
A Planning-based Architecture for a Reconfigurable Manufacturing System

Stefano Borgo, Amedeo Cesta, Andrea Orlandini
CNR – National Research Council of Italy

Institute for Cognitive Science and Technology
{name.surname}@istc.cnr.it

Alessandro Umbrico
Roma TRE University

Department of Engineering
alessandro.umbrico@uniroma3.it

Abstract

The paper describes a novel use of planning in Reconfig-
urable Manufacturing. Authors considered the nodes of a
manufacturing plant as individual AI-based agents able to
reason on continuously updated representation of their do-
main model, plan their own actions, and execute them. The
paper aims at clarifying the role of planning, its connection
with both a goal selection mechanism, and the agent’s knowl-
edge. It describes in detail how a planning system has been
customized for the task of planning and execution and shows
results of a realistic simulation on a manufacturing plant.

Introduction
The need of matching frequent product modifications and
shorter product life cycles forces manufacturers to invest in
competitive factors such as short lead time, reactivity to mar-
ket frequent changes and cost effective production maintain-
ing high quality of products. Reconfigurable Manufactur-
ing Systems (RMSs) (Koren et al. 1999) represent a viable
solution to competitively operate in such dynamism. They
are equipped with a set of reconfigurable enablers (Koren
and Shpitalni 2010) that can be related either to the single
component of the system (e.g., a mechatronic device) or to
the entire production cell and system layout (a transportation
system or machines topology). The role of each enabler is
to implement the correct system reconfiguration in response
to changes of the production requirements.

The GECKO project proposes an adaptive control infras-
tructure for RMSs in which the production environment
is modeled as a community of autonomous, self-declaring
and collaborating GECKO nodes encapsulating the physi-
cal mechatronic equipments. The nodes coordination so-
lution relies on auction-based techniques (Carpanzano et
al. 2015) while the reconfigurability concept is applied to
the control of both the logical and the physical aspects of
the single nodes of the plant. Here, the focus is on logi-
cal reconfigurations of the control that may result from the
need of adjusting the functionalities and control policies af-
ter a production change (e.g., new part type), an event af-
fecting the physical equipment (e.g., anomalous behaviors)
or a change in the production goals (e.g., minimization of

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

energy consumption vs. minimization of idle times). Al-
though AI based approaches have been considered as lo-
cal enablers in some works (e.g., see (Crawford et al. 2013;
Ruml, Do, and Fromherz 2005)), the design of control mod-
els that codify all the possible failures and possible chang-
ing situations remains a crucial problem for such systems.
Moreover, relevant structural modifications in an agent con-
figuration entail a re-design of the control strategies, a step
generally hard to manage on the fly.

To address the above issue, a dedicated research initia-
tive has been started, as described in (Borgo et al. 2014), to
create a knowledge-based control architecture. (Borgo et al.
2015) describes an initial sketch of the knowledge and plan-
ning control loop. The current paper presents the concrete
application of automated planning integrated with ontology
based technology to address plant nodes reconfigurability at
production level within the GECKO agent architecture. The
proposed solution is the combination of a knowledge man-
agement module and a timeline-based planning and execu-
tion system in which each GECKO node gathers the informa-
tion from the environment, reproduces an abstraction of the
shop-floor and interprets the production dynamics. This po-
tentially allows to evaluate, configure and tune the GECKO
nodes capabilities by automatically activating the control
functions and implementing the needed temporal plans to
pursue the current goals. In other words, the control system
is a wrapping agent that implements the basic sense-plan-act
cycle around the mechatronic part of the plant node enriched
with a knowledge-base in the loop that guarantees flexibil-
ity with respect to a number of unexpected events, enabling
the possibility of regenerating the planning domain specifi-
cation when needed. The main goal here is to demonstrate
how modular physical equipments together with knowledge-
based software can better support high reconfigurability at
the logical (i.e., reasoning) level. A key aspect of this spe-
cific application is the wide range of situations the model can
capture and the ability to cope with them without stopping
the plant but adapting the current working system through
the interplay between knowledge representation and plan-
ning though the recomputing of new planning domains and
problems. Experimental results collected during tests per-
formed on the GECKO pilot plant show the practical fea-
sibility of the integrated solution when facing increasingly
complex instances of a real-world manufacturing case study.

Paper organization. The next section introduces the tar-
geted manufacturing domain, while the subsequent one
presents a general agent architecture that integrates a knowl-
edge manager and a planning system in closed loop. Then
the ontological approach, key aspect of the knowledge man-
ager, and the knowledge processing mechanism are de-
scribed showing how they are operationalized in a specific
knowledge-based framework. Furthermore, the mapping
that generates a planning model from the declarative knowl-
edge description is presented. The complete agent at work
in an RMS scenario is described and a complete experi-
mental evaluation of the knowledge management processes
presented that shows the feasibility of the control approach.
Some conclusions end the paper.

The Manufacturing Case Study
In the paper, the pilot plant from the GECKO project is
exploited to elicit a case study to test the proposed in-
tegrated solutions and to assess the planning capabilities.
The target plant aims at recycling Printed Circuit Boards
(PCBs). It is composed of different machines for load-
ing/unloading, testing, repairing and shredding of PCBs and
of a conveyor system that connects them. The conveyor is
implemented through a Reconfigurable Transportation Sys-
tem (RTS) composed of a set of reconfigurable mechatronic
components, called Transportation Modules (TM), see Fig-
ure 1. The goal of the plant is to analyze defective PCBs,
to automatically diagnose their faults and, depending on the
type of the malfunctions, attempt an automatic repair or send
them to waste.

