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Abstract
We revisit recent spectral GNN approaches to semi-supervised node classifica-
tion (SSNC). We posit that state-of-the-art (SOTA) GNN architectures may be
over-engineered for common SSNC benchmark datasets (citation networks, page-
page networks, etc.). By replacing feature aggregation with a non-parametric
learner we are able to streamline the GNN design process and avoid many of the
engineering complexities associated with SOTA hyperparameter selection (GNN
depth, non-linearity choice, feature dropout probability, etc.). Our empirical
experiments suggest conventional methods such as non-parametric regression
are well suited for semi-supervised learning on sparse, directed networks and a
variety of other graph types commonly found in SSNC benchmarks. Additionally,
we bring attention to recent changes in evaluation conventions for SSNC bench-
marking and how this may have partially contributed to rising performances over
time.

1 Introduction

The problem of semi-supervised node classification (SSNC) [1, 2] has been a focal point in graph-
based classification for roughly 20 years. At the task’s inception, classical methods such as label
propagation [3] and kernel learning [2] had seen moderate success in predicting unobseved node
labels. Now, in an era where computation is more plentiful, modern approaches to the classification
problem on graphs make use of the multilayer Graph Neural Network (GNNs) [4]. These networks,
trained to predict node labels in SSNC, draw on both the individual node features (X) and the broader
network structure (A) to inform their prediction.

The fundamental premise of SSNC is that the network structure allows us to borrow information from
neighboring nodes for which we lack a response. This borrowing can enhance the prediction of the
unobserved responses (y) beyond what could be achieved with a traditional regression solely on node
features. Recently, there has been a wide breadth of literature [5–7] which attempts to better leverage
the network structure of the graph using GNNs. This recent flurry of activity has led to the proposal
of many competing, and often intricate, architectures to solve the SSNC problem.

Our study of the leading GNN architectures and the benchmarks used to prove their algorithmic
effectiveness, has led us to believe that many of the design choices found in modern GNNs may be
drastically simplified, or even removed completely, at little-to-no cost to predictive performance.
In our efforts to validate model performances, we revisit traditional estimation techniques like non-
parametric regression. These techniques happen to be very effective for SSNC and highlight the
importance of learnable feature aggregation in SSNC problems.

To this end, we devise a flexible non-parametric learner for feature aggregation. This learner
generalizes the specific polynomial form used in spectral GNNs [8, 9]. That is, given a singular
value decomposition of the network graph A = UΣV T , the non-parametric learner f : R → R
transforms the spectrum of A to produce a new aggregation matrix

Pf = Uf(Σ)V T
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where f is applied entry-wise across the diagonal of Σ. This singular value extension to the previous
symmetric spectral approach of [9] helps clear a directed graph hurdle faced by previous spectral
GNN techniques.

Our contributions are as follows:

1. Propose a nonparametric approach to learn f , hence a GNN aggregation operator, by borrow-
ing ideas from the theory of reproducing kernel Hilbert spaces (RKHS), thus generalizing
polynomial aggregation to a much broader class of spectral functions. By controlling the
underlying kernel, one can impose different regularity constraints on the spectral filters.

2. Highlight the importance and sensitivity of nonparametric spectral reshaping and show how
it can be used to simpify model hyperparameters (e.g. dropout probabilities, model depth,
parameter-specific optimizers) at near-no-cost to SOTA performance.

3. Classification improvements of +5% and +20% compared to competing spectral methods
and other non-linear GNN baselines for the challenging benchmark datasets Chameleon and
Squirrel [10].

4. Outline common evaluation practices which have an outsized effect on model performance.

By standardizing evaluation practices and simplifying modeling considerations, we aim to disam-
biguate performance in the GNN model-space and hope to encourage more interpretable models and
heuristics for future SSNC problems.

2 GNN and SSNC Formalism
In our observation framework, we consider observing a, potentially noisy realization, of the network
with adjacency matrix A ∈ Rn×n and node feature matrix X ∈ Rn×d. Specifically, each node in the
network i ∈ [n] is associated with a feature vector xi and a label yi ∈ [C] := {1, . . . , C}.

In SSNC, it is assumed that for a subset of nodes O ⊂ [n] the labels (yi)i∈O are observed. In this
setting, both the adjacency matrix A and the feature matrix X are assumed to be fully observed. The
goal then is to correctly predict unobserved labels (yi)i∈Oc from the previously stated knowns.

