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Abstract

We study the problem of causal function estimation in the Proxy Causal Learn-
ing (PCL) framework, where confounders are not observed but proxies for the
confounders are available. Two main approaches have been proposed: outcome
bridge-based and treatment bridge-based methods. In this work, we propose
two kernel-based doubly robust estimators that combine the strengths of both ap-
proaches, and naturally handle continuous and high-dimensional variables. Our
identification strategy builds on a recent density ratio-free method for treatment
bridge-based PCL; furthermore, in contrast to previous approaches, it does not
require indicator functions or kernel smoothing over the treatment variable. These
properties make it especially well-suited for continuous or high-dimensional treat-
ments. By using kernel mean embeddings, we propose the first density-ratio free
doubly robust estimators for proxy causal learning, which have closed form so-
lutions and strong uniform consistency guarantees. Our estimators outperform
existing methods on PCL benchmarks, including a prior doubly robust method that
requires both kernel smoothing and density ratio estimation.

1 Introduction and related works

Estimating the effects of interventions-also referred to as treatments-on outcomes is a central goal of
causal learning. This task is particularly challenging in observational settings, where randomized
experiments are not feasible. A major difficulty stems from confounding variables that influence both
the treatment and the outcome. In practice, the commonly made unconfoundedness (or ignorability)
assumption [1]—that there are no unobserved confounders—often fails to hold, as it is unrealistic to
expect that all relevant confounders can be accounted for. As a result, one may instead assume that
the observed covariates serve as proxies for latent unmeasured confounders.

One classical line of work for addressing unobserved confounding is instrumental variable (IV)
regression, which assumes access to instruments that affect the treatment but are independent of
the unobserved confounders [2, 13} 4]. A more recent and promising direction is the Proxy Causal
Learning (PCL), which leverages two auxiliary variables: (i) a treatment proxy, denoted by Z, which
is causally related to the treatment, and (ii) an outcome proxy, denoted by W, which is causally
related to the outcome. The associated causal graph is illustrated in Figure (I). In this setup, a
bidirectional arrow indicates that either causal direction between the two variables is plausible,
or that they may share an unobserved common cause. Within this framework, Miao et al. [3]]
showed that the causal effect can be identified via an outcome bridge function, without the need

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



to explicitly recover the latent confounders. This contrasts with approaches such as Kuroki and
Pearl [6], Louizos et al. [[7]], Lee et al. [8]], which attempt to estimate the latent confounders directly.

Specifically, Miao et al. 5] demonstrate that an outcome
bridge function—a function of the outcome proxy W
and the treatment—whose conditional expectation
equals the regression function, can be integrated over
the distribution of W to recover the average causal
effect. Building on this idea, several methods have
been proposed to estimate the outcome bridge function
and the causal effect, utilizing sieve expansions [10],
reproducing kernel Hilbert spaces (RKHS) [11} [12],
neural networks [13} [14] and minimax learning [[15} [16].
In particular, Mastouri et al. [11] proposed two kernel-
based methods for efficiently estimating the outcome
bridge function: a two-stage regression approach
called kernel proxy variable (KPV) and a one-step
estimator based on maximum moment restrictions [17]]
called proximal maximum moment restriction (PMMR).
Although outcome bridge function-based methods have
received widespread attention, an alternative line of
work focuses on identifying causal effects using ideas
inspired by inverse propensity score (IPS) models
[L8, [19 20]. The seminal work by Cui et al. [21]
introduced a complementary identification strategy
based on a treatment bridge function—a function of

Figure 1: An illustrative causal graph for
proxy causal learning (PCL), consistent
with Assumption (2.2)) [5]. Observed vari-
ables are shown as yellow nodes: A de-
notes the treatment, Y denotes the out-
come, Z denotes the treatment proxy, and
W denotes the outcome proxy. The un-
observed confounder U is depicted as a
white node. Dotted bi-directional arrows
indicate potential bidirectional causality
(ambiguous directionality) or the existence
of a shared latent ancestor between vari-

the treatment proxy Z and the treatment. This approach,
however, is limited to binary treatments and relies on
an indicator function over the treatment of interest in
the identification formula. Moreover, it requires density
ratio estimation to recover the treatment bridge function. Extensions to continuous treatments have
been proposed by Wu et al. [22]] and Deaner [10]. In particular, Wu et al. [22] generalized the binary
treatment framework of Cui et al. [21] by replacing the indicator function with kernel smoothing.
However, density ratio estimation remains a significant challenge, particularly in high-dimensional
settings. To overcome the limitations posed by indicator functions, kernel smoothing, and explicit
density ratio estimation, Bozkurt et al. [23]] introduced a density ratio-free identification strategy based
on a novel formulation of the treatment bridge function called kernel alternative proxy (KAP). Their
method simplifies the least-squares objective to bypass the explicit density ratio estimation, following
ideas similar to those in Kanamori et al. [24], and it also avoids both kernel smoothing and indicator
function. As a result, it is more scalable for settings with continuous and high-dimensional treatments.

ables. For other causal models that satisfy
this assumption, see Table A.1 in [9]

In practice, the treatment- and outcome- bridge approaches each have different and complementary
strengths. Bozkurt et al. [23]] illustrate in experiments that the relative performance of each method
depends on the informativeness of the proxies [see Section (13) in|23]]. Specifically, when the outcome
proxy W is more informative about the unobserved confounder U than the treatment proxy Z, their
treatment bridge-based method outperforms outcome bridge-based alternatives. Conversely, when Z
is more informative about U than W, outcome bridge-based methods such as those of Mastouri et al.
[L1] and Singh [[12] yield better performance. However, in practice, it is often difficult to know in
advance which scenario applies. This motivates the development of a doubly robust (DR) approach
for the PCL setting that combines the strengths of both classes of methods in a way that the resulting
approach will remain robust, even if one of the methods fails to identify the causal effect.

DR methods are well established in fully observed causal settings due to their appealing property of
consistency if either the outcome model or the propensity score model is correctly specified [25} 26].
Such estimators have been generalized to a wide range of functional estimation tasks [27, [28]], and
are often grounded in the theory of efficient influence functions [29, (30} 31]]. These techniques allow
for bias reduction and valid inference even in high-dimensional or nonparametric settings [32} 33]].

In the PCL setting, the first doubly robust (DR) approach was introduced by Cui et al. [21], who
combined their novel treatment bridge function-based method with the earlier outcome bridge



function-based method of Miao et al. [5]. Their method is built on the theory of efficient influence
functions and achieves the semiparametric efficiency bound. However, as noted earlier, it is limited
to the binary treatment case. An extension to continuous treatments was proposed by Wu et al. [22],
who replaced the indicator function over the treatment of interest with a kernel smoothing technique,
resulting in a nonparametric DR estimation procedure. Nonetheless, learning the treatment bridge
component of their DR estimator still requires explicit density ratio estimation. Additionally, the use
of kernel smoothing can introduce further difficulties when the treatment is high-dimensional.

In this work, we develop two novel doubly robust estimators for PCL. Specifically: (i) our first DR
estimator integrates the two-stage regression method KPV of Mastouri et al. [11] with the treatment
bridge function formulation KAP of [23], and (ii) our second DR estimator leverages the maximum
moment restriction-based algorithm PMMR in Mastouri et al. [[11] with the same treatment bridge
strategy KAP. Both estimators retain consistency as long as either the outcome bridge function or the
treatment bridge function is correctly specified, thus achieving the doubly robust property.

Our key contributions are: (i) We propose two novel doubly robust algorithms for causal effect
estimation in the PCL setting that circumvent the need of explicit density ratio estimation; (ii) We
leverage conditional mean embeddings (CME:s) to derive simple, closed-form estimators using matrix
and vector operations—scalable to continuous and high-dimensional treatments; (iii) We establish
uniform consistency of our proposed estimators, which is stronger than the pointwise convergence
typical in doubly robust causal learning; and (iv) We empirically demonstrate that our methods
outperform existing PCL baselines in challenging scenarios.

The remainder of the paper is organized as follows: Section (2)) introduces the problem setup and our
doubly robust identification result. Section (3] presents our nonparametric estimation algorithms. Sec-
tion (@) outlines the consistency results for our proposed methods. Numerical experiments are reported
in Section (5), and we conclude in Section (6). Our implementation code is available on GitHut'|

2 Problem setting and identification

We consider the problem of estimating causal effects, defined as counterfactual outcomes under
hypothetical interventions. Let A € A denote the treatment and Y € ) C R the observed outcome.
An unobserved confounder U € U affects both A and Y. Our goal is to estimate the dose-response
curve, as formalized in the following definition.

Definition 2.1. The dose-response is defined as Oarp(a) = E[E[Y | A = a, U], representing the
counterfactual mean outcome if the entire population received treatment a. The subscript ATE
signifies that its semiparametric counterpart is the average treatment effect (ATE).

The key difficulty in estimating dose-response stems from the fact that the confounding variable U is
unobserved in most of the applications. To address this issue, proxy causal learning setup assumes
the availability of two proxy variables: Z, which serves as a proxy for the treatment, and W, which
acts as a proxy for the outcome. The underlying causal graph is depicted in Figure (). This graphical
model admits the following conditional independence assumptions which we leverage throughout:

Assumption 2.2. (Conditional Independencies). The following conditional independence statements
are implied by the causal graph illustrated in Figure .' i-)Y L Z|U, A (Conditional Independence
JorY), ii-) W L Z|U, Aand W L A|U (Conditional Independence for W ).

In the following subsections, we review two main approaches to estimate the dose-response curve
in PCL setting: (i) outcome bridge function methods [5 [11} [12} {13} 34], and (ii) treatment bridge
function methods [10} 21} 22} 23] 35]]. These methods rely on completeness Assumptions and
(2.5) that formalize the requirement that the proxy variable be sufficiently informative about the
unobserved confounders, highlighting the importance of collecting rich sets of proxy variables in
observational studies to mitigate unobserved confounding. While completeness is generally not
testable (even when all relevant variables are observed), it is known to hold for a wide range of
semiparametric and nonparametric models [S]]. For an extended discussion on completeness within
the PCL framework, we refer the reader to Miao et al. [5, Section (S.2)].
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2.1 Outcome bridge function-based identification

To identify the dose-response, Miao et al. [5], Wang Miao and Tchetgen [34] show that the
causal effect is nonparametrically identifiable under the model in Figure (I), given the following
completeness assumption [[13, Assumption 2]:

Assumption 2.3. (Completeness Assumption). For any square-integrable function ¢ : U — R and
foranya € A, E[{(U) | Z, A = a] = 0 almost surely if and only if ¢(U) = 0 almost surely.

The completeness condition ensures that the proxy variable Z exhibits sufficient variation relative to
the unobserved confounder U, enabling the identification of the treatment effect.
The theorem below identifies g (a) via an outcome bridge function.

Theorem 2.4 (Causal Identification with Outcome Bridge Function [l [34])). Let Assumptions
and hold. Furthermore, suppose that there exists an outcome bridge function ho(w, a) satisfying

ElY | Z,A] = /ho(w7A)p(w | Z, A)dw. (1)
Then, the dose-response can be identified by 0 o7 (a) = E[ho(W, a)].
The proof of Theorem (2.4) can be found in 34} Proposition (3.1)], [13| Corollary (1)].

2.2 Treatment bridge function-based identification

Cui et al. [21] and Deaner [[10] proposed an alternative identification results using a treatment bridge
function, but its learning requires density ratio estimation. Therefore, we instead follow Bozkurt
et al. [23]], whose method avoids this issue as we describe it in Section (3) and forms the basis of
our doubly robust estimator. The structure of this treatment bridge function-based identification is
analogous to inverse propensity weighting principle [19}20]. We adopt the following completeness
assumptions to identify the dose-response via the treatment bridge function [23, Assumption 3.3]:

Assumption 2.5. (Completeness Assumption). For any square integrable function { : U — R, for all
a€ A ELU) | W, A=a]=0pW)almost surely if and only if ¢(U) = 0 p(U) — a.e.

The completeness condition ensures that the proxy variable W exhibits enough variation in relation
to the unobserved confounder U, enabling the identification of treatment effect.

Theorem 2.6 (Causal identification with treatment bridge function [23]]). Let Assumptions and
. Furthermore, suppose that there exists a treatment bridge function g (z, a) such that

o p(W)p(a)
IE[@O(Z,aHVV,A—a]—W, Va € A, 2)

then the dose-response can be identified by 0 arg(a) =E[Ypo(Z,a) | A = al.

Theorem is proved in [23, Theorem 3.4]. The existence of the treatment bridge function ¢q
relies on Assumption (2.3), along with mild regularity and integrability conditions. In particular, note
that Assumption (2.3) underpins the identification of the causal effect via the outcome bridge function.
On the other hand, Assumption ensures the existence of h and identification via the treatment
bridge ¢o. Thus, these completeness assumptions serve distinct yet complementary roles. See
Supplementary Material (S.M.) ([D) for further discussion on the existence of the bridge functions.

2.3 Doubly robust proximal identification

With two distinct identification approaches at hand, we now present a doubly robust identification
result that combines outcome bridge function and treatment bridge function-based identification.
Theorem 2.7 (Doubly robust causal identification). The dose-response can be identified with

050 (a; By ) |(hmho o) = Elpo(Z,a)(Y — ho(W,a)) | A = a] + E[ho(W,a)],  (3)

where hy and g are the outcome and treatment bridge functions that satisfy Equations and

, respectively. Furthermore, ngz;g) (a; h, ) admits double robustness such that 9&?2) identifies the
dose-response curve if either h solves Equation (1)) or ¢ solves Equation (2)—but not necessarily both.



We prove Theorem (2.7) in S.M. (A)) and relate our estimator to semiparametric efficiency theory
in S.M. (B).
Remark 2.8. In S.M. (B), we provide a background in semiparametric efficiency theory and
efficient influence functions (EIF) [29, 30, 28], and we derive the EIF of the dose-response in
the discrete treatment case. Under the mild Assumption (B.3), Theorem (B.4) shows that the
EIF is Yare(O;a) = oo(Z, A)(Y — ho(W, A))ﬁl[/l = a] + ho(W,a) — Oarg(a), where
o . . . . o 1 — 1 a; = aj,
O = (Y, Z,W, A), and 1[-] is the indicator function defined as 1[a; = a;] = { 0 otherwice.
Since the expectation of the influence function is zero, we note that:

0 = E[¢Yare(0;a)] = E[po(Z,a)(Y — ho(W,a)) | A = a] + E[h(W,a)] — Oarr(a),

which implies the identification 6 s (a) = Elpo(Z,a)(Y — ho(W,a)) | A = a] + E[ho(W, a)].
While this EIF-based identification is derived for discrete treatments, Theorem shows the same
form holds for continuous treatments and preserves double robustness.

Remark 2.9. Our identification result in Theorem differs from the doubly robust identification
in Cui et al. [21|]. They identify the dose-response as E[qo(Z, A)(Y — ho(W, A))1[A = a]] +
E[ho(W, a)], where qo is the treatment bridge function solving the Fredholm integral equation
Elgo(Z,a) | W,A = a] = 1/p(A = a | W) VYa € A, and hy solves Equation (). Unlike our
formulation based on Equation @), their identification uses the indicator function 1[A = al.
Wu et al. [22]] approximate this indicator with kernel smoothing in estimation. While both
methods use joint expectations over (Y, Z, W, A), ours relies on conditional expectation under the
distribution p(Y, Z,W | A = a). This structural difference enables applicability of our methods
to high-dimensional treatments, where the kernel-smoothing-based DR approach fails.

3 Nonparametric kernel methods

We now present a nonparametric estimation algorithm for approximating the function in Equation (3)
using RKHS theory and conditional mean embeddings. The next subsection reviews the necessary
RKHS background, followed by our proposed algorithms’ derivations.