The proposed agent architecture is wrapped around each
of the TMs hence its functionalities are introduced with
more details. Each of the TMs combines three Transporta-
tion Units (TUs). The units may be unidirectional or bidi-
rectional, with bidirectional units enabling also movements
from side to side (cross-transfers) from/to other TMs, see
Figure 1. The TM can support two main transfer services,
forward and backward, and zero to many cross-transfer ser-
vices. Different configurations can be deployed varying
the number of cross-transfers components and thus enabling
multiple I/O ports. TMs can be connected back to back to
form a set of different conveyor layouts.

Figure 1: A picture of a Transportation Module (on the left) of the
RTS and two possible configurations (on the right).

The manufacturing process requires each PCB to be

loaded on a fixturing system (a pallet) in order to be trans-
ported by the TMs and processed by the various machines
of the RMS. The transportation system can move one or
more pallets (i.e., a number of pallets can simultaneously
traverse the system) and each pallet can be either empty or
loaded with a PCB. At each point in time a pallet is associ-
ated with a given destination and the RTS allows for a num-
ber of possible routing solutions. The next destination of a
pallet carrying a PCB can change over time as operations
are executed (e.g., by the test station, the shredding station,
the loading/unloading cell). The new destination is available
only at execution time.

The GECKO proposal was to realize a distributed con-
trol infrastructure composed by a community of autonomous
agents (Borgo et al. 2014) able to cooperate in order to de-
fine the paths the pallets must follow to reach their desti-
nations. Thus, these paths are to be computed at runtime,
according to the actual status and the overall conditions of
the shop floor, i.e.. no static routes are used to move pallets.
The decisions of the coordination algorithm (see (Carpan-
zano et al. 2015) for further details) acts as goal injection
for the planning mechanism of each agent. Hence according
to our pursued abstraction, the plant is a set of TMs endowed
with independent capabilities to carry on their goals, by ana-
lyzing the current situation, synthesizing a planning domain
and problem, then planning and executing the plan for such
goals. It is worth observing that a plan-based controller can
endow an agent with the desired autonomy (i.e., delibera-
tive capabilities), but given the particular dynamic nature of
RTSs it does not guarantee a continuous control process ca-
pable to face all the particular situations/configurations. In-
deed it is not easy (or hardly possible) to capture all the dy-
namics of the production environment in a unique planning
domain. The specific capabilities of a TM in the RTS are
affected by many factors, e.g., a partial failure of the inter-
nal elements of a TM, a reconfiguration of the RTS plant or
maintenance activities of some TMs of the plant. Thus, it is
not always possible to design a plan-based controller which
is able to efficiently handle all these situations. The higher
is the complexity of the planning domain the higher is the
time needed to synthesize the plans and the latency of the
control architecture must be compatible with the latency of
the plant.

The key direction in GECKO project has been the one
of endowing the control architecture of an agent with a
knowledge-reasoning mechanism capable of representing
the actual capabilities of the related TM of the plant. This
allows to adapt the planning model specification by consid-
ering only the actual capabilities of the TM to control. In
particular the knowledge reasoning mechanism allows to re-
alize a continuous control process by dynamically generat-
ing an updated planning model every time a change in the
capabilities of the TM or in the production environment is
detected.

Knowledge and Controller in a Loop
The key integration of distinct cognitive functions in the
agent architecture is shown in Figure 2. At a higher ab-
straction, the figure shows the integration of two “big boxes”

called here “Knowledge Manager”, that contains the know-
how of the agent, and “Deliberative Controller” that repre-
sents the plan-based control architecture – a-la (Lemai and
Ingrand 2004) to set the stage. To make the whole idea op-
erational we need to open the boxes and describe what is
needed to allow the two functionalities to work together.

Delibera(ve	 Controller	

2. MODEL GEN.

Mechatronic	 Module/Controller	

Diagnosis	 Module	

Planning	 Framework	

Planner	

Planning	
Problem	 Planning	

Domain	

3. PLAN

Execu6ve	 System	

1. SETUP 5. RECONF

4. EXEC

Knowledge	 Manager	

Ru
le
-‐b
as
ed

	 	
In
fe
re
nc
e	
En

gi
ne

	

Rules	

Knowledge	 Base	

Contexts Taxonomy of
Function

Figure 2: The Knowledge-based Control Loop.

Following a careful analysis of the reasoning needs, the
Knowledge Manager relies on a suited ontology which
models the general knowledge of manufacturing environ-
ments. The ontology contains (i) a classification of relevant
information in three distinct Contexts – namely Global, Lo-
cal and Internal (see later) – and (ii) a Taxonomy of Func-
tions which classifies the set of functions the agents can per-
form according to their effects in the environment (see later).

The Knowledge Manager exploits the ontology to build
and manage the Knowledge Base (KB) of the particular
agent to control. The KB represents an abstract description
of the structure and the capabilities of the agent and also of
the production environment (from the agent’s point of view).
Namely, the KB represents the “instantiation” of the general
knowledge to the particular agent to control. In this context
the Rule-based Inference Engine is a specific module which
is responsible for processing KB information by inferring
additional knowledge about the functional capabilities the
agent is actually able to perform (see later for further de-
tails). Thus, given a TM of the RTS of the case study, the
KB contains information concerning the devices that com-
pose the TM (e.g. the cross transfers, the conveyor engines,
the port sensors), the set of other TMs and/or working ma-
chines directly connected (i.e. the set of collaborators) and
information concerning the whole production environment
from the agent perspective (e.g. the topology of the shop
floor). Then the Inference Engine analyzes the structure of
the TM and its collaborators in order to add to the KB in-
formation about the set of transportation functions the TM
is actually able to perform.

