan Ziruo Ye, Alison Pouplin, Jesper Wohlert, and Søren Hauberg. Density estimation
on smooth manifolds with normalizing flows. arXiv:2106.03500, 2021.

Hamidreza Kamkari, Brendan Leigh Ross, Jesse C Cresswell, Anthony L Caterini, Rahul G Krishnan, and
Gabriel Loaiza-Ganem. A geometric explanation of the likelihood OOD detection paradox. In International
Conference on Machine Learning, 2024a.

Hamidreza Kamkari, Brendan Leigh Ross, Rasa Hosseinzadeh, Jesse C Cresswell, and Gabriel Loaiza-Ganem.
A geometric view of data complexity: Efficient local intrinsic dimension estimation with diffusion models.
arXiv:2406.03537, 2024b.

Gurtej Kanwar, Michael S Albergo, Denis Boyda, Kyle Cranmer, Daniel C Hackett, Sébastien Racaniere,
Danilo Jimenez Rezende, and Phiala E Shanahan. Equivariant flow-based sampling for lattice gauge
theory. Physical Review Letters, 125(12):121601, 2020.

Kacper Kapusniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein,
Avishek Joey Bose, and Francesco Di Giovanni. Metric flow matching for smooth interpolations on the
data manifold. arXiv:2405.14780, 2024.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved
quality, stability, and variation. In International Conference on Learning Representations, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4401–4410, 2019.

55

https://nn.labml.ai/
https://nn.labml.ai/

Under review as submission to TMLR

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8110–8119, 2020.

Isay Katsman, Aaron Lou, Derek Lim, Qingxuan Jiang, Ser Nam Lim, and Christopher M De Sa. Equivariant
manifold flows. In Advances in Neural Information Processing Systems, 2021.

Hassan K Khalil. Nonlinear Systems. Prentice Hall, 2002.

Mahyar Khayatkhoei, Maneesh K Singh, and Ahmed Elgammal. Disconnected manifold learning for gener-
ative adversarial networks. In Advances in Neural Information Processing Systems, 2018.

Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft truncation: A univer-
sal training technique of score-based diffusion model for high precision score estimation. In International
Conference on Machine Learning, pp. 11201–11228, 2022.

Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang, Joun Yeop Lee, and Nam Soo Kim. Softflow: Probabilistic
framework for normalizing flow on manifolds. In Advances in Neural Information Processing Systems, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, 2018.

Diederik P Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with simple data
augmentation. In Advances in Neural Information Processing Systems, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow. In Advances in Neural Information Processing
Systems, 2016.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review
of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11):3964–3979,
2020.

Frederic Koehler, Viraj Mehta, and Andrej Risteski. Representational aspects of depth and conditioning in
normalizing flows. In International Conference on Machine Learning, pp. 5628–5636, 2021.

Frederic Koehler, Viraj Mehta, Chenghui Zhou, and Andrej Risteski. Variational autoencoders in the pres-
ence of low-dimensional data: Landscape and implicit bias. In International Conference on Learning
Representations, 2022.

Soheil Kolouri, Phillip E Pope, Charles E Martin, and Gustavo K Rohde. Sliced Wasserstein auto-encoders.
In International Conference on Learning Representations, 2018.

Konik Kothari, AmirEhsan Khorashadizadeh, Maarten de Hoop, and Ivan Dokmanić. Trumpets: Injective
flows for inference and inverse problems. In Uncertainty in Artificial Intelligence, pp. 1269–1278, 2021.

Ullrich Köthe. A review of change of variable formulas for generative modeling. arXiv:2308.02652, 2023.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE
Journal, 37(2):233–243, 1991.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

56

Under review as submission to TMLR

Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psy-
chometrika, 29(1):1–27, 1964.

Abhishek Kumar, Ben Poole, and Kevin Murphy. Regularized autoencoders via relaxed injective probability
flow. In International Conference on Artificial Intelligence and Statistics, pp. 4292–4301, 2020.

Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly minimizes the
Wasserstein distance. In Advances in Neural Information Processing Systems, 2022.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding
beyond pixels using a learned similarity metric. In International Conference on Machine Learning, pp.
1558–1566, 2016.

Hyunjong Lee, Yedarm Seong, Sungdong Lee, and Joong-Ho Won. StrWAEs to invariant representations.
In International Conference on Machine Learning, 2024.

John M Lee. Introduction to Smooth Manifolds. Springer, 2nd edition, 2012.

John M Lee. Introduction to Riemannian Manifolds. Springer, 2nd edition, 2018.

Erich L Lehmann and George Casella. Theory of Point Estimation. Springer Science & Business Media,
2006.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. In Advances in
Neural Information Processing Systems, 2004.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. MMD GAN: Towards
deeper understanding of moment matching network. In Advances in Neural Information Processing Sys-
tems, 2017.

Yujia Li, Kevin Swersky, and Richard Zemel. Generative moment matching networks. In International
Conference on Machine Learning, pp. 1718–1727, 2015.

Shuyu Lin, Stephen Roberts, Niki Trigoni, and Ronald Clark. Balancing reconstruction quality and regular-
isation in evidence lower bound for variational autoencoders. arXiv:1909.03765, 2019.

Yaron Lipman, Ricky T Q Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for
generative modeling. In International Conference on Learning Representations, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In International Conference on Learning Representations, 2023.

Gabriel Loaiza-Ganem, Brendan Leigh Ross, Jesse C Cresswell, and Anthony L Caterini. Diagnosing and
fixing manifold overfitting in deep generative models. Transactions on Machine Learning Research, 2022a.

Gabriel Loaiza-Ganem, Brendan Leigh Ross, Luhuan Wu, John Patrick Cunningham, Jesse C Cresswell, and
Anthony L Caterini. Denoising deep generative models. In Proceedings on "I Can’t Believe It’s Not Better!
- Understanding Deep Learning Through Empirical Falsification" at NeurIPS 2022 Workshops, 2022b.

Francesco Locatello, Damien Vincent, Ilya Tolstikhin, Gunnar Rätsch, Sylvain Gelly, and Bernhard
Schölkopf. Competitive training of mixtures of independent deep generative models. arXiv:1804.11130,
2018.

