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Abstract

Diagnosis of a clinical condition can help med-
ical professionals save time in the decision-
making and prevent overlooking risks. Sev-
eral machine learning models have been de-
veloped to predict clinical conditions, how-
ever, many existing models may have ineffec-
tive interpretability which is often desirable.
In this paper, we explore the problem of text
interpretability using free-text medical notes
recorded in electronic health records (EHR).
We propose an algorithm combining text min-
ing and pattern discovery solution to discover
strong association patterns between patient dis-
charge summaries and the code of international
classification of diseases (ICD9 code). The
proposed approach offers a straightforward in-
terpretation of the underlying relation of pa-
tient characteristics in an unsupervised machine
learning setting and also outperforms the base-
line clustering algorithm and is comparable to
baseline supervised methods.

1 Introduction

If Artificial Intelligence is to play a significant role
in support of the automatic decision process, it is
essential for the users to gain trust (Kim, 2021).
Hence, besides the outcomes of the decisions, in-
terpretability with specific statistical support is of
ample importance to enable humans to understand
the reasons behind the machine learning decision.
Hence, in this study, we focus on interpreting the
diagnostic characteristics/patterns from the elec-
tronic health records (EHR).

Topic modeling (Blei et al., 2003) has been ap-
plied to the unstructured notes of EHRs to pre-
dict clinical outcomes without focusing upon inter-
pretability (Bright et al., 2021; Huang et al., 2015;
Wang et al., 2020). Recently, methods in inter-
pretability such as attention and saliency have had
questions raised about their effectiveness (Bastings
and Filippova, 2020) and security (Zhang et al.,
2021). Meanwhile, other NLP methods such as

minimal contrastive editing are computationally
expensive (Ross et al., 2020) or require intrinsic
implementations via prompts (Sun and Marasovié,
2021).

Hence, to address the issue of interpretability
of EHR, we created a novel two-stage algorithm,
leveraging interpretable feature engineering of text
such as topic models (Chen et al., 2019) and pat-
tern discovery techniques (Wong et al., 2021), to
discover strong association patterns from patient
profiles and discharge summaries to reveal their re-
lationships with the diagnosed disease !, and clus-
tering patients into specific groups. The output is
clustering groups and an interpretable Knowledge
Base.

The contributions of the paper are three folds:
1) Interpretability: a novel algorithm focusing on
white-box model interpretation for free-text clini-
cal notes; 2) Unsupervised Learning: the grouping
of records based on the discovered associations
revealing characteristics of records via unsuper-
vised learning; 3) All-In-One Knowledge-Base:
generating an all-in-one knowledge base to link the
knowledge (hierarchical clusters), patterns (char-
acteristics of records), and data (patients’ records)
together to show “what” (disease), ‘“‘who/where”
(tracking patient records back) and “why” (discov-
ered patterns) to interpret clinical notes for better
clinical decision making.

2 Material: MIMIC-III Data Description

MIMIC-III is a de-identified relational clinical
database containing observations from over 40,000
patients in critical care units of the Beth Israel Dea-
coness Medical Center between 2001 and 2012
(Johnson et al., 2016). Our present study utilizes
clinical notes, found in the NOTEEVENTS table,
and diagnoses, found in the DIAGNOSES_ICD
table.

'ICDY code, which is the code of international classifica-
tion of diseases
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Figure 1: The overview of the proposed algorithm

Our final data contains 11,537 patient records
and corresponds with the top four classes/diseases
represented by the ICD9 code, which are: 414 -
chronic ischemic heart disease, 038 - septicemia,
410 - acute myocardial infarction, and 424 - dis-
eases of the endocardium. The four classes
were slightly imbalanced, with 3502(30.35%),
3184(27.6%), 3175(27.52%), and 1676(14.53%)
observations, respectively. We chose to include
only the top 4 most common codes to highlight the
pattern-discerning capability of the proposed algo-
rithm, as including many codes (especially those
with fewer observations) would decrease the inter-
pretability and performance even for supervised
learning models.

3 Methodology

In this section, we present the proposed methodol-
ogy applied to the MIMIC-III dataset. The algo-
rithm proposes tasks in three main steps: prepro-
cessing, feature extraction, and pattern discovery.
The overview of the proposed algorithm is shown
in Figure 1. We first apply a preprocessing pipeline
proposed by Van Aken et al. (2021) to clean and
merge the dataset.

