
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

OSNeRF: On-demand Semantic Neural Radiance Fields for Fast
and Robust 3D Object Reconstruction

Anonymous Authors

ABSTRACT
By leveraging multi-view inputs to synthesize novel-view images,
Neural Radiance Fields (NeRF) have emerged as a prominent tech-
nique in the realm of 3D object reconstruction. However, existing
methods primarily focus on global scene reconstruction using large
datasets, which necessitate substantial computational resources and
impose high-quality requirements on input images. Nevertheless,
in practical applications, users prioritize the 3D reconstruction re-
sults of on-demand specific object (OSO) based on their individual
demands . Furthermore, the collected images transmitted through
high-interference wireless environment (HIWE) leads to negatively
impact the accuracy of NeRF reconstruction, thereby limiting its
scalability. In this paper, we propose a novel on-demand Semantic
Neural Radiance Fields (OSNeRF) scheme, which offers fast and
robust 3D object reconstruction for diverse tasks. Within OSNeRF,
semantic encoder is employed to extract core semantic features
of OSOs from the collected scene images, semantic decoder is uti-
lized to facilitate robust image recovery under HIWE conditions,
lightweight renderer is employed for fast and efficient object recon-
struction. Moreover, a semantic control unit (SCU) is introduced
to guide above components, thereby enhancing the efficiency of
reconstruction. Demonstrative experiments demonstrate that the
proposed OSNeRF enables fast and robust object reconstruction
in HIWE, surpassing the performance of state-of-the-art (SOTA)
methods in terms of reconstruction quality.

CCS CONCEPTS
• Computing methodologies→ Computer graphics; Computer
graphics..

KEYWORDS
3D reconstruction, neural radiance field, semantic encoder and
decoder, on-demand object, lightweight renderer

1 INTRODUCTION
Three-dimensional (3D) object reconstruction [1–3] stands as a
pivotal challenge within the realm of computer vision [4–6]. The
Neural Radiance Fields (NeRF) [7–9] has recently risen as an excit-
ing technique, providing a novel way to tackle the task of 3D object
reconstruction. NeRF is able to compress a scene into a learnable
model given multiple images and corresponding camera poses of
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the scene [10]. By incorporating a volumetric rendering skill [11],
images of unseen camera views can be generated with convincing
quality. Existing studies [12–14] mainly focus on global scene re-
construction. Nonetheless, in practical application, users tend to
be more concerned with the reconstruction results of on-demand
specific object (OSO) [15]. Consequently, NeRF schemes for global
scene reconstruction that lack of on-demand often have significant
inefficiencies [16]. Moreover, the inputs of the existing NeRF-based
methods are high-quality images from the datasets. However, in
real-world applications, collected images often become distorted
during transmission through high interference wireless environ-
ments (HIWE) [17], which significantly compromising the quality
of object reconstruction [18].

In this paper, we propose a novel on-demand Semantic Neural
Radiance Fields (OSNeRF) scheme for fast and robust 3D object
reconstruction. As depicted in Fig. 1, initially, the Semantic Control
Unit (SCU) directs the cooperative robots to conduct data collec-
tion, guided by the user demand indicator, to obtain a multi-view
representation of the 3D scene. Subsequently, the semantic encoder
sequentially performs semantic segmentation, semantic feature
extraction, and semantic feature compression on OSO images. Fol-
lowing that, the semantic decoder reconstructs the OSO images
based on the received compressed semantic features. Finally, the
restored images, containing only the core semantic features, are fed
into a lightweight renderer. This scheme significantly reduces the
computational complexity of NeRF while enhancing the efficiency
and robustness of 3D object reconstruction in HIWE. In summary,
our contributions are as follows:

• Anovel on-demand semantic neural radiance fields (OSNeRF)
scheme is proposed, which can provide fast and robust 3D
object reconstruction in HIWE. With OSNeRF, on-demand
objects in the scene are selectively reconstructed according
to the user’s indicators.

• Technically, we implement a prototype system of OSNeRF,
which consists of on-demand data collector, semantic en-
coder, semantic decoder, lightweight renderer, and semantic
control unit. By filtering redundant information and pro-
viding semantic-level reconstruction guidance, the high effi-
ciency of 3D object reconstruction can be achieved.

• Comparison experiments are conducted, the reconstruction
results clearly indicate that OSNeRF outperforms existing
state-of-the-art (SOTA) methods in terms of both pixel-level
and semantic-level metrics. Furthermore, OSNeRF exhibits a
distinct advantage on speed and robustness in HIWE.

