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Abstract

Diagnosis of a clinical condition can help med-001
ical professionals save time in the decision-002
making and prevent overlooking risks. Sev-003
eral machine learning models have been de-004
veloped to predict clinical conditions, how-005
ever, many existing models may have ineffec-006
tive interpretability which is often desirable.007
In this paper, we explore the problem of text008
interpretability using free-text medical notes009
recorded in electronic health records (EHR).010
We propose an algorithm combining text min-011
ing and pattern discovery solution to discover012
strong association patterns between patient dis-013
charge summaries and the code of international014
classification of diseases (ICD9 code). The015
proposed approach offers a straightforward in-016
terpretation of the underlying relation of pa-017
tient characteristics in an unsupervised machine018
learning setting and also outperforms the base-019
line clustering algorithm and is comparable to020
baseline supervised methods.021

1 Introduction022

If Artificial Intelligence is to play a significant role023

in support of the automatic decision process, it is024

essential for the users to gain trust (Kim, 2021).025

Hence, besides the outcomes of the decisions, in-026

terpretability with specific statistical support is of027

ample importance to enable humans to understand028

the reasons behind the machine learning decision.029

Hence, in this study, we focus on interpreting the030

diagnostic characteristics/patterns from the elec-031

tronic health records (EHR).032

Topic modeling (Blei et al., 2003) has been ap-033

plied to the unstructured notes of EHRs to pre-034

dict clinical outcomes without focusing upon inter-035

pretability (Bright et al., 2021; Huang et al., 2015;036

Wang et al., 2020). Recently, methods in inter-037

pretability such as attention and saliency have had038

questions raised about their effectiveness (Bastings039

and Filippova, 2020) and security (Zhang et al.,040

2021). Meanwhile, other NLP methods such as041

minimal contrastive editing are computationally 042

expensive (Ross et al., 2020) or require intrinsic 043

implementations via prompts (Sun and Marasović, 044

2021). 045

Hence, to address the issue of interpretability 046

of EHR, we created a novel two-stage algorithm, 047

leveraging interpretable feature engineering of text 048

such as topic models (Chen et al., 2019) and pat- 049

tern discovery techniques (Wong et al., 2021), to 050

discover strong association patterns from patient 051

profiles and discharge summaries to reveal their re- 052

lationships with the diagnosed disease 1, and clus- 053

tering patients into specific groups. The output is 054

clustering groups and an interpretable Knowledge 055

Base. 056

The contributions of the paper are three folds: 057

1) Interpretability: a novel algorithm focusing on 058

white-box model interpretation for free-text clini- 059

cal notes; 2) Unsupervised Learning: the grouping 060

of records based on the discovered associations 061

revealing characteristics of records via unsuper- 062

vised learning; 3) All-In-One Knowledge-Base: 063

generating an all-in-one knowledge base to link the 064

knowledge (hierarchical clusters), patterns (char- 065

acteristics of records), and data (patients’ records) 066

together to show “what” (disease), “who/where” 067

(tracking patient records back) and “why” (discov- 068

ered patterns) to interpret clinical notes for better 069

clinical decision making. 070

2 Material: MIMIC-III Data Description 071

MIMIC-III is a de-identified relational clinical 072

database containing observations from over 40,000 073

patients in critical care units of the Beth Israel Dea- 074

coness Medical Center between 2001 and 2012 075

(Johnson et al., 2016). Our present study utilizes 076

clinical notes, found in the NOTEEVENTS table, 077

and diagnoses, found in the DIAGNOSES_ICD 078

table. 079

1ICD9 code, which is the code of international classifica-
tion of diseases
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Figure 1: The overview of the proposed algorithm

