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Introduction: High-precision digital elevation 
models (DEMs) of the Moon are essential for mission 
planning and scientific analysis. However, traditional 
photogrammetric methods often struggle to maintain 
spatial resolution and consistency when processing 
pushbroom camera imagery, which generates vast, 
continuous image lines. Furthermore, because most 
lunar images are acquired in a nadir (straight-down) 
orientation to support cartographic and geological 
research, limited parallax—that is, minimal or 
ambiguous differences in viewing angles between 
images—makes it difficult to derive accurate 3D 
structure from standard stereo matching. To address 
these challenges, we propose a custom neural rendering 
framework based on a simplified Neural Radiance Field 
(NeRF) [1]. While NeRF typically requires multiple 
consistent images from different viewpoints for high-
fidelity 3D rendering, our approach simulates multi-
view geometry by treating each pushbroom image “line” 
as a distinct viewpoint and modeling the spacecraft’s 
orbit as a continuous path along the planetary surface—
all from a single pass. We also show that our framework 
remains robust even when fewer pushbroom lines are 
available, making it particularly promising for large-
scale reconstructions. 

Method:  Our approach trains a deep neural network 
to represent the lunar surface as an implicit volumetric 
rendering function, using a pushbroom camera pose and 
the corresponding ray directions as input. Each line of 
the pushbroom camera is treated as a distinct viewpoint: 
we sample 3D points along these rays, pass them 
through the network, and obtain densities and grayscale 
intensities. These outputs are then integrated to form 
radiance and metric-scale depth, guided by SLDEM to 
ensure accurate surface elevations.  

A key aspect of our framework is multi-view 
training via sequential pushbroom lines. As the 
spacecraft travels along the lunar surface, any desired 
viewpoint can be approximated by continuing along its 
flight path—eliminating the need to distinguish between 
single and multi-shot scenarios. Since many pushbroom 
camera poses are noisy or interpolated, we optionally 
incorporate learnable pose estimation and surface priors 
(e.g., smoothness losses, local radius constraints) to 
improve geometric consistency.  

Unlike conventional DEM approaches [2, 3, 4] that 
rely on explicit disparity maps or stereo matching, our 
method iteratively refines the scene geometry 
by backpropagating pixel intensity and depth errors, 
capturing subtle parallax and sensor geometry effects 

often missed by classical photogrammetry. Through 
a differentiable volume rendering equation, the network 
implicitly learns a continuous 3D representation of the 
lunar terrain—both spatial density and view-dependent 
radiance. During forward rendering, the model 
calculates contributions from sampled depths along 
each ray to produce the final grayscale radiance. The 
discrepancies between these rendered intensities and 
observed data are then used to update the volumetric 
surface representation, steadily improving 
reconstruction accuracy.  

Dataset: The Lunar Terrain Imager (LUTI) on 
board the Korea Pathfinder Lunar Orbiter (KPLO) 
features a focal length of 404 ± 0 mm and achieves a 
pixel scale of 2.5 m/pixel at an altitude of 100 km. We 
evaluate our approach on Tycho Crater (43.37°S, 
348.68°E) captured by LUTI which offers relatively 
high-quality pushbroom imagery and sufficient LOLA 
3D point coverage, enabling reliable quantitative and 
qualitative analyses. In our dataset, we use SLDEM as 
the reference depth for metric-scale training because it 
provides dense global coverage (±60° in latitude, 360° 
in longitude) without empty pixels and is accurately co-
registered to LOLA points, ensuring consistent 
geometry and minimal alignment errors.  All images in 
our dataset are captured at small phase angles as 
possible for minimizing the differences in surface 

  

 

Figure 1. Data Preprocessing Pipeline. ICAS-based 
applications attach kernel data to the LUTI images and 
perform radiometric calibration. Next, ISIS3 tools 
extract photometry and geometry data for training our 
3D reconstruction AI model. The resulting ray 
information, transformation matrices, and ground-truth 
depths are then used as inputs for the neural networks. 
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observations. As shown in Figure 1, we apply a data 
preprocessing pipeline that provides the essential inputs 
for our 3D reconstruction model. 

Experiments: We compare our approach with 
existing DEMs by evaluating vertical accuracy, pixel 
resolution, and the number of images required for DEM 
generation. In Table 1, LOLA 3D points from the test 
region are projected onto both the baseline DEMs and 
our reconstruction to compute mean squared vertical 
errors. Notably, our method achieves high-quality 
reconstructions from a single image, whereas baseline 
DEMs  require multiple stereo pairs or additional LOLA 
points (see the 4-th column of Table 1.) This single-shot 
learning capability readily generalizes to various 
existing DEMs, because our framework applies weak 
supervision—guiding the network to capture coarse 
depth distributions rather than overfitting to precise 
ground-truth labels.  

In Figure 2, while preserving SLDEM’s overall 
depth distribution, our approach refines coarse depths to 
match the resolution of the input imagery, yielding 
significantly sharper surface details. Crucially, it avoids 
overfitting to either shadowed pixels or over-smoothed 
depths by learning a robust surface representation from 
combined geometric and photometric cues. This 
robustness extends to subtle features often lost due 
to ambiguous parallax—minimal or unclear viewpoint 
differences that make it difficult to derive accurate 3D 
structure solely from pixel shifts. 

Discussion & Limitation: We propose a novel 
neural volumetric rendering method for generating 
higher-quality lunar DEMs, robust to camera-pose noise, 
shadows, and the Moon’s unique reflectance. This 
framework can be applied to any planetary imagery 
captured by pushbroom cameras, alongside their 
associated DEMs. Most notably, our method 
continuously produces a high-resolution DEM at the 
original image scale without requiring additional 
interpolation. However, our method still relies on metric 
depth from SLDEM, even though it internally learns an 
enhanced 3D representation. Future work will 
investigate more sophisticated approaches that remove 
the need for metric depth labels. Additionally, the final 
pixel scale and geometric sharpness are tied to the 
resolution of the input imagery, suggesting a multi-scale 
strategy as a potential avenue for further improvement. 
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Figure 2. Comparison of depth and elevation results from 
our model and DEM. A 3×3 grid visualization of depth 
and elevation maps. The center shows the ground-truth 
image, with depth maps placed on the left and top, and 
elevation maps on the right and bottom. Our method 
preserves the depth distribution of existing DEMs while 
capturing more detailed lunar surface features in both 
depth and elevation representations. 

 

Table 1. Quantitative comparison of depth and elevation 
results with the baseline DEMs (NAC DTM, SLDEM, and 
LDEM).  Note that all baseline DEMs are interpolated to 
a 2.5 m/pixel. 
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