GNNs are designed layerwise, with non-linearity ϕℓ : R → R, weight matrix W ℓ ∈ Rdℓ×dℓ−1 and
aggregation matrix P ℓ ∈ Rn×n all depending on layer ℓ ∈ [L]. Placed altogether, the intermediate
features of the GNN can be expressed as

Zℓ+1 = ϕℓ(P ℓZℓW ℓ) (1)

with ϕℓ applied element-wise, d0 = d and Z1 = X . In the case of a C-class classification problem,
it is common to extract row-wise “argmax”s of the final features ZL ∈ Rn×C using differentiable
argmax surrogates such as softmax. Choice of the aggregation matrix P ℓ may vary dramatically
depending on architecture, but common choices include the adjacency matrix A, its transformed
variants (e.g. normalized Laplacian), and other, learnable, attention-based mechanisms [5].

2.1 Nonparametric Spectral Reshaping

In our proposed model, we consider the simplest variant of GNN: a one layer (L = 1), linear GNN,
that is ϕ = id, where special attention is paid to the propagation structure P . For ease of exposition,
we first consider the undirected case where the adjacency matrix A is symmetric. Let M be a
(symmetric) network matrix derived from A. Examples include M ∈ {A,D−A, Â, I − Â} where
Â = D−1/2AD−1/2. Our approach is to consider a general nonlinear deformation of M , namely,
f(M) where f : R → R is a univariate function extended to the space of symmetric matrices by the
so-called functional calculus. More precisely, given the eigendecomposition M = UΛUT of the
M matrix, where Λ = diag(λi, i ∈ [n]), one has

f(M) = Uf(Λ)UT

where f(Λ) = diag(f(λi), i ∈ [n]) is the natural extension of f to diagonal matrices. This way of
extending univariate functions to self-adjoint operators has a long history in operator theory. Thus,
our propagation operator is Pf = f(M) and we propose to optimize a loss over a general class of
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functions F :

f̂ = argmin
f∈F, W∈Rd×C

∑
i∈O

ℓ
(
yi, (f(M)XW )i

)
+ pen(f) (2)

where pen(f) is some regularization penalty on f . Our main claim is that rather than assuming a
specific parametric form for f , one can allow f to range in a potentially infinite-dimensional function
space F .

Of particular interest to us is when F = H, a reproducing kernel Hilbert space (RKHS) of functions,
characterized by a kernel function K : R×R → R. In such a space, the Hilbert norm ∥f∥H measures
irregularity of f . Then, as long as pen(f) is a monotonic function of the Hilbert norm ∥f∥H, by the
so-called represented theorem [11], problem (2) reduces to

α̂ = argmin
α∈Rn,W

∑
i∈O

ℓ
(
yi, (PK(α)XW )i

)
+ p̃en(α), (3)

where PK(α) := U(diag(Kα))UT , (4)

and K ∈ Rn×n is the kernel matrix with entries Kij = K(λi, λj). If pen(f) = ω(∥f∥H) for
monotonic function ω : R+ → R, then p̃en(α) = ω(αTKα). Given α̂ one can explicitly write
down the solution f̂ of the functional problem (2) as

f̂(λ) :=
∑
j

α̂jK(λ, λj)

which is the learned spectral filter.

Practical considerations. We found slight improvements in performance when regularizing with
αTα rather than the Hilbert norm surrogate (αTKα).This amounts to using p̃en(α) = ραTα for
some ρ > 0. When minimizing with GD type methods, this is equivalent to introducing weight decay
ρ, and is already built into SOTA solvers.

Additionally, we consider the possibility that edges in the network themselves have a component
of randomness associated with them (Section 2.2). This means that our initial spectral inputs
λ1, λ2, . . . , λn are themselves noisy. It is then natural to truncate the spectral decomposition of M
to the top r eigenvalues (in absolute values). Thus, if the eigenvalues are ordered as |λ1| ≥ |λ2| ≥
· · · ≥ |λn|, we consider M (r) = UΛ(r)UT where Λ(r) = (λi, i ∈ [r]) and let the aggregation
matrix be f(M (r)) = Uf(Λ(r))UT . Following through as before, the only changes to the algorithm
is to replace K in (4) with K(r) = (K(λi, λj))

r
i,j=1. We also note that α, the learnable spectral

parameter, will be r-dimensional in this case. We treat the r ∈ [n] as a hyperparameter and study its
effect in simulations. We refer to the case r < n as low-rank (LR) kernel model.