3.1 Reproducing kernel Hilbert spaces

In this section, we briefly review reproducing kernel Hilbert spaces (RKHSs), as concepts such
as kernels and mean embeddings are used throughout our algorithm derivations and consistency
analyses. For each space F € {A, W, £}, we denote the associated positive semi-definite kernel by
kr(-,-) : F x F — R, which induces the RKHS H r C {¢ : 7 — R}. We denote the corresponding
canonical feature map by ¢ #(f) = kx(-, f) € Hr. The inner product and norm in the RKHS H z are
denoted by (-, -)%~ and ||-||7¢-, respectively. The tensor product space is denoted by H z@Hg, and for
convenience, we use the shorthand notation H r¢g. This space is isometrically isomorphic to the Hilbert
space of Hilbert—Schmidt operators from Hg to H . [36], denoted by Sa(Hg, Hr). Analogously,
we denote the tensor product feature map ¢+ (f) ® ¢g(g) € Hr @ Hg by ¢xg(f, g). Throughout
the paper, we impose the following assumption on the domains and the corresponding kernels:

Assumption 3.1. We assume that (i) each F € {A,W, Z} is a Polish space; (ii) kx(f,.), is
continuous and bounded by , i.e., supsc 7 ||k7(f, )1z < K, for almost every f € F.

For a given distribution p(f) on F and a kernel kz such that E[kz(F, F')] < oo, the kernel mean
embedding of p(F') is defined as up = [ kz(-, f)p(f)df € Hr [37.38]. Furthermore, for a given
conditional distribution p(F'|g) for each g € G, the conditional mean embedding (CME) of p(F|g)
is defined as the operator 1 (g) = ff kx(-, Np(flg)df € Hx [39140, 411421 143].

3.2 Doubly robust algorithm for dose-response curve estimation

We note that the doubly robust function 9,(\21;) consists of three components:
Ot (a) = E[Y po(Z,a) | A = a] — Elpo(Z, a)ho(W, a) | A = a] + E[ho(W,a)).
Let D = {y;, 2i, w;, a; }i_; be i.i.d. samples from the distribution p(Y, Z, W, A) that are used to

)

estimate G(A?ER . We develop two doubly robust algorithms for estimating the dose-response curve: (i)



combining the two-stage regression method KPV from Mastouri et al. [11] with the density ratio-free
treatment bridge approach KAP from Bozkurt et al. [23]], and (ii) combining the maximum moment
restriction method PMMR from Mastouri et al. [11] with the same KAP strategy. Following Mastouri
et al. [11]] and Bozkurt et al. [23]], we assume hg € Hyy @ Hq and g € Hz @ H 4.

Two RKHS-based methods for estimating hy are Kernel Proxy Variable (KPV) and Proxy
Maximum Moment Restriction (PMMR), both proposed by Mastouri et al. [11]. KPV
estimates E[h(W,a)] in three steps: (i) Given samples {w;,Z;,a;};y C D, it estimates
pwiza(z,a) = Elpw(W) | Z = 2, A = a] via regularized least squares. (i) With

second-stage data {g;, Z;,a;},~, C D, it optimizes the sample-based counterpart of the loss
Lxpy(h) =E [(Y —Erh(W,A) | Z, A])z] + An,2||P |2,y using the representer theorem [44]] and
the first-stage estimate. (iii) The dose-response at the treatment a is then estimated via the sample
mean i f’: | h(w;, a) where {u;}!", C D can be considered as the third-stage samples, and / de-
notes the bridge function estimate. Here nj, my, and ¢;, denotes the number of samples in each stage.
One may either split the ¢ training samples across stages or reuse them. In the original KPV implemen-
tation, data is split for stages one and two, and the entire dataset is used in stage three, i.e., t;, = ¢ [[L1]].

PMMR instead uses a one-step estimation via the empirical version of the loss Lpmmr(h) =
sup <1 E[(Y — h(W, A))g(Z, A)]> + Xmrl|hl[#,y4 With g € Hz4, which can be solved in
closed form using the representer theorem. The entire dataset of ¢ samples is used directly for training.
Dose-response estimation mirrors the same procedure as in KPV. Additional details and pseudo-code
are provided in S.M. (C.I)) and Algorithms(2) and (3).

Bozkurt et al. [23]] propose a two-stage regression algorithm in RKHSs, called the Kernel Alternative
Proxy (KAP), to estimate the treatment bridge function ¢, followed by a third-stage regression to
approximate the dose-response curve via E[Y $(Z,a) | A = a], where ¢ approximates . A key
advantage of this approach is that it avoids explicit density ratio estimation, in contrast to the methods
proposed by Wu et al. [22] and Cui et al. [21]. Specifically, KAP simplifies the regularized least
squares objective as:

2
() =& | (BED) — Bo(z, ) | w41 |+ dalol
=E[E[p(Z,A) | W,A]*] +E {%EMZ A) | W, A]| + Aapllell3 ., + const.
=E[E[p(Z,A) | W, AP’] + EwEa [E[p(Z, A) | W, Al + Ao lloll3,,, +const.  (4)

Here, EyE 4[] denotes the decoupled expectation under p(W)p(A), “const.” refers to terms in-
dependent of ¢, and Az, is a regularization parameter. Notably, the objective in Equation ()
involves no density ratio terms. The KAP method proceeds in three stages: (i) Given i.i.d. sam-
ples {w;, z;, di}:ﬁl C D, the first-stage regression estimates the conditional mean embedding
pw|z,a(z,a) = Elpw (W) | Z = 2, A = a] via regularized least squares. (ii) Using this estimate
to approximate the conditional mean E[p(Z, A) | W, A] = (¢, pw|z,4(2,a) ® d4(a))w .4, the
second-stage regression minimizes the empirical counterpart of Equation () using second-stage
samples {w;, &i}?;“’l C D. A closed-form solution is derived via the representer theorem [44]].
(iii) With the estimate ¢, the dose-response is estimated via kernel ridge regression to approximate
E[Y¢(Z,a) | A = a] using third-stage samples {y;, 2;, ai}fil C D. Here, n,, m,, and t,, denote
the sample sizes for the first, second, and third stages, respectively, which may be obtained by splitting
or reusing the original ¢ training samples. In the published implementation, data is split for the first
and second stages, while all ¢ samples are used in the third stage, i.e., t, = . Further details are
provided in S.M. (C.2), and the algorithm is outlined in Algorithm (4).

As a final step to estimate 9/(32) (a), we develop a procedure for estimating E[¢o(Z, a)ho(W,a) | A =
a], completing the doubly robust algorithm when combined with estimators for E[Y ¢o(Z,a) | A = a]
and E[ho (W, a)]. Using the properties of the tensor product, we notice that

Elo(Z,a)ho(W,a) | A = a] ~ E[$(Z,a)h(W,a) | A= d]

=E {<¢,¢Z(Z)®¢A(a)>ﬂ <il7¢w(W) ®¢A(G)>

zQHA HwWRH A

4=d]



=8 {49, (02(2) © 04(@) & (o(W) @ 6a)) a=a]. ©

HzQHAQHWRH A

As derived in S.M. (C), the expectation in Equation (5) can be approximated using a combina-
tion of kernel ridge regression and the properties of the inner products in RKHSs. In essence,
the approximation procedure requires learning the conditional mean embedding fi7 |4 (a) =
El¢pz(Z) @ pyw(W) | A = a]. We approximate this term with vector-valued kernel ridge regression.
In particular, under the regularity condition E[g(Z, W) | A =] € H 4 for all g € H zyy, there exists
a Hilbert-Schmidt operator Cz 1|4 € Sa(Ha, Hzw) such that E [¢pz(Z) @ pw(W) | A =a] =
Cz w|a9.4(a). This operator is learned by minimizing the regularized least-squares function:

1 t
LHr(C) = n Z 6z (2:) ® dw(wi) — Cha(ai)ll3s,y + AorICIE, (34 4 H o)
=1

where {z;, w;,a;}!_; C D denote observations from training set, ¢ is the number of given training
samples, and Apg is the regularization parameter for the vector-valued kernel ridge regression.

The minimizer is given by fizwia(a) = Czwiadala) = 3, &(@)dz() @ dw(w;) where
&i(a) = {(KAA + t)\DRI)f1 KAa] , K 44 is the kernel matrix over {a;}!_,, K, is the kernel

K3
vector between training points {a; }_; and the target treatment a. Using this learned conditional mean
embedding, we show that the approximation of Equation (3] results in the following closed-form:

E[3(Z,a)h(W,a) | A = Zgl @(zi, a)h(w;, a). (©6)

We summarize the full procedure in the pseudo-code presented in Algorithm (I). We name our
methods Doubly Robust Kernel Proxy Variable (DRKPV) and Doubly Robust Proxy Maximum
Moment Restriction (DRPMMR). Specifically, DRKPV uses the KPV algorithm (summarized in
Algorithm[2), while DRPMMR employs the PMMR method (summarized in Algorithm 3).

Algorithm 1 DRKPV / DRPMMR Algorithms

Input: Training samples {y;, w;, i, a; }—q,

Parameters: Regularization parameter Apr and the parameters of Algorithms (2]or[3) and ().
Output: Doubly robust dose-response estimation QATE (a) foralla € A.

1: Collect outcome bridge and dose-response curve estimates, i and 6, (+), with either Algorithm (2| KPV) or
(Bl PMMR).
2: Collect treatment brldge and the dose-response curve estimates, ¢ and 92( ), with Algorithm @)

3: Let 03(-) be given by fs(-) = S20_ | &(-)(2i, - h(wi, ), where &(+) = [(Kaa + thorI) ™" Ka(]..
4: For each a € A, return the doubly robust dose-response estimation as éf\?g) (a) = 61 (a) + 62(a) — 03(a).

4 Consistency results

In the S.M. (E), we present non-asymptotic uniform consistency guarantees for our proposed doubly
robust dose-response curve algorithms, DRKPV and DRPMMR. Theorems ([@.I)) and (@.2)) below
are a consequence of our non-asymptotic uniform consistency and demonstrate that our estimators
converge to the true causal function.

Theorem 4.1. Suppose Assumptions (3.1), (E1), (E:2), (E-3) _) and hold.

Then, for the DRKPV algorithm with given training samples {yl, Wy, Ziy @i}y, we obtain that
SUPgeA |92DT§ (a) — Bare(a)| — 0 with t — oo almost surely by reducing the regularlzer Apr and the

regularizers of KPV and KAP algorithms at appropriate rates.
Theorem 4.2. Suppose Assumptions (3.1), (E.), (E2), (E.3), (E-6), (E-82).(E16), and
hold. Then, for DRPMMR algorithm with given training samples {y;, w;, z;,a;}:_,, we obtain that

SUPgea |9£Ig (a) — Oare(a)| — 0 with t — oo almost surely by reducing the regularizer Apg and the
regularizers of PMMR and KAP algorithms at appropriate rates.



The precise high probability finite-sample bounds on the error in the supremum norm and the
corresponding optimal regularization parameters are given in Theorems and (E.28). Note
that both KPV and KAP involve multiple regression stages, each potentially using different sample
sizes (i.e., ny, Mp, th, Ny, My, t,). These samples are derived from the original training set
{yi, wi, zi, a; }t_,, either through data splitting or reuse across stages. In particular, KPV uses n,
and my,, samples from the training set for its first- and second-stages, respectively, and ¢;, samples
from training set to estimate the dose response. Similarly, KAP uses n,, m,,, and t,, samples from the
training set for its first-, second-, and third-stages, respectively. We detail the data-splitting procedure
in S.M. (F2). Consequently, the convergence rate in Theorem depends on the sizes of these
stage-specific subsets as well as the total training size ¢. In contrast, PMMR uses the full dataset of
size t, and the convergence rate for DRPMMR Theorem depends on ¢ and the sample sizes
used in the KAP stages. A comprehensive summary of the consistency results for KPV, PMMR, and
KAP appears in S.M. (E), and complete proofs for methods’ convergence are provided in S.M. (E.3).

Remark 4.3. In Theorems ({#.1) and [#2)), we establish uniform consistency of DRKPV and DRPMMR,
which ensures control of estimation error across the entire treatment domain. These results hold
under smoothness and effective RKHS dimension assumptions.

* We note that while kernel ridge regression provides optimal rates in Sobolev—-Matérn classes [45],
the rates of convergence are slower for larger input dimensions [4546l]. Our results therefore apply
in high-dimensional settings under dimension-dependent smoothness assumptions, but addressing
increasing-dimension regimes is left for future work. For further details, see Remark (EZ29).

» Furthermore, while our estimators are consistent and derived from the EIF, they are not classical
one-step estimators [47,48|] and do not automatically achieve local efficiency or asymptotic normal-
ity [28)]. This remains an interesting topic for future work and is discussed further in Remark (E.30).

5 Numerical experiments

In this section, we assess the performance of our proposed estimators for dose-response curve
estimation using both synthetic and real-world datasets. We benchmark our methods against several
recent state-of-the-art PCL algorithms, including Proximal Kernel Doubly Robust (PKDR) [22]],
Kernel Negative Control (KNC) [12]], Kernel Proxy Variable (KPV) [L1], Proximal Maximum
Moment Restriction (PMMR) [[L1]], and Kernel Alternative Proxy (KAP) [23]]. Except for experiments
involving PKDR, we use a Gaussian kernel of the form kx(f;, f;) = exp(—||fi — f;113/(21?)) for
each F € {W, Z, A}, where [ denotes the kernel bandwidth. The bandwidth is selected using the
median heuristic based on pairwise distances. For PKDR, we follow the original implementation
by Wu et al. [22] and use the Epanechnikov kernel. We determine the regularization parameter
Apr by utilizing the closed-form expression for leave-one-out cross-validation (LOOCYV) in kernel
ridge regression. Either LOOCYV or a held-out validation set are applied for the regularization terms
in the treatment and outcome bridge methods, in line with prior approaches in [11} [12, 23]]. We
provide additional experimental details—including ablation studies on hyperparameter selection, and
scalability analysis with Nystrom approximation—in the S.M. (F).

Synthetic Low Dimensional: We adopt the synthetic data generation process from Wu et al. [22]
which simulates a confounded, nonlinear, and noisy treatment—outcome relationship:

Uy NU[—1,2], Us NU[O, 1] — 1[0 <U; < 1]7 W = [U2 —l—Z/[[—l,l],Ul +J\/(0,1)]
Z = [UQ +N(O, 1),U1 -‘1-]/{[—1, 1]], A:=U, +N(O, 1)
Y :=3c0s(2(0.3U2 4+ 0.3U7 + 0.2) + 1.5A4) + A (0,1).

Here, U]a, b] denotes the uniform distribution on the interval [a, b], and A (u, 02) is the Gaussian
distribution with mean £ and variance o2. We run experiments using training sets of sizes 500, 1000,
and 2000. Figure (2a) presents the mean squared error (MSE) of different PCL benchmark methods,
averaged over 30 independent runs. Our proposed methods, DRKPV and DRPMMR, consistently
outperform competing algorithms and demonstrate improved accuracy with increasing data.

dSprite: We use the Disentanglement testing Sprite dataset (dSprite) dataset [49], a collection
of 64 x 64 grayscale images characterized by latent variables: scale, rotation, posX, and posY.
Originally designed for disentanglement studies [50]], it was recently adapted by Xu et al. [13] as
a benchmark for proxy causal learning. In this setup, the treatment is a high-dimensional vector
obtained by flattening each image and adding Gaussian noise. The target causal function is defined as
Oate(A) = ((vec(B) T A)?—3000)/500, where A € R*0% and B € R64*%4, with entries of B given
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Figure 2: Dose-response curve estimation across various datasets and algorithms: DRKPV and
DRPMMR (Ours), PKDR [22], KAP [23]], KNC [12], KPV [11], and PMMR [11]. (a) Synthetic
low-dimensional setting, (b) dSprite dataset, (c) legalized abortion and crime dataset, and (d) grade
retention and cognitive outcome datasets.

by B;; = |32 — j|/32. The outcome is generated via Y = 12(posY — 0.5)20a1e(A) + €, where € ~
N(0,0.5). The treatment proxy Z € R? comprises the latent variables scale, rotation, and posX. The
outcome proxy W is another dSprite image sharing the same posY value as the treatment image, while
the other latent factors are fixed to scale = 0.8, rotation = 0, and posX = 0.5. We run our evaluations
using training set sizes of 500, 1000, and 2000. Figure (2b) reports the MSE results averaged across
30 independent runs. Since the implementation of Wu et al. [22] does not support high-dimensional
treatments, we omit PKDR. Our methods outperform all others on this high-dimensional benchmark.