Our final data contains 11,537 patient records080

and corresponds with the top four classes/diseases081

represented by the ICD9 code, which are: 414 -082

chronic ischemic heart disease, 038 - septicemia,083

410 - acute myocardial infarction, and 424 - dis-084

eases of the endocardium. The four classes085

were slightly imbalanced, with 3502(30.35%),086

3184(27.6%), 3175(27.52%), and 1676(14.53%)087

observations, respectively. We chose to include088

only the top 4 most common codes to highlight the089

pattern-discerning capability of the proposed algo-090

rithm, as including many codes (especially those091

with fewer observations) would decrease the inter-092

pretability and performance even for supervised093

learning models.094

3 Methodology095

In this section, we present the proposed methodol-096

ogy applied to the MIMIC-III dataset. The algo-097

rithm proposes tasks in three main steps: prepro-098

cessing, feature extraction, and pattern discovery.099

The overview of the proposed algorithm is shown100

in Figure 1. We first apply a preprocessing pipeline101

proposed by Van Aken et al. (2021) to clean and102

merge the dataset.103

3.1 Feature Extraction104

we further extract features from the clean dataset105

using topic modeling (Jelodar et al., 2019). The106

values of the features are represented by the proba-107

bilities of topics (group of words) occurring in the108

records. Labels (i.e. ICD9 code) are then merged109

with the features for unsupervised exploration. The110

optimal number of topics computed using coher-111

ence of the topic cluster instance (Röder et al., 112

2015) is 5, 20, and 30 - and therefore we create 113

topic models with those respective parameters. 114

3.2 Pattern Discovery and Disentanglement 115

The dataset can be represented as a M ×N matrix, 116

where M represents the number of patients’ records 117

and N represents the number of extracted features 118
2. 119

Step 1. Pattern Disentanglement. First, we con- 120

vert the values of numerical features into categor- 121

ical features by using the Equal Frequency dis- 122

cretization. We denote categorical values of feature 123

as Attribute Value (AV) (Wong et al., 2021). Sec- 124

ond, In order to measure the strength of the asso- 125

ciation between each pair of AVs (i.e. the specific 126

values of one attribute co-occurring with the value 127

of another attribute), we construct an association 128

matrix using the value of adjusted standardized 129

residual (Wong et al., 2021). Then, we use Princi- 130

pal Component Analysis (PCA) to decompose the 131

association matrix into principal components that 132

are ranked according to the weights of the associa- 133

tions (eigenvalues). We then reproject the principal 134

components onto the association matrix again. We 135

refer to the reprojected association matrix as disen- 136

tangled space. The above process is called Pattern 137

Disentanglement which allows us to take the repro- 138

jected components/vectors from PCA and use the 139

reprojected values as new measurements/criteria 140

to represent the strength of associations between 141

AVs in different orthogonal disentangled spaces. 142

2In pattern discovery, we use the term attribute instead of
feature
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Lastly, in order to obtain only the significant pairs143