Directed/asymmetric case. All the above naturally extends to directed networks, where M is not
necessarily symmetric, by replacing the eigenvalue decomposition with the SVD: M = UΣV T

where Σ = diag(σi, i ∈ [n]) collects the singular values of M . The aggregation matrix in this case
is Pf = Uf(Σ)V T and its finite-dimensional version is PK(α) = U(diag(Kα))V T with the
kernel matrix K = (K(σi, σj))

n
i,j=1 now based on singular values. Everything else follows similarly,

including rank truncation, where we use ordered singular values instead.

Multiple layers. We mainly focus on a single-layer model (with identity activation) and empirically
show that a single layer of this model is enough to achieve near SOTA performance. However, it is
straightforward to extend the model to multiple layers via the general blueprint (1) where each layer
will have aggregation operator P ℓ = fℓ(M) with fℓ belonging to H.

2.2 Motivating General Spectral Learners

Implicit in all graph learning problems is the assumption that node features X are only partially
informative towards predicting y. To motivate why a spectral GNN of the form (2), with a general
reshaping function f can improve prediction, let us consider perhaps the simplest theoretical model
of SSNC, the so-called Contextual Stochastic Block Model (CSBM) [12]. The idea is that the labels
y are latent variables generating both A, via a C-class SBM: P(Aij = 1 |y) = Byi,yj

, and the node
features via a mixture model: xi | yi ∼ N(µyi

, σ2I).
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Figure 1: Example of learned spectral filter
f̂(λ) for the CSBM experiment with an un-
bounded Sobolev kernel (γ = 0.1).

In this case, the idealized version of A is E[A] which is
a rank C matrix with C eigenvectors that are indicator
vectors of each of the C classes Γ1, . . . ,ΓC ∈ {0, 1}n.
Consequently, if A = UΛUT is the EVD of A, one
expects U:j ≈ 1Γj

for j ∈ [C], while U:j for j > C
are expected to be mostly noise. So an ideal aggregation
operator is close to f(M) = Uf(Λ)UT where f is a
step function that passes the λj , j ∈ [C] through and zero
out the rest. As the experiment in Section 3.2 show, this is
mostly what happens when we train (2) on CSBM, albeit
with more nuance. In finite samples, A is not exactly low-
rank and lower eigenvectors might still have information
about y. This is what we observe in practice where the
learned f is a tapered thresholding operator, that gradually
downweights lower frequencies.

The general low-rank behavior of the E[A] is not limited
to SBMs and holds for more realistic network models
such as random dot product graph (RDPG) [13] where
depending on the distribution of latent positions, more
complex tapering might be optimal.

2.3 Complexity of Low Rank Spectral Learners

Scalability remains an issue for dense spectral methods. However in the case of low-rank non-
parametric aggregators, this issue can be addressed through the use of a low-rank spectral approxi-
mation. By first selecting a rank parameter r for the non-parametric aggregator, computation can
be better budgeted ahead of time through for a graph G = (V,E) through the use of a low-rank
SVD approximations. Specifically for PyTorch, a low-rank, random SVD routine based on [1] is
implemented in the function torch.svd_lowrank.

Computation and error complexity for this routine can be found in section 6.2 of [1]. For a sparse
adjacency matrix given by G and a number of total iterations q, this routine has a time complexity of
O(qr|E|+ r2|V |) and an error complexity, in operator norm, of (r|V |)1/2(2q+1)σr+1. In total, we
obtain a decomposition procedure which is: exponentially exact with respect to q, at most quadratic
in time with respect to r, at most linear in time with respect to graph parameters |V | and |E|.
In the forward pass of the non-parametric aggregator, a graph with d-dimensional node features and c
classes will contribute a computational complexity of O(|V |c(d+ r)). Additionally, since the non-
parametric aggregator is linear with respect to weights W and parameter α, gradient computation in
the backward pass can re-use intermediaries found in the forward pass, potentially saving computation.

3 Experiments
In an effort to show the power of feature aggregation for SSNC problems, our modeling effects
will focus entirely on the aggregation matrix P . No modifications are made to the original features
X or the structure of the linear weight W . As such, in our experiments we do not consider any
model-specific augmentations such as dropout [14], batchnorm [15], or per-parameter optimizers
(i.e. different learning rates for different layers). The design of P will have the following degrees of
freedom:

• Matrix representation of network (M ): We refer to any matrix M derived from algebraic
manipulations of the adjacency of a network A, to be a matrix representation of the network. In
particular we consider the following two representations:

– Adjacency: This is simply an identity transformation on A with M = A.
– Laplacian: This is M = D −A where D is the row-sum degree matrix of A.

