
Profile-Guided Quantization: A Compiler Solution
to Automate Quantization for Efficient LLM

Training
Gil Tabak, Clemens JS Schaefer, Xiaofan Zhang, Denali Molitor,

Jinliang Wei, Zongwei Zhou, Philip G Hendrix, Mitchelle Rasquinha
Google LLC

Abstract—The growing size and complexity of Large Language
Models (LLMs) for generative artificial intelligence (AI) have sig-
nificantly intensified the compute and memory demands during
training and serving. While scaling up model size has fueled rapid
progress to deliver advanced AI capabilities, it is increasingly
challenging to efficiently host these models on hardware where
resources are always constrained. As a promising compression
technique, quantization is widely used to address hardware
efficiency bottlenecks. However, how and where to apply quanti-
zation remains challenging. Significant barriers complicate the
practical use of quantization ranging from varied developer
skill in applying quantization, to diverse numeric sensitivity of
targeted AI models, and different quantization support from ML
frameworks and back-end hardware. To address these issues,
we propose profile-guided quantization (PGQ), a compiler-based
solution that leverages logged tensor statistics and metadata to
automatically determine optimal quantization settings for indi-
vidual operations given targeted workload and hardware. PGQ
alleviates the domain knowledge needed from model, framework,
and hardware and streamlines the design and implementation of
quantization recipes through graph-level instruction rewriting
within the compiler, which makes quantized LLM training
accessible to a much broader audience. As an example of our
proposed approach, we demonstrate its application in quantized
training use cases with GemmaV2 models showing up to 18.2%
speed up of a training step.

I. INTRODUCTION

Recent developments in Large Language Models (LLMs)
showcase their significant advancement in generative artificial
intelligence (AI) capabilities [6], [27] along with the drasti-
cally increased compute and memory demands [26]. There-
fore, techniques to deliver model compression and efficient
hardware utilization become the key to keep AI development
progressing. Quantization is one of the promising techniques to
achieve this goal by reducing the numerical precision of model
parameters and its arithmetic operations. This is especially
relevant as modern hardware accelerators increasingly support
low-bit formats [10], [16] and ongoing research explore ultra
low-bit designs to maximize hardware efficiency while main-
taining quality [7], [17].

In large-scale industry settings where models are rapidly
developed and updated, adapting quantization techniques re-
mains challenging, despite promising research results across
various bit-widths (from ultra-low [7], [17] to 8-bit for-
mats [4], [18], [24], [31], [33], [36]) and quantization settings

(post-training, quantization-aware, or fully quantized training).
Challenges include the considerable amounts of user knowl-
edge required to perform framework level model changes
to orchestrate the optimal use of quantization techniques.
This entails model-specific knowledge and individual hyper-
parameter tuning where each change requires new evaluation
of the performance-quality trade-off.

Further, there is often diversity in ML frameworks [5],
[19], [29] with varying levels of API support for quantization.
Quantization experts often use solutions implemented at the
framework level, which results in additional difficulties for
maintenance, since frameworks also tend to evolve rapidly.
Additionally, once suitable quantization configurations are
found they tend to short-lived due to newer models being
deployed, as well as new hardware capabilities.

The complexity in pinpointing optimal quantization choices
is further compounded by the rapid and expansive research
progression of quantization techniques. Recent advancements
have introduced a plethora of improved methods for different
parts of the quantization process, e.g. rounding schemes [9],
clipping methods [21], or novel quantization formats [2]; how-
ever, it remains unclear how to determine which quantization
methods to apply (and potentially combine), or even which
specific operations to quantize. We refer to these choices as the
quantization recipe. Recipes for model compression may apply
to weights only, recipes for serving use cases may quantize
both weights and activations, and finally recipes for training
may quantize weights, activations, errors, and gradients.