3.1 Feature Extraction

we further extract features from the clean dataset
using topic modeling (Jelodar et al., 2019). The
values of the features are represented by the proba-
bilities of topics (group of words) occurring in the
records. Labels (i.e. ICD9 code) are then merged
with the features for unsupervised exploration. The
optimal number of topics computed using coher-

ence of the topic cluster instance (Roder et al.,
2015) is 5, 20, and 30 - and therefore we create
topic models with those respective parameters.

3.2 Pattern Discovery and Disentanglement

The dataset can be represented as a M x N matrix,
where M represents the number of patients’ records
and N represents the number of extracted features
2

Step 1. Pattern Disentanglement. First, we con-
vert the values of numerical features into categor-
ical features by using the Equal Frequency dis-
cretization. We denote categorical values of feature
as Attribute Value (AV) (Wong et al., 2021). Sec-
ond, In order to measure the strength of the asso-
ciation between each pair of AVs (i.e. the specific
values of one attribute co-occurring with the value
of another attribute), we construct an association
matrix using the value of adjusted standardized
residual (Wong et al., 2021). Then, we use Princi-
pal Component Analysis (PCA) to decompose the
association matrix into principal components that
are ranked according to the weights of the associa-
tions (eigenvalues). We then reproject the principal
components onto the association matrix again. We
refer to the reprojected association matrix as disen-
tangled space. The above process is called Pattern
Disentanglement which allows us to take the repro-
jected components/vectors from PCA and use the
reprojected values as new measurements/criteria
to represent the strength of associations between
AVs in different orthogonal disentangled spaces.

%In pattern discovery, we use the term attribute instead of
feature



Lastly, in order to obtain only the significant pairs
of AV associations, we filter out statistical residual
values greater than 1.96 in our newly reprojected
association matrix (i.e. association matrix with
disentangled associations)

Step 2. Pattern Clustering. In an unsupervised
manner, we cluster the associations. Typically the
number line of one projected principal component
has two opposite sets of AV. However, when such
opposing sets do not exist, we only use AV sets
from one side of the PC. Furthermore, in order
to reveal further characteristics of the records of
the disentangled patterns, we separate the above
sets into several subsets by clustering them. The
similarity measure we used for clustering is the per-
centage of the overlapping records covered by each
AV subcluster and we denote each AV subgroup
by a three-digit code [#PC, #Group, #SubGroup].
The AV sets or subsets can reveal the characteris-
tics of the records corresponding to disentangled
patterns in order to provide statistical evidence for
downstream clustering or prediction. Furthermore,
patient records are obtained according to their par-
ticular characteristics (disentangled patterns) from
the AV groups or subgroups.

The output of PDD is organized into an all-in-
one representational framework (PDD Knowledge
Base) with three parts: a Knowledge Section show-
ing the hierarchical clusters such that each cluster
unveils distinct characteristics of a related group of
records; a Pattern Section listing patterns showing
detailed associations between AVs; and the Data
Section listing the record ID which link the patient
to the knowledge and pattern sections.

4 Experimental Result

We present our results in Table 1 and knowledge
base in Figure 2.

4.1 Comparison of Unsupervised and
Supervised Learning

Given the imbalanced nature of our dataset (Zhou
and Wong, 2021), we followed the same evaluation
method in (Van Aken et al., 2021), balanced ac-
curacy (Balanced Acc. in Table 1) and weighted
Fl-scores (Weighted F1 in Table 1), to evaluate
performance of both supervised and unsupervised
results. We compared the clustering results of
PDD with K-mean, as the baseline, and also two
supervised learning algorithms: Random Forest
(Breiman, 2001) and CNN (Kalchbrenner et al.,

2014) 3.

As the baseline comparison for features, we also
applied all supervised and unsupervised learning al-
gorithms on the dataset with words extracted using
TFIDF (Jones, 1972). To make the interpretation
meaningful, we selected the top 40 words in TFIDF
with a feature selection algorithm by Random For-
est.

The comparison results are shown in Table 1. It
is interesting to observe that PDD outperformed
other K-means. However, both supervised learn-
ing algorithms, Random Forest and CNN perform
better on the TFIDF dataset. The reason should be
that the top 40 words (feature) are selected based
on classification results.

When topic modeling results are used as a
dataset, PDD outperforms K-means and even the
two other supervised learning algorithms when
only 5 topics are used. As for Random Forest,
it performs better when applied to the topic model-
ing results with 20 topics than the two experiments
running on 5 topics and 30 topics. While as for
CNN, the results of experiments on 30 topics are
slightly better than the results on 20 topics.