2 RELATEDWORK
To bring out the motivation of OSNeRF and highlight its superiority
against existing methods, we provide a comprehensive investiga-
tion about traditional 3D reconstruction method and NeRF-based
reconstruction method in this section.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The proposed OSNeRF pipeline. the collected images are initially processed by a semantic encoder, which compresses
the semantic features for transmission in HIWE. Following this, the semantic decoder recover the images, which are then
forwarded to a lightweight renderer designed to facilitate fast and robust 3D object reconstruction.

2.1 Traditional 3D reconstruction
Traditional 3D reconstruction methods encompass both active and
passive techniques, each offering distinct approaches to capturing
spatial information [19]. In the active method, a structured light
source is projected into the scene to determine target locations by
extracting its projected information within the scene. the authors in
[20] discuss the application of multi-sensor data fusion techniques
with high accuracy indoor object modeling. To realize dynamic ob-
ject reconstruction, [21] proposed an efficient direct tracking on the
truncated signed distance function and leverage color information
to estimate the pose of the sensor. Passive method utilizes ambient
environmental cues, like natural light reflections, combined with
images captured by cameras and analyzed through specific algo-
rithms to generate 3D data, offering simplicity and high feasibility
compared to active methods. Among these techniques, Photometric-
Stereo facilitates the determination of normal vectors by utilizing
stereo vision principles [22]. It achieves this by analyzing multiple
images captured under varying lighting conditions but with consis-
tent viewpoints. Similarly, the Shape From Shading (SFS) stands out
in discerning surface orientations through meticulous examination
of light and shadow variations [23]. Moreover, Multi-View Stereo
(MVS) is a key method for recovering 3D structure by exploiting dif-
ferences in the projected positions of the same 3D points observed
by multiple cameras [24]. However, traditional 3D reconstruction
methods are hampered by several limitations, including subpar per-
formance in water environments [25] and with small objects [26],
as well as substantial time that impede real-time reconstruction
capabilities [27]. Traditional 3D reconstruction methods typically
rely on image or point cloud data acquired from a limited number
of viewpoints. This sampling restricts an accurate representation
of the object, especially in occluded or detail-rich areas.

2.2 Neural radiance fields (NeRF)
Neural Radiance Fields (NeRF) represent a groundbreaking ap-
proach that learns the neural radiance field representation of a
scene, enabling the synthesis of realistic novel views from limited
2D image observations. By modeling the geometry and appearance
relationship of the scene, NeRF achieves high-quality reconstruc-
tion and rendering of complex 3D scenes. The remarkable perfor-
mance of NeRF has inspired numerous extensions and explorations
across diverse domains of 3D reconstruction. Notable extensions
include human reconstruction [28–30], dynamic object reconstruc-
tion [31–35], and realization of reconstruction of large scenes [36–
39], among others. These advancements showcase the versatility
and potential of NeRF as a foundational framework. Nevertheless,
as the complexity of the scene increases, the reconstruction pro-
cess requires more hardware resources and time. To address this
issue, some research efforts have focused on enhancing the ren-
dering speed of NeRF. For instance, FastNeRF [40] introduces a
novel light sampling strategy that dynamically adjusts the number
of sampling points, leading to reduced repetitive calculations and
improved model speed. Similarly, PlenOctrees [41] discretizes the
continuous volume density and color function into a sparse octree
structure, eliminating the need for redundant reasoning during
real-time rendering. These methods primarily offer architectural
improvements within the NeRF framework. It is important to note
that the redundant information present in the input images can sig-
nificantly impact reconstruction speed. Therefore, recent research
has started exploring the utilization of semantic information in
images to achieve more efficient reconstruction. A semantic-driven
NeRF editing method is proposed in [42], which encodes texture
editing in 3D space. Sem2NeRF [43] improves rendering accuracy
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by encoding semantic masks into latent codes that control 3D ob-
ject representation. Other methods, such as those presented in
[13, 44, 45], integrate 3D space and semantic space modeling to
enhance the model’s ability in scene semantic editing and realistic
rendering. However, it is worth noting that all of the aforemen-
tioned approaches do not consider the distortion of input images in
high-interference wireless environments (HIWE), thereby lacking
robustness in practical applications.

3 PROPOSED SCHEME
In this section, we will elaborate on the proposed OSNeRF as Figure
1, which comprises the following constituents: 1) On-demand data
collector, 2) semantic encoder and decoder, 3) Lightweight renderer,
and 4) semantic control unit.