The selection of the appropriate bit-width or potentially
use of additional techniques presents search problem with
a exponentially growing search space with the number of
operations to be quantized. Even with simplifying assump-
tions like independence of impact, assessing the impact of
individual operations may be prohibitive. For example the
authors of [33] proposed a layer-wise quantization approach
(assuming independence of impact) to tackle the challenge of
an exponentially large search space in mixed precision model
optimization. However, their method remains computationally
intensive for practical applications since it requires testing ev-
ery layer individually. Alternative approaches have leveraged
sensitivity metrics and trade-offs with performance gains to
identify Pareto-optimal models, often incorporating second-
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Fig. 1: Illustration of the three-step process. A visual guide
for the PGQ workflow discussed in Section II. Blue shows
steps, yellow represents data/recipes, and green shows the
user-specified policy.

order information like Hessians [12], [13], [35]. Inter-layer
dependencies further refining second-order sensitivity metrics
have been considered in [23]. However, such approaches are
often computationally expensive, require deep integration with
the model code, and are not applicable for all tensors in train-
ing, such as gradients. In parallel, quantization-aware training
techniques have been explored to learn optimal bit widths
directly during model training [22], [30]. Noticeably, many of
the methods mentioned only apply to a subset of all operations
required during training, and bear additional computational
costs. Additionally, they require tight integration with the
model code, making them more difficult to apply broadly.

In this work we propose a general profile-guided quanti-
zation approach which improves over existing quantization
approaches in three ways: (i) We propose the use of ‘local’,
easy to compute metrics to assess the difficulty of quan-
tization (Section II-B), and focus on signal-to-quantization-
noise (SQNR). A single local metric narrows the search space
substantially and offers the ability to reason about quantization
choices in a white-box fashion. (ii) We define a methodology
to assess the quality of quantization metrics (Section II-D). (iii)
We introduce a comprehensive quantization implementation
via the compiler, including a stage for logging operations
to generate local metrics, as well as applying the actual
quantization. This approach is designed to be user-friendly as
it requires no changes to the model (such as Gemma, Llama,
or DeepSeek) or framework code.

II. PGQ METHODOLOGY

PGQ is separated into three stages shown in figure 1: (i)
statistics logging and metadata collection, (ii) recipe genera-
tion, and (iii) quantized model rewrite. In our implementation,
stages (i) and (iii) are integrated directly into the compiler,
thereby not requiring changes to the model or framework level
code. Stage (ii), recipe generation, depends on metadata which
is generated in stage (i). Metadata includes semantic type of
operation and inputs (e.g., weight, activation, or gradient),
sharding information (in the case of model parallelism), and
other information (e.g., which dimensions are contracting in
a general dot operation). The recipe generation (stage ii) also
produces an explanation of which operations were quantized,
in which way, and why the choice has been made to foster
user trust.

PGQ can take into account performance using the roofline
model [32] when creating recipes in stage (ii) using the meta-
data information collected in stage (i) and the ridge point of the
accelerator. PGQ also takes into account ‘local’ quality metrics
to assess the impact on quantization. Specifically, we focus
on the signal-to-quantization-noise ratio (SQNR) showing its
usefulness in Section II-B. We found relatively little logging
data (a few steps) is sufficient to obtain meaningful SQNR
values.

PGQ is not a specific quantization method, but rather can
be integrated with various approaches to improve quality
(see Section II-F). Different formats, subchannel sizes, and
quantization techniques will be reflected in the local quality
metrics.

A. Scope of quantization in this paper

The types of operations we focused on are general matrix
multiplications (GEMM) including dot general and convo-
lution operations, for which recent specialized accelerators
have been developed. Throughout the paper, we focus only
on bf16 (unquantized) and int8 (quantized) formats . The
scaling factors used for quantization are determined individu-
ally for separate non-contracting dimensions. Their values are
found using symmetric quantization without clipping, i.e., the
component with largest magnitude (absolute maximum value)
within each axis is mapped to the largest representable value
in the target format.

B. Local Metrics and SQNR

In contrast to the computational complexity entailed with
network wide (global) metrics, local metrics rely on data
distribution within tensors and come with their own set of
challenges. The primary challenge is that the distribution of
data across tensors may vary widely. This variance can be
across different types of networks, different components within
networks, differences in the inputs, and differences between
the types of nonlinear layers and normalization techniques
used (for example see Figure 3 below).