The Planning Framework provides deliberative features
relying on the planning model generated from the KB to ac-
tually control the mechatronic device. More specifically, it
is a wrapper of the planning and execution system employed

(i.e., a timeline-based system in this work) to provide delib-
erative capabilities. It is responsible to integrate KB infor-
mation with Planning by automatically generating the model
of the mechatronic device to control. Indeed, planning do-
main and problem specifications are dynamically generated
from the KB and an off-the-shelf planning and execution
system is activated to synthesize signals for the actuators that
control the mechatronic device. It is important to point out
that the generation process encodes our modeling approach
and that the ontology classification of the KB’s information
determines a particular and useful structure to the (timeline-
based) planning domain as described later.

The Mechatronic Module is the composition of a Con-
trol Software and a Mechatronic Component (e.g., a trans-
portation module, a working machine, etc.). In our case the
control software is based on standard reference models (e.g.,
IEC61499) and each mechatronic component is then repre-
sented by dedicated hardware/software resources encapsu-
lating the module control logic.

In what follows we call Knowledge-based Control Loop
(KBCL) the overall process which allows to integrate the el-
ements described above in a unique control infrastructure.
Thus, the resulting control process enables an agent both to
dynamically represent its capabilities, the detected environ-
mental situation and to infer the set of available functions on
which a coherent planning model is generated.

The KBCL Process at Runtime
The management of the KB, the generation of the planning
domain and the continuous monitoring of the information
representing the actual status of the agent and the environ-
ment are the rather complex activities that are properly man-
aged by the KBCL process at runtime. In this regard the
KBCL process is organized in the following phases: (i) the
setup phase; (ii) the model generation phase; (iii) the plan
and execution phase; (iv) the reconfiguration phase.

The setup phase generates the KB of the agent by pro-
cessing the raw data received from the Mechatronic device
through a Diagnosis Module. The resulting KB completely
describes the structure of the particular module to control,
the set of TMs the module can cooperate with and the set
of functions the module is actually able to perform in order
to support the production flow. Then, the model generation
phase exploits the KB of the agent to generate the timeline-
based planning model the Deliberative Controller needs to
actually control the device.

When the planning domain is ready the planning and ex-
ecution phase starts, and the Deliberative Controller con-
tinuously builds and executes plans. During this phase the
KBCL process behaves like classical plan-based control sys-
tems. The Planning Framework builds the plan according
to some tasks to perform. Soft changes in the plan execu-
tion are directly managed by the Deliberative Controller,
e.g., temporal delay of some planned activities. Conversely
whenever the Diagnosis Module detects a structural change
of the agent and/or of its collaborators e.g., a total or partial
failure of a cross transfer of the TM to control (i.e., Hard
changes), the reconfiguration phase starts.

The reconfiguration phase determines a new iteration of
the KBCL process cycle. The KB of the agent is updated
by detecting the new state of the mechatronic device and its
production environment as well as inferring the updated set
of functions the TM can perform according to the new state.
As before, once the KB of the agent is complete, the plan-
ning model of the Deliberative Controller is also updated
w.r.t. the new state of the module. It is worth observing
that the KB and the planning model are updated only when
structural changes that impede the execution of the plan are
detected.

The Knowledge Manager
In a changing environment the agents must coherently share
information relevant to the tasks. We thus used an ontolog-
ical analysis to build reliable information systems that ex-
ploit different information types and contexts. The result is
a general mechanism to dynamically generate a high-level
description of agent’s capabilities and system’s situations.

Extending DOLCE Ontology
The Contexts. The KB collects information like capa-
bilities, other agents’ types and action constraints. Start-
ing from foundational works (Borgo and Masolo 2009;
Guarino and Welty 2009), we introduced three contexts to
classify the agent’s knowledge: Global (knowledge on the
environment), Local (knowledge on connected collabora-
tors), Internal (knowledge on itself). The contexts help to
find the relevant information depending on the agent’s aims.

Global context. Since the agents act in a complex envi-
ronment, we need to ensure that they reliably exchange or-
ganizational and production information. On top of basic
communication channels and protocol(s), the agents must
agree on a vocabulary (terms and relations) to communicate
and reason on information at the local and global views: the
vocabulary ensures the meaning of an identifier, a request
for bidding, an operation, and so on. SUB-CONTEXT 1:
FACTORY LANGUAGE. It contains the high-level language
(vocabulary, rules, semantic constraints etc.) used by the
agents to share information about functionalities like mov-
ing (an item), joining (two or more items), testing (input-
output parameters) and their relationships, e.g., carrying is
a specialization of moving and welding of joining, as well
as information about timing, requests for actions, and com-
mitted plans. SUB-CONTEXT 2: FACTORY SHOP FLOOR. It
contains information on agents, products, tools in the fac-
tory, and information exchanged like requests for action or
availability, e.g. toDo(item #123, resistor impedance test)
states what needs to be done to item #123 and hasFunction-
ality(impedance test, machine #M98) that machine #M98
can perform impedance tests. SUB-CONTEXT 3: FACTORY
REGULATION AND PERFORMANCE. It contains informa-
tion on general constraints (e.g., production policies, safety
regulations, preconditions for operations) and on the perfor-
mance of cells and the factory as a whole (e.g., productivity,
consumption, throughput).

Local context. This context is specific to an agent and de-

pends on its type. It collects information about neighbor
agents, active connections, coordinated activities and com-
mitments. It maintains an updated list of the physical con-
nections (porti, agentj) and agreed plans, e.g.: “receive from
port1 at time t5”, possibly including time constraints and tol-
erance.