3.1 On-demand data collector
The training of NeRF typically necessitates a substantial volume
of input images and corresponding scene geometric information.
However, for a particular demand, the user’s attention may be
solely directed towards reconstructing specific facets of the scene
or particular vantage points. For example, firefighter’s demand is
to 3D reconstruct hydrants and buildings within risk scene, the on-
demand data collector has the ability to selectively gather images
pertaining to the hydrant and building objects present, and employ
them as training data for the model. Consequently, the model’s
focus will be sharpened on acquiring a profound understanding of
the objects’ visual characteristics and structural attributes, thereby
enhancing its performance on the reconstruction task. By employ-
ing a on-demand data collector, we can tailor the collection and
utilization of data associated with a designated task, thereby aug-
menting the model’s efficacy in relation to that specific demand.
This methodology concurrently streamlines the scale and intricacy
of the training data, whilst affording the model an opportunity to
concentrate more intently on the pivotal aspects of the demand,
thereby bolstering the efficiency of the training process.

3.2 Semantic encoder and decoder
The semantic encoder is deployed on the data transmitter to facil-
itate the transmission of compressed semantic features, thereby
eliminating redundant information while preserving the quality
of the 3D reconstruction. The encoding process involves semantic
segmentation, semantic feature extraction, and semantic feature
compression.

Initially, the collected raw images are normalized to enhance
convergence speed and minimize computational loss. Subsequently,
the normalized multi-perspective images IM and on-demand in-
dicators O are fed into fully convolution networks 𝐹𝜆 for further
processing. i.e.,

𝐹𝜆 : (IM,O) → (M, 𝛼, 𝛽), (1)
where M symbolizes the generated mask with dimensions, each
element indicates whether a pixel is included or excluded as part of
the OSO (On-demand Semantic Object). 𝛼 quantifies the degree of
overlap between the mask and the actual annotation. 𝛽 represents
the category label of the OSO. Additionally, we can calculate the
predicted category label as 𝛽 = 𝛾 (M̂, 𝛼,O), where 𝛾 (·) is a function
that generates class label predictions based on the indicator O, we

accomplish semantic segmentation and obtain the desired OSO
through the training process.

Subsequently, the Swin Transformer [46] is utilized to extract
semantic features from the input images, which are segmented
into uniform patches via patch partitioning and linear embedding.
These patches are sequentially processed through multiple layers
of Transformer modules, each incorporating a window-based lo-
cal attention mechanism. This mechanism selectively focuses on
interactions among adjacent blocks, thereby decreasing both com-
putational and memory complexities. The attention formula can be
expressed as follows

Attention(B, L,Z) = Softmax
(
BL⊤
√
𝜌

)
Z, (2)

where Softmax(·) denotes an activation function. B, L,Z are the
input embeddings obtained by linear transformation, 𝜌 is the ad-
justment factor. The semantic features extracted from the input
images are represented as (𝑓1, 𝑓2, ..., 𝑓𝑙 ), where 𝑙 denotes the total
number of semantic features.

To enhance the adaptability of semantic feature transmission
across varying demands in high interference wireless environments
(HIWE), we have developed a semantic-aware method that gen-
erates a feature weight vector based on both the user demand
and the input data. This vector quantifies the importance of each
semantic feature relative to the user demand. In our semantic-
aware approach, we employ Grad-CAM [47] to produce a heat
map. The classifier’s output probability vector is represented as
g = [𝑔1, . . . , 𝑔𝑙 , . . . , 𝑔𝑐 ], the partial derivative feature vector (weight
vector) 𝑖𝑙 is obtained by 𝑖𝑙 =

𝜕𝑔𝑙
𝜕𝑓𝑙

, where the gradient information
reveals the sensitivity of the feature vector 𝒇 𝑙 to the user demand.
A higher value of 𝑖𝑙 ∈ [0, 1] indicates greater importance of the
feature for fulfilling user demand. The feature weight vector of all
the 𝐾 user demands is obtained as follows

𝒘 = 𝜆1𝑖𝑙,1 + . . . + 𝜆 𝑗 𝑖𝑙, 𝑗 + . . . + 𝜆𝐾 𝑖𝑙,𝑘 , (3)

where 𝜆 𝑗 denotes the weight of the 𝑗-th demand, 𝑖𝑙, 𝑗 is the sen-
sitivity vector corresponding to the 𝑗-th demand. Subsequently,
the mask layer can abandon the redundancy semantic features
while preserving the core semantic features (CSF) with higher 𝒘 ,
which are most relevant to task demand and can be repressed by
(𝑟1, 𝑟2, . . . 𝑟𝑚) and𝑚 is the total number of the CSF, thus achieving
intelligent semantic feature compression.