One important notion we would like to bring
forth is that, even if the accuracy score reflects the
algorithm performance to some extent, class labels
may not always be reliable in supervised classifica-
tion algorithms. On the contrary, clustering merely
recognizes patterns in the data and holds no such
risk.

4.2 Discussion on Topic Modeling

From a clinical perspective, the generated topic
models correspond reasonably well with each ICD9
diagnosis. In the 20-topic model, septicemia - a
widespread infection of the body, was predicted
by topics containing relevant words such as "infec-
tion", “bacteria”, and "culture". Conversely, topics
that contained cardiovascular-related terms such as
"ventricular" or "aorta" predicted the heart-related
diagnoses. Additionally, the algorithm was able
to discern the heart-related diagnoses from one an-
other: dividing acute myocardial infarction (410)
from the more chronic and congenital diseases
(414, 424). The algorithm may have discerned
that words representing severe prognoses or pro-
cedures, such as "angioplasty", "emergency", and
"death" were more correlated with acute myocar-
dial infarction.

3further experimental details in appendix



Unsupervised Learning

Features TF]DF40 TM5 TMQO TM30
Algorithms K-mean PDD K-mean PDD K-mean PDD K-mean PDD
Acc. 0.49 0.50 0.59 0.78 0.56 0.72 0.58 0.70
Balanced Acc. 0.48 0.45 0.62 0.78 0.50 0.74 0.51 0.73
Precision 0.48 0.75 0.58 0.84 0.47 0.73 0.50 0.73
Recall 0.49 0.45 0.62 0.78 0.50 0.74 0.51 0.73
Weighted F1 0.42 0.41 0.57 0.78 0.54 0.72 0.56 0.71
Avg. F1 0.44 0.38 0.57 0.78 0.48 0.71 0.50 0.70
Supervised Learning
Features TFIDFy T M5 T Moo T Ms3o
Algorithms RF CNN RF CNN RF CNN RF CNN
Acc. 0.82 0.84 0.66 0.67 0.74 0.72 0.74 0.73
Balanced Acc. 0.81 0.85 0.62 0.62 0.72 0.70 0.71 0.70
Precision 0.82 0.84 0.64 0.67 0.74 0.72 0.74 0.73
Recall 0.81 0.84 0.62 0.67 0.71 0.72 0.71 0.73
Weighted F1 0.82 0.84 0.65 0.66 0.74 0.72 0.73 0.72
Avg. F1 0.82 0.84 0.63 0.67 0.72 0.72 0.72 0.73
AUC. 0.95 0.96 0.87 0.88 0.91 0.90 0.91 0.91
Table 1: Experimental Result Comparison.
PDD Knowledge Base
Knowledge Space Pattern Space Data Space
Attributes (i.e. Topics in this study)
PC |Group|SubGroup| Residual Ico9 Taopic 0 Topie 1 Tapic 2 Topic 16 Tapic 17 Tapic 18 Tapic 19 Recaords 1D
1 1 1 19.76 424 [0.010.42] | [0.03 0.54] | [0.03 0.44] | ... #1, 89, #13,...
1 1 2 939 410 [0.010.42] [0.030.44] | ... [0.07 0.45) #2, #4, #5, #7,...
1 1 3 26.59 414 [0.01 0.42] [0,030.44] | ... #3, #6, #16,...
1 2 1 50,27 3g [0.000.01) | [0.000.01) | [0.000.03) | ... | [0.00 0.02) [0.00 0.01) #9, #12, #16,...
2 1 1 24.46 424 [0.01 0.42] [0,00 0.03) | ... | [0.02 0.05) [0.02 0.04) |#1, %9, #13,...
2 | 1 2 33.81 414 [0.010.42] | [0.030.54] | [0.000.03) | ... | [0.02 0.05) [0.01 0.03) | [0.02 0.04) |#3, #6, #15,...
2 2 1 15.28 410 [0.000.01) | [0.03 0.44] | ... #2, #4, #5, #7 ...
Mote: PC=Principal Component; Group=Attribute Value Group; SubGroup = Attribute Value Sub-Group;

Figure 2: The PDD Knowledge Base when Top 20 topics are used as input.