Legalized Abortion and Crime: We evaluate our methods on the Legalized Abortion and Crime
dataset [S1], following the preprocessing and setup from [11} 22} 23] [52]]. We use the version of
the dataset available from the GitHub repository of Mastouri et al. [1 lﬂ In the causal graph, the
treatment A is the effective abortion rate, and the outcome Y is the murder rate. The treatment proxy
Z is the generosity of aid to families with dependent children, while the outcome proxy W include
beer consumption per capita, the logarithm of the prisoner population per capita, and the presence of
a concealed weapons law. Figure reports the MSE results averaged over 30 runs, where each
of the 10 data files” is evaluated using three different random runs (leading to different data-splits
for different regression stages in KPV and KAP). Our DRKPV and DRPMMR outperform their
non-doubly robust counterparts (KPV and PMMR) and all other baselines.

Grade Retention: We evaluate the effect of grade retention on long-term cognitive development
using data from the ECLS-K panel study [10} 53], following the setup of Mastouri et al. [T1]*. The

https://github.com/yuchen-zhu/kernel_proxies
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treatment variable A indicates whether a student was retained in grade, and the outcome variable Y’
corresponds to cognitive test scores in math and reading measured at age 11. The treatment proxy Z
consists of the average scores from 1st/2nd and 3rd/4th grade assessments, while the outcome proxy
W includes cognitive and behavioral test scores recorded during kindergarten. Figure (2d) reports
the MSE results averaged across 30 realizations (3 independent runs per each of the 10 dataset),
and compares our method with other proxy-based approaches. On the IM (math retention) dataset,
DRKPV and DRPMMR outperform their non-doubly robust counterparts (KPV and PMMR) and all
baselines. On the IR (reading retention) dataset, DRKPV outperforms KPV and all other methods
except PMMR, while DRPMMR performs on par with PMMR, both outperforming the rest.

Doubly Robust Estimation in Misspecified Setting: We further evaluate the robustness of our
methods when the bridge functions are misspecified. By representer theorem [44], the bridge functions
in KPV, PMMR, and KAP can be expressed as linear combinations of feature maps in their respective
RKHSSZ h = E:Zl Z?ZLI aij¢w(wi) X ¢_A(€l]) fOI‘ KPV, h = Z::l Oéi¢w(wz') X ¢_A(ai) fOI‘
PMMR, and ¢ = 3,74 Y7 iz wa (W, @) @ ¢ a(ar) for KAP (see S.M. and ([C.2)). To
simulate misspecification, we first train the DRKPV (or DRPMMR) in the synthetic low-dimensional
setup and then perturb either the outcome (KPV/PMMR) or treatment (KAP) bridge coefficients by
adding Gaussian noise. Figures (3a) and (3b) show DRKPYV results averaged over five independent
runs with standard deviation bands. In Figure (3a)), we illustrate the result when the outcome bridge
coefficients are perturbed via a;; < ay; + €55, where €55 ~ N(0,0.2). Similarly, Figure
presents results when the treatment bridge function is misspecified by jittering «v;; <— 7i; + €
with &;; ~ N(0,0.2). In these plots, the term slack prediction denotes the empirical estimate of

E[¢(Z,a)h(W,a) | A = a] in Equation (@) Despite misspecification, DRKPV recovers the true
causal function, as the slack term offsets the error. Figures and (3d) show analogous experiments
for DRPMMR. Once again, we perturb one of the learned bridge functions by injecting Gaussian
noise A(0,0.2) into its coefficients. As in the DRKPV case, DRPMMR continues to accurately
recover the true causal effect, demonstrating its robustness to misspecification of bridge functions.
For enhanced legibility, a larger version of this figure is provided in S.M. (F4).

Figures (5a)—(5d) in S.M. illustrate the same experiments under higher perturbation, where the
coefficients are jittered with &;; ~ A(0,0.5). Furthermore, additional robustness evaluations are
provided in S.M. where we adopt the semi-synthetic setups from [23| Section 13] based on
the JobCorps dataset 54} 155]. These experiments vary the informativeness of the proxy variables to
challenge the outcome and treatment bridge completeness assumptions (Assumptions (2.3) and (2.3))).

02=0.2)

,DRKPV - Treatment Bridge is ! 7=02)  DRPMMR - Outcome Bridge is ! (e>=02)  DRYMMR-Treatment Bridge is

o - T B 2 P B T 2 -
o s o005 o 5 0 o o5 o0 s 0 5 o T O X R
a

(@ (b) (© (@

Figure 3: Experimental results in bridge function misspecifications with the synthetic low-dimensional
data: (a, b) DRKPV estimates under outcome and treatment bridge misspecifications, respectively; (c,
d) DRPMMR estimates under outcome and treatment bridge misspecifications, respectively.

6 Discussion and conclusion

We introduce two doubly robust estimators—DRKPV and DRPMMR—in the proxy causal learning
framework that address unmeasured confounding without requiring explicit density ratio estimation.
Built on kernel mean embeddings, both estimators have closed-form expressions and effectively
combine outcome and treatment bridge functions to recover the dose-response curve. They are
provably consistent and remain robust under misspecification of either bridge. Empirically, our
methods outperform recent baselines on challenging benchmarks and scale well to high-dimensional
treatments. However, the curse of dimensionality poses a subtle theoretical limitation when the input
dimension grows with the sample size; addressing this is an interesting area for future work. A key
limitation of our work is the computational cost of kernel methods; while we present an initial step
toward scalability using Nystrom approximation, exploring stronger scalable methods remains a
primary direction for future research.
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Supplementary Material for Density Ratio-Free Doubly Robust Proxy Causal
Learning

Section (A)) reviews our doubly robust identification result and proves Theorem (2.7)). Section (B)
outlines semiparametric theory and derives the efficient influence function for discrete treatments. In
Section (C), we present derivations for our proposed algorithms: Doubly Robust Kernel Proxy Vari-
able (DRKPV) and Doubly Robust Proxy Maximum Moment Restriction (DRPMMR). Section (D)
discusses conditions for the existence of outcome and treatment bridge functions. Section (E) proves
consistency of our methods. Section details the experimental setup, including hyperparameter
tuning and additional results.

A Doubly robust identification

Here, we prove Theorem (2.7). For completeness, we restate the theorem below.

Theorem A.1 (Doubly robust causal identification; Replica of Theorem (2.7)). The dose-response
can be identified with

05 (a3 1y @) |(hhopmpo)= Elp0(Z, a)(Y — ho(W,a)) | A = a] + Elho(W,a)],

where ho and g are the outcome and treatment bridge functions that satisfy Equations (1) and

, respectively. Furthermore, Glg?g) (a; h, ) admits double robustness such that le;g) identifies the
dose-response curve if either h solves Equation (1) or ¢ solves Equation (2)—but not necessarily both.

Proof. To understand why 62K (a) exhibits double robustness, we consider the following two cases:
Case i: Suppose that & is correctly specified, i.e. b = hg. Then,

Oee (a; ho, ) = Elp(Z, a)(Y — ho(W,a)) | A = a] + E[ho(W, a)]
= /(p(z, a) (/(y — ho(w, a))p(y, w|z, a)dydw) p(zla)dz + Elho(W, a)] = Oare(a)

=0 due to Equation (T}

where the final equality is due to Theorem (2.4).

Case ii: Now, suppose that ¢ is correctly specified, i.e., ¢ = ¢¢. Then, we note that
b5t (a; h, 00) = E[Ypo(Z,a) | A= a] = Elpo(Z, a)h(W,a) | A = a] + E[h(W.a)]

First off, note that the first component E[Y ¢((Z,a) | A = a] identifies the dose-response due to
Theorem (2.6). Next, we consider the remaining two terms

—Elpo(Z,a)h(W,a) | A = a] + E[(W, a)]

= —//(po(z,a)h(w,a)p(z,w|a)dzdw—|—E[h(VV,a)]

—//<,00(z,(1)h(u),a)p(z|w,a)p(w|a)dzdw—i—IE[hO(VV7 a))

7/ (/ gpo(z,a)p(z|w,a)dz> h(w, a)p(w|a)dw + E[h(W, a)]

_ / (Elo(Z, a)|w, a]) h(w, a)p(w|a)dw + Elho(W, a)]

- / pﬁ))) h(w, a)p(wla)dw + E[h(W, a)] = ~E[L(W,a)] + E[L(W, a)] =0,

where the first equality in the last line above is due to Equation (2). O

The following lemma is the direct implication of Theorem (2.7)), which shows that the dose-response
curve can also be identified with the conditional expectation of the multiplication of bridge functions.
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Lemma A.2. Let hg and pg be outcome and treatment bridge functions satisfying Equation
and (2), respectively. Then, the dose-response can be identified by the following slack function
Oare(a) = Elpo(Z,a)ho(W,a) | A = a).

Proof. As we observe in the second case of the proof of Theorem (2.7))

p(w)

p(wla)

Elpo(Z,a)ho(W,a) | A = a] = / ho(w, a)p(w|a)dw = E[ho(W, a)] = Oarr(a).

B Derivation of efficient influence function in discrete treatment setting

B.1 Background on efficient influence functions

Let P denote a nonparametric statistical model, and let ¢ : P — R be a target functional of
interest—such as the dose-response curve darg(a). In semiparametric efficiency theory, a statistical
parameter such as the average treatment effect is viewed as a functional mapping the underlying
data-generating law p € P to a real number. In this section, we denote by P the true distribution with
P¢ = E[(], P,, the empirical distribution with P,,(¢) :== 1 3" | ¢(Z;). The L2(IP) norm is written
[|€]|? := [ ¢2dP. We are interested in how the functional 6 changes as the data-generating distribution
p € P varies. When 6 is sufficiently smooth, it admits a Gdteaux derivative, defined as:

d
0'(p H) = 0(p + eH)

e=0

for H in the tangent space of P. The functional is said to be Gateaux differentiable at P if 6’ (p; H)
exists and is linear and continuous in H. The Gateaux derivative formalizes the local sensitivity of
the functional to infinitesimal perturbations of the distribution. It extends the notion of a directional
derivative to the space of probability laws and provides a linear approximation of how 6(p) varies
when p is displaced along an admissible direction H within the tangent space.

This gives rise to the von Mises expansion [56} 28]:

0(q) = 0(p) +6'(p;q — p) + Ra(p, q)

where Ra(p, ¢) is a second-order remainder depending on products or squares of differences between
q and p. The von Mises expansion plays an analogous role to a first-order Taylor expansion in finite
dimensions, expressing the change in the functional as a linear term—captured by the influence
function—plus a higher-order remainder. This expansion enables the definition of the influence
function.

Definition B.1 (Influence function [29] 28| [31]]). A measurable function (-;p) € La(p) is the
influence function of 0 at p if

0 (pig—p) = / W(zip)d(g - p)(2), forallge P

with [(z;p)dp(z) = 0 and E,[¢(Z; p)?] < oco.

The influence function v is the Riesz representer of the derivative 0'(p; -), as L2(p) is a Hilbert
space. It is also referred to as the pathwise derivative gradient [S7]] or Neyman orthogonal score
[30L33]]. Intuitively, the influence function measures how sensitive the parameter of interest is to
infinitesimal changes in the data-generating distribution. It can be seen as the “directional derivative”
of the functional with respect to perturbations of the underlying distribution—much like a gradient in
function space. This makes it a key tool for constructing estimators that correct first-order bias and
achieve minimal asymptotic variance.

To compute influence functions, we analyze parametric submodels {p.} C P such that p.—o = p and
€ — p is smooth. A canonical choice is the tilted model:

dpe
dp

(2) =1+es(z), where|s|lcc <M, e<1/M
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The associated score function is sc(2) = s(z) = 2 logpe(2)

_, 8310,

Applying the von Mises expansion to p., we obtain:
0(p) = 06) + < [ w(zp)s(:) dp(a) + Ralpipe)

Since Rz (p, pe) is second-order, it satisfies %RQ (p, pe)|E:0 = 0, a condition known as Neyman
orthogonality [33]]. Thus,
d
Z0(p.
a0 (pe)

= [vense )

This defines pathwise differentiability, and the function v satisfying this identity is the efficient
influence function.

Definition B.2 (Pathwise differentiability [29] 28]]). A functional 0 is pathwise differentiable at p if
for every smooth parametric submodel {p.} C P with score s.(z), we have:

d
%H(pe)

0 / (2 p)se(2) dp(2)

Once 1) is known, it can be used to construct an efficient estimator. Suppose p estimates p, and let P,
denote the empirical measure. The plug-in estimator 0y := 6(p) admits the expansion:

0(p) — 0(p) = —Ep[¢(Z;P)] + Rz (D, p)

This motivates the one-step estimator, which corrects the plug-in estimator with an estimation of the
first-order bias Ep[¢)(Z;D)]:

0% := 0(p) + Pu[(Z; p)]
When analyzing one-step estimators, it is common to write the following decomposition [28]:

6 —0(p) = (B, — P)[W(Z;p)] + (P — P)[(Z:P) — ¥(Zip)]+  Ra(P,p)
——

empirical process second-order remainder

The first term is a sample average and converges by the central limit theorem. The second term,
known as the empirical process, vanishes at rate op(n~'/2) if the estimated influence function 12 is
Lo-consistent (i.e ||zZ(Z) —(2)||2 —p 0, where ||¢||3 = [ ¢2dp.) which is the case if it lies in a
Donsker class or is estimated via cross-fitting (see [28]).

The third term, Ry (D, p), is the second-order remainder, which captures nonlinear errors. This term
often exhibits a rate which depends on product of nuisance error rates. Therefore, under standard
product-rate conditions, such as nuisance errors converging at rate n /4, we obtain Ry = o]p(nfl/ ).

Together, these results imply that 0% is asymptotically linear and efficient. Specifically, in nonpara-
metric models, the best achievable precision for estimating a target parameter 6 is governed by a
local asymptotic minimax bound which is attained by this estimator.

This bound extends the classical Cramér—Rao inequality using pathwise differentiability and para-
metric submodels. For any smooth submodel {p.} with score s(z), the Cramér—Rao lower bound

1S:
(E[p(Z;p)s(2)])? N2
E[(o)7 < E[Y(Z;p)7],

where 1) is the influence function. Equality is achieved when s = 1), yielding the nonparametric
efficiency bound:
var{y(Z;p)}

Since the one-step estimator satisfies

V(0% — ) ~ N(0,var{$(Z; p)}),

it achieves this bound and is thus locally efficient.
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Eventually, note that the efficient influence function (EIF) is defined relative to the model’s tangent
space, which formalizes the allowable directions of perturbation around the true distribution. The
tangent space is the set of valid perturbations around the true law and thus determines which directions
contribute to efficiency.

In nonparametric models, the tangent space is the entire Hilbert space of square-integrable, mean-zero
functions:

T ={te Ly(P):Ep[t(Z)] =0}.
This ensures that any regular, pathwise differentiable functional admits a unique influence function v
that also serves as the EIF.

In contrast, a semiparametric model imposes structural constraints on the distribution (e.g., conditional
independence, smoothness, or dimension reduction). These constraints reduce the tangent space to a
strict subspace of Lo(IP). In this case, there may exist multiple functions v satisfying the von Mises
expansion, but only those that lie within the tangent space correspond to valid perturbations. Among
them, the EIF is defined as the unique v that also lies in the tangent space and minimizes variance.
Therefore, careful attention must be paid to ensure that the candidate v lies in the tangent space, as
only then does it correspond to the efficiency bound [28].