Specifically, the semantic compression is responsible compress-
ing the redundant semantic features in the full semantic feature.
The redundant semantic features refers to the semantic feature that
are easily predicted based on image or are useless for driving the
object reconstruction task. During semantic compression, we train
a feature shared by the transmitter and the receiver to represent
redundant information. Notably, the semantic features most rele-
vant to the NeRF task and will not be compressed during semantic
routing. Although the above method is a lossy feature compression.
However, due to the introduction of basic knowledge [48], the per-
formance of OSNeRF remains unaffected by this process since the
core semantic features for the reconstruction can be near-perfectly
recovered in HIWE.

For robust wireless transmission in HIWE, the power normal-
ization layer is used to map the compressed semantic feature to
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Figure 2: The framework of the proposed semantic encoder and decoder of OSNeRF.

the channel input sequences. During the training phase, a set of
non-trainable layers are utilized to simulate widely-used wireless
channel models, thereby enabling an end-to-end communication
framework. Furthermore, a scalable semantic decoder is imple-
mented in the physical layer, guided by the Semantic Control Unit
(SCU) to facilitate adaptive decoding. The semantic recovery sec-
tion comprises three convolutional layers designed to mitigate the
impact of noise on the semantic features at the receiver. Each convo-
lution layer incorporates several filters. The image reconstruction
segment consists of three upsampling layers and two convolution
layers, followed by a softmax activation function layer and an
argmax layer. The upsampling layers are tasked with progressively
restoring the original dimensions of the image, while the convolu-
tion layers sequentially extract semantic information. Ultimately,
the argmax operation maps the recovered semantic features back
to the original data space, thus preparing the reconstructed images
to drive the subsequent rendering task.

3.3 Lightweight renderer
We obtain the reconstructed images from the semantic decoder,
which are subsequently inputted into the lightweight renderer.
Each pixel in the image is associated with a ray r(𝑡) originating
from the camera, determined by the camera parameters and defined
as r(𝑡) = o+𝑡d. Here, o represents the origin of the light source (i.e.,
the camera’s position), 𝑡 is the parameter along the ray, expressed as
a scalar, and d is the direction of the ray corresponding to the pixel.
We sample multiple points along the ray and provide them, along

with their respective directions, as inputs to the neural network 𝐹𝜃 .
This allows for the prediction of both the color c𝑟 and the depth 𝑑𝑟 ,
which can be obtained as follows

c𝑟 =
𝑁∑︁
𝑖=1

𝑇 𝑖𝑟 𝛼
𝑖
𝑟 c
𝑖
𝑟 𝑑𝑟 =

𝑁∑︁
𝑖=1

𝑇 𝑖𝑟 𝛼
𝑖
𝑟 𝑡
𝑖
𝑟 , (4)

where 𝑁 denotes the number of samples sampled uniformly be-
tween the near and far planes, 𝛼𝑖𝑟 = 1 − exp

(
−𝜎𝑖𝑟𝛿𝑖𝑟

)
and 𝑇 𝑖𝑟 =∏𝑖−1

𝑗=1
(
1 − 𝛼 𝑗

)
denote the transmittance and alpha value of each

sampled point, respectively. Subsequently, we employ volume ren-
dering [49] to generate a feature map, which serves as a neural
network approximation of the radiance field. This representation
captures the color and volume densities at each point and in each
viewing direction within the scene. Consequently, the static object
is effectively modeled as a continuous vector function, denoted as

𝐹𝜃 :
(
x ∈ R3, d ∈ S2

)
↦→

(
𝜎 ∈ R, f ∈ R𝐾

)
, (5)

where x = (𝑥,𝑦, 𝑧) denotes the the spatial coordinates of a point
within a three-dimensional space. d denotes the observation di-
rection. 𝐾 represents the number of channels within our feature
vector. Through the process of volume rendering, we calculate the
feature vector for each ray 𝑟 using the equation f𝑟 =

∑𝑁
𝑖=1𝑇

𝑖
𝑟 𝛼
𝑖
𝑟 f𝑖𝑟 .

By selectively rendering the feature vectors for a subset of rays,
we generate a feature map denoted as F. Additionally, we render a
low-resolution depth value, denoted as D. Both F and D are stored
in buffer for subsequent optimization.
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Figure 3: The principles of lightweight renderer, the inputs
are the images recovered from the semantic decoder. The
buffer saves previous feature map and depth map, which can
be used to accelerate rendering at the current viewpoint.