4.3 Discussion on Interpretability

Figure 2 shows the partial knowledge base on 20
topics dataset. As same with the above results, in
the first principal component, two opposite groups
are discovered: one where ICD9=4XX (heart dis-
eases), and the other where ICD9 = 038 (sep-
ticemia). But the difference is that three subgroups
(i.e. 424, 414, 410) are further detected related to
three different ICD9 codes. The discovered sig-
nificant patterns are summarized for 20 topics as
below.

ICD9=424 (diseases of the endocardium) and
414 (chronic ischemic heart disease) shows similar
patterns, for example: i) high probabilities appear
in the topics 1,2(Cardiovascular/Surgery),5,16; ii)
and topics with low probabilities are topics 6,
7 (Status/Consciousness), 8 (Lung disease), 9.
ICD9=038 (septicemia) shows opposite patterns,
for example: i) topics with high probabilities
are topics 3, 4 (Intensive care/Infection), 7 (Sta-
tus/Consciousness), 8 (Lung disease); ii)and low

probabilities appear in the topics O(Heart anatomy)
1, 2 (Cardiovascular/Surgery), 5, 12 (Cardiovascu-
lar), 16, 18.

5 Conclusion

In this work, we propose a novel two-step algo-
rithm, using interpretable NLP features with un-
supervised pattern discovery to solve clinical text
analysis. PDD performs better than K-means, es-
pecially when applied to the dataset extracted by
topic modeling. Clustering results of PDD based
on the discovered patterns may reflect the func-
tional sources of the original dataset instead of class
labels. In addition, our method is a global inter-
pretable white-box model (from the input, through-
put to the output) to provide an explainable All-
in-One Knowledge Base (KB) that synchronizes
self-correcting classification and clustering results
in summarized/comprehensive forms to provide
interpretability and traceability.
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A Materials and Methods

An EHR is a digital collection of medical informa-
tion about a person, which includes information
about a patient’s health history, such as diagnoses,
medicines, tests, allergies, immunizations, and
treatment plans. The MIMIC-III (Medical Infor-
mation Mart of Intensive Care) is an openly avail-
able extensive database comprising de-identified
information relating to patients admitted to critical
care units at a large tertiary care hospital (Johnson
et al., 2016). Data primarily stores both structured
(e.g. MIMIC-III medications, laboratory results
are stored in the table with columns as features
and rows as records) and unstructured data (e.g.
MIMIC-III clinical notes, discharge summaries are
stored in the format of free text). The discharge
summary of patients is free text, thus making in-
terpreting it a challenge. Hence, the first step is
transforming free text into a structured dataset for-
matting as a table with columns as features and
rows as records. The second step is discovering
patterns and grouping patients’ records based on
patterns in an unsupervised manner.

We presented the detailed steps of the proposed
algorithm as below (Figure 1).

A.1 Feature Extraction

Topic modelling (Jelodar et al., 2019) is described
as a method for finding a group of words (i.e topic)
from a collection of documents that best represents
the information in the collection. Hence, we extract
features from the clean dataset using topic mod-
elling. The value of the features is represented by
the probabilities of topics occurring in the records.
Labels are then merged with the features for unsu-
pervised exploration; in this case, the label is the
ICD9 code - the diagnostic code indicating cate-
gories of disease. We use LDA (Latent Dirichlet
Allocation) for the topic model because it identifies
topics best describing distinct subsets of documents
within a corpus (Jelodar et al., 2019). To determine
the ideal number of topics, we choose the optimal
number of topics by computing the coherence of
the topic cluster instance (Roder et al., 2015). We
find that the coherence score peaks when the num-
ber of topics is 5, 20, and 30 - and therefore we
create topic models with those respective parame-
ters. The output of our coherence scores is shown
as Figure 3.

Figure 3: Optimal number of topics by coherence of the
topic cluster

A.2 Pattern Discovery and Disentanglement

After preprocessing and extracting features from
the text, the dataset has been transformed into a
structured table of patients’ records in rows and fea-
tures in columns, which is represented as a M x N
matrix, where M represents the number of patients’
records and N represents the number of extracted

features *.

A.2.1 Discretize Numerical Feature Values

The output matrix in the last step contains prob-
abilities of topics or extracted words, which are
all numerical values. Due to infinite degrees of
freedom of numerical features, it is hard to corre-
late features with the target variable and interpret
the associations. Hence, we discretize features
into event-based/discrete features. To detect event-
based patterns, we convert the values of numerical
features into categorical features by using the Equal
Frequency discretization which distributes the val-
ues into equal size bins, so that numerical feature
values are converted into discrete values referred
to as “feature value” (meaning the discrete value
for that feature). To be consistent with the study of
PDD (Wong et al., 2021), we use the term Attribute
Value (AV) instead.