Internal context. It collects information about the agent it-
self: identifier, components, capacities and related informa-
tion (e.g., time to start an action, size of processable pieces
etc.), possible change-overs, maintenance schedule etc. For
example, at booting the agent states its identifier, its ports,
engines (for cross-transfer, conveyor etc.), sensors and their
tasks like si is the enginej’s left stopper. This gives a list
of capacities that are verified at run-time by self-diagnosis.
E.g., if enginej cannot reverse direction the updated context
will contain (port1, delivering) but not (port1, receiving). By
comparing knowledge of previous states, the agent can iden-
tify (partial) malfunctioning and actual capabilities.

The Ontology of Functions
An agent is itself a functional element that potentially
changes in time. To manage changes in the agent’s capac-
ities, we use an ontology of functions whose main task is
to enable executable combinations (plans) of available func-
tions given the agent’s goals. Note that at this stage we pri-
marily work with the function taxonomy since this suffices
from the perspective of the agent.

There is a large literature on function and function clas-
sification in engineering design. Our ontology builds on
three approaches: the FOCUS/TX (Kitamura et al. 2011),
the Functional Basis (FB) (Pahl et al. 2007), and the Func-
tion Representation (FR) (Chandrasekaran and Josephson
2000). In particular, we analyze functions focusing on the
effects they have on the operands (the entities they act upon)
and independently of the actual implementation of the func-
tion. This level of generality allows us to distinguish “weld”,
“melt” and “glue” as ways to perform the (ontological)
“join” function (Kitamura et al. 2011). Our function classifi-
cation has two components: the ontological component con-
tains functions like “join”, “move” and “communicate” Fig-
ure 3; the implementation component (not discussed here)
assigns a set of possible ways to execute an ontological func-
tion. Note that the ontological component remains stable
over time while the implementation component is updated
whenever the agent’s capabilities change.

Figure 3 shows the ontological functions where, for in-
stance, “reclassify” stands for the function “change the clas-
sification of an operand” as when changing the status of a
product after performing a test; “change-over” for “change
its own parameters” which occurs, e.g., when an agent acts
on itself to activate/deactivate some component; “channel”
for “move an operand”, that is, to change its location; “sta-
bilize” for “maintain relational parameters” like when reg-
ulating the input-output relationship in electronic compo-
nents; “sense” for “test an operand”, i.e., acquiring informa-
tion without altering the operand; finally, “send” for “output
information” like when sending a signal that a failure oc-
curred.

FUNCTION
(as effect)

ACTIONTEST

SENSE

change of
operand(s)

change on
qualities

change on
relations

information
collection

information
sharing

COMMUNICATION

SEND

RECEIVE

CONVERT

BRANCH

JOIN

CHANGE
OVER

RECLASSIFY

CHANNEL

CHANGE
MAGNITUDE

STORE

COLLECT

RELEASE

STABILIZE

INCREASE

DECREASE

Figure 3: The function ontological taxonomy and its rationale.

The Knowledge Base lifecycle
The management of the KB of the agent, briefly described
above while introducing the Knowledge Manager, relies on
a knowledge processing mechanism implemented by means
of a Rule-based Inference Engine (see Figure 2). The In-
ference Engine exploits a suited set of inference rules in or-
der to process the KB of the agent. The knowledge pro-
cessing mechanism classifies data received from the Diag-
nosis Module and infers additional knowledge concerning
the functional capabilities of the agent. This mechanism in-
volves two reasoning steps as sketched in Figure 4, i.e., (i) a
low-level reasoning step and (ii) a high-level reasoning step.

Knowledge	 Processing	 Mechanism	

kb0

Mechatronic	
Module/Controller	

Diagnosis	 Module	 d: sensor
data

kb: agent's
knowledge

Low-‐level	 Reasoning	

Contexts	

Classifica.on	 Rules	

High-‐level	 Reasoning	

Taxonomy	 	
of	 Func.ons	

Capability	 	
Inference	 Rules	

Figure 4: The knowledge processing mechanism

The low-level reasoning step builds an initial version of
the KB by classifying sensor data on the basis of Context
categorization. Thus, this first step initializes the KB by
adding a suited set of individuals representing the devices
that compose the agent and its collaborators. Given a TM
in the RTS, the KB resulting from the low-level reasoning
step will contain information concerning the cross-transfers,
the conveyor engines and the ports that compose the mod-
ule, their status, their internal connections (i.e., the internal
topology of the module) and the set of the TMs connected
through its ports. Namely, the resulting KB describes the
internal and local contexts of the agent (i.e., the components

and collaborators of the agent).
The high-level reasoning step extends the KB elicited at

the previous step to infer the capabilities the agent is actually
able to use on the basis of its current status and the current
production environment. Furthermore, also causal/temporal
relationships existing among such operands are inferred and
represented as relationships among instances in the KB. For
instance, let us consider a TM “T1” composed by a port “F”
which connects this module to the module “T2” of the plant
and a port “B” which connects the module to the module
“T3” of the plant and that port “F” and port “B” are inter-
nally connected by a conveyor. In such a case the initial
KB will contains information about components port “F”,
port “B” and the conveyor, their connections and informa-
tion about collaborators “T2” and “T3”. Then the high-level
reasoning step will infer that “T1” is able to perform two
channel functions, one channel goes from port “F” to port
“B” and one goes from port “B” to port “F”.

When the two reasoning processes end, the resulting KB
represents all the information needed to create suited models
for the planning system exploited by the Planning Frame-
work.