B.2 Derivation of the efficient influence function

In this section, we consider discrete treatment setting, i.e., A € {0,1,...,d4}. We define the
conditional expectation operator T' : Lo(pw,a) — La(pz,a) by T'(¢) =E[((W, A) | Z, A], and its
adjoint T* : Lo(pz,4) — La(pw,a) by T*(¢) = E[¢(Z, A) | W, A],where pz 4 and pyy, 4 denote the
joint distributions of the random variables (Z, A) and (W, A), respectively. Here, L5(F, p) denotes
the space of square-integrable functions on domain F with respect to the measure p. We impose the
following regularity condition on the conditional mean operators following the setup in Cui et al.
[21]:

Assumption B.3. T and T* are surjective.

Under this setting, we derive the efficient influence function (EIF) of the dose-response curve,
following the framework of [21} Theorem 3.1].

Theorem B.4. (Efficient influence function) The efficient influence function of 0 arg(a) where
Assumption (B.3) holds, and Equation (I)) holds at the true data generating law, is given by

1
Yare(0;a) = po(Z, A)(Y — ho(W, A))Ml[/l =a] + ho(W,a) — Oare(a)

where O is the collection of the variables (Y, A, W, Z), and 1[-] is the indicator function. Therefore,
the corresponding semiparametric local efficiency bound of Oxrg(a) equals to E [wATE(O; a)2].
Remark B.5. We note that our identification result for the dose-response curve in the continuous
treatment setting can be viewed as a generalization of the identification result implied by the efficient
influence function in Theorem (B.4). Specifically, observe that, since the expectation of the influence
function is zero, we have:

0 = Elpo(Z, a)(Y ho(W,a))]ﬁl[A — o] + ho(W,a) — Oarss(a)]
=E[po(Z,a)(Y — ho(W,a)) | A= a] +E[h(W,a)] — Oarr(a)

Therefore, in the discrete treatment case, the dose-response curve can be identified by
Oarr(a) =Elpo(Z,a)(Y — ho(W,a)) | A= a] + E[L(W, a)] @)
In Theorem (2.7), we show that the same representation identifies the dose-response curve in the

continuous treatment case, while also exhibiting the double robustness property.

Remark B.6. We note that the formulation of our efficient influence function (EIF) differs from that
of Cui et al. [21|] particularly in the treatment bridge function term. In their framework, the treatment
bridge function qy : Z X A — R is defined as the solution to

1 p(W)
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and the outcome bridge function solves ({I). Under the Assumption (B-3) and assuming that Equation
(1) holds under the true data generating law, Cui et al. [21|] shows that the EIF of the dose-response
is given by

Uurp(O:a) = qo(Z, A)(Y — ho(W, A))1[A = a] + ho(W,a) — Oare(a),
which leads to the identification formula
6ars(a) = Elqo(Z. A)(Y — ho(W, A))1[A = a]] + E[h(W.a)]. ©)

Instead, our identification result in Equation ([7) differs from Equation (9) in two key ways: (i) We use
a treatment bridge function g that solves Equation (IZI) which includes an additional factor of p(a)
in the numerator compared to Equation (8); (ii) As a result, the first term in our identification formula
involves the conditional expectation E|po(Z,a)(Y — ho(W,a)) | A = a] over the distribution
p(Y,Z,W | A = a), whereas in Equation (9), the expectation is taken over the joint distribution
p(Y, Z, W, A) with an indicator function enforcing the treatment level. Because of this difference,
our framework extends naturally to continuous treatments without the kernel smoothing step of Wu
et al. [22)], whose technique has been extensively used in the doubly-robust literature to handle
continuous treatments [59, 160, 61]. Furthermore, this structural difference extends the applicability
of our methods to high-dimensional treatments, where kernel-smoothing-based DR approaches are
ineffective as we demonstrated with dSprite experiment in Section ({9).

Proof of Theorem (B.4). We consider the following [28] 31| 57] parametric sub-model for nonpara-
metric P indexed by e which includes the true data generating law at ¢ = 0 for some mean-zero

function £ : O — R,
Pe(0) = p(O{1 + e(0)} (10)
where O = (Y, Z, W, A) is the collection of variables of interest, ||¢||cc < M < oo, and € < 1/M

so that p.(O) > 0. We have the score function s.(O)|c=o = % log p(O) L:o' To find the efficient
influence function for 6 475 (a), we need to find the curve ¢ 47 that satisfies
0
sebare (@p)| = [ Gare(©:p)s.(0)dp(O) an
e=0

First of all, we recall that
ElY | Z,A] = /h(w,A)dp(w | Z, A)
and define the bridge function A, so that:
B, Y | Z,4) = [ helw, A)p.w| 2, Ay
Therefore, we have
[ 0= hw, @) putw.ylz,0) | dwdy o,

which implies that

/ 8h€g:, a)

Now, we recall that

Ologpe(w, y|z,a
e,y = [, ) LLEYED, (12 0)| ity (12)

e=0

Oare(a;pe) Z/he(w,a)pg(w)dw.

/8h
:/aheée, )

Hence,

08arE(a;pe)
9

€=

p(w)dw  (13)




‘We notice that

[ 1w,y Py = 8 |(,0) — 0ars(e)) TELAZ T g
Oe e=0 Oe €=0
One can show this as follows:
01 (2, Y, AW
B |(h(V,0) ~ farp(a) ZEZEAT
€ e=0
_ Ope(z,y,a’,w) / /alogpe(%y,a’,w) ,
/h(w7 CL) 86 e:Odp(z, Yy, a ,’LU) GATE(CL) 86 ezodp(’Z?ya a aw)
!
/h 610gp6( )‘ Odp(z7y,a/,UJ)+/h(w,a)8logp€(az’y7a |w) Odp(z,y7al7w)
€= € e=
Blogpe( ) , dlog pe(z,y,a’|w) /
*QATE(Q)/T e:Odp(Z,y7a ,U}) 79ATE(GJ)/ Oe E:Odp(zvyaa ,'lU)
=0
al . dlogpe(z,y,a
/h ogp( ) Zodp(zvy,a’,w)Jr/(h(w,a)—HATE(a)) ogp (gﬁy a'|lw) =Odp(z7y,a,7w)

dp(z,y,d',w)

e=0

] /Mw,a)*mogg )

+ [(hw0) ~ barpia) ([ FEELEEED) oy o) ) doto)

/h 6logpe( )

Next, we consider the first component in Equation (T3):
Ohe(w, a) Ohe(w, a) p(w)
—_— d =
/ Oe Ezop(w) v / Oe e=0p(w, a)

= 78/16(10,@’) a=ad p(w) w, a’)dwda'
_/ Oe e=01[ ]p(w,a’)p< » @' )dwd

[ Ohe(w,a’) o 1 / _ _ / /
_/ 5 6:Ol[a—a]p(a/)E[cpo(Z,a,)|VV—w,A—a]p(w,a)dwda

[ Ohlwa)) 1
7/ Oe 5:01[ B ]p(a’)

p(w, a)dw

po(z,a")p(z,w, a')dwda

1 8he ) ! / ! /
- /l[a = a’]p(a/)wo(z7a’) (/ % E:Op(w|z,a )dw) p(z,a")dzda
= 110 =1 snted) ([ nwan ZEPGEID)| iy ) o o iz

(15)

_/1[ _ ) N dlogpe(w, y|z,a’) Ndwdudsda
- a=a p(a/)¢O(Z7a)(y (wva’)) e Ezop(wvywzva) wayazaa

1 8l €\~ ! / /
+ [ 1o = (e = A, )Ly o wdydzda

=0

_ T _ Ologp.(W,Y, Z, A)
— B |14 = o2 AW - n(w ap ZELCERED) 16

where equality in Equation (T3) is due to Equation (I2). Now, combining the results in Equations

(T4) and (T6), we obtain

09a7E(a;pe)
Oe

e=0
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dlogp.(W,Y, Z, A)
Oe

1
E [(m — L Z AN — WO )+ 1(0W,0) - eATEm))

which shows that the efficient influence function for 8 47 (a) is given by

9
e=0:|

Vars(0:a) = wo(Z, A)(Y — h(W, A))Wz)l[A —a]+ ho(W,a) — Oarm(a)  (I7)

Next, we show that 1 47 (a) belongs to a tangent space 77 + 72 using Assumption , where

T ={s(Z,A) € L2(Z x A,pz ) | E[s(Z,A)] =0}

To = A{s(Y,W | Z,A) € L2(Z x A,pz.a)" | E[(Y = h(W,A)s(Y,W | Z, A) | Z, A] € cl(R(T))]}.
Here, £5(Z % ,4,])2,,4)L is the orthogonal complement of L5(Z x A,pz 4), R(T) is the range

space of the conditional mean operator 7', and cl(-) denotes the closure. We decompose Equation
(17) as follows:

]E[h(VV, a) — GATE(a) | Z, A]
+ h(VV, a) - GATE(GJ) - ]E[h,(W, a) - QATE(CL) | Z, A]
1
+ ——=1[A = a]po(Z, A)(Y — h(W, A)).
oA [ leo(Z, A)( (W, A))
Notice that E[h(W,a) — are(a) | Z, A] € T; due to Equation (I)). For the remaining two terms,
notice that

E [h(W,a) — 0are(a) — E[h(W,a) — Oare(a) | Z,A] | Z,A] =0 (18)

1
B |14 = dea(Z )Y — HO¥,A) | Z,4| 0. (19)
Hence, using Equations (I8)) and (I9) and Assumption (B.3)), we observe that
E[(Y = ho(W, 4)) (h(W, 0) — Oxre(a) — EIR(W, 0) — Oxie(a) | Z, A)) | Z, A] € cl(R(T)),

! 2
E |:p(A)1[A = alpo(Z,A)(Y — h(W, A))* | Z, A} € cl(R(T)).

C Algorithm derivations

In this section, we derive the doubly robust PCL algorithms, called doubly robust kernel proxy
variable (DRKPV) and doubly robust proxy maximum moment restriction (DRPMMR). We begin by
reviewing the results from Mastouri et al. [11] and Bozkurt et al. [23]], which establish estimation
procedures for the outcome and treatment bridge functions: namely, the Kernel Proxy Variable (KPV),
Proxy Maximum Moment Restriction (PMMR), and Kernel Alternative Proxy (KAP) methods.
Building on these, we introduce fully kernelized doubly robust algorithms for estimating the dose-
response curve from observational data, without requiring an explicit density ratio estimation step.
This property makes our methods particularly suitable for continuous and high-dimensional treatment
settings.

C.1 Outcome bridge function-based approaches

Two kernel-based methods KPV and PMMR have been proposed in [11] to estimate the outcome
bridge function h : W x A — R, which satisfies

EY | Z Al = /ho(w,A)p(w | Z, A)dw.
Once hy satisfies this equation, the dose-response curve can be identified by E[hq (W, a)] [5} 1} 13l

as stated in Theorem (2.4). In both approaches proposed by Mastouri et al. [11]], h¢ is assumed to lie
in the RKHS Hyy ® H 4. Therefore, we note that

Oare(a) = Elho(W,a)] = E [(ho, ow (W) ® 6.4(a))4,,090..]
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= (ho, E[pw(W)] ® ¢.4(a)) 31,00 4 = (hos iw @ ¢.4(a)) 31,020 4 »

where iy = % S dw(w;) is the sample-based estimate of the mean embedding E[¢y, (W)).

As a result, by replacing hg with its approximation h in the above expression, the dose-response can
be estimated using the inner product:

Oare(a) = <il,ﬂw ® ¢A(a)>HW®HA .

In the following, we review the estimation procedures of both KPV and PMMR proposed by Mastouri

et al. [L1]. Both methods yield closed-form solutions for the estimation of the bridge function and
the causal function, which we present in the subsequent subsections.

C.1.1 Kernel proxy variable algorithm

To solve the outcome bridge function equation in Equation (), the KPV method aims to minimize
the following regularized population loss function, assuming that i € Hyy 4:

Luwv(h) = E (¥ = EIL(W, 4) | Z,AD’| + Nl hllzewores

where \p, o is the regularization constant for the second stage regression of KPV. Since this loss
function involves the conditional expectation E[h(W, A) | Z, A], it cannot be directly minimized.
To address this, the KPV algorithm decomposes the problem into two-stage regressions. Note that,
under Assumption (3.1)), the conditional expectation can be rewritten as

E[r(W, A) | Z, Al = E[(h, ow (W) @ ¢a(A)) | Z, A]
= (b Elpw(W) | Z, A] @ 9 4(A)) -

Thus, the first step in KPV is to approximate the conditional mean embedding piyy |z 4(2,a) =
E[pw (W) | Z = 2z, A = a] using vector-valued kernel ridge regression. In particular, under the
regularity condition that E[g(W)|Z = -, A = -] lies in H z 4 for all g € H,y, there exists an operator
Cw\z,.a € S2(Hza, Hw) such that iy 7, 4(2,a) = Cw|z,4 (02(2) @ pa(a)).

Let {w;, Z;, a; };", be i.i.d. samples from the distribution p(W, Z, A), representing the first-stage
regression samples, where ny, is the number of first-stage samples for KPV algorithm. The conditional
expectation operator is estimated by minimizing the following regularized least-squares objective:

. 1 &
xpv(C) = nn > lw(w:) = C(62(2) @ ¢.4(@)) | + MnallCIZ, 2y 74200
i=1

where Ay, 1 is the regularization constant for the first stage regression of KPV. The minimizer CA’W‘ Z.A
has a closed form solution and is given by [11]:

Cuviz,4 (92(2) © 64(a)) = fiwiz,4(z:0) = 3 Bi(z )by (1),
i=1

where

B(z,0) = (Kzz 0 Kz +nhI) ™ (Kz, 0 Kg,).
By substituting this approximation into the sample-based version of the loss function L py (h), the
KPV algorithm estimates the bridge function h¢. Specifically, let {7;, Z;, a; };-" be i.i.d. samples from
the distribution p(Y, Z, A), denoting the second-stage data, where m;, is the number of second-stage
samples for the KPV algorithm. The sample-based KPV objective is then given by

mp

1

Lipy(h) = mn Z (G5 — (b, fow 2,4 (Zi, G5) ® ¢A(5Li)>)2 + A2l Al 4 - (20
=1

By the representer theorem [44], i admits the representation

Nh Mp

hzzzaij¢w(@i)®¢A(aj)a 2n

i=1 j=1
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for some coefficients c;;. Substituting this representation into the sample loss in Equation (20), KPV
finds a closed-form solution for the bridge function by minimizing for the coefficients «;;. For further
details, we refer the reader to [[11]].

Below, we summarize the pseudo-code for the KPV algorithm. Unlike the original implementation in
[L1], we use a more numerically stable version that optimizes fewer parameters, as presented in [62]
(see Appendix F in [62]). This version of the KPV algorithm optimizes m;, parameters rather than
nyp, X mp, parameters.

Algorithm 2 Kernel Proxy Variable Algorithm [[11}62]

Input: First-stage samples {;, Z;, a; } .., Second-stage samples {g;, Z;, @; };-5 ,

Parameters: Regularization parameters A, 1 and A 2, and kernel functions k# (-, -) for each F € {4, Z, W}.
Qutput: Bridge function estimation h.

1: For variables F' € {W, Z, A} with domain F, define the (required) first and second-stage kernel matri-
ces/vectors as follows:

e =k (f f)]l] e R, Krp =1k ( J?)]w € R XM
Kpp = lkr(fo F)lig € B™™ Ky = (o D)) €
K, = [kr(fj, f)]; € R™.

2: Define the following matrices and coefficient vector:
B=(K;ii0Kzz+nnnaI) " (Kz50Kjz;z),
M=K;;0 (BTKWWB) ;
o= (M+mphnI)' Y.