Aaron Lou, Minkai Xu, and Stefano Ermon. Scaling Riemannian diffusion models. In Advances in Neural
Information Processing Systems, 2023.

Yubin Lu, Zhongjian Wang, and Guillaume Bal. Mathematical analysis of singularities in the diffusion model
under the submanifold assumption. arXiv:2301.07882, 2023.

Lorenzo Luzi, Randall Balestriero, and Richard G Baraniuk. Ensembles of generative adversarial networks
for disconnected data. arXiv:2006.14600, 2020.

57

Under review as submission to TMLR

David JC MacKay and Zoubin Ghahramani. Comments on “Maximum likelihood estimation of intrinsic
dimension’ by E. Levina and P. Bickel (2004). The Inference Group Website, Cavendish Laboratory,
Cambridge University, 2005.

Kanti V Mardia, John T Kent, and Arnab K Laha. Score matching estimators for directional distributions.
arXiv:1604.08470, 2016.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. In Advances in Neural
Information Processing Systems, 2020.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. UMAP: Uniform manifold approxima-
tion and projection. Journal of Open Source Software, 3(29):861, 2018.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized score
matching for discrete data. In Advances in Neural Information Processing Systems, 2022.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for gener-
ative adversarial networks. In International Conference on Learning Representations, 2018.

James R Munkres. Topology. Pearson Education, 2014.

Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Eric Nalisnick, Lars Hertel, and Padhraic Smyth. Approximate inference for deep latent Gaussian mixtures.
In NeurIPS Workshop on Bayesian Deep Learning, volume 2, pp. 131, 2016.

Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hypothesis. In Advances
in Neural Information Processing Systems, 2010.

Hariharan Narayanan and Partha Niyogi. On the sample complexity of learning smooth cuts on a manifold.
In Conference on Learning Theory, 2009.

Philipp Nazari, Sebastian Damrich, and Fred A Hamprecht. Geometric autoencoders - what you see is what
you decode. In International Conference on Machine Learning, pp. 25834–25857, 2023.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and editing with text-
guided diffusion models. In International Conference on Machine Learning, pp. 16784–16804, 2022.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems, 2016.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution
estimators. In International Conference on Machine Learning, pp. 26517–26582, 2023.

Bernt Øksendal. Stochastic Differential Equations, pp. 65–84. Springer Science & Business Media, 2003.

Arkadas Ozakin and Alexander Gray. Submanifold density estimation. In Advances in Neural Information
Processing Systems, 2009.

Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based
prior model. In Advances in Neural Information Processing Systems, 2020.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation.
In Advances in Neural Information Processing Systems, 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning
Research, 22(57):1–64, 2021.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. Image transformer. In International Conference on Machine Learning, pp. 4055–4064, 2018.

58

Under review as submission to TMLR

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, 2019.

Giorgio Patrini, Rianne van den Berg, Patrick Forre, Marcello Carioni, Samarth Bhargav, Max Welling,
Tim Genewein, and Frank Nielsen. Sinkhorn autoencoders. In Uncertainty in Artificial Intelligence, pp.
733–743, 2020.

Karl Pearson. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Xavier Pennec. Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Jour-
nal of Mathematical Imaging and Vision, 25(1):127–154, 2006.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in Machine
Learning, 11(5-6):355–607, 2019.

Jakiw Pidstrigach. Score-based generative models detect manifolds. In Advances in Neural Information
Processing Systems, 2022.

Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning. Cambridge University
Press, 2022.

Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension
of images and its impact on learning. In International Conference on Learning Representations, 2021.

Janis Postels, Martin Danelljan, Luc Van Gool, and Federico Tombari. Maniflow: Implicitly representing
manifolds with normalizing flows. In International Conference on 3D Vision, pp. 84–93, 2022.

Michael Puthawala, Matti Lassas, Ivan Dokmanic, and Maarten De Hoop. Universal joint approximation of
manifolds and densities by simple injective flows. In International Conference on Machine Learning, pp.
17959–17983, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. In International Conference on Learning Representations, 2015.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pp.
8821–8831, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with CLIP latents. arXiv:2204.06125, 2022.

Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with VQ-VAE-2.
In Advances in Neural Information Processing Systems, 2019.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, pp. 1530–1538, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning, pp. 1278–1286,
2014.

Danilo Jimenez Rezende, George Papamakarios, Sébastien Racaniere, Michael Albergo, Gurtej Kanwar,
Phiala Shanahan, and Kyle Cranmer. Normalizing flows on tori and spheres. In International Conference
on Machine Learning, pp. 8083–8092, 2020.

59

Under review as submission to TMLR

Herbert Robbins. An empirical Bayes approach to statistics. In Third Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pp. 157–163, 1956.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp.
234–241. Springer, 2015.

Brendan Leigh Ross and Jesse C Cresswell. Tractable density estimation on learned manifolds with conformal
embedding flows. In Advances in Neural Information Processing Systems, 2021.

Brendan Leigh Ross, Gabriel Loaiza-Ganem, Anthony L Caterini, and Jesse C Cresswell. Neural implicit
manifold learning for topology-aware generative modelling. Transactions on Machine Learning Research,
2023.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-based genera-
tive modeling on manifolds. In Advances in Neural Information Processing Systems, 2021.

Yangjun Ruan, Karen Ullrich, Daniel S Severo, James Townsend, Ashish Khisti, Arnaud Doucet, Alireza
Makhzani, and Chris Maddison. Improving lossless compression rates via Monte Carlo bits-back coding.
In International Conference on Machine Learning, pp. 9136–9147, 2021.

Walter Rudin. Real and Complex Analysis. McGraw-Hill, Inc., 3rd edition, 1987.

David E Rumelhart, Geofrrey E Hinton, and Ronald J Williams. Learning Internal Representations by Error
Propagation, pp. 673–695. MIT Press, 1988.