Deliberative Control with Timelines
The Planning Framework element in Figure 2 provides
the KBCL process with deliberative capabilities by ex-
ploiting a timeline-based planner (Umbrico, Orlandini, and
Cialdea Mayer 2015). The planner relies on a timeline-based
planning model automatically generated from KB’s infor-
mation. Before describing the details of the process which
generates the planning domain, this section provides a brief
description of the timeline-based planning and the pursued
modeling approach.

Timeline-based Planning in a Nutshell. Timeline-based
approach to planning has been introduced in early 90s (see
for instance (Muscettola 1994)) and takes inspiration from
the classical control theory. It models a complex system by
identifying a set of relevant features that must be controlled
over time. This approach has been successfully applied to
real world contexts (especially in space applications) and
several planning frameworks have been developed for the
synthesis of timeline-based P&S applications, e.g., EUROPA
(Barreiro et al. 2012), ASPEN (Chien et al. 2010), and APSI-
TRF (Cesta et al. 2009).

Broadly speaking timeline-based applications aims at
controlling a complex system by synthesizing temporal be-
haviors of its features in shape of timelines. A timeline con-
sists of a sequence of states/actions the related domain fea-
ture (e.g., a component of the device to control) must as-
sume/perform over time. Every value on a timeline is tem-
porally allocated and represents the value/action the feature
assumes/perform during the related temporal interval. Tem-
poral flexibility allows to allocate values to flexible temporal
intervals, i.e. intervals with flexible start time and end time.
The resulting timeline represents an envelop of possible tem-
poral evolutions of the related feature. Thus a timeline-based
plan, which consists of the union of all the timelines of the
domain, represents the sets of all possible temporal evolu-

tions of the domain features. It is important to point out that
the temporal flexibility in such a plan can be exploited at ex-
ecution time by an executive system to gain robustness (see
e.g., (Py, Rajan, and McGann 2010)).

Modeling Approach. The features of the system to be con-
trolled are modeled by means of State Variables. A state
variable describes the temporal behaviors of a specific fea-
ture by means of causal and temporal constraints. More
specifically, it describes the values the feature can assume
over time, with their duration constraints and allowed tran-
sitions. In this regard, the ontological analysis of the func-
tional capabilities and the structure of agents, described in
previous sections, give us a relevant contribution for the def-
inition of a modeling methodology of timeline-based plan-
ning domains. The key idea is that the planning domain
is to describe the functional capabilities of the system we
want to control, the features of the elements that compose
the system and the features of the working environment that
must be taken into account in order to successfully carry out
system’s functions. Indeed, three different classes of state
variables can be identified as relevant from the control per-
spective: (i) functional state variables; (ii) primitive state
variables; (iii) external state variables. The Functional state
variables model the system as a whole in terms of the func-
tions it can perform (notwithstanding its internal structure).
The Primitive state variables model the physical and/or log-
ical elements that compose the system. In particular these
state variables model the elements we must actually con-
trol to execute system functions. The External state vari-
ables model elements of the domain whose behavior is not
directly under the control of the system. Namely these vari-
ables model conditions that must hold in order to success-
fully perform system’s functions.

The behavior of state variables must be further con-
strained by specifying inter-component causal and tempo-
ral requirements, called synchronization rules. These rules
specify additional constraints that allow to coordinate the be-
haviors of the domain features in order to perform some de-
sired complex tasks (i.e., planning goals). Following a hier-
archical approach, synchronization rules map the high-level
functional values into a set of constraints among primitive
and/or external values that guarantee the proper functioning
of the overall system and its elements. Namely synchroniza-
tion rules specify how high-level tasks are implemented by
the system. Thus these rules describe dependencies between
the functional state variables and the primitive/external state
variables determining a hierarchy among them.

The Model Generation Process
Key role for the dialogue between the Knowledge Manager
and the Deliberative Controller is the Model Generation
process (Step 2 in Figure 2). The KB of the Knowledge
Manager provides an abstract representation of the capabil-
ities, the structure and production environment of the agent
as described above. The generation process analyzes the KB
to generate a timeline-based planning domain of the agent.
The process encodes the hierarchical modeling methodology
described in the previous section. Algorithm 1 describes the

pseudo-code of the main procedure for the overall model
generation procedure1.

Algorithm 1 Procedure generating the planning model.
1: function BUILDCONTROLMODEL(KB)
2: // extract agent’s information and initialize the model
3: agent← getAgentInformation(KB)
4: model← init(KB, agent)
5: // define components of the model
6: svs← buildFunctionalComponents(KB, agent)
7: svs← buildInternalComponents(KB, agent)
8: svs← buildExternalComponents(KB, agent)
9: // define synchronization constraints

10: s← buildSynchronizations(KB, agent)
11: // update planning model
12: update(model,svs,s)
13: return model
14: end function

The procedure exploits the KB information concerning
the inferred functional capabilities of the agent in order to
build the functional state variables of the model (row 6).
Then, the procedures exploits KB information concerning
the internal and local contexts of the agent to build the prim-
itive and external state variables respectively (rows 7-8). Fi-
nally, the model is completed by generating the synchroniza-
tion rules (row 10) that describe how the module can per-
form its functions. Then, the process generates a timeline-
based model like the one depicted in Figure 5, which rep-
resents a TM with only one cross-transfer unit available. In
general, a TM can perform several transportation activities
(i.e., channel functions according to the taxonomy in Figure
3) to move pallets on the plant. Thus, the model contains
a functional state variable (the TM-Channel) which models
the set of channel functions the TM is actually able to per-
form (e.g., Channel-F-B or Channel-F-R) depending on its
particular configuration and the neighbors available.