Possible choices for local metrics range from simple statis-
tics such as variance to sophisticated information-theoretic
measures. We use the signal-to-quantization-noise (SQNR) as
our primary local metric. We validated SQNR empirically
and found that it is informative (Section II-D). The SQNR
is defined as:

SQNR(X) =
X2

E
[
(Q(X)−X)

2
] . (1)

Where Q is the quantization operation and X the underlying
tensor. SQNR is closely related to the mean-squared error
(MSE), which is the denominator here. However, the SQNR
is scale-invariant, which makes it more suitable for comparing
different tensors in a neural network thereby enabling a
network wide quantizability ranking of tensors. This is because
the usable information content of given tensors should not
depend on the absolute scale of the tensor values, given the
scaling mechanism used in quantization.
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Furthermore the SQNR of a given tensor may change over
time when training a model. This change is usually most
detectable during the start of the pre-training phase, and less
detectable during fine-tuning. We generally recommend to
monitor SQNR, or only apply quantization after training has
somewhat stabilized.

C. Using Metrics for Recipe Generation

To generate a quantization recipe based upon a local metric
we consider the case where each operation is either quantized
at some precision, or not quantized. The main idea is to simply
order the operations by a local metric like SQNR, and pick a
threshold at which an operation will be quantized. SQNR can
be used at both the inputs or the outputs of operations. For
simplicity, we use the SQNR of the inputs in order to avoid
the extra compute and complexity.

Notice that importantly the threshold is not known a priori.
It may vary significantly among models, use cases, etc. In
practice many use cases tend to have similar thresholds, and
usually only a few trials may be needed to find a suitable
threshold.

D. Adversarial Recipes: Towards Empirical Evaluation of
Metrics

We propose to use local metrics for ordering of the opera-
tions, not for absolute quality statements. In general, it holds
that when more layers are quantized performance will improve
and quality will degrade (see Figure 2). In order to assess the
quality of a given metric we are interested in approximating
the Pareto curve as closely as possible.

In Figure 2 the Pareto curve represents the ‘best’ hypothet-
ical ordering possible, whereas a good metric will produce a
similar curve. In practice, it is not often possible to produce
the Pareto curve with certainty, because the search space
grows exponentially with the number of operations. To further
validate any metric, the order given by the metric can be
reversed to produce an ‘adversarial’ curve (shown in Figure 2).
We can make assessments about the quality of a metric by
comparing the original versus adversarial curves. A significant
gap between the two curves suggests that a given metric is
informative.

E. Stochastic Rounding

Application of stochastic rounding is known to be helpful
when using low precision formats for some operations, partic-
ularly for the gradient inputs [9], [14], [25].

In general, gradients tend to have lower SQNR when using
formats of limited dynamic range (such as low bit width
integer formats), because of their heavier-tailed distributions
(see Figure 3 for examples). However, the application of
stochastic rounding can make training more robust to lower
SQNR for gradients. For this reason, when using SQNR to
decide which operations to quantize, we generally use separate
criteria/thresholds for forwards versus backwards operations
with stochastic rounding.

Fig. 2: Illustration of the impact of various orderings on quality
and performance. The curves represent different orderings of operations
being quantized (for simplicity we assume there is a binary choice between
quantizing or not). The upper left corner represents no quantization, where
quality is highest and speed is lowest. The bottom right represents the case
when all operations considered are quantized. Each curve begins and ends
at the same two points, however the quality and step time trade-off may be
vastly different. The top curve illustrates the ‘optimal’ curve, in the sense that
the ordering it represents corresponds to the Pareto optimal trade-off between
quality and step time. The other curves illustrate a ‘good’ ordering (one that is
close to Pareto optimal), a ‘random’ curve that orders the operations randomly,
and an ‘adversarial’ curve that represent an ordering resulting in a poor trade-
off. The term ‘quality’ is left general on purpose, as there are many ways to
measure quality depending on context.

F. Refinements

Although many methods are known to improve quantization
quality, they may incur an additional expense. For this reason,
a profile-driven methodology can be useful for determining an
appropriate tradeoff.