Oleh Rybkin, Kostas Daniilidis, and Sergey Levine. Simple and effective VAE training with calibrated
decoders. In International Conference on Machine Learning, pp. 9179–9189, 2021.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J Fleet,
and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language understanding.
In Advances in Neural Information Processing Systems, 2022.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. PixelCNN++: Improving the Pixel-
CNN with discretized logistic mixture likelihood and other modifications. In International Conference on
Learning Representations, 2017.

Hadi Salman, Payman Yadollahpour, Tom Fletcher, and Kayhan Batmanghelich. Deep diffeomorphic nor-
malizing flows. arXiv:1810.03256, 2018.

Antoine Salmona, Valentin De Bortoli, Julie Delon, and Agnès Desolneux. Can push-forward generative
models fit multimodal distributions? In Advances in Neural Information Processing Systems, 2022.

Saeed Saremi and Aapo Hyvärinen. Neural empirical Bayes. Journal of Machine Learning Research, 20
(181):1–23, 2019.

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. StyleGAN-t: Unlocking the power
of GANs for fast large-scale text-to-image synthesis. In International Conference on Machine Learning,
pp. 30105–30118, 2023.

60

Under review as submission to TMLR

René L Schilling and Franziska Kühn. Counterexamples in Measure and Integration. Cambridge University
Press, 2021.

Stefan Schonsheck, Jie Chen, and Rongjie Lai. Chart auto-encoders for manifold structured data.
arXiv:1912.10094, 2019.

Nicolas Schreuder, Victor-Emmanuel Brunel, and Arnak Dalalyan. Statistical guarantees for generative
models without domination. In Algorithmic Learning Theory, pp. 1051–1071, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa R
Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. LAION-5b: An
open large-scale dataset for training next generation image-text models. In Advances in Neural Information
Processing Systems, 2022.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

Sahil Sidheekh, Chris B Dock, Tushar Jain, Radu Balan, and Maneesh K Singh. VQ-Flows: Vector quantized
local normalizing flows. In Uncertainty in Artificial Intelligence, pp. 1835–1845. PMLR, 2022.

Carl-Johann Simon-Gabriel and Bernhard Schölkopf. Kernel distribution embeddings: Universal kernels,
characteristic kernels and kernel metrics on distributions. Journal of Machine Learning Research, 19(44):
1–29, 2018.

Carl-Johann Simon-Gabriel, Alessandro Barp, Bernhard Schölkopf, and Lester Mackey. Metrizing weak
convergence with maximum mean discrepancies. arXiv:2006.09268, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pp. 2256–2265,
2015.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder varia-
tional autoencoders. In Advances in Neural Information Processing Systems, 2016.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In
Advances in Neural Information Processing Systems, 2019.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based
diffusion models. In Advances in Neural Information Processing Systems, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021b.

Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, and Ullrich Köthe. Learning distri-
butions on manifolds with free-form flows. arXiv:2312.09852, 2023.

Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, Lea Zimmerman, and Ullrich Köthe.
Lifting architectural constraints of injective flows. In International Conference on Learning Representa-
tions, 2024.

Jan Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Your diffusion model secretly
knows the dimension of the data manifold. arXiv:2212.12611, 2022.

George Stein, Jesse C Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin Villecroze,
Zhaoyan Liu, Anthony L Caterini, J Eric T Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of gen-
erative model evaluation metrics and their unfair treatment of diffusion models. In Advances in Neural
Information Processing Systems, 2023.

61

Under review as submission to TMLR

Rong Tang and Yun Yang. Minimax rate of distribution estimation on unknown submanifolds under adver-
sarial losses. The Annals of Statistics, 51(3):1282–1308, 2023.

Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, and Jeremie Mary. Learning disconnected manifolds:
A no GAN’s land. In International Conference on Machine Learning, pp. 9418–9427, 2020.

Piotr Tempczyk, Rafał Michaluk, Lukasz Garncarek, Przemysław Spurek, Jacek Tabor, and Adam Golinski.
LIDL: Local intrinsic dimension estimation using approximate likelihood. In International Conference on
Machine Learning, pp. 21205–21231, 2022.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. In
International Conference on Learning Representations, 2016.

Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 61(3):611–622, 1999.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv:physics/0004057, 2000.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schölkopf. Wasserstein auto-encoders. In
International Conference on Learning Representations, 2018.

Jakub Tomczak and Max Welling. VAE with a VampPrior. In International Conference on Artificial
Intelligence and Statistics, pp. 1214–1223, 2018.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch
optimal transport. Transactions on Machine Learning Research, 2024.

James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent variables using
bits back coding. In International Conference on Learning Representations, 2019.

Ba-Hien Tran, Giulio Franzese, Pietro Michiardi, and Maurizio Filippone. One-line-of-code data mollifi-
cation improves optimization of likelihood-based generative models. In Advances in Neural Information
Processing Systems, 2023.

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive density-
estimator. In Advances in Neural Information Processing Systems, 2013.

Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Advances in Neural
Information Processing Systems, 2020.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In Advances
in Neural Information Processing Systems, 2021.

Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester normalizing
flows for variational inference. In Uncertainty in Artificial Intelligence, pp. 393–402, 2018.

Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, and Koray Kavukcuoglu.
Conditional image generation with PixelCNN decoders. In Advances in Neural Information Processing
Systems, 2016.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In
Advances in Neural Information Processing Systems, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(86):2579–2605, 2008.

62

Under review as submission to TMLR

Elen Vardanyan, Arshak Minasyan, Sona Hunanyan, Tigran Galstyan, and Arnak Dalalyan. Guaranteed
optimal generative modeling with maximum deviation from the empirical distribution. arXiv:2307.16422,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

Cédric Villani. Optimal Transport: Old and New. Springer Science & Business Media, 2009.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23
(7):1661–1674, 2011.

Julius Von Rohrscheidt and Bastian Rieck. Topological singularity detection at multiple scales. In Interna-
tional Conference on Machine Learning, pp. 35175–35197, 2023.

GK Wallace. The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics,
38(1):18–34, 1992.

Matt P Wand and M Chris Jones. Kernel Smoothing. CRC Press, 1994.

Yi Wang and Zhiren Wang. CW complex hypothesis for image data. In International Conference on Machine
Learning, 2024.