By utilizing the buffer, which contains the previous 𝐿 feature
maps {F𝑡−𝐿, . . . , F𝑡−1} and the depth map{D𝑡−𝐿, . . . ,D𝑡−1}, we
leverage the stored semantic information to guide the selection pro-
cess for determining the current sampling position. This approach
significantly enhances the rendering speed. Specifically, by com-
bining the current viewpoint’s feature map with the maps in the
buffer, we can generate low-resolution feature maps. Additionally,
we employ a strategy similar to [9] to further reduce the number
of sampling points, resulting in faster rendering of the generated
low-resolution feature maps.

We subsequently project the 3D point cloud directly onto a high-
resolution to generate feature maps that boast enhanced resolution
and precision. i.e.,

F̂𝑡 ′→𝑡 (⌊𝑢𝑡 ′→𝑡 ⌉ , ⌊𝑢𝑡 ′→𝑡 ⌉) = F𝑡 ′ (𝑢, 𝑣), (6)

Subsequently, the reprojected high-resolution featuremaps
{
F̂𝑡 ′→𝑡

}
are connected to the up-sampled feature maps F̂𝑡 and mapped onto
the output multi-view images:

𝑔𝜃 :
({
F̂𝑡 ′→𝑡

}
, F̂𝑡

)
↦→ I𝑡 , (7)

As shown in figure 3, the core concept behind the proposed light-
weight renderer is to optimize image rendering from the current
viewpoint by utilizing previously restored low-resolution features
and depth information stored in a buffer. The efficient renderer
utilizes the reprojected feature maps at a higher resolution, along
with the upsampled feature map, to generate the final image. After
the low-resolution feature rendering, sample range optimization,
and reprojection of previous frames, we proceed to minimize the
loss function by contrasting the color of output image with the
input image, which can be expressed as

L(𝜃 ) =
𝑀1∑︁
𝑚1=1

𝑀2∑︁
𝑚2=1

𝐶𝑚1

(
r𝑚2

)
−𝐶𝑚1

(
r𝑚2

)2 , (8)

where𝑀1 represents the number of images, while𝑀2 corresponds
to the quantity of pixels contained within each image, 𝐶𝑚1

(
r𝑚2

)
and 𝐶𝑚1

(
r𝑚2

)
denote the true color and predicted color of the

𝑚2-th pixel on the 𝑚1-th image, respectively. By implementing
optimization methods such as the Stochastic Gradient Descent
(SGD) algorithm [50], we can progressively update the parameters 𝜎
pertaining to the neural network 𝐹𝜃 . In practice, we have improved
the U-net [51] neural renderer by increasing the number of low-
resolution feature convolution layers while decreasing the number
of high-resolution feature convolution layers, thus substantially
reducing the rendering timewhile ensuring the visual quality. These
iterative updates are intended tominimize the OSNeRF loss function
and ultimately achieve accurate object reconstruction.

3.4 Semantic control unit
The semantic control unit (SCU) is the semantic information inter-
action center of our proposed OSNeRF. Its main functions can be
summarised as follows.

Cooperative robots behaviour control. The SCU has the abil-
ity to convert the user’s demand specifications into associated se-
mantic data, thus directing the behavior of the cooperative robots
(drones, intelligent vehicle, robot dogs, etc.) towards capturing the
raw images most relevant to fulfilling the task requirements. This
enhances the dependability of the operational cooperative robots
and heightens the efficiency of the data collection endeavor.

Semantic knowledge updating.The update of semantic knowl-
edge guarantees the preservation of consistent semantic compre-
hension between the encoder and decoder. Updating and promptly
disseminating the most recent semantic knowledge and concepts
help evade misunderstandings and disparities in the coding and
decoding of semantic information. Furthermore, by updating the
semantic knowledge base in situations where multiple OSNeRF
systems share a common semantic repository, it ensures that these
systems can comprehensively understand and interpret one an-
other’s information, thereby enriching collaborative endeavors and
integration capabilities.

Semantic feature routing. Compressed semantic feature rout-
ing efficiently transmits compressed semantic information to the
respective decoder and renderer, employing an effective routing
mechanism. Furthermore, it employs compressed semantic features
to steer the model’s selection of scene regions of interest, thereby
precisely allocating computational resources. By concentrating com-
putational resources on regions of elevated semantic significance,
such as objects or areas of interest, the reconstruction results are
enhanced in terms of both quality and efficiency.