IdleTM-Channel

Channel
F-B

Channel
F-LChannel

F-R

Channel
Cross1-B

Conveyor-1

Idle

Channel
F-Cross1

Channel
Down-Up

Cross1

Idle

Channel
Up-Down

Channel
Up-R

Conveyor-2

Idle

Channel
Up-L

contains

contains

before

contains

before

Available

Neighbor-F

Not
Available

during during

FUNCTIONAL VARIABLES

PRIMITIVE VARIABLES

Available

Neighbor-R

Not
Available

EXTERNAL VARIABLES

Figure 5: A (partial) view of the timeline-based model generated
for a transportation module equipped with a cross transfer unit.

1A more detailed description of the whole model generation
process may be found here: https://db.tt/FobSCp4c. The exploited
ontology with examples for KB and generated planning model is
available here: https://db.tt/u2Z1Nw90

The primitive variables of the model represent the in-
ternal devices composing the TM, such as the convey-
ors (Conveyor-1 and Conveyor-2) and the cross-transfer
unit (Cross1). These variables model the capabilities of
the TM in terms of the primitive functions (i.e., the ac-
tions/commands) the module can directly execute. For ex-
ample, Conveyor-1 can perform a primitive channel to move
a pallet from port-F to Cross-1 (Channel-F-Cross1). The ex-
ternal variables of the model represent other modules of the
plant the TM can directly collaborate with (e.g., Neighbor-F
or Neighbor-B). A channel function of the TM can be con-
sidered as a compound capability which correlates the TM
with other modules of the plant. In this regard, a channel
function is carried out by means of a set of primitive chan-
nels. The arrows in Figure 5 represents the temporal con-
straints entailed by a synchronization rule which allows the
TM to transport a pallet from Neighbor-F to Neighbor-R,
i.e., the function Channel-F-R. Namely, the synchronization
rule specifies the set of primitive functions with the related
temporal constraints the TM must follow to perform a par-
ticular channel function. Thus, the generated timeline-based
planning model provides a functional characterization of the
system we want to control. The planning goals represent
the functions the agent may perform. These functions are
described in terms of the atomic operations (i.e., primitive
functions) the agent can perform by means of its compo-
nents and its collaborators (i.e., the module’s neighbors).

The Knowledge-Based Control Loop in Action
This section reports on a set of tests on the KBCL with dif-
ferent TM configurations. All the different physical config-
urations of a TM have been considered, from zero to three
cross-transfer modules. These configurations are referred
to as simple, single, double and full, respectively. A dif-
ferent configuration also entails a different number of con-
nected TM neighbors. Clearly, the more complex scenario
is the one with the highest number of cross-transfers (the
full TM) and neighbors. Also, three reconfiguration scenar-
ios (reconf-a, reconf-b and reconf-c) have been developed
considering different external events, namely an increasing
number (from 1 to 3) of TM neighbors momentarily unable
to exchange pallets, plus two scenarios related to internal
failures (reconf-d and reconf-e) due to a cross-transfer en-
gine failure and to a local failure on a specific port.

The experiments were carried out to evaluate the perfor-
mance of the following aspects of a TM: (i) the knowledge
processing mechanism; (ii) the planning model generation;
(iii) the synthesis of plans to manage a set of pallet requests.
The final aim is to evaluate the feasibility of the KBCL ap-
proach by showing that the performance are compatible with
execution latencies of the RMS2.

Figure 6 shows the timings in the Setup phase for the
KBCL module operation, i.e., to build the KB exploiting
the classification and capability inference process (left-hand
side of Figure 6), and to generate the timeline-based plan-
ning specification for the TM (right-hand side of Figure

2All the experiments have been performed on a workstation en-
dowed with an Intel Core2 Duo 2.26GHz and 8GB RAM.

0

0,5

1

1,5

2

2,5

Inference Model	Gen.

Setup	phase

Pr
oc
es
s	
tim

e	
(in

	se
co
nd
s)

simple single double full

Figure 6: KB initial inference and planning domain generation.

6). On the one hand, the results show that an increase
in the complexity of the TM configurations does not en-
tail a degeneration of the knowledge processing mecha-
nism: the inference costs are almost constant (around 1.3
secs). This behavior was expected since the number of in-
stances/relationships in the KB is rather low notwithstanding
the physical configuration of the TM; thus, the performance
of the inference engine deployed here is not particularly af-
fected. On the other hand, the model generation is linearly
affected spanning from 0.8 secs in the simple configuration,
up to a maximum of 2.2 seconds in the full configuration.
The model generation process entails a combinatorial effect
on the number of instances/relationships needed to generate
components and synchronizations leading to larger planning
models and, thus, to higher process costs. When a reconfig-
uration scenario occurs, the knowledge processing costs are
negligible. Among all the considered reconfiguration cases
(i.e., reconf-a-b-c-d-e), the time spent by the knowledge pro-
cessing mechanism to (re)infer the enabled functionalities is
just a few milliseconds. In fact, both the classification and
capability inference steps are applied to a slightly changed
KB and, then, minimal changes in the functionalities can be
quickly inferred in the system and represented in the new
KB. For what concern the planning model generation after
a reconfiguration, each reconfiguration scenario (both exter-
nal and internal) leads to a strong reduction of functionalities
and, thus, the related costs are relatively small. For instance,
in the case of the full TM configuration, the cost for model
generation is not greater than 0.8 seconds.