Yixin Wang, David Blei, and John P Cunningham. Posterior collapse and latent variable non-identifiability.
In Advances in Neural Information Processing Systems, 2021.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In International
Conference on Machine Learning, pp. 681–688, 2011.

Zhisheng Xiao, Qing Yan, and Yali Amit. Generative latent flow. arXiv:1905.10485, 2019.

Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative ConvNet. In International
Conference on Machine Learning, pp. 2635–2644, 2016.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui,
and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Survey, 2023.

Sangwoong Yoon, Yung-Kyun Noh, and Frank Park. Autoencoding under normalization constraints. In
International Conference on Machine Learning, pp. 12087–12097, 2021.

Sangwoong Yoon, Young-Uk Jin, Yung-Kyun Noh, and Frank Park. Energy-based models for anomaly
detection: A manifold diffusion recovery approach. Advances in Neural Information Processing Systems,
2023.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos Faloutsos,
Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-based diffusion in
latent space. In International Conference on Learning Representations, 2024.

Mingtian Zhang, Peter Hayes, Thomas Bird, Raza Habib, and David Barber. Spread divergence. In Inter-
national Conference on Machine Learning, pp. 11106–11116, 2020a.

Mingtian Zhang, Yitong Sun, Chen Zhang, and Steven Mcdonagh. Spread flows for manifold modelling. In
International Conference on Artificial Intelligence and Statistics, pp. 11435–11456, 2023.

Zijun Zhang, Ruixiang Zhang, Zongpeng Li, Yoshua Bengio, and Liam Paull. Perceptual generative autoen-
coders. In International Conference on Machine Learning, pp. 11298–11306, 2020b.

Yijia Zheng, Tong He, Yixuan Qiu, and David P Wipf. Learning manifold dimensions with conditional
variational autoencoders. In Advances in Neural Information Processing Systems, 2022.

63

Under review as submission to TMLR

A Weak Convergence Primer

We now provide a brief summary of weak convergence of probability measures. We do not use a grey box
around this section due to its length, despite the content being fairly technical. As in the main text, all
the measures we consider here will be defined on X along with its Borel σ-algebra. Given a sequence of
probability measures (PX

θt
)∞
t=1, we would like to define what it means for the sequence to converge to some

probability measure PX
† . As we will see, there are several ways to define convergence of probability measures;

we would like to use one which captures the intuition that PX
θt

“learns” PX
† in the sense that PX

θt
converges

to PX
† as t → ∞ if and only if samples from PX

θt
become progressively harder to distinguish from those of PX

†
as t becomes larger, becoming indistinguishable in the limit. When PX

θt
represents a DGM, this is precisely

the form of convergence we would hope to observe as we optimize its parameters θt.

Strong convergence The seemingly most natural way to define convergence is to say that PX
θt

converges
to PX

† as t → ∞ if PX
θt

(B) → PX
† (B) as t → ∞ for every Borel set B. This type of convergence is called

strong convergence. As the name suggests, this type of convergence is too strong, to the point where it does
not properly capture the intended intuition of “PX

θt
converges to PX

† if and only if PX
θt

learns PX
† ”.

Let us illustrate why this is the case with two examples. First, let PX
θt

be Gaussian with mean 0 and covariance
matrix 1/t ID. Intuitively, this sequence learns a point mass at 0, δ0, yet it does not strongly converge to
it: {0} is a Borel set, and PX

θt
({0}) = 0 → 0 as t → ∞, yet δ0({0}) = 1 ̸= 0. As a second example, consider

PX
θt

= δxt , where (xt)∞
t=1 is a fixed sequence converging to 0 with {xt}∞

t=1 ∩ {0} = ∅. Intuitively this sequence
also learns δ0, but similarly to the previous example, PX

θt
({0}) = 0 for every t and thus the sequence does

not strongly converge to δ0 either.

We highlight that these are not overly-contrived examples in the DGM setting. The first example illustrates a
common scenario where a sequence of full-dimensional models PX

θt
≪ λD “learn” a distribution PX

† supported
on a low-dimensional embedded submanifold M of X , without strongly converging to PX

† . In this case, M
is also a Borel set, and PX

θt
(M) = 0 → 0 as t → ∞ even though PX

† (M) = 1 ̸= 0. The second example
illustrates how a sequence of models whose supports do not overlap with that of their target distribution can
“learn” it without strongly converging to it. Indeed, we need a laxer definition of convergence of probability
measures to properly convey the idea that a sequence of models PX

θt
“learns” PX

† .

Weak convergence Weak – rather than strong – convergence provides a more appropriate notion of
convergence to convey “learning”. We say that PX

θt
converges weakly to PX

† if EX∼PX
θt

[h(X)] → EX∼PX
†

[h(X)]
as t → ∞ for every bounded and continuous function h : X → R. As mentioned in Section 2.1, we write
PX

θt

ω−→ PX
† as t → ∞ to denote weak convergence. Intuitively, PX

θt
converges weakly to PX

† if, as t → ∞,
it becomes arbitrarily difficult to distinguish between samples from PX

θt
and samples from PX

† by using a
bounded and continuous function; weak convergence matches the intuition of PX

θt
“learning” PX

† much better
than strong convergence.

There are many equivalent definitions of weak convergence, with the standard one being the one presented
above. The result establishing the equivalence of these definitions is called the Portmanteau Lemma. We
present a reduced version of this lemma below – which we will use to prove the Likelihood Instability Theorem
in Appendix B.1 – where only one of these equivalences is stated. Before stating the lemma, we define the
continuity sets of a probability measure.
Definition 1 (Continuity Set). Let PX

† be a probability measure on X and B ⊂ X a Borel set. We say that
B is a continuity set of PX

† if PX
† (∂X B) = 0, where ∂X B denotes the topological boundary of B on X .

Lemma 1 (Portmanteau). Let PX
† be a probability measure on X , and let (PX

θt
)∞
t=1 be a sequence of probability

measures on X . Then, PX
θt

ω−→ PX
† as t → ∞ if and only if PX

θt
(B) → PX

† (B) as t → ∞ for every continuity
set B of PX

† .