4 IMPLEMENTATION DETAILS
4.1 Dataset and baseline
We train our framework on the Tandt [52] dataset (composed of 251
images of 980 × 545 px). We partition the data to 200 training scenes
and 51 testing scenes. We also test our model (merely trained on
Tandt) on the ABO datasets [53], which diverse geometries with
realistic materials. Moreover, in order to verify the generalizability
of our proposed method, we collected a set of object images of real
scenes by UAVs and robots and named them as Fyts dataset, which
composed of 180 images of 1920 × 1080 px and diverse sharp and
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intricate textures. The above datasets have different scene and view
distributions from our training dataset. Models are trained on all
images of the training set for 1M iterations.

For performance bench-marking, we compare the reconstruction
results of the proposed OSNeRF with the SOTA schemes proposed
in [13, 43, 54, 55], in which [54] and [55] are classical NeRF methods
while [43] and [13] are semantic-based NeRF methods. To conduct
a comprehensive analysis of multiple NeRF-based methods, the
Nerfstudio framework is used as it incorporates multiple neural
implicit surface reconstruction approaches into a single framework.
The NeRF training was executed using a Nvidia 4090 GPU, while
the geometric comparisons of the 3D results were performed on a
standard PC.

4.2 Prototype system
OSNeRF focuses on implementing a robust and effective 3D object
reconstruction in high-interference wireless environment. In par-
ticular, we will focus on the transmission of compressed semantic
features. The SCU has the goal of enabling the decoder to perform
inference on new data samples by exploiting a semantic paradigm.
The hardware implementation will equip terminals with Jetson
Nano processors for training and inference of large AI/ML models,
softwaredefined radio (SDR) units provide a robust and effective
implementation tested under various SNR wireless environment.

Figure 4: Experimental hardware setting. The on-demand
data collector and semantic encoder are deployed at the trans-
mitter side, and the remaining components are deployed at
the receiver side. The blue arrows segments indicate the di-
rection of data flow and the red arrows segments indicate
the control commands of the SCU.

The prototype system and hardware setting are illustrated in
Figure. 4. Multiple cooperative robots (drones, intelligent vehicle,
robot dogs) are utilized for data collection. The connectivity layer
for the robotics will be provided by an advanced 3GPPcompliant
core network (Rel-17/18) and an advanced 5.5G Open RAN system
[56] equipped with semantic awareness platform. The high inter-
ference wireless environment is modeled as a standard Rayleigh
fading channel (Signal-to-noise ratio below 10dB). SCU establish a
comprehensive semantic knowledge base for managing the seman-
tic codec and robotics, the semantic model training in above devices
will be integrated into the robots tested for large-scale deployment.

4.3 Evaluation metrics
Pixel-level evaluation. We utilize the evaluation methodology
proposed in [57], where we initially capture multiple images of

the reconstructed object from identical viewpoints. Subsequently,
we analyze the pixel-level differences between the images of the
original 3D object and those reconstructed from corresponding per-
spectives. To quantify the evaluation, we employ a comprehensive
set of metrics, including PSNR (Peak Signal-to-Noise Ratio), SSIM
(Structural Similarity), LPIPS (Learned Perceptual Image Patch Sim-
ilarity), and FID (Fréchet Inception Distance).
Semantic-level evaluation. Given the limitations of pixel-level
metrics in assessing the semantic matching of reconstructed images,
we propose a semantic-level evaluation to measure the performance
of the generated images. To achieve this, we employ BLIP [58], a
powerful visual language model that integrates visual language
understanding and construction. This model enables us to convert
the multi-perspective images into textual representations. Subse-
quently, we utilize large language models like BERT [59] to obtain
embeddings of these generated texts. Finally, we compare the dif-
ferences between the embeddings using cosine similarity (CS) and
BLEU [60], the BLEU in this paper can be calculated as

log BLEU = min
(
1 − 𝑙ŝ

𝑙s
, 0
)
+
𝑁∑︁
𝑛=1

𝑢𝑛 log
∑
𝑘 min (𝐶𝑘 (ŝ),𝐶𝑘 (s))∑

𝑘 min (𝐶𝑘 (ŝ))
,

(9)
where 𝑛-grams means that the size of a word group. s is the trans-
mitted sentence with length 𝑙s and ŝ is the decoded sentence with
length 𝑙s,𝐶𝑘 (·) is the frequency count function for the𝑘-th elements
in 𝑛-th grams.