of AV associations, we filter out statistical residual144

values greater than 1.96 in our newly reprojected145

association matrix (i.e. association matrix with146

disentangled associations)147

Step 2. Pattern Clustering. In an unsupervised148

manner, we cluster the associations. Typically the149

number line of one projected principal component150

has two opposite sets of AV. However, when such151

opposing sets do not exist, we only use AV sets152

from one side of the PC. Furthermore, in order153

to reveal further characteristics of the records of154

the disentangled patterns, we separate the above155

sets into several subsets by clustering them. The156

similarity measure we used for clustering is the per-157

centage of the overlapping records covered by each158

AV subcluster and we denote each AV subgroup159

by a three-digit code [#PC, #Group, #SubGroup].160

The AV sets or subsets can reveal the characteris-161

tics of the records corresponding to disentangled162

patterns in order to provide statistical evidence for163

downstream clustering or prediction. Furthermore,164

patient records are obtained according to their par-165

ticular characteristics (disentangled patterns) from166

the AV groups or subgroups.167

The output of PDD is organized into an all-in-168

one representational framework (PDD Knowledge169

Base) with three parts: a Knowledge Section show-170

ing the hierarchical clusters such that each cluster171

unveils distinct characteristics of a related group of172

records; a Pattern Section listing patterns showing173

detailed associations between AVs; and the Data174

Section listing the record ID which link the patient175

to the knowledge and pattern sections.176

4 Experimental Result177

We present our results in Table 1 and knowledge178

base in Figure 2.179

4.1 Comparison of Unsupervised and180

Supervised Learning181

Given the imbalanced nature of our dataset (Zhou182

and Wong, 2021), we followed the same evaluation183

method in (Van Aken et al., 2021), balanced ac-184

curacy (Balanced Acc. in Table 1) and weighted185

F1-scores (Weighted F1 in Table 1), to evaluate186

performance of both supervised and unsupervised187

results. We compared the clustering results of188

PDD with K-mean, as the baseline, and also two189

supervised learning algorithms: Random Forest190

(Breiman, 2001) and CNN (Kalchbrenner et al.,191

2014) 3. 192

As the baseline comparison for features, we also 193

applied all supervised and unsupervised learning al- 194

gorithms on the dataset with words extracted using 195

TFIDF (Jones, 1972). To make the interpretation 196

meaningful, we selected the top 40 words in TFIDF 197

with a feature selection algorithm by Random For- 198

est. 199

The comparison results are shown in Table 1. It 200

is interesting to observe that PDD outperformed 201

other K-means. However, both supervised learn- 202

ing algorithms, Random Forest and CNN perform 203

better on the TFIDF dataset. The reason should be 204

that the top 40 words (feature) are selected based 205

on classification results. 206

When topic modeling results are used as a 207

dataset, PDD outperforms K-means and even the 208

two other supervised learning algorithms when 209

only 5 topics are used. As for Random Forest, 210

it performs better when applied to the topic model- 211

ing results with 20 topics than the two experiments 212

running on 5 topics and 30 topics. While as for 213

CNN, the results of experiments on 30 topics are 214

slightly better than the results on 20 topics. 215

One important notion we would like to bring 216

forth is that, even if the accuracy score reflects the 217

algorithm performance to some extent, class labels 218

may not always be reliable in supervised classifica- 219

tion algorithms. On the contrary, clustering merely 220

recognizes patterns in the data and holds no such 221

risk. 222

4.2 Discussion on Topic Modeling 223

From a clinical perspective, the generated topic 224

models correspond reasonably well with each ICD9 225

diagnosis. In the 20-topic model, septicemia - a 226

widespread infection of the body, was predicted 227

by topics containing relevant words such as "infec- 228

tion", “bacteria", and "culture". Conversely, topics 229

that contained cardiovascular-related terms such as 230

"ventricular" or "aorta" predicted the heart-related 231

diagnoses. Additionally, the algorithm was able 232

to discern the heart-related diagnoses from one an- 233

other: dividing acute myocardial infarction (410) 234

from the more chronic and congenital diseases 235

(414, 424). The algorithm may have discerned 236

that words representing severe prognoses or pro- 237

cedures, such as "angioplasty", "emergency", and 238

"death" were more correlated with acute myocar- 239

dial infarction. 240

3further experimental details in appendix
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Unsupervised Learning
Features TFIDF40 TM5 TM20 TM30

Algorithms K-mean PDD K-mean PDD K-mean PDD K-mean PDD
Acc. 0.49 0.50 0.59 0.78 0.56 0.72 0.58 0.70
Balanced Acc. 0.48 0.45 0.62 0.78 0.50 0.74 0.51 0.73
Precision 0.48 0.75 0.58 0.84 0.47 0.73 0.50 0.73
Recall 0.49 0.45 0.62 0.78 0.50 0.74 0.51 0.73
Weighted F1 0.42 0.41 0.57 0.78 0.54 0.72 0.56 0.71
Avg. F1 0.44 0.38 0.57 0.78 0.48 0.71 0.50 0.70

Supervised Learning
Features TFIDF40 TM5 TM20 TM30

Algorithms RF CNN RF CNN RF CNN RF CNN
Acc. 0.82 0.84 0.66 0.67 0.74 0.72 0.74 0.73
Balanced Acc. 0.81 0.85 0.62 0.62 0.72 0.70 0.71 0.70
Precision 0.82 0.84 0.64 0.67 0.74 0.72 0.74 0.73
Recall 0.81 0.84 0.62 0.67 0.71 0.72 0.71 0.73
Weighted F1 0.82 0.84 0.65 0.66 0.74 0.72 0.73 0.72
Avg. F1 0.82 0.84 0.63 0.67 0.72 0.72 0.72 0.73
AUC. 0.95 0.96 0.87 0.88 0.91 0.90 0.91 0.91

Table 1: Experimental Result Comparison.

Figure 2: The PDD Knowledge Base when Top 20 topics are used as input.