• Spectral truncation factor (r): Given a truncation factor r, the spectral system (U ,Λ), resp.
(U ,Σ,V T ), will be reduced to (U:r,Λ:r), resp. (U:r,Σ:r, (V:r)

T ), where the eigenvectors
associated with the bottom n − r eigenvalue magnitudes are dropped. In our experiments,
spectral truncations from 0 to 95% in 5% intervals are considered.
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Cora CiteSeer PubMed Chameleon Squirrel Actor Cornell Texas Wisconsin

MLP2 77.8± 1.6 77.2± 1.1 88.2± 0.5 48.5± 2.6 34.8± 1.4 40.3± 2.3 86.1± 3.0 91.7± 4.4 95.0± 2.6

LINEAR 78.9± 2.0 76.2± 1.2 85.8± 0.4 48.1± 3.2 34.9± 1.4 38.9± 1.2 84.9± 5.6 89.7± 3.8 95.0± 3.8

AGG. LINEAR 84.0± 2.0 73.9± 1.4 82.6± 0.5 79.0± 1.4 78.0± 1.1 32.4± 1.3 67.8± 8.7 86.8± 3.5 83.8± 3.2

KERNEL 88.6± 1.0 81.1± 1.0 89.4± 0.8 78.7± 1.1 76.0± 1.2 32.2± 1.8 83.3± 5.9 88.2± 2.6 92.1± 3.4

LR KERNEL — — — 79.4± 1.4 76.8± 1.3 32.3± 1.7 — — —

GPRGNN∗ 79.5± 0.4 67.6± 0.4 85.1± 0.1 67.5± 0.4 49.9± 0.5 39.3± 0.3 91.4± 0.7 92.9± 0.6 NA
SGC/ASGC∗ 73.9± 2.5 70.2± 1.0 79.1± 1.0 72.3± 0.9 59.0± 1.0 36.5± 0.8 86.8± 3.6 86.2± 3.1 NA
JACOBICONV∗ 89.0± 0.5 80.8± 0.8 89.6± 0.4 74.2± 1.0 55.8± 0.6 40.7± 1.0 92.3± 2.8 92.8± 2.0 NA
ACMII-GCN 89.0± 0.7 81.8± 1.0 90.7± 0.5 68.4± 1.4 54.5± 2.1 41.8± 1.2 95.9± 1.8 95.1± 2.0 96.6± 2.4

Table 1: Performance: Mean test accuracy ± std. dev. over 10 data splits. Models include our own
variations of “Linear” and “Aggregated Linear” GNNs, along with other state-of-the-art (SOTA)
GNNs. Dashed entry in for LR KERNEL signifies validated choice is the same as the full-rank
KERNEL. Performance is comparable between our simple GNNs and SOTA in some cases. Results
for GPRGNN, SGC/ASGC. JACOBICONV and ACMII-GCN are cited from [6], [19], [9], and [7]
respectively. Entries marked with ‘∗’ report 95% confidence intervals.

• Choice of kernel (K): In ordering our RKHS we select among the following kernels:

– Identity: Kij = 1{i = j}
– Linear (Outer product): K(σi, σj) = σiσj

– Compact Sobolev: K(σi, σj) = min(σi, σj)

– Unbounded Sobolev: K(σi, σj) = exp(γ|σi − σj |)
– Gaussian Radial Basis: K(σi, σj) = exp(γ|σi − σj |2)

Note, in the case of identity, the “kernel" does not generate a continuous RKHS. For the last two
kernels, the bandwidth parameter γ ∈ R+ can be determined on validation.

Note that, the choice of matrix representation M matters here insofar that it determines the “modes"
or partitions of the network with its left and right eigenvectors (U ,V ).

For our optimizer, we use the standard Adam optimizer [16] with weight decay. For simplicity, both
parameter α and weight matrix W share the same weight decay under Adam.

3.1 SSNC Benchmarks

Our methods are evaluated against common SSNC benchmarks. The Chameleon, Squirrel, and Actor
benchmarks contain directed networks, while the other benchmarks contain undirected networks.
More information on all benchmarks can be found in Pei et al. [17]. All values are recorded using
the balanced splits defined in Chien et al. [6]. Section 4 provides a comprehensive analysis on the
impact of splitting conventions. Although not covered in this paper, alternative benchmarks for simple
spectral models can be found in Zhu and Koniusz [18].