3: The bridge function estimation is given by h(w,a) = a' (K, ® (BT Ky,)) -
4: The dose-response estimation is given by

Oare(a Zh Wi a Ea (K1, © (B Kwa,))

where we take {w; }i", = {@;} ", U {w;} 7

C.1.2 Proximal maximum moment restriction algorithm

The PMMR algorithm relies on the following conditional moment restriction result:
Lemma C.1 (Lemma (1) in [11]]). A measurable function h on the domain VW x A solves

ElY|Z =2z, A = q] :/ h(w,a)p(w|z, a)dw
%
if and only if it satisfies the conditional moment restriction (CMR): E[Y — h(W, A)|Z, A] = 0.

Lemma (C.1) implies that E[(Y — h(W, A))g(Z, A)] = 0 for all measurable g defined on the domain
Z x A. Thus, to solve the CMR, the PMMR algorithm solves the CMR by minimizing the regularized
maximum moment restriction (MMR) objective to find the function h € Hyy 4:

Lymvr (h) = SUp E[(Y = h(W, A)g(Z, A))* + Aamr 1l 20, - (22)
gEH =z A
lgll<1

Under the integrability condition E [(Y — h(W, A))*(¢pz4(Z, A), pz4(Z, A))ns,] < o0, Mas-
touri et al. [11, Lemma (2)] shows that the regularized MMR objective admits the equivalent form:

Lynr (h) = E[(Y — bW, A))(Y" = h(W', A))(pz4(Z, A), pza(Z", A'))2z ] + )\MMR”h”Z-Lzy?\;SM

where V' denotes an independent copy of V € A, Z, W, and ¢z 4 is the canonical feature map of
H =z 4. In this paper, we adopt the tensor product structure for the feature map and RKHS by defining
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dza(z,a) = dz(2) @ pa(a) and Hz 4 = Hz @ H 4. This choice allows us to construct H z 4 from
separate kernels over Z and .A. However, it is also possible to define a kernel directly on the joint
domain Z x A for PMMR algorithm, in which case the feature map and RKHS do not need to take
the form of a tensor product.

As aresult, given training samples {y;, w;, z;, a; }!_,, the empirical objective for PMMR is defined
as

R 1 t t
Ly () = =5 > D (ui = ha) (5 = hy)kig + Mg |l 34000 (24)
i=1 j=1

where h; = h(w;,a;) and k;; = ($za(z,0:),0z4(25,a;5))1-,. Recall that we assume h €
Hw ® H 4. By the representer theorem [44], the solution to Equation admits the following
representation:

h= Z aipw(w;) @ da(a;).

i=1

Substituting this representation into the sample loss in Equation (24), the empirical objective becomes

1
& = argmin 5 (Y — La)"W(Y — La) + Auvre ' La,
[e 2

where Y = [y1 y2 ... yt]T, a=[a ay ... at]T, [L]ij = kw(w;, w;)ka(ai,a;), and
(W1ij = kz(z,2;)kz(ai,a;). The PMMR algorithm solves for the coefficient vector c. We
summarize the procedure in Algorithm (3), following the variant presented by Xu and Gretton [62].

Algorithm 3 Proximal Maximum Moment Restriction Algorithm [[11} 62]

Input: Training samples {w;, z;, i, yi }i—1,
Parameters: Regularization parameter Ammr, and kernel functions kr (-, -) for each F € {4, Z, W}.
Output: Bridge function estimation h.

1: For variables F' € {W, Z, A} with domain F, define the (required) kernel matrices/vectors as follows:

Krp = [kr(fi, f;))liy €R™, Kpg = [kz(fi, f)li € R".

2: Construct the following kernel matrices and the coefficient vector:
-1
L=Kis®OKww, G=Kin0Kzz, a=vVG (\/EL\/E+ t)\MMRI) VGY,

where /G is the square root of the matrix G.
3: The bridge function estimation is given by h(w,a) = a’ (Kaa © Kww) -

4: The dose-response estimation is given by Oarr(a) = 3F_ h(wi,a) = X, @' (Kaa © Kww,) .

C.2 Treatment bridge function-based algorithm

An alternative identification result in the proxy causal learning setting, based on density ratios, is
presented in [23]]. Unlike previous works [21}22]], this approach bypasses the explicit density ratio
estimation step by leveraging a novel bridge function definition. Specifically, [23]] proposes Kernel
Alternative Proxy (KAP) algorithm, a two-stage regression method to estimate the treatment bridge
function (g satisfying

p(W)p(a)

E[QO()(Z,CL) ‘ VVaA:a} = p(Wa) .

This new approach aims to minimize the following regularized population loss function, assuming
that p € Hz 4

Lxar(p) =E | (r(W,4) —E[p(Z, 4) | WEA])2] + A2l
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=E|E[p(Z,4) | W,A]z} —2EwEA [E[p(Z, A) | W, A]] + Ap 2l ll#24 + const.,
(25)

where A, 5 is the regularization parameter for the second stage regression, the notation EyyE 4[.]
denotes the decoupled expectation taken over W and A, i.e., for any function £, EyyE 4 [¢(W, A)] =
J 4(w, a)p(w)p(a)dwda, and ‘const.” represents the terms independent of (. As in the outcome
bridge function estimation, this loss function cannot be directly minimized due to the presence of
the conditional expectation term [E [p(Z, A) | W, A]. Notably, appealing to Assumption (3.1)), this
expectation can be rewritten as

Elp(Z,A) | W, Al =E [(¢,62(Z) ® pa(A))y, , | W, A]
= (. E[pz(2) | W, A] @ ¢ 4(A))y, ,

Thus, the first step in KAP method is to estimate the conditional mean embedding /i 7w, 4 (w,a) =
E[¢z(Z) | W = w, A = a] using vector valued kernel ridge regression. Specifically, under the
regularity condition that E[g(Z)|W = -, A = -] lies in Hyy 4 for all g € H z, there exists an operator
Cziw,a € S2(Hywa, Z) such that pzw a(w, a) = Cziw,a (dw(w) @ ¢ a(a)). Let {w;, 2, @i )5
be i.i.d. samples from the distribution p(W, Z, A), denoting the first-stage samples, where n,, is the
number of first-stage samples for KAP algorithm. The conditional expectation operator is learned by
minimizing the regularized least-squares function:

Cxap = Z ¢z(zi) — C (dw (i) ® da(@:))|| + Ao 1]

C||S2(HWA ’Hz)’

where )\, 1 is the regularization parameter for first-stage regression of KAP method. The minimizer
C 7\w, 4 admits a closed form solution and is given by [23]]:

fzw,a(w,a) = CZ|W,A (¢z(2) @ pala Z/@z w,a)pz(Z),

where
B(w,a) = (Kyw © Kz +nphp1 D) (K © Kg,) -

By substituting this approximation into the sample-based version of the loss function Lxap(p),
Bozkurt et al. [23] derives an algorithm to estimate the bridge function ¢q. Let {0, &z‘}?:’l be i.i.d.
samples from the distribution p(W, A), denoting the second-stage samples, where m,, is the number
of samples for the second-stage regression of KAP algorithm. The sample-based version of the loss
function in Equation can be written as

m
~ 1 ki R L ~
L(p)kap = o Z<% fzyw,a(Wi, ;) @ ¢A(ai)>%¢2,4
® =1
Mep My
- QW Z Z <<Pa fiziw,a(W;, a;) ® ¢A(az)> + ApellollF,,  (26)
¥ 1=1 j=1 Hza
J#i
The representer theorem [44] ensures that ¢ admits the representation
My fy My My
~ ~ o~ ~ my+1 ~ -~ o~ ~
Y= Z; Yilbziw,a(Wi, @;) @ pa(@i) + m Z; ;NZIW,A(wlv aj) ® ¢alay)
1= = =
=
for some coefficients {%} “”+ . By substituting this representation into the sample loss in

Equation (26), the mlnlmlzer ¢ admits a closed-form solution, as given in Bozkurt et al. [23]],
which we outline in Algorithm (E]) Furthermore, the dose-response curve can be estimated via
Oarr(a) = E[Y$(Z,a)|A = a]. Noting that

EY@(Z,a)|A=a] =E [V ($,02(2) @ pala))y,, | A=d]
= ($,EY¢z(2) | A=a]©dala))y,, - 27)
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evaluating the above inner product requires estimating the conditional mean embedding f1y 7|4 (a) =
E[Y¢=z(Z) | A = a], which can be obtained via vector-valued kernel ridge regression, similar to
the first-stage regression. In particular, let {y;, 2;, a; fil denote i.i.d. samples from the distribution
p(Y, Z, A), denoting the third-stage samples for KAP algorithm which we take to be {g;, Z;, ai}?jil =
{¥i, zi.a:}721 U {5, Zi, @i} Then, the conditional mean embedding py 74 (a) = Cy zj4¢.4(a)
is learned by minimizing the regularized least squares objective:

Coeln I~y . .
L' (C) = n D oz (2) — Coala)lfes + AoslClZ, 00129
=1

where )\, 3 denotes the regularization parameter for the third-stage regression of KAP method. The
minimizer is given by

fivz14(a) = Cy zjapa(a) = Pzdiag(V)[K ;4 + nho3I) K 4,

where ®z = [pz(21) ... @z(Z)], Y = [ ... yt]T, K, < Rt *t¢ is the kernel matrix
over {di}ﬁil, and K ;, ’s the kernel vector between the training points {a; fil and the target
treatment a. As a result, by substituting the estimation /iy z| 4 (a) in Equation (27), the dose-response
curve can be estimated with a closed-form solution that is efficiently implemented via matrix

operations [23], as summarized below in Algorithm (). For further details of this algorithm, we refer
the reader to [23].
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Algorithm 4 Alternative Kernel Proxy Variable Algorithm [23]]

Input: First-stage, second-stage, and third-stage: {w;, Z;, di}?:“’l, {¥s, Zs, di}f;“’l, {Ys, 24, di}:il,
Parameters: Regularization parameters A, 1, Ap,2, and A, 3, and kernel functions kx(-,-) for each
Fe{A Z W}
Output: Bridge function and dose response estimations: (-, -), Oare (-).
1: For variables F' € {W, Z, A} with domain F, define the (required) first- and second- and third-stage kernel
matrices/vectors as follows:

kf(ﬁ’ 7)]i-7 € Rnwxn¢7 KFI":' = [k}-(ﬁMf?)]l? < Rnwxm%:
K kr(fi, )]s € R™e™™e Kpp = [kx(fi, /)i € R,

KF = [kf(fj’f)]ﬂ € me: KFF = [k]:(fhf])]l] S Rtht¢7
K

2: Define the following matrices:

B = (Kyyw © Kiz+nohen D) (K © Kz,

L - 1 -
B e R™**"¢ where B, ; = —1 ;(KV‘VW O Kii+nodon D) (Kiyg, © Ka,)
I#]
B"K;;BoK;; |
L= | 4 o 5zzBORaa | gmexmety
()T [BTKz2B © K 4] ’
T -B JU I
M— (B IfzzB ®~KAA] e c ROmetD
(%)T[BTKZZB © KAA] e
N=[L M]eRmetDxtme+t),

-1
~ = <LLTL + Ag,,gN) M c R !

Me
3: The bridge function estimation is given by @¢(z,a) = ~Alwm [(B"Kz) © K] +
o1 () (BTKz) 0 K,
4: The dose response estimation is given by
Bar(a) =yim (BT (Kzzdiag(V)[K iq +toAoad) ' Ky,) © K, )
Y1 (BT (K 5 ding(V)[K i + todoa ] Ki,) © K 5,) mi

©

C.3 Doubly robust kernel proxy variable algorithm

Armed with the estimation procedures for the outcome and treatment bridge functions, we now present
the doubly robust estimation algorithm for the dose-response curve. As discussed in Section , we
need to derive an algorithm to estimate the term E[wo(Z, a)ho(W, a) | A = a]. Let {z;, w;,a;}; C D
denote i.i.d. observations from the distribution P(Z, W, A). We observe the following

Blgo(Z,a)ho(W;a) | A= o] ~ E[p(Z,a)h(W,a) | A= d
5 |(¢022) @ 0a@),  (hnow¥)© 0a(@)

HzQ@HaA Hw ®’HA:|

~E[(peh @z @ oa@) @) Soa@)), ]

As detailed in Section (S.M. |C.1.1), the outcome bridge function in the KPV algorithm has the
following representation (see Appendix B.3 in [L1]):

MNhp Mp

h = Z Z/Bij¢w(wi) ® palay)
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where the set of variables w; and a; denote the samples from first and second stage regressions
of KPV algorithm, respectively. Furthermore, as detailed in Appendix (C.2)), the treatment bridge
function admits the representation

N TG ~ ’Ym¢+1 i &
¢ = ;%,LLZIW,A(UJ“ a;) @ palai) + o (my — ]Z1 ;quVA W1, a;) @ G a(dy),
I#j
which we can write without loss of generality as
My My
¢ = Z Z Vel zw,a(We, ar) @ paldy)
=1 t=1

by appropriately choosing the coefficients ~;; from the set {;};1' U {0}. Next, we notice the
following

E[¢(Z, a)h(W,a) | A = a] =

< (ZZ%tuzmA(wt,az) ® ¢ala ) ZZﬁszbW w;) @ d.a(dy)

A=ua

1 (02(2) @ a(a)) @ (dw(W) @ pa(a)) >

HzAaQHWA

= 3" e[z, e, @) © 6.a@) © (i) © G4 ()

i Lt
,02(Z) ® pala) @ pw (W) & ¢A(a)>HzA®HWA

=3 > a [ {izwalin ). 62(2)), (oal@).oala)),

i Lt
(owlm). ow(W)), (6a(@).0a(@)),
=> > aij'YltE[<ﬂZ|W,A(wta a) ® pw (i), ¢z(Z) @ ¢W(W)>HZW'
¢

=]

A

=

i Lt

<¢A(dz) ® pa(a;),pala) @ ¢A(a)>HAA ‘A = a}
= Z Zmﬂzt<ﬂ2|w,,4(wt, a) @ dw(w;),Epz(Z2) @ py(W) | A = a] >H

1,7 Lt zZw
<¢A(5ll) ® ¢a(aj), pala) ® ¢A(a)>HAA- (28)

In order to evaluate the sum of inner products above, we need the conditional mean embedding
pzwiala) =El[pz(Z) ® pw(W) | A = a]. We approximate this term with vector-valued kernel
ridge regression. In particular, under the regularity condition E[g(Z, W) | A="'] € H 4 forallg €
H 2y, there exists an operator C'z yy 14 € S2(Ha, Hzw)suchthatE[¢pz(Z) ® oy (W) | A=a] =
Cz w|a9.(a). This operator can be learned by minimizing the regularized least-squares function:

R 1<
br(C) = n Z pz(21) @ dw(wi) — Cha(ai) 3y + ADRICHE, (24 22w)-
=1

The minimizer is given by

fizwia(a) = Czwiada(a) sz %) @ dw(wi) = ®zyy (Kaa +tAprl) " Kaq, (29)

where 57, = |:(KAA +t)\DRI)71 KAa X and q>ZW =
[pz(z1) @ dw(w1) ... ¢z(z) @ dpw(we)]. By plugging this approximation to conditional
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mean embedding in Equation (28)), we observe that

Zzazj7lt<UZ|WA(wtaal ® py (w Zf ¢z(z ®¢w(ws)>H

1,7 Lt

<¢A(5Ll) ® ¢a(a;), pala) @ ¢A(a)>HM
=> >33 ailet§s<ﬂZ|W,A(U~}t7 a) @ dw(w;), pz(zs) ® ¢W(ws)>H

wj It s

ZW

2Z2W

(¢4(@) ® 6.4(3,),6.4(a) © 4(a) )

Haa

=Y §s< > uhiziw,a(r, @) @ pa(@r), pz(z) @ ¢>A(a)>
s Lt

Hza
< Z QLJ¢W(IDZ) ® ¢A(&j)a ¢W(ws) ® ¢A(a)>
i,j Hwa

—ng@ Rs, a ws7 )

In conclusion, we estimate the term E[oo(Z, a)ho(W, a) | A = a] with the following expression:

E[SDO(Z a)hO<W a ‘ A= a’ ng st (wsa CL), (30)

where £, (a) = {(K a4 +FtAprl )71 K Aa] . The same procedure can be applied with the PMMR

representation of the outcome-bridge function h that will lead to the same form of estimation in
Equation (30). For completeness of this section, we repeat the pseudo-code of doubly robust dose-
response estimation algorithms that we give in Section (3.2) below. Note that DRKPV uses the
KPV algorithm (summarized in Algorithm (2))), whereas DRPMMR employs the PMMR method
(summarized in Algorithm (3)).