PGQ allows for incorporating further refinements to boost
the default quantization capabilities. In particular, we can in-
corporate several known quantization techniques by specifying
them at the operation level, including:

• Smoothquant [34].
• Subchannel, sometimes known as blocks or groups [11].
• Clipping [1], [21], [36].
• Asymmetric [15], [33] (zero point, or affine-transforma-

tion) quantization.
PGQ can be used to generate recipes that specify using

different techniques/formats, for example by only applying a
certain method with the SQNR is too low, instead of simply
turning off quantization as we have shown in the example in
this paper.

G. Compiler Integration

Our compiler integration sits at the graph level provided
by modern machine learning compilers such as TVM [8],
XLA [20], or ONNX [3]. There are two phases to apply
PGQ: (i) instrumentation of tensor statistics data and tensor
metadata, and (ii) graph rewriting for applying quantization.
From the user’s point of view, either stage can be done
simply by passing command-line flags when launching the
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TABLE I: Performance gains in training. Recipe F quantizes compute-
bound forward operations only using round-to-nearest (RN). F +B quantizes
both forward and backward operations using RN. F + BSR Quantizes both
forward (RN) and backward (stochastic rounding). F + BSR(> 1.0) and
F + BSR(> 0.4) are similar to F + BSR, but additionally impose a
minimum threshold on the SQNR for the backwards pass. F +BSR(< 1.0)
and F+BSR(< 1.0) are the ‘adversarial’ versions, i.e., imposing a maximum
threshold on the operation SQNR.

GemmaV2 2B GemmaV2 7B

Recipe Step (ms) Speedup Step (ms) Speedup

Base 923.6 – 1557 –
F 905.4 2.0% 1484 4.9%
F +B 742.7 24.4% 1317 18.2%
F +BSR 745.4 23.9% 1323 17.7%
F +BSR(> 1.0) 781.8 18.1% 1375 13.2%
F +BSR(> 0.4) 780.7 18.3% 1372 13.5%
F +BSR(< 1.0) 867.7 6.4% 1434 8.6%
F +BSR(< 0.4) 870.4 6.1% 1437 8.4%

model, thereby making it versatile and accessible for users
with different levels of expertise.

During the instrumentation stage PGQ inserts specific op-
erations that reduce numerical tensor values into summary
statistics and write them to permanent storage as the model
is running. While there is additional overhead required for
logging tensor statistics, we have found in practice few mea-
surements are usually sufficient. Tensor statistics can include
SQNR directly for a specific quantization format, or other
quantities from which QNSR can be approximated.

After a quantization recipe is generated offline based on the
metadata and summary statistics, we rewrite the network graph
with an additional intermediate step (e.g., XLA pass) during
the compilation process to change specified operations to lower
precision (early on during optimization process to still lever-
age lower lever compiler optimizations). The graph rewrite
involves replacing the full-precision GEMM by: Computing
scaling factors along specific dimensions (when quantization
is done dynamically), multiplying the inputs by the appropriate
scaling factors, casting the inputs into the appropriate formats,
performing the lower-precision GEMM, and finally applying
the inverse scaling factors on the output. Optionally the other
refinements discussed in Section II-F can also be applied at
this stage.

III. PGQ EVALUATION

We apply PGQ to GemmaV2 2B and 7B [28] for a fine-
tuning task. The experiments ran on a 64 chip accelerator
system using 8x8 topology of V5e TPUs. We did not make
any optimizations to the GemmaV2 code, except ensuring the
activations were set to bfloat16 before quantization instead of
float32. Several recipes are shown and described in Figure 4.
We used adversarial recipes for validation as described in
Section II-D.

In step 2 of PGQ, quantization is done only for compute-
bound operations according to the roofline model to ensure
latency benefits, using the recipes we specified. This is done
automatically using the metadata collected for each operation.

The (non-adversarial) recipes are presented in the order a
user may try: First try the baseline along with several basic
non-SQNR strategies (forward only, forward + backward, and
forward + backward with stochastic rounding). Comparing
these shows most of the performance gains in this particular
case come from applying quantization for the backward pass.
The last two cases also uncover the cost of stochastic rounding.
Since the forward-only recipe did not show degradation while
the forward + backward recipes did, the next step would be
applying the SQNR strategy on the backwards pass only.