The following linear and kernel models are considered for evaluation: LINEAR (XW ), AGGRE-
GATED LINEAR (MXW ), KERNEL (PKXW ), and LR KERNEL (PK,rXW ). Model hyper-
parameters such as learning rate, weight decay, the specific aggregator P will be determined for
each dataset using the mean accuracies of the validation splits. For completeness, we have also
implemented a non-linear baseline which learns using only feature information X . This model
is a simple two-layer ReLU multi-layer perceptron MLP2 (ϕ(XW 1)W 2) with hidden layer size
determined on validation.

Our models and their results compared to other current SOTA methods can be found in Table 1. We
note that, for almost all of the larger graph benchmarks, our models perform within uncertainty or
better compared to SOTA. In particular for directed graphs like Chameleon and Squirrel, we see
gains in accuracy as high as 5% and 20% over other SOTA methods. A point of emphasis here is
the relative simplicity of our models compared to the performance they attain. The absence of any
post-model augmentations distinguishes our approach from the implementations of other competing
SOTA spectral methods like JACOBICONV [9].

A point of difficulty where the performance gap persists, is where the node response y is overwhelm-
ing described by its node information X . Graphs with this property (Actor, Cornell, Texas, and
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max params. n = 300 n = 600 n = 1200 n = 1500

X -ONLY ORACLE 0 64.3± 3.9 66.2± 2.9 63.3± 2.7 64.6± 1.4

KERNEL 1512 75.0± 3.5 86.6± 3.3 94.5± 1.2 97.3± 0.8

ACMII-GCN 102623 75.3± 6.4 89.5± 3.1 96.0± 1.2 97.7± 0.8

Table 2: Simulation experiments on a three-class CSBM. Mean test accuracy and std. dev. of 10
runs are reported. X -ONLY ORACLE is the accuracy associated with oracle classification on solely X .
Maximum parameter counts for the two methods are also summarized. Relevant average degree ∆n

for the simulations are ∆300 = 1.83, ∆600 = 3.68, ∆1200 = 7.58, and ∆1500 = 9.44.

Wisconsin) can be identified by the negative performance gap between LINEAR and AGGREGATED
LINEAR as well as the SOTA-like performance of MLP2. Note that, even without using any graph
information, MLP2 is able to achieve SOTA within uncertainty on almost all of the X-dominated,
network datasets. Furthermore, for the cases of Cornell, Texas, and Wisconsin, there is a possibility of
running into sample size issues for graph based methods. With the exception of Actor, these datasets
are only 100-200 nodes large (less than 1/10 the size of the other network benchmarks).

3.2 CSBM Experiment

To illustrate the effectiveness of nonparametric spectral learners, we performed an experiment on
simulated CSBM data. We consider C = 3 classes and node features in R3 (X ∈ Rn×3) generated
using make_blobs function of scikit-learn package with cluster standard deviation of 10. This
leads to a hard classification problem for an oracle that only knows X , with optimal Bayes accuracy
of roughly 0.63 (for large n). The SBM component has connection probabilities Bkk = 0.015 and
Bkℓ = 0.02 for k ̸= ℓ. We vary the number of nodes n over 300, 600, 1200, and 1500.

Table 2 summarizes the results for our nonparametric learner (KERNEL) and ACMII-GCN as a
competing SOTA. Also shown is the average degree of the resulting networks. As n increases the
CSBM model becomes more informative, which is reflected in increased prediction accuracy. At
the two ends of the SNR spectrum (n = 300 and n = 1500) the performance of the KERNEL GNN
and ACMII-GCN are very close, while there is a slight advantage for ACMII-GCN in the middle
(n = 600 and n = 1200), though the two methods are still comparable due to the overlap of the wide
uncertainty ranges.

What, however, is noteworthy is the significant effect of the spectral shaping in GNN performance:
the KERNEL GNN significantly improves the performance beyond the X-only oracle with very few
parameters and at very low graph SNRs; for example, at n = 300, where the parameter count is
312 and the average degree is barely 2 (a very weak graph signal). The simplicity of the KERNEL
GNN allows us to exactly quantify the effect of nonparametric spectral learning since this is the only
operation performed outside of applying the learned linear weights W .