Algorithm 5 Doubly Robust Kernel Proxy Variable Algorithm (Replication of Algorithm in
Section (3.2)).

Input: Training samples {y;, w;, 2i,a;}'—y C D,

Parameters: Regularization parameter Apr and the parameters of Algorithms (@) and @) or (3).

Output: Doubly robust dose-response estimation §'0x (a) for all a € A.

1: Compute the estimated outcome bridge function & and dose-response curve 0, (-) = E[h(W, -)] with either
Algorithm @) or (3).

2: Compute the estimated treatment bridge function ¢ and the dose-response curve fa(-) = E[Y3(Z, ) |
A = -] with Algorithm ().

3: Let 3(-) be given by 05(-) = 32, & (-)@(2s, ) (w, -), where &;(a) = [(Kaa + tAorI) ™" K 4,), forall
a €A

4: For each a € A, return the doubly robust dose-response estimation as

008 (a) = 61(a) + B2(a) — B3(a).

D Discussion on the existence of bridge functions

In this section, we present the conditions under which the outcome and treatment bridge functions
exist in their respective RKHSs, following the formulations in Miao et al. [S]], Deaner [10], Xu et al.
[L3], and Bozkurt et al. [23]]. To this end, we consider the conditional expectation operators defined
by

Eo :LoOWV, pwia=a) = L2(Z,Pz|A=a);

Fo :L2(Z2,pz14=0) = L2(W,Pw|a=a),
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such that

EJl(z) =E[¢(W)|Z =z, A = a], z€Z

F l(w) =E[(Z)|W = w, A = al, weW.
Here, py|a—q and pz| 4—, denote the conditional distributions of W and Z given A = a, respectively.
To ensure the existence of the bridge functions, we impose the following assumptions on the condi-
tional expectation operators.

Assumption D.1 (Assumption (4) in [13]]). For each a € A, the operator E, is compact operator
with singular value decomposition {ng, i, 95, i, VE, i }521-

Assumption D.2 (Assumption (10.3) in [23])). For each a € A, the operator F, is compact operator
with singular value decomposition {ng, i, or, i, VrF, i }521-

To apply Picard’s Theorem [63, Theorem 15.8]—as used in Lemma (2) of Xu et al. [13] and Theorem

(10.6) of Bozkurt et al. [23]]—to establish the existence of bridge functions, we make the following

additional assumptions.

Assumption D.3 (Assumption (5) in [13]). For each a € A, the conditional expectation ly |, :=

E[Y | Z = -, A = a] satisfies
=1
> >

i=1 Eayi

2
< 00,

<€Y|au wEa,i>/32(Z7pz|A=a)

where the singular system {ng, i, g, i, VE, i} is given in Assumption @)

Assumption D.4 (Assumption (10.4) in [23]). For each a € A, the density ratio v,(W) := %
satisfies

) 1 )
Z 2 |<Ta’1/}Fa,i>£2(W~,PW\A:a)} < 09,
im1 TFa.i

where the singular system {ng, ;, ®F, i, VF, i }52,. is given in Assumption @]}

We are now ready to state the results on the existence of bridge functions. The following lemma
establishes the existence of the outcome bridge function.

Lemma D.5 (Lemma (2) in [13]). Suppose that Assumptions (2.2), [2.3), (D-1), and (D.3) hold. Then,
for each a € A, there exists a solution to the functional equation

EY | Z,A] = /ho(w,A)p(w | Z, A)dw.

The next lemma establishes the existence of the treatment bridge function.

Lemma D.6 (Theorem (10.6) in [23]]). Suppose that Assumptions (2.2), (2.3), (D.2), and (D.4) hold.
Then, for each a € A, there exists a solution to the functional equation

Elpo(Z.a)|W, A = a] = % aeA

Note that the existence of the outcome bridge function hinges on Assumption (2.5)), which also
ensures the identifiability of the dose-response curve when using the treatment bridge function
(see Theorem (2.6)). Conversely, the existence of the treatment bridge function hinges on As-
sumption (2.3), which guarantees identifiability of the dose-response curve through the outcome
bridge function (see Theorem (2.4)). Therefore, these completeness assumptions play distinct
yet complementary roles in establishing both existence and identifiability for the respective bridge
functions.

E Consistency results
In this section, we provide the convergence results of the algorithms that we proposed. First, the

following two sections respectively review the consistency results for outcome bridge function- and
treatment bridge function-based methods from [[11} |12} 23]].
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E.1 Consistency results for treatment bridge function-based method

Here, we overview the consistency result of the treatment bridge function based on the results in [23]].
For expositional clarity, we first review the results from [23]], as we leverage similar developments in
presenting the consistency results for the outcome bridge function in the next section. We begin by
introducing the assumptions regarding the noise between the treatment and the outcome.

Assumption E.1 (Assumption (12.1-iv) in [23]). We assume that there exists R, o > 0 such that for
all ¢ > 2, Py—almost surely,

E[(Y —E[Y | A])? | A] < %q!aQRq_Q. (31)

Next, we assume that the problem is well-specified, as stated in the following assumption:
Assumption E.2 (Assumption (5.1) in [23]). (1) There exists Czjw,a € S2 (Hwa, Hz) such that
pzw,a(W, A) = Czjw, adwa(W, A); (2) There exists a solution po € Hz .4 of Equation ; (3)
There exists Cy 714 € S2(Ha, Hz) such that B[Y ¢z(Z)|A] = Cy z149.4(A).

Following proof techniques from [[64]], Bozkurt et al. [23]] show that convergence to the minimum
RKHS norm solution of the treatment bridge equation—characterized in the following definition—is
sufficient for consistency in estimating the dose-response curve using the Kernel Alternative Proxy
(KAP) method. We follow the same setting here.

Definition E.3 (Treatment bridge function solution with minimum RKHS norm, Definition (12.2) in
1231). Under Assumption (E_1}(2)), the minimum RKHS solution to Equation (2)) is defined as

@o = argmin |¢|lx-, st Elp(Z, A)|W, A = r(W, A),

pEHzA

with r(W, A) = %.

Next, we define the (uncentered) covariance operators corresponding to the three-stages of the KAP
method:
Definition E.4 (Definition (12.4) in [23]]). The covariance operators are defined as

e (Stage 1) X1 = E [pywa(W, A) @ dpyya(W, A)], dwa(W, A) = oy (W) @ pa(A);
* (Stage 2) Xy o = E[((nziw,a(W, A) @ p4(A)) © (nz1w,a(W, A) @ pa(A4)))];
* (Stage 3) Xy 3 = Elpa(A) @ ¢pa(A)].

The operators X, 1, ¥, 2, and X, 3 are self-adjoint and positive semi-definite. With Assumption (3.1),
they belong to the trace class, which ensures their compactness and implies that they have a countable
spectrum [65]].

Furthermore, we state the source condition (SRC) and eigenvalue decay (EVD) assumptions [66) 67]:
Assumption E.5 (Assumption (12.6) in [23]]). We assume that the following conditions hold:

* There exists a constant B, 1 < oo such that for a given 3,1 € (1, 3],

Bp,1—1

_ B,
1Czw.aZ,1 ® lsamwarz) < Bon

* There exists a constant B, 5 < oo such that for a given B, 2 € (1, 3],
Bpoa—1
HE;,ZTQBOHHZA < BL/J,Q'
* There exists a constant B, 3 < 0o such that for a given B, 3 € (1, 3],

371

_Be
1Cyz1a2, 5 *  lsaarz) < Bys-
Assumption E.6 (Assumption (12.9) in [23]]). We assume the following conditions hold
* Let (A 1,i)i>1 be the eigenvalues of ¥, 1. For some constant c, 1 > 0 and parameter py, 1 € (0, 1]
and forall v > 1,
)‘go,l,i < Ctp,liil/p“”l .
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* Let (Ay,2,i)i>1 be the eigenvalues of ¥, o. For some constant c, 2 > 0 and parameter py, 2 € (0,1]
and forall i > 1,

1
Ap2i < Cpai™ 1 /Pe2,
* Let (A, 3,i)i>1 be the eigenvalues of ¥, 3. For some constant c, 3 > 0 and parameter p,, 3 € (0,1]
and for all © > 1,
1 ;
Apsi < Cpai™ 1 /Pes,

Now, we are ready to state the convergence result of the treatment bridge function. We note
that Assumptions (E.2}3), (E.5}3) and (E.6}3) are not required for the bridge function consistency.
However, the consistency of our proposed double robust estimators rely on these assumptions as we
show in Section (S.M.[EJ).

Theorem E.7 (Theorem 12.21 in [23]])). Suppose Assumptions (3.1), (E1), (E2}! & 2), (E3}H &

Bo,1tPp1

2) and (@»] & 2) hold and set \,1 = © <n; B“”’ﬁpw’l) and ny, = mf: Pt where 1y, > 0.
Then,

Lo Bp,2—1 Lo
. Bp2+1 o - _ T2 Bgotl . . TBpatl ).
i Mfvp < 5725 then [|@ — @ollaza = Op (mw 7 > with Ap2 = © (mcp ’ )

N

1_Bp2-1

1
.. +1 ~ - T 28B4 2tPg, . T Bp,2tpg,
1. IfLS(;Z%then ||<p—<p0||H2A:Op(m¢ ¥,2 pw2)wllhALp)2:@(m¢ .2 Pk,aZ).

. .. Boo2tl .
L, controls the ratio of stage 1 to stage 2 samples. In Theorem (ii), when ¢, > Boatroa e

when we have enough stage 1 samples relatively to stage 2 samples, the convergence rate is optimal
in m,, under the assumptions of the theorem (see Section 5 [23]).

E.2 Consistency results for outcome bridge function-based methods

In the following subsections, we review the consistency results for the outcome bridge functions of
both the KPV and PMMR methods.

E.2.1 Consistency result for kernel proxy variable

We first review the consistency result of the outcome bridge function with the Kernel Proxy Variable
(KPV) algorithm that have been obtained concurrently by [11} [12]. We assume that the problem is
well-specified as stated in the following assumption:

Assumption E.8 (Assumption (2.1) and (8.1) in [12])). (1) There exists Cyyz,4 € S2(Hza, Hw)
such that pyw\z.4(Z, A) = Cyw\z,40z4(Z, A); (2) There exists a solution hy € Hyy 4 of Equation

Following a similar convention to [23], we define the minimum RKHS norm solution to the outcome
bridge function equation:

Definition E.9 (Outcome bridge function solution with minimum RKHS norm). Under Assump-
tion (E-8}(2)), the minimum RKHS solution to Equation (1)) is defined as

ho = argmin [|hlly,,, st E[R(W, A)|Z, A] = /yp(y | 2, a)dy,

heHwa

Similar to [23]], we establish the convergence to the minimum norm RKHS solution for the outcome
bridge function. Now, we define the covariance operators corresponding to different stages of
regression of KPV.

Definition E.10 (Covariance Operators). The covariance operators are defined as

* (Stage 1) Eh,l =E [¢ZA(Z7 A) ® ¢ZA(Za A)] s d)ZA(Za A) = d)Z(Z) & QSA(A)’
* (Stage 2) Sho = E [(nw2,4(Z, A) @ p4(A)) @ (pw2,4(Z, A) @ p4(A))] ;

Similarly to the previous section ¥ ;1 and Xy, o are self-adjoint, positive semi-definite and trace
class under Assumption (3.1). We state the source condition (SRC) and eigenvalue decay (EVD)
assumptions [66} 167] :
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Assumption E.11 (SRC for KPV). We assume that the following conditions hold:
* There exists a constant By, 1 < oo such that for a given B, 1 € (1, 3],

—1

_ ,1
1Cw 2,421 % lso(zattw) < Bra

* There exists a constant By, o < 0o such that for a given B, 2 € (1, 3],

_ Pha—1 _
1Xh2 * hollwwa < Bho.
Assumption E.12 (EVD for KPV). We assume the following conditions hold
* Let (Ap,1,:)i>1 be the eigenvalues of ¥y, 1. For some constant ¢, 1 > 0 and parameter py, 1 € (0, 1]
and forall i > 1,
Anpi < cpai” /P,

* Let (Ap,2.:)i>1 be the eigenvalues of ¥y, o. For some constant cj, o > 0 and parameter py, o € (0, 1]
and forall v > 1,

1 /pn,
Ao < cpoit/Prz,

Theorem E.13 (Theorem (7) [L1]). Suppose Assumptions (3.1), (E-1), (E-8), (E-11), and (EI2) hold
2

1 h h,1TPh,1
Bt Bl
and set A\, = © <nh ot p’”) andnp, =m, " where v, > 0. Then,

vy Br,2—1 Lh
, Bratl P e AT 5T
i Ifu, < 7722 then ||h — holl#y . = Op (mh 2 ) wzth)\hg:@(mh 2 )

Bh,2+ph,2

ii. Ith

Y

1 Pr,o2-1 1
1 7 T T 2B oFPho . T Bh.otph.o
Bh,2+ . then ||h - hO”HWA _ Op (mh .2 ph,z) with /\h,2 e (mh ho2tPh,2 )

Bh,2+ph,2

Similarly to Theorem (E.7)), ¢}, controls the ratio of stage 1 to stage 2 samples. In Theorem (E.13}(ii)),
when we have enough stage 1 samples relatively to stage 2 samples, the convergence rate is optimal
in my, under the assumptions of the theorem. A similar result is obtained by Singh [[12, Theorem (3)]
with a slightly worse requirement on stage 1 samples in order to achieve the optimal rate in my,.

Technically, Mastouri et al. [11]] require Y to be almost surely bounded. However, we can resort
to the weaker assumption of sub-exponential noise, Assumption (E.TI)), by using the concentration
inequality of [67, Theorem (26)] as done in [64] 23]].

E.2.2 Consistency result for proximal maximum moment restriction

Here, we state the convergence result of the outcome bridge function for the PMMR algorithm,
originally established by Mastouri et al. [[11]. This result plays a key role in our consistency analysis
of the DRPMMR algorithm. Similarly to KPV, we assume that the problem is well-specified but we
only require Assumption (E.8}(2)).

Definition E.14 (Outcome bridge function solution with minimum RKHS norm - PMMR). Under
Assumption (E-8(2)), we define

ho = argmin [[All3yy, st ER(W, A)p(Z, A)] = E[Y 6(Z, A)].
heHwa

Note that under Assumption (E.8}(2)) there is always a solution to E[h(W, A)p(Z, A)] =
E[Y¢(Z, A)]. Next, we introduce the cross-covariance operator associated to PMMR.

Definition E.15 (Cross-covariance Operator). T' = E[¢pz 4(Z, A) @ dpya(W, A)].
To ensure the consistency of the PMMR outcome bridge function estimator, we require the following
assumption.