A.2.2 Association Disentanglement

In order to measure the association between a pair
of AVs (i.e. certain values of one attribute co-
occurs with the value of another attribute), we
use the statistical measure of adjusted standard-
ized residual, abbreviated by SR, to represent the
statistical weights of the AV pair, which is denoted
as SR(AV; +» AV3) (shorten as SR(AV12)) and

*In pattern discovery, we use the term attribute instead of
feature.



calculated by Eqn. (1) below.

Occ(AVig) — Exp(AVig)
Exp(AV12)

~ Oce(AWr) Occ(AV2)>
T T

SR(AVi) =

x (1

)

where Occ(AV7) and Occ(AVs) are the number
of occurrences of AV; Occ(AVi2) is the total num-
ber of co-occurrence for two AVs in a AV pair; and
Exp(AVi2) is the expected frequency and 7' is the
total number of records.

An association matrix, treated as a vector space,
is then generated to represent the strength of asso-
ciations between each pair of AVs. Each row of the
matrix, corresponding to a distinct AV, represents
an AV-vector with SRs between that AV associated
with all other AVs corresponding to the column
vectors as its coordinates. We call the matrix the
SR Vector Space (SRV). SRV is an N dimensional
vector space consisting of N distinct AV-vectors.

We then use PCA to decompose SRV (Wong
et al., 2021) (Wong et al., 2018) into principal com-
ponents to reveal AV associations orthogonal to
others AV associations, i.e. PC=PCy, P(Cs,...
PC, which are ranked according to the weights
of the associations (eigenvalues). We then repro-
ject the projections of AV-vectors on the principal
components onto the SRV again, to obtain a set of
reprojected-SRVs (abbreviated by RSRV). We refer
to the PC together with its RSRV as a disentangled
space.

The above process is called Pattern Disentan-
glement which allows us to take the reprojected
components/vectors from PCA and use the repro-
jected values as new measurements/criteria to rep-
resent the strength of associations between AVs in
different orthogonal disentangled spaces.

A.2.3 Pattern Clustering

In an RSRY, after screening in the statistical resid-
ual values (referred to as RSR) greater than 1.96,
only the significant pairs of AV associations re-
main. Statistically, under the null hypothesis that
the two AVs are independent, the adjusted resid-
uals will have a standard normal distribution. So,
an adjusted residual that is more than 1.96 (2.0
is used by convention) indicates the association is
significantly greater than what would be expected

(with a significance level of 0.05 or 95% confidence
level) if the hypothesis were true. We can also set
a threshold as 1.44 with 85% confidence, or 1.28
with 80% confidence level.

As an unsupervised learning approach, on each
RSRYV, we generate AV groups such that each group
contains a set of AVs. We build the set of AVs up
iteratively by adding AV that are associated with
AVs in the set. That is to say, an AV (e.g., AV;)
that is significantly associated with another AV (e.g.
AV}) in the group will join the group, otherwise, a
new AV group is generated for AV;. Theoretically,
in one projected principal component, usually two
AV groups on the opposite sides are generated as
two opposite groups. When such opposite groups
do not exist, we may obtain AV groups only on one
side of the PC. The output of this step is one or two
AV groups, and each group contains a set of AVs.

Furthermore, to obtain detailed separated groups,
several AV subgroups can be generated for each
AV group using a similarity measure such that the
similarity between two AV subclusters is speci-
fied as the percentage of the overlapping records
covered by each AV subcluster. We denote each
AV subgroup by a three-digit code [#PC, #Group,
#SubGroup]. The AV groups or subgroups can re-
veal the characteristics of the records at specific
groups with disentangled patterns to provide statis-
tical evidence for further clustering or prediction.
Furthermore, patient record groups are obtained
according to their specific characteristics (disen-
tangled patterns) discovered in the AV groups or
subgroups.

Traditional pattern clustering algorithm (Zhou
et al., 2016), without PCA, can group patterns
based on their “similarity”, which is limited and
time-consuming. In this case, after disentangle-
ment and generating AV groups/subgroups, only
a few AVs remain to be candidate patterns, which
can reduce time consumption when high-order pat-
terns are growing. The high-order pattern describes
a statistically significant association among more
than two AVs.