5 EXPERIMENTS
The experiments follow the evaluation framework presented in
[61], where we initially capture multiple images from identical
viewpoints in both the processed 3D and recovered scenes. Sub-
sequently, a meticulous analysis is conducted to assess pixel-level
disparities between the images derived from the original 3D scene
and those obtained from the reconstructed 3D scene, all captured
from corresponding perspectives. For performance bench-marking,
we compare the reconstruction results of the proposed OSNeRF
with the SOTA schemes proposed in [13, 43, 54, 55]. To achieve fair
and accurate comparisons, we run our method on the same experi-
ment settings with other methods, and we try our best to directly
use the reported official quantitative results in these papers or use
the official code to run the experiments. The visual comparisons are
shown in Figure 5, the quantitative results are expressed in Table 1
and Table 2.
Qualitative comparison. Figure 5 showcases our reconstruc-
tion results, which demonstrate exceptional visual quality across
various datasets. Utilizing input images sampled from each test
scene, we apply guidance-finetuning to derive the triplane scene
code and assess reconstruction quality based on previously unseen
images. Despite being exclusively trained on the Tandt dataset,
our model exhibits remarkable generalization to the ABO and Fyts
datasets, which feature diverse scene and view distributions. No-
tably, OSNeRF produces more regular geometries compared to the
slightly skewed and distorted shapes generated by MvsNeRF and
GPNeRF. Additionally, OSNeRF excels in capturing sharp details
and reflective materials. In contrast, the application of DSNeRF
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Figure 5: Rendering quality comparison on the Tandt datasets (Truck)[52], ABO datasets (Desk) [53], and Fyts dataset (Hydrant
and gymnasium) after 2h-processing. Note that the input images and semantic features of above NeRF methods are transmitted
in HIWE (SNR=0dB)

Tandt [52] ABO [53] Fyts
Methods PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
MvsNeRF 24.07 0.825 0.092 29.95 23.44 0.770 0.189 33.95 21.18 0.658 0.252 35.95
DSNeRF 23.83 0.840 0.105 27.28 23.25 0.788 0.135 30.14 22.83 0.745 0.194 32.49

Sem2NeRF 25.86 0.892 0.087 23.65 24.52 0.837 0.108 27.91 23.36 0.791 0.155 29.08
GPNeRF 25.17 0.909 0.086 26.95 24.66 0.815 0.110 28.97 23.39 0.802 0.157 28.72
OSNeRF 26.61 0.926 0.078 21.39 25.97 0.919 0.084 23.58 25.12 0.903 0.096 24.27

Table 1: The pixel-level quantitative comparisons of the various NeRF-based methods on the various datasets. Note that, our
results achieve the best numbers in all four pixel-level metrics compared than other SOTA NeRF methods.

Tandt [52] ABO [53] Fyts
Methods CS ↑ BLEU↑ CS ↑ BLEU↑ CS ↑ BLEU↑
MvsNeRF 0.816 0.797 0.754 0.717 0.675 0.684
DSNeRF 0.889 0.804 0.877 0.822 0.716 0.715

Sem2NeRF 0.915 0.907 0.878 0.882 0.877 0.833
GPNeRF 0.904 0.885 0.892 0.895 0.908 0.845
OSNeRF 0.963 0.942 0.935 0.921 0.922 0.916

Table 2: Quantitative comparisons based on the Semantic-
level evaluation. Our OSNeRF similarly still remain higher
CS and BLEU compared to other methods.

to the ABO testing scenes results in noticeable blurring and tear-
ing artifacts due to overfitting the training settings of the Tandit
datasets. While the semantic-based methods (Sem2NeRF and GP-
NeRF) outperform DSNeRF and MvsNeRF on the Fyts datasets in

actual scenes, both comparison methods exhibit flicker artifacts
to varying degrees, more pronounced than those observed in our
OSNeRF, as demonstrated in the appendix video. Consequently, we
can conclude that OSNeRF achieves highly efficient and accurate
3D object reconstruction in HIWE environments.
Quantitative comparison. The pixel-level quantitative results are
detailed in Table 1. While all methods achieve reasonable PSNRs,
SSIMs, LPIPs, and FID on the Tandt testing set, our method con-
sistently surpasses other methods across these four metrics when
given the same input. More notably, our results on the additional
two testing datasets significantly outperform the comparison meth-
ods, effectively demonstrating the robust generalizability of our
OSNeRF. Typically, comparison methods aggregate 2D image fea-
tures directly across view input at ray marching points for radiance
field inference. In contrast, our method prioritizes semantic infor-
mation and maintains the consistency of the reconstructed image
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quality by leveraging the correlations among recovered seman-
tic features. This leads to the best generalizablity and the highest
rendering quality of OSNeRF across diverse testing scenes.