4.3 Discussion on Interpretability241

Figure 2 shows the partial knowledge base on 20242

topics dataset. As same with the above results, in243

the first principal component, two opposite groups244

are discovered: one where ICD9=4XX (heart dis-245

eases), and the other where ICD9 = 038 (sep-246

ticemia). But the difference is that three subgroups247

(i.e. 424, 414, 410) are further detected related to248

three different ICD9 codes. The discovered sig-249

nificant patterns are summarized for 20 topics as250

below.251

ICD9=424 (diseases of the endocardium) and252

414 (chronic ischemic heart disease) shows similar253

patterns, for example: i) high probabilities appear254

in the topics 1,2(Cardiovascular/Surgery),5,16; ii)255

and topics with low probabilities are topics 6,256

7 (Status/Consciousness), 8 (Lung disease), 9.257

ICD9=038 (septicemia) shows opposite patterns,258

for example: i) topics with high probabilities259

are topics 3, 4 (Intensive care/Infection), 7 (Sta-260

tus/Consciousness), 8 (Lung disease); ii)and low261

probabilities appear in the topics 0(Heart anatomy) 262

1, 2 (Cardiovascular/Surgery), 5, 12 (Cardiovascu- 263

lar), 16, 18. 264

5 Conclusion 265

In this work, we propose a novel two-step algo- 266

rithm, using interpretable NLP features with un- 267

supervised pattern discovery to solve clinical text 268

analysis. PDD performs better than K-means, es- 269

pecially when applied to the dataset extracted by 270

topic modeling. Clustering results of PDD based 271

on the discovered patterns may reflect the func- 272

tional sources of the original dataset instead of class 273

labels. In addition, our method is a global inter- 274

pretable white-box model (from the input, through- 275

put to the output) to provide an explainable All- 276

in-One Knowledge Base (KB) that synchronizes 277

self-correcting classification and clustering results 278

in summarized/comprehensive forms to provide 279

interpretability and traceability. 280
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A Materials and Methods385

An EHR is a digital collection of medical informa-386

tion about a person, which includes information387

about a patient’s health history, such as diagnoses,388

medicines, tests, allergies, immunizations, and389

treatment plans. The MIMIC-III (Medical Infor-390

mation Mart of Intensive Care) is an openly avail-391

able extensive database comprising de-identified392

information relating to patients admitted to critical393

care units at a large tertiary care hospital (Johnson394

et al., 2016). Data primarily stores both structured395

(e.g. MIMIC-III medications, laboratory results396

are stored in the table with columns as features397

and rows as records) and unstructured data (e.g.398

MIMIC-III clinical notes, discharge summaries are399

stored in the format of free text). The discharge400

summary of patients is free text, thus making in-401

terpreting it a challenge. Hence, the first step is402

transforming free text into a structured dataset for-403

matting as a table with columns as features and404

rows as records. The second step is discovering405

patterns and grouping patients’ records based on406

patterns in an unsupervised manner.407

We presented the detailed steps of the proposed408

algorithm as below (Figure 1).409

A.1 Feature Extraction410

Topic modelling (Jelodar et al., 2019) is described411

as a method for finding a group of words (i.e topic)412

from a collection of documents that best represents413

the information in the collection. Hence, we extract414

features from the clean dataset using topic mod-415

elling. The value of the features is represented by416

the probabilities of topics occurring in the records.417

Labels are then merged with the features for unsu-418

pervised exploration; in this case, the label is the419

ICD9 code - the diagnostic code indicating cate-420

gories of disease. We use LDA (Latent Dirichlet421

Allocation) for the topic model because it identifies422

topics best describing distinct subsets of documents423

within a corpus (Jelodar et al., 2019). To determine424

the ideal number of topics, we choose the optimal425

number of topics by computing the coherence of426

the topic cluster instance (Röder et al., 2015). We427

find that the coherence score peaks when the num-428

ber of topics is 5, 20, and 30 - and therefore we429

create topic models with those respective parame-430

ters. The output of our coherence scores is shown431

as Figure 3.432

Figure 3: Optimal number of topics by coherence of the
topic cluster

A.2 Pattern Discovery and Disentanglement 433

After preprocessing and extracting features from 434

the text, the dataset has been transformed into a 435

structured table of patients’ records in rows and fea- 436

tures in columns, which is represented as a M ×N 437

matrix, where M represents the number of patients’ 438

records and N represents the number of extracted 439

features 4. 440

A.2.1 Discretize Numerical Feature Values 441

The output matrix in the last step contains prob- 442

abilities of topics or extracted words, which are 443

all numerical values. Due to infinite degrees of 444

freedom of numerical features, it is hard to corre- 445

late features with the target variable and interpret 446

the associations. Hence, we discretize features 447

into event-based/discrete features. To detect event- 448

based patterns, we convert the values of numerical 449

features into categorical features by using the Equal 450

Frequency discretization which distributes the val- 451

ues into equal size bins, so that numerical feature 452

values are converted into discrete values referred 453

to as “feature value” (meaning the discrete value 454

for that feature). To be consistent with the study of 455

PDD (Wong et al., 2021), we use the term Attribute 456

Value (AV) instead. 457

A.2.2 Association Disentanglement 458

In order to measure the association between a pair 459

of AVs (i.e. certain values of one attribute co- 460

occurs with the value of another attribute), we 461

use the statistical measure of adjusted standard- 462

ized residual, abbreviated by SR, to represent the 463

statistical weights of the AV pair, which is denoted 464

as SR(AV1 ↔ AV2) (shorten as SR(AV12)) and 465

4In pattern discovery, we use the term attribute instead of
feature.
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calculated by Eqn. (1) below.466