A.2.4 Pattern Discovery

So far, each AV subgroup contains a set of AVs
considered as candidate patterns. We then test the
candidates from order > 2 (i.e. consisting of more
than 2 AVs) to high order sets to determine their
pattern status. Hence, we obtain a compact set of
patterns which are statistically significant and in-
terpretable. Hence PDD reduces the computational



complexity drastically and produces very small and
succinct pattern sets for interpretation and tracking.
The disease related record groups of patients can
then be explicitly revealed.

A.3 Output

The output of PDD is organized into an all-in-one
representational framework known as PDD Knowl-
edge Base. It consists of three parts: a Knowledge
Section showing the hierarchical clusters such that
each cluster unveil distinct characteristics of a re-
lated group of records; a Pattern Section listing
the discovered patterns showing detailed associa-
tions between AVs; and the Data Section listing the
record ID’s, the knowledge source and pattern(s)
associated with each patient by linking the patient
to the Knowledge and Pattern Sections.

B Parameter Setting

To classify the dataset, the data were split into 70%
training and 30% for testing. We used default pa-
rameter settings for K-means and random forest
available in sklearn package for Python 3.0.

For CNN (LeCun et al., 1995), we trained a
CNN model with the input layer as a reshaped
cleaned dataset with probabilities of topics or ex-
tracted words and ICD9 labels. The architecture
is as follows: a 1D CNN layer, followed by batch
normalization, then a dropout layer for regulariza-
tion (Li et al., 2019), and finally a 1D max-pooling
layer. After the CNN and pooling, the learned fea-
tures are flattened to one long vector and passed
through a fully connected layer before the output
layer for prediction. We used the Adam optimizer
with a learning rate of 0.001 trained on 25 epochs
with a batch size of 32.

C Additional Experimental Results

In the knowledge base shown as Figure ??, the first
three columns show the knowledge space, which
describes clustering results of PDD and statisti-
cal measurement of each pattern. The clusters are
identified by a three-digital code [#PC, #Group,
#Subgroup] (PC: Principal Component, Group:
pattern groups in the same principal component,
Subgroup: pattern Sub-group in the same pattern
group). We observe that, in the first principal com-
ponent, two opposite groups are discovered: one
where ICD9=4XX, and the other where ICD9 =
038. All ICD9=4XX are diseases related to heart
disease, while ICD9=038 is related to Septicemia,

so these are two opposite groups. Then in the sec-
ond principal component, ICD9=424 (diseases of
the endocardium) was separated, still showing op-
posite patterns with ICD9=38. Finally, in the third
principal component, ICD9=424 was separated
from ICD9=410 (acute myocardial infarction). To
be more specific, the unveiled knowledge can be
summarized below. ICD9=424 (diseases of the en-
docardium), 414 (chronic ischemic heart disease),
and 410 (acute myocardial infarction) show similar
patterns. For example, low probabilities appear
in the topicO (Medication). ICD9=424 and 414
show more closed patterns compared to 410 (acute
myocardial infarction). For example, low probabil-
ities appear in the topic4 (Intensive Care/Infection).
And ICD9=38(septicemia) shows opposite char-
acteristics compared to ICD9=4XX. For example,
high probabilities appear in topic 0 (Medication);
low probability appears in topic2 (Cardiovascular
2); and high probabilities appear in topic4 (Inten-
sive Care/Infection). The data space shows the IDs
of the records that are covered by the patterns. For
example, the first association pattern listed in the
first row of the knowledge base can be covered
by the records with ID = 2,11,44,53,63, and so
on. And all the above records belong to the group
labeled as ICD9=410, which is the same as the
discovered pattern

D Limitations

This study has the following limitations. First,
to prove the concept of the PDD algorithm, only
records with the four most common ICD9 codes
are selected. Second, PDD, used as an interpretable
clustering algorithm in this study, accepts limited
selected features. When too many features are in-
cluded, acquired data leads to high time complexity,
and overwhelming pattern number and redundancy,
making interpretability very difficult. For future
work, we will enlarge the dataset and the number
of features to investigate their impact on the perfor-
mance of the algorithm. Finally, as the predicted
label is ICD9 code, we presume it to be the ground
truth for diagnosis. However, ICD9 is used for
billing purposes and therefore may not accurately
reflect a patient’s true condition (O’malley et al.,
2005).