Step 2 of PGQ generates a table with SQNR values that
can be inspected by the user. A single operation in the
backwards pass had especially low SQNR, which motivates the
selection of the 0.4 threshold (the table indicates this was an
activation gradient for an operation with a ‘get logits‘ label).
We included the 1.0 threshold as another example. When the
operation with SQNR below 0.4 was not quantized, the same
quality as baseline was recovered (the same result was found
for 1.0). Meanwhile the adversarial recipe only quantizing the
low-SQNR operation in the backwards pass resulted in poorer
quality, confirming it was the primary source of quality loss.

While in the example here we focused on a few concrete
threshold values to generate recipes, a more general strategy
involves (1) using reasonable priors as a starting point and
(2) bisecting to find the most appropriate threshold values
for a given use-case. We suggest applying separate thresholds
for the forward and backward passes (and applying stochastic
rounding for gradients if the format is not wide, resulting in
most values underflowing to zero). Typically we found around
a 1:1 SQNR ratio is often sufficient for gradients in this setting,
while for the forward pass somewhere around 20:1 is often
necessary (around 3 on ln(1 + x) scale).

For the SQNR-based thresholds, we selected two threshold
values, and also evaluated their adversarial versions (i.e.,
reverse the decision of whether an operation is quantized or
not, in this case restricted to compute-bound gradients). In
Figure 4 we show the loss curves of these recipes, and in
Table I we show the corresponding step times. Quantizing
operations with a SQNR above a low value resulted in curves
similar to baseline, while instead quantizing only below a
low threshold resulted in divergence similar and instability.
Finally, in Figure 5 we combine the performance and quality
data for each recipe used for the GemmaV2 7B model, to
demonstrate the curves discussed in Section II-D (Pareto
optimal vs. adversarial - note that axis are swapped and both
axis are reversed, e.g. lower average loss is equivalent to higher
quality).

There were only two operations for this particular model
with a low SQNR (for both the 2B and 7B models): the
embedding table in the forward direction, and the activation
gradient from the logits in the backward direction (with values
around 0.06 and 0.08, respectively). The forward-direction
operation did not impact quality, however the backward di-
rection one clearly did, and seems responsible for all the
degradation observed in the recipe quantizing all compute-
bound operations in the backwards direction – the adversarial
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Fig. 3: Overview of signal-to-quantization-noise In each subplot we show approximate SQNR on a ln(1 + x) scale for a different set of operations. The
first row shows SQNRs collected from the forward pass, while the second and third are gradients. The left and right columns correspond to the 2B and
7B GemmaV2 experiments, respectively. Operations with a higher SQNR tend to result in less quality degradation than those with lower SQNR. For each
operation, there are two inputs, shown in the same color/marker style, and distinguished by solid or dashed lines. Our strategy selects a threshold based on
the minimum SQNR of the two inputs for a given operation (dotted horizontal lines show a few examples). Weights tend to have the highest SQNR, making
them relatively easier to quantize. However, for some operations the SQNR of the inputs may vary significantly between the 2B and 7B versions, and even
different layers, with no obvious pattern.

recipes, while obtaining significantly smaller gains in perfor-
mance, performed as poorly as quantizing all the compute-
bound operations.

IV. CONCLUSIONS

We present PGQ, a user-friendly and extendable method
for creating quantization recipes. PGQ is integrated directly
into the compiler, thereby making PGQ model and framework
agnostic. We demonstrate PGQ’s effectiveness on fine-tuning
of GemmaV2 2B and 7B models showcasing how PGQ may
be used on models representative of real-world workloads.

Some future avenues to enhance the PGQ metric include
enriching the sensitivity metric, for example by accounting for
inter-layer interaction. Additionally, generating recipes making
the best use of various quantization techniques (as discussed
in Section II-F) remains non-obvious, for example considering
the trade-off between potentially improved quality and extra
overhead for using specific techniques.

In conclusion, PGQ solves practical quantization challenges,
which arise while applying quantization at scale, such as
requirements for extensive user knowledge and black-box un-
certainty about quantization decisions. PGQ offers a versatile
and accessible framework that empowers users to harness

the power of emerging reduced-precision accelerators with
minimal initial investment.
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