3.3 Aggregation Ablation

To understand the impact of the degrees of freedom defined for the aggregation matrix in section 3,
we conduct an ablation study on the three hyperparameters: matrix representation M , truncation
factor r, and the choice of kernel K.

Matrix Representation (M ): For this experiment we keep spectral truncation fixed at 0% and
choose the best kernel through validation splits. In other words, this experiment is conducted using
the full-rank KERNEL model with a best validated kernel fit to each dataset. In the experiment, we
explore affects of fixing either M = A or M = D −A.

Figure 2 shows the accuracy change across datasets when using a Laplacian matrix representation
D −A rather than an adjacency matrix representation A. As shown by the figure, directed graphs
such as Chameleon and Squirrel show large benefits when using the adjacency matrix representation.
Otherwise there seems to be a slight but persistent benefit in using the Laplacian representation for
undirected datasets.
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Kernel Cora CiteSeer PubMed Chameleon Squirrel Actor Cornell Texas Wisconsin
Identity 78.8± 2.7 72.6± 2.0 81.6± 0.9 69.7± 2.7 44.9± 2.9 28.6± 3.0 60.4± 8.1 76.2± 4.3 71.6± 5.7

Sob. Cmpct. 75.1± 1.9 73.0± 1.4 88.5± 0.4 41.4± 2.2 33.2± 1.1 32.2± 1.8 83.3± 5.9 88.6± 4.0 92.1± 3.4

Linear 81.1± 2.0 72.1± 1.8 82.3± 1.0 78.7± 1.2 76.0± 1.2 31.6± 0.9 66.5± 6.1 77.2± 8.0 81.3± 4.8

Sob. Unbnd. 88.8± 0.8 81.1± 1.0 89.2± 2.0 54.5± 6.4 68.8± 8.2 30.7± 1.0 80.6± 6.4 88.2± 2.6 90.4± 5.6

Gauss. RBF 88.6± 1.0 80.3± 1.9 89.4± 0.8 60.4± 8.4 71.3± 4.4 30.4± 1.3 79.4± 5.3 84.0± 4.5 85.8± 4.7

Table 3: Impact of the kernel choice on the performance of the full-rank KERNEL model. Bold
entries correspond to the model selected by validation.

Choice of Kernel (K): For this experiment we once again use the full-rank KERNEL model. This
time the matrix representation M is chosen through validation and the choice of kernel is varied
across datasets. Table 3 shows performance results for the various choices of kernels. In Table 3, we
see a complicated dependence between kernel choice and the accuracy of node prediction. Although
some results are within uncertainty, the dependence between kernel regularity and SSNC performance
is not immediately clear. In the case of the Chameleon and Squirrel datasets, it is apparent that the
wrong choice in kernel may lead to significant performance degradations (up to ∼30%).

Spectral Truncation Factor (r): For this experiment, both the matrix representation and the choice
of kernel have been selected based on best validation with truncation factor r fixed for the extent
of each sub-experiment. Figure 3 demonstrates the effect of truncation on performance and how it
gradually degrades with the truncation percentage. The rate at which performance degrades seems
dependent on the dataset, but most benchmarks retain ∼90% performance even after a 40% spectral
truncation. In special cases like Squirrel and Chameleon, performance can be seen to increase at
larger truncation values.

Alleviating Kernel Dependent Performance: For this experiment, we explore the affects of kernel
choice for the LR KERNEL model. In particular, we focus on the performance impact of kernel choice
for the directed dataset benchmarks. Rather than reporting mean accuracies, Figure 4 shows the full
violin plot of test split performances for each kernel-dataset combination. We notice a homogenization
of results, where the choice of kernel is negligible to the overall SSNC performance. We stress
however that this solution is partial, as the same order of homogenization is not observed for the other
undirected datasets. Identifying relevant graph statistics which may describe this homogenization
discrepancy is something which is left to future work.

4 Changes in Evaluation Conventions
The convention of using citation networks [20] (Cora, Citeseer, Pubmed) in SSNC benchmarks was
popularized by the graph embedding work of Yang et al. [21]. Yang et al. [21] defined the “sparse"
train-test split of the citation datasets and their node masks were made publicly available. The sparse
split fixed 20 nodes per class for training and 1000 nodes total for testing. These values were held
constant across citation datasets, meaning larger networks likes Pubmed were left with a relatively
low label rate of ∼5%.