Let us consider once again the example where PX
θt

is Gaussian with mean 0 and covariance matrix 1/t ID.
It is not difficult to prove that PX

θt
(B) → δ0(B) as t → ∞ for every Borel set B such that 0 /∈ ∂X B (i.e.

64

Under review as submission to TMLR

δ0(∂X B) = 0), so that as intended, PX
θt

ω−→ δ0 as t → ∞. Similarly, it is not difficult to prove the same in the
example where PX

θt
= δxt

. The fact that these sequences converge weakly but not strongly to δ0 illustrates
that weak convergence does indeed provide the right tool to talk about a sequence of models “learning” their
target distribution.

Metrizing weak convergence Finally, we say that a metric D : ∆(X) × ∆(X) → R on the space
of probability measures on X metrizes weak convergence if D(PX

θt
,PX

†) → 0 as t → 0 holds if and only
if PX

θt

ω−→ PX
† as t → ∞. Throughout the main manuscript, we often abuse language and use the term

“metrizing weak convergence” even when D is only a divergence rather than a metric, as this is enough to
ensure that minimizing D(PX

θ ,PX
∗) over θ is a sensible training objective for a DGM PX

θ – even if PX
∗ has

low-dimensional support.

B Proofs

As in Appendix A, we omit the use of a grey box despite the use of technical language.

B.1 Discussion and Proof of the Likelihood Instability Theorem

We start by restating the Likelihood Instability Theorem for convenience before discussing it.
Theorem 1 (Likelihood Instability of Deep Generative Models). Let M ⊂ X be a Borel set such that
λD(clX (M)) = 0, and let PX

† be a probability measure on X such that PX
† (M) = 1 and supp(PX

†) = clX (M).
Let (PX

θt
)∞
t=1 be a sequence of probability measures on X such that PX

θt

ω−→ PX
† as t → ∞ and PX

θt
≪ λD, with

corresponding densities pX
θt

. Then:

• lim inf
t→∞

pX
θt

(x) = 0, λD-almost-everywhere on X \ clX (M).

• sup
x′∈Bε(x)

pX
θt

(x′) → ∞ as t → ∞ for every x ∈ clX (M) and every ε > 0, where

Bε(x) := {x′ ∈ X | ∥x′ − x∥2 < ε}.

As mentioned in Section 4.1.1 we begin with an example satisfying the assumptions of the Likelihood In-
stability Theorem for which it does not hold that pX

θt
(x) → ∞ for x ∈ clX (M), thus highlighting that the

theorem cannot be “trivially strengthened”. Consider X = R2, M = {(x1, 0) ∈ R2 | 0 < x1 < 1}, let PX
† be

uniform on M , and PX
θt

be uniform on Mt, where Mt = {(x1, x2) ∈ R2 | 0 < x1 < 1 and 1/(t+1) < x2 < 1/t}.
Finally, take the corresponding densities as

pX
θt

(x) = 1(x ∈ Mt)
λ2(Mt)

= t(t + 1)1(x ∈ Mt), (98)

where 1(·) denotes an indicator function. Figure 11 illustrates this example. Here, it holds that PX
θt

ω−→ PX
†

– so that the assumptions of the Likelihood Instability Theorem are satisfied – yet pX
θt

(x) → 0 as t → ∞
for every x ∈ X , and thus in particular for every x ∈ clX (M) as well. Nonetheless, when x ∈ clX (M),
supx′∈Bε(x) pX

θt
(x′) → ∞ as t → ∞ does hold for every ε > 0, as concluded by the theorem.

Before proving the Likelihood Instability Theorem, we state and prove three lemmas, all of which we will
rely on. We will heavily use Continuity Sets and will leverage the Portmanteau Lemma; see Appendix A for
a reminder on these topics.
Lemma 2. Let PX

† be a probability measure on X , x ∈ X , and ε > 0. Then, there exists ε′ ∈ (0, ε) such
that Bε′(x) is a continuity set of PX

† , where Bε(x) = {x′ ∈ X | ∥x′ − x∥2 < ε}.

Proof. We proceed by contradiction: let x ∈ X and ε > 0, and assume that PX
† (∂X Bε′(x)) > 0 for every

ε′ ∈ (0, ε). Since we can countably partition (0, 1] as ∪∞
n=2(1/n, 1/(n − 1)], it follows that uncountably

65

Under review as submission to TMLR

Figure 11: Visualization of the sequence of densities from Equation 98, which converge weakly to a uniform
distribution on M . For x ∈ clX (M) it always holds that pX

θt
(x) = 0 because the support of pX

θt
does not

overlap with clX (M), so that pX
θt

(x) → ∞ as t → ∞ does not hold. Nonetheless, for any fixed ε > 0, the
support of pX

θt
always overlaps with Bε(x) for large enough t, and thus supx′∈Bε(x) pX

θt
(x′) → ∞ as t → ∞.

many elements from {PX
† (∂X Bε′(x))}ε′∈(0,ε) belong to an element of the partition. Thus, in particular there

exists an integer n′ and distinct numbers ε′
1, ε′

2, . . . , ε′
n′ in (0, ε) such that PX

† (∂X Bε′
i
(x)) > 1/n′ for every

i = 1, 2, . . . , n′. Then, because ∂X Bε′
i
(x) ∩ ∂X Bε′

j
(x) = ∅ whenever i ̸= j, we have that

PX
†

 n′⋃
i=1

∂X Bε′
i
(x)

 =
n′∑

i=1
PX

†

(
∂X Bε′

i
(x)
)

>

n′∑
i=1

1
n′ = 1, (99)

which is clearly a contradiction since PX
† (X) = 1, thus finishing the proof.

Lemma 3. Let M ⊂ X , and let PX
† be a probability measure on X such that PX

† (M) = 1. Then for every
δ > 0, the set Mδ = {x ∈ X | infx′∈M ∥x′ − x∥2 < δ} is open in X , and is a continuity set of PX

† .