Assumption E.16 (Assumption 6 in [I1]]). We assume that there exist Cy such that |Y | < Cy almost
surely and E[Y] < Cy.
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Assumption E.17 (SRC for PMMR - Assumption 16 in [[11]]). There exists a constant B;“2 < 00
such that for a given v € (1, 3],

I(T*T) "% holl#ya < Bia-

Theorem E.18 (Theorem 3 in [11]]). Suppose Assumptions (3-1), (E-I6), (E-8}(2), and (EZI7) hold
and set Apyyr = © (tiﬁ’), then

y—1

1= Follran = Oy (¢7357)

Using a refined analysis as done in [64, 23] it should be possible to improve their result with a
rate depending on the eigenvalue decay of the operator 7" as well as relaxing Assumption (E.16) to

Assumption (E.T).
Remark E.19. Notice that the convergence rate given in Mastouri et al. [[11, Theorem 3] is ||iL —

1

iLO”HAW = OP (t 2

min(-) operation in this consistency result is not necessary.

min(%7

1
%)). However, since v € (1, 3], we have % < % Therefore, the

E.3 Consistency results for doubly robust kernel methods

In this section, we provide the consistency results of our proposed methods DRKPV and DRPMMR.
Our results will rely on the consistency results of the outcome bridge function- and treatment bridge
function-based methods that we discussed in Section (S.M.[E.2) and (S.M.[E.I). Furthermore, we have
seen that our doubly robust estimation procedures require learning the conditional mean embedding
pzwiala) = Czwiadala) = Elpz(Z2) @ ¢pyw(W) | A = a]. Recall that we approximate this
CME via kernel ridge regression. We assume the following conditions:

Assumption E.20. There exists Cz ya € So(Ha, Hzw) such that iz wia(a) = Czwiadala).
Assumption E.21. There exists a constant Bpg < oo such that for a given Bpg € (1, 3],

_ Bpr—1
HCZ>W|AE<,0,3 : ||32(HA,HZW) < Bpg.
First, recall that we showed in Theorem (2.7) that the dose-response can be identified with
Oarp(a) =Elpo(Z,a)(Y —ho(W,a)) | A = a] +E[ho(W, a)].

We define an intermediate quantity 6 47 (a) that is given by
Oarp(a) =E [¢(Z,0) (Y = h(W.a)) |4 = a] + EIR(W, a)].
Noticing, by triangle inequality, that

0ars(a) — are(a)| < |0ars(a) — Oare(a)| + |fars(a) — Oare(a),

we will subsequently derive bounds for the two terms above in order to achieve the consistency result
of our proposed methods.

Lemma E.22. Let hy and @ be outcome and treatment bridge functions that satisfy Equations
and (2), respectively. Then,

Oa7p(a) — Oars(a) = E|(po(Z,a) — ¢(Z,a)) (ho(W, a) — h(W, a)) 1A= a} .

Proof.
Oare(a) = Oare(a) = Elpo(Z, a)(Y — ho(W,a)) | A = a] + E[ho(W, a)]
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~E[¢(Z.a) (Y = (W, 0)) |4 = a] ~ E[R(W, 0)

=E[po(Z,0)Y | A=a]| - E[p(Z,a)Y | A= a]

~E[¢0(Z )ho(W,0) | A= a] +E [$(Z,a)h(W,a) | A = a| +Elho(W, a) = h(W,0)
—E[¢(Z,a)hg(W,a) | A=al+E[p(Z,a)hg(W,a) | A = a

—El(¢o(Z,a) = $(Z,0))Y | A=a] - El(¢o(Z,a) = $(Z,0))ho(W,a) | A= a]
—E |¢(Z,0)(ho(W. a) = h(W.a)) | A= a| +E[ho(W.a) = h(W, a)]
+E [90(Z,0)(ho(W,a) = h(W, a)) | A =a] ~E [¢o(Z,a)(ho(W,a) = (W, a)) | A = o
= E[(¢0(Z,0) = §(Z,a))(Y — ho(W,a)) | A =a]
+E [(¢0(Z,0) = $(Z,0))(ho(W,a) = h(W,a)) | A=a] +E[ho(W,a) — h(W, a)]
~E [¢o(Z, ) (ho(W,a) = h(W,a)) | A = a

E[ [Y = ho(W,a)|Z,A = a] (po(Z,a) — $(Z,a)) |A =a]

+E |(¢0(Z,0) = $(Z. ) (ho(W, @) = (W, )) | A= a| +E[ho(W, a) - h(W.a)]
~E [¢0(Z,a)(ho(W; a) — h(W,a)) | A = ]

=E |(v0(Z.0) - $(Z.a)) (ho(W.0) = h(W,0)) |4 = a]

+E [00(Z,a) (ho(Ws0) = h(W,0)) |4 = a] +E[ho(W, a) = h(W,a)

=5 [(e0(Z,0) ~ 9(2,0)) (no(Wia) ~ (W) |4 =]

+/ (/ <p0(z,a)p(z|w,a)dz) (ho(w,a) - ﬁ(w,a)) p(wla)dw

p(w)/p(wla)
+H%M%)EM%H
:E[(@OZCL (ho )|A:a}
+/Qmw@ h(w, 0m>mwﬂmwvw h(W, a)]
:E[(@OZ(I (ho )’A:a}

O

Lemma E.23. Suppose Assumption hold and let hy, po be as in Lemma (E.22), with hg € Hyya
and oo € Hz 4. Then,

0ar5(a) = Oars(a)] < w0 — @llllho — Al

Proof. By Lemma (E22),

0ar(0) = Oari(a)] = [E[(v0(Z,a) - ¢(Z,0)) (ho(W, @) — h(W, a)) | A = a”
[ Po(Z,a)||ho(W, a) — Wa ||A:a}
[%—¢¢z )& (@)l [(ho — b ow(W) @ da(a))| |4 = d]

SEM%‘%W¢A>®¢M)WWVJWWW()®¢A )4 =a]
< wlpo — o — il
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Next, we need to derive a bound for |f a7z (a) — Oarp(a)l.

Lemma E.24. Suppose Assumptions (3.1), and (E:20) hold and let hq, po be as in Lemma[E23]
Then,

0475 (a) = Oarn(a)|
52 (1% = woll + o) ICy 214 = Cy z1all + & (I = holl + Iholl) v = ow

5 (Ilpolliboll + 119 = olllroll + 15 — hollllpo |l + 12 = wolllh = holl) ICzwia — Czwiall

Proof. We start by noting that we can write
Oare(a) = E [@(Z,a)(Y = h(W,a)) | A =a] +El(W,a)]
= EY$(Z,a) | A=a] + E[h(W, )] - E[3(Z, ))h(W,a) | A=
= E[(¢,Y$2(2) ® ¢a(a)) | A= a] +E[(h, ow(W) @ d4(a))]
~E[(p ® h, (¢2(2) @ p4(a)) @ (dw(W) @ 4(a))) | A = a]
= (9, Oy 71464(0) ® 9a(@)) + (h, pw © Ga(@)) = (2 © b, CFy) 10a(a))
where we define
Chiadala) =E[(62(2) @ da(a) ® (dw(W) ® da(a))) | A=d]. (32)

Similarly, we observe that we can write our doubly robust estimate as

barn(@) = (2, Cy 2140a(a) ® 6(@) + (b fow © 94(a)) = (¢ © h. CFy) 10a(0)),

(
)

and define C(ZaV)V 4 to be the augmented version of the conditional mean operator estimate in Equation

(29), that is given by
Cyyiadala) Z&éf’z %) @ ¢ a(a) ® dyw(w;) © da(a)

where &;(a) = [(KAA + t)\DRIf1 KAG} . Therefore, we have that

Oarp(a) = Oars(a) = (5, Cy 21404(@) © 6a(a)) + (b oy © da(a)) = ($ & b, CY 10a(a))
Cy 21404(0) & 6.4(0)) = (hyfiw ® G4()) + (P @, CF 0a(a))
(Crzia— Cvza) bala) @ dala))
iy (ko —ﬂw)®¢A(a)> p®h, (CZW|A C(ZaV)V‘A) ¢A(a)>

— (%,
= (»
{
= (&= w0 (Cvz1a — Crz1a) pa(a) @ da(a))
{
{
{

_|_

©0, (CYZ\A - CYZ|A> pala) @ ¢A(a)>
— ho, (1w = o) @ 64(a) ) + {ho, (ko — fiw) @ G.a(@))

~(p®h, (O(ZQV)V\A C(ZGW|A> ¢A(a)>

+ o+
3&

As a result,

0are(a) — Oare(a)|
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< 52 (I = woll +llpoll) 1Cy 214 = Cy z1all + w (I = holl + o) 1w — oo
+ (Ieolloll + 112 = @olliholl + lla = hollloll + 1 = woll I = holl) || (C5h1a = C5ia) data)|
Note that H z 4yw.4 and H zyy 4.4 are isometric Hilbert spaces. Let ¥ be the canonical isomorphism,

U . HzQHWOHAQHL > Hz QHARHW QHA

such that it acts on the elementary tensors as V(v Q@ v ® a1 ® a2) = u ® a1 ® v ® ag. V¥ is a unitary
isomorphism, hence,

|cZtate) = EGoatal],
= H\If ((Czwiada(a)) @ pala) @ ¢pala)) — P ((OZW\A¢A(G)) ® pala) @ ¢A(a)) H
= H (Czwiadala)) @ pala) ® dpala) — (C'ZW\A¢A(G)) ® pala)® ¢A(G)H

< K? HCZW\MSA(G) - CZW|A¢A(G)”HZW <K HCZW\A - OZW|A“

Hzawa
Hzwaa

Sy (Ha,Hzw)

Using this inequality, we obtain the desired bound as

0arE(a) — OarE(a)|

< 2 (I = goll + lpoll) I1Cy 214 = Cy z1all + 5 (I = holl + o) 1w — oo

+ 52 (IlpollIlkoll + 1% = wollllaoll + 5 — ollloll + 16 = wolllh — holl) C2wia = Czwial

O

Combining the bounds from Lemma (E-23) and (E-24), we observe that
|0ate(a) — Oate(a)| < K*[l0o — @llllho — A (33)
+ 12 (1% = @oll + lwol) [y 214 = Cy zpall + 5 (b = holl + llholl) ow = s

+ (H<P0||||ho|| + ¢ = wollllholl + 1A = hollllgoll + & — wollllh — hoH) 1Czw)a — OZW|A||

Hence, the convergence of our methods will depend on the factors ||i — hol|, [|¢ — oll. |iw — sl
ICyz1a — C’YZ|A |, and [|Czp (a4 — C’ZWM ||. We have already established the consistency results
for ||h — ho|| and || — @ol|, and || iy — pyy|| converges with O, (t='/2) [11]]. Hence, we need to
establish the converge results for [|Cy 7|4 — C’YZ|A|\, and [|Czyw)a — C’ZW|A Il

Theorem E.25 (Theorem (12.22) [23]], Theorem (3) [43])). Suppose Assumptions (E-1), (E2}3), (3-1)

3) and 3) hold and take \, 3 = © (tw P8 tPe.s ) There is a constant J3 > 0 independent
ofty, > landd € (0,1) such that

< J3log(5/6) (\/t;> =:7,3(0,t0, By.3,P0,3)s

is satisfied for sufficiently large t, > 1 with probability at least 1 — ¢.

Theorem E.26 (Theorem (3) [43]). Suppose Assumptions (E20), (3-1), (E-Z1) and (E-6}3), hold and
take \pr = © (tfm) There is a constant Jpg > 0 independent of t > 1 and § € (0,1) such

that

HCYZ|A - CYZ|AH
Sa(Ha,Hz)

1\ 7ok
< Jprlog(b/d) (ﬁ) =:1pr(9,t, BDR, Pp,3)s

is satisfied for sufficiently large t > 1 with probability at least 1 — 0.

HCZW|A —Czw|a
Sa(Ha,Hzw)
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Recall that KPV and KAP use the number of samples {n,, mp, t5} and {n,, m, t,} in their first,
second, and third stage of regression, respectively. Following the original implementations from
Mastouri et al. [[11]] and Bozkurt et al. [23]], we will reuse the data in their third-stage, i.e., t;, = t, = t,
as pointed out in Algorithms (2) and (@).

Theorem E.27. Suppose the assumptions in Theorems (E.7), (E13), (E:23), and (E26) hold. For
a given training dataset D = {y;, w;, z;, a; }'_y, let {np, mp,tr} and {n,,my,t,} denote the
number of samples used in first-, second-, and third-stage regressions for KPV and KAP, respectively,
with ty, = t, = t. Then, for DRKPV algorithm with high probability,

— ‘h
i If u, < Pratl g Ly < Be2tl gy An2 = © (mh Bh,2+1> and M,

Bh,2+Dh,2 = Beo.2t+pe2”
tp Pr2—1 Lo Bp2—1

e
C) (mp ﬂ“”ﬁl). Then,

N _1_PBes=t —tee2
|0ATE(a) _ 9ATE(0J)| — Op (t 2 Bp,3+pPep,3 +mh 2 Bp,2+1 mso 2 B¢,2+1>

Bh,2+Dh 2 = Be2tpe2’

B S
S} (mw Poatre.z ) Then,

_ ‘h
i. If v, < Bnatl g Ly > Boztl gy Aho = @(mh ﬁh”ﬁl) and Np2 =

1 Be,3—1 _tnPh2zl g Bpo-t
2 Bp,2+1 2 Bp,2FpPyp 2
M

‘QATE(CL) — éATE(CL)‘ = Op <t_2 Bo3+Pp,3 | my,

1
:
ii. If v, > % and v, < % Set \po = © (mh h’2+ph'2) and Ny 2 =

e
© <m¢ Poatt ) Then,

1 Bp,3z—1 _1_Pra2-l _tp Bp2—1
2 Bp,2+Ph,2

‘QATE(G) _ éATE(a)‘ _ Op <t_2 Po3tPo3 m, My 2 Bp,2t1

1
. B

I T
€] (mw Po2tre ) Then,

1 Be3—1 -1 Bn2—1 1 _Bp2—t
R _1_Pe 3
|0aze(a) — Oare(a)) = O, |t 2 Pesties 4, =22y 2 Peatres

Proof. We combine the bounds in Lemmas (E:23) and (E.24), by using the convergence to the
minimum norm RKHS norm bridge function solutions and discarding the faster terms, to obtain

|0xte(a) — Oate(a)| Sll2o — @llllho — Al + ICy 214 — Cy 74l
+ 1w — pwll + ICzwa = Czwall
Note that the term || /iy — pyy|| converges with ¢~/ rate [[I1]] hence can be discarded as well. The
1_Bep,3—1

terms [|Cy zj4 — C’YZ|AH and ||[Czy 4 — C’ZW|A|\ converges with O,, [t 2 7#3¥7¢.3 | with the

given regularizer parameters \,, 3 and Apg in Theorems (E.23)) and (E.26). Hence, the convergence
will be governed by

~ _ N _1 Bp,3—1
|0atE(a) — Oate(a)| SllPo — @llllho — Al +t 2 PesTres.
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Appealing to the conditions in Theorems (E.7) and (EI3), we will have four conditions depending
on the first and second stage data splitting conditions of KPV and KAP algorithms:

Br,2+1 By a+1 .. .
i. Suppose ¢, < Brstrns and ¢, < m Then, condition [i] in Theorem || and

condition [i] in Theorem (E.7) apply. Combining these bound gives

By 3—1 _tp Bh2ml iy Byl
1_Pe.3 2 B o1 2 Bt
M ,

|0aTE(a) — éATE(a)| =0, (tQ%,sﬂw,s +m,,

—_th e
with )\h,Q =0 (m Bh,2+1) and )‘ap,Q -0 <m@ ﬁ¢,2+1>.

ii. Suppose v, < % and ¢, > ﬂﬁ“;% Then, condition [i] in Theorem 1| and
5 » @

condition [ii] in Theorem (E.7) apply. Combining these bound gives

Bpa—1 _tpPraml g Bpoa—l
« _LPed 2 Bp o¥1 2 Bp 2t
|9ATE(a) — QATE(GN e Op 2 Be3tre,3 my, h,2 My ©2TPe,2 .