Figure 2: Accuracy comparison of the KERNEL model for different graph representations A and
D − A. Shown above is the signed accuracy difference between the adjacency and Laplacian
representations. Best performing kernel was selected per dataset.
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Figure 3: LR KERNEL performance relative to the full-rank KERNEL for different truncation factors
r. Performance is seen to gradually decline on most datasets as the truncation factor r decreases
(that is truncation percentage increases). LR KERNEL performance can also be seen to periodically
increase above full-rank KERNEL performance for the datasets Chameleon (red) and Squirrel (purple).

Figure 4: Performance homogenization achieved by LR KERNEL model on directed networks.

Quickly following was the semi-supervised work of Kipf and Welling [22] and Veličković et al. [5].
These follow-up papers defined a new “public" split where 500 previously unlabeled nodes in the
sparse split were now used for validation. In the respective code implementations of each paper, the
additional labels were used for early stopping criteria and to determine the final model checkpoint.

Introduced later was the “dense” split by Pei et al. [17], where train, validation, and test were now
fractions of the whole graph, set to 60%-20%-20% respectively. This paper also popularized two new
benchmark datasets, the WebKB dataset [23] (Cornell, Texas, Wisconsin) and the Wikipedia animal
page-page networks [10] (Chameleon, Squirrel).

Figure 5: Accuracy results and uncertainties on the citation datasets using different splits with linear
models XW and AXW . “Public" refers to the split introduced by Kipf and Welling [22]. Both
“Sparse" and “Public" are single splits, so one cannot associate uncertainty to them.
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Figure 6: Accuracy results on datasets introduced by Pei et al. [17]. “Dense" refers to the original
split while “Balanced" refers to the split introduced by Chien et al. [6]. Test results and uncertainties
are evaluated using models XW and AXW . Results shown are for method with best validation.

Most recently a “balanced" split was proposed by Chien et al. [6]. This is a class-balanced split
where, for each class in a network, a 60%-20%-20% mask is made with then each class mask being
collected into a final, aggregate train-validation-test split. Both the balanced split and the datasets
tested in Section 3 are commonplace benchmarking practices for current SSNC papers [7, 9].

4.1 Comparing Split Performances

Provided in Figures 5-6 are visualizations on the impacts of different evaluation techniques on simple
linear models (XW and AXW ). To keep things comparable to the sparse split, where no validation
set exists, both the learning rate (10−3) and the weight decay (0.0) were set to be fixed for the Adam
optimizer. Despite this lack of tuning, the best of these models, per dataset, achieve roughly >85%
relative performance when compared to SOTA SSNC methods. The high-end of this performance can
be seen in the Squirrel column of Figure 6, where mean accuracy of the best linear model is 77.3%.

New GNN architectures which make use of the recent, balanced split may also experience an
analogous performance bump relative to any older models tested before the split was introduced. In
the worst case, this may lead to an overstatement in new modeling contributions and has the potential
downside of muddying the signal of what makes for a successful and efficient GNN architecture in
SSNC experiments. For this reason, we believe it is important to be clear on the impact of splitting
conventions and how they contribute to recent performance upticks in SSNC benchmarking.

5 Conclusions
We have shown how classically-inspired, non-parametric techniques can be used to match, and
sometimes exceed, previous spectral and non-linear GNN approaches. Our methods make no use of
post-model augmentations, such as dropout [14] or batchnorm [15], and allow for a clean theoretical
analysis in future work.

Empirically, we explored and ablated pertinent hyperparameters to the spectral kernel model and have
shown the various dependences between parameters across different datasets. On the aspect of low-
rank kernel models, we have shown how spectral truncation can homogenize response outcomes for
different kernel choices. Additionally for low-rank models, we have shown how performance decline
is gradual with increases in spectral truncation, pointing to practical speed-ups for non-parametric
kernel implementations.

On the aspect of testing conventions, we looked at how evaluation has changed for SSNC tasks since
the first introduction of popular citation datasets [20]. We have shown how the class-balanced split
can produce improvements in performance outside of what is expected by uncertainty.

In summary, non-parametric kernel aggregators provide a simple yet effective means of recovering
unobserved labels in SSNC tasks. As our implementations are free from post-model augmentations,
we expect future theoretical insights obtained for low rank kernel aggregators to be closely reproduced
in experimental settings such as those seen in Section 3. Future work may further develop these
insights, adding to the list of favorable properties for non-parametric kernel aggregators.
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