Proof. Mδ is open because it can be written as a union of open sets:

Mδ =
⋃

x′∈M

Bδ(x′). (100)

Then, we have:

PX
† (∂X Mδ) = PX

† (∂X Mδ ∩ M) = PX
† ((clX (Mδ) \ intX (Mδ)) ∩ M) = PX

† ((clX (Mδ) \ Mδ) ∩ M) (101)
= PX

† (∅) = 0, (102)

where intX (M) denotes the topological interior of M in X , and the first equality follows from PX
† (M) = 1,

the second one from the definition of boundary, the third one from Mδ being open, and the fourth one from
M ⊂ Mδ. Thus Mδ is indeed a continuity set of PX

† .

Lemma 4. Let M ⊂ X , and let PX
† be a probability measure on X such that supp(PX

†) = clX (M). Then
PX

† (Bε(x)) > 0 for every x ∈ clX (M) and every ε > 0, where Bε(x) = {x′ ∈ X | ∥x′ − x∥2 < ε}.

Proof. Since PX
† is a Borel measure and X is separable, PX

† (supp(PX
†)) = 1 (Bogachev, 2007, Proposi-

tion 7.2.9).30 It follows that clX (M) = supp(PX
†) is nonempty. Let x ∈ clX (M) and ε > 0. We

proceed by contradiction, and assume that PX
† (Bε(x)) = 0. Since PX

† (clX (M)) = 1, we have that

30Note that in general, P(supp(P)) = 1 need not hold, see for example Schilling & Kühn (2021, Examples 6.2 and 6.3).

66

Under review as submission to TMLR

PX
† (clX (M) \ Bε(x)) = 1. Since Bε(x) is open, clX (M) \ Bε(x) is closed. Then, by definition of sup-

port (Equation 1) and because supp(PX
†) = clX (M), it follows that clX (M) ∩ Bε(x) = ∅. This is clearly a

contradiction since x ∈ clX (M) ∩ Bε(x).

Proof of Theorem 1. We first prove that lim inft→∞ pX
θt

(x) = 0, λD-almost-surely on X \ clX (M). Let x ∈
X \ clX (M), and let Ux be an open neighbourhood of x such that clX (Ux) ∩ clX (M) = ∅, which exists
because X is regular. Clearly PX

† (∂X Ux) = 0 (i.e. Ux is a continuity set of PX
†) and PX

† (Ux) = 0 since
clX (Ux) ∩ clX (M) = ∅ and PX

† (clX (M)) = 1.

By the Portmanteau Lemma, PX
θt

(Ux) → PX
† (Ux) as t → ∞, and we have the following implications:

lim
t→∞

PX
θt

(Ux) = PX
† (Ux) ⇐⇒ lim

t→∞

∫
Ux

pX
θt

(x′)dλD(x′) = PX
† (Ux) = 0 (103)

=⇒ lim inf
t→∞

∫
Ux

pX
θt

(x′)dλD(x′) = 0. (104)

Then, by Fatou’s lemma, ∫
Ux

lim inf
t→∞

pX
θt

(x′)dλD(x′) ≤ 0. (105)

Since lim inft→∞ pX
θt

(x) ≥ 0, λD-almost-everywhere on X , it follows that∫
Ux

lim inf
t→∞

pX
θt

(x′)dλD(x′) = 0, (106)

and thus lim inft→∞ pX
θt

(x) = 0, λD-almost-everywhere on Ux.

We still need to extend the result from λD-almost-everywhere on Ux to λD-almost-everywhere on X \clX (M).
Clearly {Ux}x∈X \clX (M) is an open cover of X \ clX (M). Since X is second countable and every subspace
of a second countable space is second countable, it follows that X \ clX (M) is second countable. Then, by
Lindelöf’s lemma, {Ux}x∈X \clX (M) has a countable subcover {Uxi

}∞
i=1 of X \ clX (M). The result then holds

λD-almost-everywhere on Uxi
for i = 1, 2, . . . , and because any countable union of sets of measure 0 has

measure 0, it also holds λD-almost-everywhere on
∞⋃

i=1
Uxi

= X \ clX (M), (107)

which finishes this part of the proof.

Now, let x ∈ clX (M) and ε > 0, and we will prove that supx′∈Bε(x) pX
θt

(x′) → ∞ as t → ∞.

First, note that supx′∈Bε(x) pX
θt

(x′) is increasing in ε for every t. If Bε(x) is not a continuity set of PX
† , by

Lemma 2 we could always find ε′ ∈ (0, ε) such that Bε′(x) is a continuity set of PX
† , and if we managed to

prove that supx′∈Bε′ (x) pX
θt

(x′) → ∞ as t → ∞, the same result would immediately follow for ε. We can thus
assume without loss of generality that ε is such that Bε(x) is a continuity set of PX

† .

Now, let Mδ = {x ∈ X | infx′∈M ∥x′ − x∥2 < δ} and let Uε,δ(x) = Mδ ∩ Bε(x). From basic topology we
have that ∂X (Mδ ∩ Bε(x)) ⊂ ∂X Mδ ∪ ∂X Bε(x). Since Mδ and Bε(x) are continuity sets of PX

† by Lemma 3
and by assumption, respectively, it follows that Uε,δ(x) is a continuity set of PX

† , since PX
† (∂X Uε,δ(x)) ≤

PX
† (∂X Mδ) + PX

† (∂X Bε(x)) = 0. Similarly, Bε(x) \ Mδ is a continuity set of PX
† because ∂X (Bε(x) \ Mδ) ⊂

∂X Bε(x) ∪ ∂X Mδ. We then write:

PX
θt

(Bε(x)) = PX
θt

(Uε,δ(x)) + PX
θt

(Bε(x) \ Mδ) =
∫

Uε,δ(x)
pX

θt
(x′)dλD(x′) + PX

θt
(Bε(x) \ Mδ) (108)

≤ λD (Uε,δ(x)) sup
x′∈Uε,δ(x)

pX
θt

(x′) + PX
θt

(Bε(x) \ Mδ) (109)

≤ λD (Uε,δ(x)) sup
x′∈Bε(x)

pX
θt

(x′) + PX
θt

(Bε(x) \ Mδ) . (110)

67

Under review as submission to TMLR

Since Bε(x) is open, as is Mδ by Lemma 3, then Uε,δ(x) is open as well. In turn λD(Uε,δ(x)) > 0, and it
follows that