SR(AV12) =
Occ(AV12)− Exp(AV12)√

Exp(AV12)
467

×(1− Occ(AV1)

T

Occ(AV2)

T
)468

(1)469

where Occ(AV1) and Occ(AV2) are the number470

of occurrences of AV; Occ(AV12) is the total num-471

ber of co-occurrence for two AVs in a AV pair; and472

Exp(AV12) is the expected frequency and T is the473

total number of records.474

An association matrix, treated as a vector space,475

is then generated to represent the strength of asso-476

ciations between each pair of AVs. Each row of the477

matrix, corresponding to a distinct AV, represents478

an AV-vector with SRs between that AV associated479

with all other AVs corresponding to the column480

vectors as its coordinates. We call the matrix the481

SR Vector Space (SRV). SRV is an N dimensional482

vector space consisting of N distinct AV-vectors.483

We then use PCA to decompose SRV (Wong484

et al., 2021) (Wong et al., 2018) into principal com-485

ponents to reveal AV associations orthogonal to486

others AV associations, i.e. PC=PC1, PC2,. . .487

PCk which are ranked according to the weights488

of the associations (eigenvalues). We then repro-489

ject the projections of AV-vectors on the principal490

components onto the SRV again, to obtain a set of491

reprojected-SRVs (abbreviated by RSRV). We refer492

to the PC together with its RSRV as a disentangled493

space.494

The above process is called Pattern Disentan-495

glement which allows us to take the reprojected496

components/vectors from PCA and use the repro-497

jected values as new measurements/criteria to rep-498

resent the strength of associations between AVs in499

different orthogonal disentangled spaces.500

A.2.3 Pattern Clustering501

In an RSRV, after screening in the statistical resid-502

ual values (referred to as RSR) greater than 1.96,503

only the significant pairs of AV associations re-504

main. Statistically, under the null hypothesis that505

the two AVs are independent, the adjusted resid-506

uals will have a standard normal distribution. So,507

an adjusted residual that is more than 1.96 (2.0508

is used by convention) indicates the association is509

significantly greater than what would be expected510

(with a significance level of 0.05 or 95% confidence 511

level) if the hypothesis were true. We can also set 512

a threshold as 1.44 with 85% confidence, or 1.28 513

with 80% confidence level. 514

As an unsupervised learning approach, on each 515

RSRV, we generate AV groups such that each group 516

contains a set of AVs. We build the set of AVs up 517

iteratively by adding AVs that are associated with 518

AVs in the set. That is to say, an AV (e.g., AVi) 519

that is significantly associated with another AV (e.g. 520

AVj) in the group will join the group, otherwise, a 521

new AV group is generated for AVi. Theoretically, 522

in one projected principal component, usually two 523

AV groups on the opposite sides are generated as 524

two opposite groups. When such opposite groups 525

do not exist, we may obtain AV groups only on one 526

side of the PC. The output of this step is one or two 527

AV groups, and each group contains a set of AVs. 528

Furthermore, to obtain detailed separated groups, 529

several AV subgroups can be generated for each 530

AV group using a similarity measure such that the 531

similarity between two AV subclusters is speci- 532

fied as the percentage of the overlapping records 533

covered by each AV subcluster. We denote each 534

AV subgroup by a three-digit code [#PC, #Group, 535

#SubGroup]. The AV groups or subgroups can re- 536

veal the characteristics of the records at specific 537

groups with disentangled patterns to provide statis- 538

tical evidence for further clustering or prediction. 539

Furthermore, patient record groups are obtained 540

according to their specific characteristics (disen- 541

tangled patterns) discovered in the AV groups or 542

subgroups. 543

Traditional pattern clustering algorithm (Zhou 544

et al., 2016), without PCA, can group patterns 545

based on their “similarity”, which is limited and 546

time-consuming. In this case, after disentangle- 547

ment and generating AV groups/subgroups, only 548

a few AVs remain to be candidate patterns, which 549

can reduce time consumption when high-order pat- 550

terns are growing. The high-order pattern describes 551

a statistically significant association among more 552

than two AVs. 553

A.2.4 Pattern Discovery 554

So far, each AV subgroup contains a set of AVs 555

considered as candidate patterns. We then test the 556

candidates from order > 2 (i.e. consisting of more 557

than 2 AVs) to high order sets to determine their 558

pattern status. Hence, we obtain a compact set of 559

patterns which are statistically significant and in- 560

terpretable. Hence PDD reduces the computational 561
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complexity drastically and produces very small and562