Finally, we evaluate the planning costs when facing both
setup and reconfiguration scenarios. Figure 7 shows the
trend of the planning time in the Setup scenario consider-
ing all the TM configurations and an increasing number of
pallet requests (randomly generated), i.e., planning goals,
to be fulfilled. Planning costs span from few seconds up
to nearly 30 seconds when planning for 10 pallet requests
within a 15 minutes time horizon. In general, the more com-
plex the planning model, the harder the plan synthesis prob-
lem. Thus, the planning costs follow the complexity of the
configurations of the specific TM agent.

Discussion. The experimental results show the practical
feasibility of the KBCL approach in increasingly complex

0

5

10

15

20

25

30

1g 2g 3g 4g 5g 6g 7g 8g 9g 10g

Setup	phase

So
lv
in
g	
tim

e	
(in

	s
ec
on
ds
)

simple single double full

Figure 7: Timings for planning an increasing number of goals for
different TM configurations during Setup phase.

instances of a real-world manufacturing case study. The col-
lected data for the initialization (or the update) of a generic
agent’s KB (considering both knowledge processing and
model generation) and the cost for planning synthesis have
a low impact on its performance during operation. In fact,
in order to face production periods of 15 minutes –and the
management of 10 pallet requests– no more than 5 seconds
are required by the Knowledge Manager while less than 30
seconds are required by the Planner to generate a suitable
plan. Such performance are compatible with system latency
usually involved in this type of manufacturing applications.
It is worth reminding how the role of the KBCL is to avoid
major overhauls of the control policies (e.g., control code
revisions deployed too often in concrete cases) to cope with
adaptation to variations or plant reconfigurations.

Related Works
Ontology for information management and planning specifi-
cation have been exploited in Manufacturing and in Robotics
to enable agents to reason about their environment and to
optimize their activities. In this section we provide a brief
discussion of some of the most relevant works in the liter-
ature w.r.t. to our work. In manufacturing, ontologies have
been applied to increase flexibility in modeling and planning
of, e.g., mechatronic devices (Balakirsky 2015), resources in
collaborative environments (Solano, Rosado, and Romero
2013) and to manage information of distinct types (Hris-
toskova et al. 2013). In all these cases, planning specifi-
cations, if considered, are fixed and neither automatically
generated nor subsequently adapted. This shows that the
flexibility provided by ontological representation is still un-
derestimated in the domain. In robotics, ontologies have
been more widely exploited. An ontology-based knowl-
edge framework (OMRKF) (Suh et al. 2007) was exploited
to infer knowledge and to clarify missing or uncertain data
produced by noisy sensors. The used ontology is rich and
shows the potentialities for information control. Unfortu-
nately, the organization is not good for functional reasoning,
e.g., finding and turning are both functions but are in differ-
ent classes. In our work we focus on the control elements
in the deliberative layer (where planning capabilities come

into play) and need a careful organization of the functional
information. (Hartanto and Hertzberg 2008) uses Descrip-
tion Logic to represent the agent knowledge and the envi-
ronment is explicitly modeled. Filters are used to extract the
part of the environment representation needed for a given
planning problem. Basically, this means to simplify a fixed
planning specification. Our goal, instead, is to produce the
environment model by exploiting actual data to dynamically
generate planning models that are optimized for that agent
in that environment. Tools like (Bell et al. 2013) represent
offline and static environments for authoring models, while
our work aims at implementing an on-line control loop. Fi-
nally, other frameworks that use ontology in robotics, like
KnowRob (Tenorth and Beetz 2015) and ORO (Lemaignan
et al. 2010), are not directly comparable to our work since
there ontologies are aimed to obtain an action-based knowl-
edge representation for cognitive functionalities such as do-
main features learning, symbol grounding, etc. We conclude
that our approach makes a relevant step forward to pursue
the increased flexibility needed in RMSs

Conclusions
This paper describes a novel planning-based application for
the manufacturing domain. In particular we started from
observing that a crucial need in reconfigurable manufactur-
ing is the flexibility with respect to keeping the pace with
changes in the execution environment without stopping the
plant when updating the different processes. Given the op-
portunity of the GECKO project we have addressed the prob-
lem with a solution that integrates knowledge reasoning and
plan-based control. The time constants demonstrated by
the experiments are in line with those of the real plant we
are working at hence the path for a real use has been fully
paved. In solving our problem we have also contributed with
a different use of ontological representation and reasoning
jointly with planning with respect to previous proposals (as
described in the related works section). Generalizing the
KBCL idea to other domains is one of the directions for fu-
ture work.

Before ending, it is worth observing explicitly that the
particular structure of the transportation module somehow
“helps” (even “simplifies”) our work with respect to a gen-
eral case of using the KBCL with any robotic device (e.g., a
mobile platform, a human-robot interaction scenario). Here
the claimed contribution is with respect to the novel appli-
cation area in manufacturing (i.e., RMSs) that is extremely
relevant and extends what already done in (Ruml, Do, and
Fromherz 2005) to an area in continuous expansion. Those
authors extended the use of planning, and other AI tech-
niques, in a complex machine. Here we have designed a
decentralized use of planning in the nodes of our reconfig-
urable transportation network, focusing on the continuous
need of re-formulating the plan domain description.

Acknowledgments. CNR authors are supported by
MIUR/CNR under the GECKO Project (FdF-SP1-T2.1).
We would also thank the anonymous ICAPS reviewers for
valuable comments.