PX
θt

(Bε(x)) − PX
θt

(Bε(x) \ Mδ)
λD (Uε,δ(x)) ≤ sup

x′∈Bε(x)
pX

θt
(x′). (111)

By the Portmanteau Lemma and since PX
† (Bε(x) \ Mδ) = 0, taking the limit as t → ∞ of the left hand side

of the above equation yields

lim
t→∞

PX
θt

(Bε(x)) − PX
θt

(Bε(x) \ Mδ)
λD (Uε,δ(x)) =

PX
† (Bε(x))

λD (Uε,δ(x)) . (112)

Thus, taking lim inf as t → ∞ on both sides of Equation 111 implies that

PX
† (Bε(x))

λD (Uε,δ(x)) ≤ lim inf
t→∞

sup
x′∈Bε(x)

pX
θt

(x′). (113)

Since Uε,δ′(x) ⊂ Uε,δ(x) whenever δ′ < δ, we have that

lim
δ→0+

λD (Uε,δ(x)) = λD

(⋂
δ>0

Uε,δ(x)
)

= λD

(⋂
δ>0

(Mδ ∩ Bε(x))
)

= λD

((⋂
δ>0

Mδ

)
∩ Bε(x)

)
(114)

= λD (clX (M) ∩ Bε(x)) = 0, (115)

where we used that (i) ∩δ>0Mδ = clX (M), which holds because clX (M) is the set of points which are
arbitrarily close to M , and that (ii) λD(clX (M)) = 0 by assumption. Finally, by Lemma 4, PX

† (Bε(x)) > 0, so
that taking the limit as δ → 0+ on both sides of Equation 113 yields that lim inft→∞ supx′∈Bε(x) pX

θt
(x′) = ∞,

which in turn implies that supx′∈Bε(x) pX
θt

(x′) → ∞ as t → ∞, finishing the proof.

B.2 Proof of Proposition 1

For convenience, we restate Proposition 1 below.
Proposition 1. Let PX

∗ be a probability measure on X , gθ1 : Z → X be measurable, and c : X × X → R be
measurable and such that there exists C > 0 such that

sup
(x,y)∈X ×X

|c(x, y)| < C. (92)

Then,
inf

f∈F
EX∼PX

∗
[c (X, gθ1 (f(X)))] = inf

f∈C
EX∼PX

∗
[c (X, gθ1 (f(X)))] , (93)

where C = {f : X → Z | f is continuous}.

Proof. Since C ⊂ F , it follows that

inf
f∈F

EX∼PX
∗

[c (X, gθ1 (f(X)))] ≤ inf
f∈C

EX∼PX
∗

[c (X, gθ1 (f(X)))] . (116)

Since both infimums are finite due to the assumption from Equation 92, it is enough to show that, for every
ε > 0, there exists fε ∈ C such that

inf
f∈F

EX∼PX
∗

[c (X, gθ1 (f(X)))] > EX∼PX
∗

[c (X, gθ1 (fε(X)))] − ε. (117)

Let ε > 0, and let f∗ ∈ F be such that

inf
f∈F

EX∼PX
∗

[c (X, gθ1 (f(X)))] > EX∼PX
∗

[c (X, gθ1 (f∗(X)))] − ε

2 . (118)

68

Under review as submission to TMLR

It is thus enough to show that there exists fε ∈ C such that

EX∼PX
∗

[c (X, gθ1 (f∗(X)))] > EX∼PX
∗

[c (X, gθ1 (fε(X)))] − ε

2 , (119)

as this would imply Equation 117 holds. Since PX
∗ is a Borel measure and X is Polish, PX

∗ is a Radon
measure. Additionally, PX

∗ (X) < ∞, X is locally compact, Z is second countable, and f∗ is measurable; so
it follows by Lusin’s theorem that there exists a Borel set E ⊂ X and a continuous function fε : X → Z
such that fε(x) = f∗(x) for every x ∈ E, and PX

∗ (X \ E) < ε/(4C). Then, we have:

EX∼PX
∗

[c (X, gθ1 (fε(X)))] − EX∼PX
∗

[c (X, gθ1 (f∗(X)))] (120)

=
∫

X
c (x, gθ1 (fε(x))) − c (x, gθ1 (f∗(x))) dPX

∗ (x) =
∫

X \E

c (x, gθ1 (fε(x))) − c (x, gθ1 (f∗(x))) dPX
∗ (x) (121)

≤
∫

X \E

|c (x, gθ1 (fε(x))) − c (x, gθ1 (f∗(x)))| dPX
∗ (x) ≤

∫
X \E

2C dPX
∗ (x) = 2C PX

∗ (X \ E) <
ε

2 , (122)

which in turn implies Equation 119 holds, thus finishing the proof.

C Experimental Details

Here we provide details on the experiments from Section 5.3.2. Our code will be made publicly available
upon publication.

First step objective for latent diffusion models Following Rombach et al. (2022), we trained latent
diffusion models by first using a regularized variational autoencoder (Section 4.1.2) loss (Larsen et al., 2016;
Higgins et al., 2017):

min
θ1,ϕ

max
ϕ′

EX∼pX
∗

[
E

Z∼q
Z|X

ϕ
(·|X)

[
∥X − gθ1(Z)∥2

2
]]

+ β1KL
(

q
Z|X
ϕ (·|X) ∥ pZ

)
+ β2EX∼pX

∗

[
E

Z∼q
Z|X

ϕ
(·|X) [log hϕ′(X) + log (1 − hϕ′(gθ1(Z))]

]
,

(123)

where β1 > 0 and β2 > 0 are hyperparameters; pZ is a standard Gaussian; q
Z|X
ϕ (·|x) = N (· ; fϕ(x), ΣZ|X

ϕ (x))
with ΣZ|X

ϕ (x) being diagonal for every x ∈ X ; and hϕ′ : X → (0, 1) is a binary classifier inspired by generative
adversarial networks (Section 4.2), whose objective is to distinguish between real samples X ∼ pX

∗ and their
stochastic reconstructions gθ1(Z), where Z ∼ q

Z|X
ϕ (·|X). Rather than fixing β2, we dynamically update

it throughout training to ensure that the first and third terms in Equation 123 have roughly the same
magnitude; when taking a gradient step, this is achieved by computing the ratio of the values of the first to
third term in the previous gradient step, and setting β2 to the absolute value of this ratio.