Table 2 showcases the semantic-level evaluation results on dif-
ferent datasets, further validating the performance of OSNeRF. The
cosine similarity, which measures the semantic similarity between
the original and reconstructed images, can reach up to 0.963. This
demonstrates the high degree of semantic consistency between the
two, indicating that OSNeRF successfully preserves the semantic
information of the objects in the reconstruction. Furthermore, the
BLEU score of OSNeRF reaches a maximum of 0.942, indicating a
strong alignment between the original and reconstructed images
at the semantic level, which suggests that OSNeRF effectively cap-
tures and preserves the semantic features of the original objects
during the reconstruction process. Despite potential fluctuations in
pixel values caused by variations in brightness, contrast, or color
in the reconstructed images, the semantic consistency between the
original and reconstructed images remains remarkably high. This
indicates that OSNeRF effectively transmits the semantic features
of the OSO while preserving semantic consistency, outperforming
other methods.

Figure 6: Optimization progress. We show results of our OS-
NeRF construction result about truck with different time
periods. The total processing time includes semantic coding
and decoding time, data transmit time in HIWE, and image
rendering time.

Time comparison. We present the 3D construction results of
OSNeRF for a sample object (truck) with varying optimization dura-
tions in Figure 6. Notably, our reconstruction outcomes demonstrate
substantial improvement within just 60 minutes of processing, com-
pared to the state-of-the-art NeRF scheme depicted in Figure 5,
which required 120 minutes for rendering. The visual quality of our
reconstructed images is not only comparable but also superior. In
addition, in the HIWE (SNR=0dB), the processing time required for
our OSNeRF to generate an image with the same PSNR has been
improved by more than 35% compared to the comparison schemes,
the specific details are shown in the appendix video. This advan-
tage arises because OSNeRF exclusively transmits the semantic
characteristics of the object, rather than the entire original image.
This approach significantly reduces both data transfer time and the
processing load on the semantic decoder. Moreover, the semantic
decoder exclusively restores the multi-view image encompassing
the object, enabling the lightweight renderer to efficiently utilize

limited computational resources to focus on the object. Addition-
ally, the SCU ensures efficient data transmission across various
processing stages, leading to fast 3D object reconstruction.

Figure 7: The quantitative comparisons (FID and BLEU) of
various NeRF-based methods in different HIWE (-10dB to
15dB) after 2h-processing.

Robustness comparison. Figure. 7 illustrates the FID and BLEU
of distinct NeRF techniques across HIWE with varying SNRs. It is
evident that the reconstruction quality of OSNeRF surpasses that
of the compared SOTA methods in high-interference wireless envi-
ronments. This superiority arises from the distortion experienced
by images transmitted directly through such environments, conse-
quently affecting the object reconstruction outcomes. In contrast
to the other SOTA methods, our OSNeRF incorporates a seman-
tic encoder that accurately extracts the core semantic features of
OSO based on user demand. Even in the presence of interference,
the correlation between the key semantics through the SCU and
the semantic decoder ensures consistency in both pixel-level and
semantic-level details of the transmitted and received images. As
the SNR improves, the performance of each scheme also improves.
However, our OSNeRF consistently achieves the lowest FID and the
highest BLEU across all SNRs, thereby highlighting the robustness
of the proposed OSNeRF.

6 CONCLUSION
We present a novel On-demand Semantic Neural Radiance Fields
(OSNeRF) scheme that can achieve fast and robust object construc-
tion in high interference wireless environment (HIWE). In contrast
to traditional NeRF-based reconstruction, OSNeRF intensifies the
focus on the semantic information of on-demand object (OSO). It
incorporates an efficient on-demand data collector that procures
multi-perspective images, employs a semantic encoder and decoder
for precise feature extraction and robust image restoration in HIWE,
and utilizes a lightweight renderer to expedite the reconstruction
process. Additionally, we have developed a Semantic Control Unit
(SCU) that orchestrates semantic-level services such as semantic
routing for the above components. Experiments validates that the
result of our OSNeRF performs favorably against state-of-the-art
(SOTA) methods in terms of both both pixel-level and semantic-
level, which enables fast and robust 3D object reconstruction in
HIWE. For the future, we will further enhance our methodology to
support real-time reconstruction of dynamic objects.
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