succinct pattern sets for interpretation and tracking.563

The disease related record groups of patients can564

then be explicitly revealed.565

A.3 Output566

The output of PDD is organized into an all-in-one567

representational framework known as PDD Knowl-568

edge Base. It consists of three parts: a Knowledge569

Section showing the hierarchical clusters such that570

each cluster unveil distinct characteristics of a re-571

lated group of records; a Pattern Section listing572

the discovered patterns showing detailed associa-573

tions between AVs; and the Data Section listing the574

record ID’s, the knowledge source and pattern(s)575

associated with each patient by linking the patient576

to the Knowledge and Pattern Sections.577

B Parameter Setting578

To classify the dataset, the data were split into 70%579

training and 30% for testing. We used default pa-580

rameter settings for K-means and random forest581

available in sklearn package for Python 3.0.582

For CNN (LeCun et al., 1995), we trained a583

CNN model with the input layer as a reshaped584

cleaned dataset with probabilities of topics or ex-585

tracted words and ICD9 labels. The architecture586

is as follows: a 1D CNN layer, followed by batch587

normalization, then a dropout layer for regulariza-588

tion (Li et al., 2019), and finally a 1D max-pooling589

layer. After the CNN and pooling, the learned fea-590

tures are flattened to one long vector and passed591

through a fully connected layer before the output592

layer for prediction. We used the Adam optimizer593

with a learning rate of 0.001 trained on 25 epochs594

with a batch size of 32.595

C Additional Experimental Results596

In the knowledge base shown as Figure ??, the first597

three columns show the knowledge space, which598

describes clustering results of PDD and statisti-599

cal measurement of each pattern. The clusters are600

identified by a three-digital code [#PC, #Group,601

#Subgroup] (PC: Principal Component, Group:602

pattern groups in the same principal component,603

Subgroup: pattern Sub-group in the same pattern604

group). We observe that, in the first principal com-605

ponent, two opposite groups are discovered: one606

where ICD9=4XX, and the other where ICD9 =607

038. All ICD9=4XX are diseases related to heart608

disease, while ICD9=038 is related to Septicemia,609

so these are two opposite groups. Then in the sec- 610

ond principal component, ICD9=424 (diseases of 611

the endocardium) was separated, still showing op- 612

posite patterns with ICD9=38. Finally, in the third 613

principal component, ICD9=424 was separated 614

from ICD9=410 (acute myocardial infarction). To 615

be more specific, the unveiled knowledge can be 616

summarized below. ICD9=424 (diseases of the en- 617

docardium), 414 (chronic ischemic heart disease), 618

and 410 (acute myocardial infarction) show similar 619

patterns. For example, low probabilities appear 620

in the topic0 (Medication). ICD9=424 and 414 621

show more closed patterns compared to 410 (acute 622

myocardial infarction). For example, low probabil- 623

ities appear in the topic4 (Intensive Care/Infection). 624

And ICD9=38(septicemia) shows opposite char- 625

acteristics compared to ICD9=4XX. For example, 626

high probabilities appear in topic 0 (Medication); 627

low probability appears in topic2 (Cardiovascular 628

2); and high probabilities appear in topic4 (Inten- 629

sive Care/Infection). The data space shows the IDs 630

of the records that are covered by the patterns. For 631

example, the first association pattern listed in the 632

first row of the knowledge base can be covered 633

by the records with ID = 2,11,44,53,63, and so 634

on. And all the above records belong to the group 635

labeled as ICD9=410, which is the same as the 636

discovered pattern 637

D Limitations 638

This study has the following limitations. First, 639

to prove the concept of the PDD algorithm, only 640

records with the four most common ICD9 codes 641

are selected. Second, PDD, used as an interpretable 642

clustering algorithm in this study, accepts limited 643

selected features. When too many features are in- 644

cluded, acquired data leads to high time complexity, 645

and overwhelming pattern number and redundancy, 646

making interpretability very difficult. For future 647

work, we will enlarge the dataset and the number 648

of features to investigate their impact on the perfor- 649

mance of the algorithm. Finally, as the predicted 650

label is ICD9 code, we presume it to be the ground 651

truth for diagnosis. However, ICD9 is used for 652

billing purposes and therefore may not accurately 653

reflect a patient’s true condition (O’malley et al., 654

2005). 655
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