Training objective for diffusion models We train all diffusion models, latent or not, exactly as de-
scribed in Section 5.1.2, i.e. through Equation 54. The integral with respect to t is approximated by sampling
t uniformly at random in [0, T] during training (one such t is sampled for every element in the batch).

Hyperparameters We use the Adam optimizer (Kingma & Ba, 2015) with a batch size of 128 throughout,
and train all models until there is no improvement on the validation metric for 50 epochs; we keep the
models with the best validation performance. For the VAE of latent diffusion models we use the squared
reconstruction error EX∼pX

∗
[∥X−gθ1(fϕ(X))∥2

2] rather than Equation 123 as the validation metric, β1 = 10−6,
a learning rate of 10−4 with cosine annealing, and take two gradient steps on ϕ′ for every gradient step on
(θ1, ϕ). For the diffusion models, both on ambient and latent space, we use Equation 54 as the validation
metric, a learning rate of 5 × 10−5 without cosine annealing, T = 1, βmin = 0.1, βmax = 20, w(t) = σ2

t , and
an Euler-Maruyama discretization scheme with 1000 steps to generate the paths in Figure 5(a).

69

Under review as submission to TMLR

Table 1: Configuration used for neural networks. The architecture of the auxiliary network hϕ′ for the
VAE mimics that of the encoder, and the decoder gθ1 is given by simply “reversing” the architecture of the
encoder. See text for additional details.

PARAMETER AMBIENT SCORE ŝX
θ VAE ENCODER q

Z|X
ϕ LATENT SCORE ŝZ

θ2

n_channels 64 64 256
ch_mults (1, 2, 2, 4) (1, 2, 2) (1, 2)
is_attn (False, False, True, True) - (True, True)
n_blocks 2 2 2

Architectures For a fair comparison between diffusion models on ambient and latent space, we attempt to
instantiate them in such a way that their overall architectures are as similar as possible. The configurations
of the architectures we used are given in Table 1, which we now describe. We parameterize both the ambient
and latent score networks as the output of a neural network divided by σt, as mentioned in Section 5.1.2
(this is equivalent to the so-called “ε parameterization” of Ho et al. (2020) with −ε being parameterized
instead of ε). For the diffusion model on ambient space, we use a U-Net architecture (Ronneberger et al.,
2015) with residual connections (He et al., 2016) and an additional attention mechanism (Vaswani et al.,
2017), as implemented in the labml package (Jayasiri & Wijerathne, 2020), which uses a sinusoidal positional
embedding for the scalar input t. The ambient space U-Net takes 3 × 32 × 32 images, and progressively
downsamples them to a shape of 1024×4×4 before upscaling them back to their original size. For the latent
diffusion model, we attempt to copy the aforementioned U-Net as much as possible; the VAE mimics the
U-Net up until the 8 × 8 resolution, and adds a convolutional layer to produce outputs of shape 4 × 8 × 8,
so that d = 256. To ensure the VAE obtains low-dimensional representations through a proper bottleneck,
we remove the U-Net skip connections between the encoder and decoder, resulting in a purely residual
architecture. The stochastic encoder q

Z|X
ϕ of the VAE consists of a single neural network which takes x ∈ X

and produces a 2d-dimensional output – the first d dimensions correspond to fϕ(x), and the remaining ones
to the diagonal of ΣZ|X

ϕ (x). The auxiliary network hϕ′ has the same architecture as the encoder fϕ, except
a final linear layer is added to ensure the output is a scalar. The score network of the diffusion on latent
space is given another U-Net which further downsamples to a 4 × 4 resolution before upsampling.

Data preprocessing Recall that raw image data is integer-valued, with possible values ranging from 0
to 255. We dequantize the data before training the diffusion model on ambient space and the VAE for the
latent diffusion model, i.e. we add independent uniform [0, 1] noise to every pixel (Theis et al., 2016), so that
the resulting data now has entries in [0, 256]. We then linearly scale the data so that every coordinate lies
in [−1, 1]. For latent diffusion models, once the VAE is trained, we also scale its encodings to lie in [−1, 1]d
before training the diffusion model on latent space.

70

	Introduction
	Notation and Setup
	Notation
	Setup

	Background
	Deep Generative Models on Known Manifolds
	Manifold Learning
	The Change-of-Variables Formula
	Failures of KL Divergence
	Wasserstein Distances
	Maximum Mean Discrepancy

	Manifold-Unaware Deep Generative Models
	The Problem with Likelihood-Based Approaches: Manifold Overfitting
	The Unavoidable Numerical Instability of High-Dimensional Likelihoods
	Variational Autoencoders
	Normalizing Flows
	Energy-Based Models

	Generative Adversarial Networks
	Score Matching

	Manifold-Aware Deep Generative Models
	Manifold-Awareness by Adding Noise
	Denoising Score Matching
	Score-Based Diffusion Models
	Conditional Flow Matching
	Noisy Normalizing Flows
	Spread Divergences

	Manifold-Awareness through Support-Agnostic Optimization Objectives
	Wasserstein Generative Adversarial Networks
	Wasserstein Autoencoders
	Generative Moment Matching Networks
	Maximum Mean Discrepancy Generative Adversarial Networks
	Generalized Energy-Based Models
	Principal Component Flows

	Manifold-Awareness through Two-Step Models
	Two-Step Models Minimize Wasserstein Distance
	Latent Diffusion Models
	Injective Normalizing Flows

	Overcoming Topological Obstacles to Manifold Learning
	Neural Implicit Manifolds
	Multi-Chart Manifolds
	Disconnected Manifolds

	Discrete Deep Generative Models
	Conclusions and Future Outlook
	Weak Convergence Primer
	Proofs
	Discussion and Proof of the Likelihood Instability Theorem
	Proof of Proposition 1

	Experimental Details