References
Balakirsky, S. 2015. Ontology based action planning
and verification for agile manufacturing. Robotics and
Computer-Integrated Manufacturing 33(0):21 – 28. Special
Issue on Knowledge Driven Robotics and Manufacturing.
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
and Smith, D. 2012. EUROPA: A Platform for AI Planning,
Scheduling, Constraint Programming, and Optimization. In
ICKEPS 2012: the 4th Int. Competition on Knowledge En-
gineering for Planning and Scheduling.
Bell, S.; Bonasso, R. P.; Boddy, M.; Kortenkamp, D.; and
Schreckenghost, D. 2013. PRONTOE - A case study for
developing ontologies for operations. In Proc. of the Int.
Conf. on Knowledge Engineering and Ontology Develop-
ment (KEOD-13)., 17–25.
Borgo, S., and Masolo, C. 2009. Foundational choices in
DOLCE. In Staab, S., and Studer, R., eds., Handbook on On-
tologies, International Handbooks on Information Systems.
Springer.
Borgo, S.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suri-
ano, M.; and Umbrico, A. 2014. Towards a cooperative
knowledge-based control architecture for a reconfigurable
manufacturing plant. In 19th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA
2014). IEEE.
Borgo, S.; Cesta, A.; Orlandini, A.; and Umbrico, A. 2015.
An ontology-based domain representation for plan-based
controllers in a reconfigurable manufacturing system. In
Proc. of the 28th Florida Artificial Intelligence Research So-
ciety Conference (FLAIRS-15).
Carpanzano, E.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suri-
ano, M.; Umbrico, A.; and Valente, A. 2015. Design and
implementation of a distributed part-routing algorithm for
reconfigurable transportation systems. International Jour-
nal of Computer Integrated Manufacturing.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an End-to-End Planning Application from a
Timeline Representation Framework. In IAAI-09. Proc.
of the 21st Innovative Application of Artificial Intelligence
Conference, Pasadena, CA, USA.
Chandrasekaran, B., and Josephson, J. 2000. Function
in Device Representation. Engineering with Computers
16(3/4):162–177.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl,
D.; and Frye, S. 2010. Timeline-Based Space Operations
Scheduling with External Constraints. In Proc. of the 20th

Int. Conf. on Automated Planning and Scheduling.
Crawford, L. S.; Do, M. B.; Ruml, W.; Hindi, H.; Eldershaw,
C.; Zhou, R.; Kuhn, L.; Fromherz, M. P.; Biegelsen, D.;
de Kleer, J.; et al. 2013. Online reconfigurable machines. AI
Magazine 34(3):73–88.
Guarino, N., and Welty, C. 2009. An overview on On-
toclean. In Staab, S., and Studer, R., eds., Handbook on
Ontologies. Springer.

Hartanto, R., and Hertzberg, J. 2008. Fusing DL Reason-
ing with HTN Planning. In Dengel, A.; Berns, K.; Breuel,
T.; Bomarius, F.; and Roth-Berghofer, T., eds., KI 2008:
Advances in Artificial Intelligence, volume 5243 of Lecture
Notes in Computer Science. Springer. 62–69.
Hristoskova, A.; Aguero, E. C.; Veloso, M.; and De Turck,
F. 2013. Heterogeneous Context-Aware Robots Providing
a Personalized Building Tour. Int. J. of Advanced Robotic
Systems.
Kitamura, Y.; Segawa, S.; Sasajima, M.; and Mizoguchi, R.
2011. An Ontology of Classification Criteria for Functional
Taxonomies. In IDETC/CIE. ASME.
Koren, Y., and Shpitalni, M. 2010. Design of reconfigurable
manufacturing systems. Journal of Manufacturing Systems
29(4):130 – 141.
Koren, Y.; Heisel, U.; Jovane, F.; Moriwaki, T.; Pritschow,
G.; Ulsoy, G.; and Brussel, H. V. 1999. Reconfigurable man-
ufacturing systems. CIRP Annals - Manufacturing Technol-
ogy 48(2).
Lemai, S., and Ingrand, F. 2004. Interleaving Temporal
Planning and Execution in Robotics Domains. In AAAI-04,
617–622.
Lemaignan, S.; Ros, R.; Mosenlechner, L.; Alami, R.; and
Beetz, M. 2010. ORO, a knowledge management platform
for cognitive architectures in robotics. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Confer-
ence on, 3548–3553.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Pahl, G.; Beitz, W.; Feldhusen, J.; and Grote, K. 2007. En-
gineering Design. A Systematic Approach. Springer.
Py, F.; Rajan, K.; and McGann, C. 2010. A System-
atic Agent Framework for Situated Autonomous Systems.
In AAMAS-10. Proc. of the 9th Int. Conf. on Autonomous
Agents and Multiagent Systems.
Ruml, W.; Do, M. B.; and Fromherz, M. P. 2005. On-line
planning and scheduling for high-speed manufacturing. In
ICAPS-05. Proc. 15th Int. Conf. on Automated Planning and
Scheduling, 30–39.
Solano, L.; Rosado, P.; and Romero, F. 2013. Knowledge
representation for product and processes development plan-
ning in collaborative environments. International Journal of
Computer Integrated Manufacturing 27(8):787–801.
Suh, I. H.; Lim, G. H.; Hwang, W.; Suh, H.; Choi, J.-
H.; and Park, Y.-T. 2007. Ontology-based multi-layered
robot knowledge framework (OMRKF) for robot intelli-
gence. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2007. IROS 2007., 429–436.
Tenorth, M., and Beetz, M. 2015. Representations for robot
knowledge in the KnowRob framework. Artificial Intelli-
gence –. (http://dx.doi.org/10.1016/j.artint.2015.05.010).
Umbrico, A.; Orlandini, A.; and Cialdea Mayer, M.
2015. Enriching a temporal planner with resources and a
hierarchy-based heuristic. In AI*IA 2015, Advances in Arti-
ficial Intelligence. Springer. 410–423.