‘h I
with Ap 2 = © (Trfﬁ;l) and A\, o = © <m¢ E“”2+p“"2>.

iii. Suppose tp, > 5}5’;%;: and LV, < 55“;%“ Then, condition [ii] in Theorem li and

condition [i] in Theorem (E.7)) apply. Combining these bound gives
1 Bes—l _1 Bn27lt g Pe2—l
. _Peszl 2 Brot 2 Booatl
|Oxte(a) — Oate(a)] = Op | £ 2 PeatPes ), =22y, = T2 )

_ 1
with Ap2 = © (mh B*) and Ay = O <m@ % *)

iv. Suppose ¢, > % and ¢, > B&;%;l Then, condition [ii] in Theorem li and

condition [ii] in Theorem (E.7) apply. Combining these bound gives

1_Bea—1 1_Pna2-t _1_PBe2-t
~ —E -2 2
‘QATE(CL) — 9ATE(G)| = Op T 2B,3FPp,3 + my, Fr.2¥Pn,2 My Pe2tPe2 .

1 1
) “Bratrna ~ o atres
with Ap 2 = © <mh ho2 p”) and A\, o = O (m@ 2 p”).

O

Theorem E.28. Suppose the assumptions in Theorems (E.7), (E17), (E:23), and (E.26) hold. For a
given training dataset D = {y;, w;, z;, a; }i_, let {n,, my, t,} denote the number of samples used
in first-, second-, and third-stage regressions of KAP algorithm with t, = t. Then, for DRPMMR
algorithm with high probability

i Ifi, < 65“’%;1 set \p2 = © (mw 2 2“). Then,

. Bp,3—1 _ _EM
|0arz(a) = Oare(a)| = O, ( TRt T, ’+> :
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1
- Bep,2+1 _ T Be2tre,2
1. If[,g, > m, set A¢72 =0 (mw ® » ) Then,

1_Be,3—1

;1 _Pe2—l
‘GATE(CE) . 9ATE(CL)‘ _ Op (t—z Bp3tPos | fi%%m@ 2 B¢,2+p<p,2> 7

Proof. Combining the bounds from Lemmas (E.23) and (E:24), and using the convergence of the
estimators to the minimum-norm RKHS bridge function solutions, we obtain the following by
discarding higher-order terms:

Similar to the proof of Theorem (E.27), the bound will be governed by

Bp,3—1

~ - ~ _1
|0ate(a) — Oate(a)| Sllpo — @llllho — Al +t 2 Pesires.

Now, using the conditions in Theorem (E.7) and the rate in Theorem (E:I7), we will have two
conditions:

i. Suppose ¢, < %, then condition [i] in Theorem 1} applies. Hence,

Byp,3—1

R 1 . _te _Pea-l
‘GATE(CL) _ GATE(QH — Op <t 2B,,3FP0 3 +t—%z—+im¢ 2 Bgo,2+p<p.2> ,

e
with A, o = © <m¥J [3“"2“).

> ﬂ¢,2+1

ii. Suppose ¢, > Boatpos

, then condition [ii] in Theorem (E.13) applies. Hence,

1_Bps3—1

. —1 B2t
Oxe(@) — Oxre(a)] = O, (t +tm> ,

-1
with Ao = © <m¢ ‘3%2*”%2).

O

Remark E.29 (Curse of Dimensionality). Our proposed algorithms (DRKPV and DRPMMR), along
with KPV and KAP methods, rely on multi-stage kernel ridge regressions. Kernel Ridge Regression
is known to achieve minimax-optimal rates in moderate dimension, but in very high-dimensional
regimes, particularly when the input dimension d grows with the sample size t (i.e., d/t° — c for
some 3 € (0,1)), the situation becomes more subtle [46, 45]].

Specifically, the effectiveness of KRR suffers from two primary issues in high dimensions:

» When functions lie in Sobolev classes, the achievable rate explicitly depends on both smoothness
and dimension. Intuitively, the regression function must be smooth enough relative to the ambient
dimension d for KRR to remain consistent. More specifically, Fischer and Steinwart [67, Corollary
5 & 6] (for standard scalar KRR) and Li et al. [45| Corollary 1 & 2] (for vector-valued KRR)
show that if the target function has smoothness parameter s (in Sobolev sense), the optimal rate of
convergence in Ly norm is O(t_ﬁ ). This rate clearly demonstrates the curse of dimensionality,
as for a fixed s, the bound becomes vacuous as d — 0.

* Donhauser et al. [46]] show that for rotationally invariant kernels (such as RBF or Matérn), a
polynomial approximation barrier arises: the learned function is effectively restricted to low-degree
polynomials as d grows, regardless of eigenvalue decay. This implies that consistency in high
dimensions is limited unless additional structural assumptions are imposed.

In our work, we do not address the curse of dimensionality. Instead, our contribution is to show
that doubly robust PCL estimators can be constructed without density ratio estimation and kernel-
smoothing, thereby extending practical applicability to continuous and high-dimensional treatments
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where prior DR methods [21| 22] fail. Our theorems remain valid in high-dimensional settings
provided the smoothness and effective RKHS dimension assumptions hold. However, we acknowledge
that when input dimension grows with sample size, methods based on standard RBF or Matérn
kernels may indeed fail. Addressing this deeper theoretical limitation is left as a future work.

Remark E.30 (Asymptotic Efficiency and Normality). While our identification formula in Theorem
(2.7) is derived from the Efficient Influence Function (EIF), our resulting estimator is not a classical
one-step estimator [47, 48] and does not automatically inherit local efficiency or asymptotic normality
[28)]. Unlike standard EIF-based estimators that leverage first-order orthogonality [30|] between
two coupled nuisance components (e.g., outcome regression and propensity score), our method
involves three components—the outcome bridge, treatment bridge, and a correction term—each
estimated separately. As a result, the bias terms accumulate additively, rather than canceling
multiplicatively, as in traditional doubly robust estimators. Establishing local efficiency would thus
require further analysis, including proving asymptotic linearity, implementing cross-fitting, and
verifying attainment of the semiparametric variance bound—steps we leave for future work. Similarly,
asymptotic normality is not guaranteed; although the estimator is consistent and derived from an
EIF, a central limit theorem would require controlling higher-order remainder terms across all three
nuisance components—particularly challenging in our framework. We therefore refrain from claiming
asymptotic normality in the present version. Given the nonregularity typical of continuous treatment
settings (59,160, [61)], a slower-than-+/n convergence rate is generally expected for the parameter, a
point supported by both theory and our convergence results.

F Supplementary on numerical experiments

Here, we provide additional details on the numerical experiments presented in Section (3)), including
hyperparameter optimization procedures and supplementary experimental results.

F.1 Kernel

We utilize the Gaussian (RBF) kernel for our experiments, defined as

W F2
kr(fi, f;) = exp (fz2l2fJ||2> .

for f;, f; € R%F . This kernel is widely used due to its boundedness, continuity, and characteristic
property [68]]. The parameter [ > 0, known as the length scale, controls the smoothness of the kernel.
We set [ using the commonly adopted median heuristic, which sets [? to half the median of the
pairwise squared Euclidean distances in the dataset {f; }7_;, that is:

1 . .
I’ = §med1an({||fi —fil3:1<i<j<n}).

This approach has been frequently used in causal inference applications, including Singh et al.
[69], Mastouri et al. [[L1], Singh [12], Xu and Gretton [62], Bozkurt et al. [23]].

In addition, we consider a dimension-wise variant of the Gaussian kernel, defined as the product of
one-dimensional Gaussian kernels applied to each coordinate:

T s (15 = 1713
kr(fis £5) = [ ] exp <W> (35)
k=1

where fi(k) denotes the k-th coordinate of vector f;. Each length scale [(*) can be set independently
using the median heuristic applied to that specific dimension. We refer to the kernel in Equation (35)
as the columnwise Gaussian kernel.

Following the setup in Bozkurt et al. [23], we apply the columnwise Gaussian kernel to the out-
come proxy variable W within the KAP algorithm for the synthetic low-dimensional experiment
in Section (). For all other experiments and for all variables used in both outcome and treatment
bridge-based methods, we use the standard Gaussian kernel defined in Equation (34).
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We also consider the Matérn kernel which provides a flexible alternative to the Gaussian kernel by
introducing a smoothness parameter. The Matérn kernel between two points f; and f; is given by
(701

1—v v
kro(fi, fj) = i(i,,) <\/l27||fi - fj||2> K, <\/l27||fi - fj||2> . (36)

Here, the parameters v and [ are positive variables, I'(-) is the gamma function, and /C,(-) is
modified Bessel function of the second kind [71]. The Matérn family of kernels satisfies the
assumptions on kernels, including those in Assumption (3.1)) [72]. The parameter v directly controls
the differentiability of the kernel function; as v — oo , the kernel converges to the Gaussian kernel in

Equation (34).
For practical implementation and to explore varying levels of smoothness, we use cases where v is a
half integer in the form v = p+1/2, which yield simplified, closed-form polynomial expressions [70]:

p—k
V2 a K [ V/8v
kf,u-pﬂ/z(fi,fj):exp(—fnﬂ f]) T e ),< : |f,»—fj||> .
k:O

r'(2p+1) (p—
(37

In our ablation studies in Section (S.M. (E.7)), we test the performance of our method across Matérn
kernels corresponding to different integer values of p.

F.2 Discussion on the data splitting of KPV and KAP

We detail the data splitting strategy employed for the multi-stage KPV and KAP algorithms, which
derive their samples from the full training observations {y;, w;, z;, ai}§:1~

Algorithm Stage | Samples Used | Implementation Details

KPYV (Stage 1) {w;, zi,a; } ;" 'y Uses ny, = |t/2] random samples.
KPYV (Stage 2) {9, Zi, az}l Y | Uses my =t — ny. Samples are disjoint from Stage 1.

KPV (Stage 3) {U}z},: Uses the full set: ¢;, = t.
KAP (Stage 1) {w;, z;,a;}%, | Uses ny, = [t/2] random samples.
KAP (Stage 2) {;, &Z}Zl“’l Uses my, = t — n,. Samples are disjoint from Stage 1.

KAP (Stage3) | {0, %,a:}.2, | Uses the full set: t,, = t.

While we use this structured splitting in our implementation, our consistency proofs in Section (E}) do
not assume disjoint splits, similar to [[11} 12} 23]]. Indeed, using the full dataset per stage still retains
theoretical consistency (e.g., Corollary 1 in [[12] for outcome bridge-based methods).

However, structured data splitting is useful in practice for two main reasons:

1. Hyperparameter Tuning: For regression stages lacking a closed-form LOOCYV solution
(such as the second stage of both KPV and KAP), using the first-stage data as a held-out
set provides a clean and non-overlapping validation loss for regularizer tuning. See Section
(S.M.[E3) for the corresponding discussion.

2. Observation Types: Splitting naturally accommodates the structure of the different marginal
distributions required across stages. For instance, the KAP first-stage utilizes the marginal
distribution of (W, Z, A), whereas the third-stage requires data from the distribution of
(Y, Z, A), facilitating estimation when only partial marginals are available.

F.3 Hyperparameter optimization procedures
We describe the procedures used to tune the regularization parameters A, 1, An 2, Ap. 1, Ap,25 Ap.3s

Ammr, and Apr. Specifically, Ax 1, Ay 1, Ay 3, and Apr are selected using leave-one-out cross-
validation (LOOCYV), which admits a closed-form solution in the case of kernel ridge regression. In
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contrast, Ap 2, Ay 2 and Avmr are tuned using validation loss on a held-out set. To avoid repetition,
we first review the LOOCYV procedure in the general kernel ridge regression setting, followed by the
closed-form expressions for the relevant regression stages of the KPV and KAP algorithms. We then
present the validation loss formulas used to tune A, 2 and Avmr.

Leave one out cross validation in kernel ridge regression: We consider the problem of estimating
the conditional mean function fo(z) = E[Y | X = z] from an observational data {z;,y;}!_; C
R?x x R%, denote the dimensions of inputs and outputs, respectively. The kernel ridge regression
(KRR) estimator for fj is given by

—a;gmln leyl (f, 622 Iy + Al F Il (38)
EHx i=1

where H x is a reproducing kernel Hilbert space (RKHS) on domain A with the associated canonical
feature map ¢ (-) : X — Hx, and A > 0 is the regularization parameter. The closed-form solution
to Equation (38)) is

F=YT(Kxx +t\)" 'y, (39)

where Y = [y; ... yt}T, Dy = [px(r1) ... ¢x(xt)], and Kxx is the kernel matrix com-
puted from the inputs {x;}!_,. To select an appropriate value for A\, we employ leave-one-out
cross-validation (LOOCYV), which assesses generalization by sequentially excluding each data point
and evaluating prediction error. The LOOCYV objective is defined as

1 R 2
LOOCV()) = - — foj(zs) ’

t

) (40)
j=1

where f_ ;7 KRR estimator trained on all data except the j-th observation. In the KRR setting, the
LOOCYV loss admits a closed-form expression, as given by the following result:

Theorem F.1 (Algorlthm (F.1) in [69]). Consider the kernel ridge regression setup introduced in
Equation (38) where {x;}!_, denotes the input data and {y;}_, denotes the corresponding outputs.
Then, the LOOCYV loss is given by

1, - 1 /- -
LOOCV(\) = | H HyY [} = S T (H;lHAYYTHIH;T) , 1)

where

Hy,=1-Kxx(Kxx+n\)™' e R*" H, = diag(H,) € R*".

The regularization parameter A can then be selected by minimizing the LOOCYV loss over a predefined
grid A C R:

1 -
A = argmin — || H; "H,\ Y |[3,.
Acr t

The proof of Theorem @ can be found in Singh et al. [69] (see Algorithm (F.1)). We apply Theorem
(F.1) to tune the regularization parameters Aj, 1, Ay 1, Ay 3, and Apr.
F.3.1 Hyperparameter selection for A, 1, A\, 1, A\, 3, and Apg

Below, we present the application of the LOOCV tuning procedure to the regularization parameters
Ah,1s Ap.1> Ap,3, and Apg.

* KPYV first-stage regression: The first-stage regression in the KPV algorithm, given samples
{w;, z;,a;};",, is a kernel ridge regression from inputs {¢z(z;) ® ¢.4(a;)};", to the outcomes
{pw (w;)}i,. Therefore, the LOOCV loss for Ay, 1 is given by

1 ~ o
LOOCV()‘hJ) = nih Tr (H)\h,l,lH/\h,lKV_VV_VH)Th,lH)\th) ’
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where
H,, , =I—-(K;;0K;z;5)(Kzz0Kzz+nphp I)~" € R,
I~{>\h,1 = diag(HAh,l) € R XM,

We use a logarithmically spaced grid of 25 values in the range [5 x 10~°, 1] and select the value of
Ap,1 that minimizes the LOOCYV loss.

* KAP first-stage regression: The first-stage regression in the KAP algorithm, using samples
{w;, z;,a; }..7,, is a kernel ridge regression from inputs { ¢y (10;) ® ¢.4(a;)};, to the outcomes
{¢=z(2:)}.,. Hence, the LOOCV loss for A, 1 is given by

1 - ~
LOOCV(Ag 1) = —Tr (HXQJHAWKZZHLJHXT ) ;
(]

o1
where

H,,, =1 (Kyw 0 Kiz) (Kyw © Kiz+nphe D)™ € R,

H, _, = diag(H,_,) € R"¢*"e,
We perform a grid search over 25 logarithmically spaced values in the range [5 x 107, 1] and
select the value of A\, ; that minimizes the LOOCYV loss.

» KAP third-stage regression: With the third-stage data {y;, %;, a; }Eil, the KAP algorithm performs

kernel ridge regression from the inputs {¢_4(a;) Eil to the outcomes {¢;d=(%;) fil. Thus, the
LOOCY loss for A, 3 is given by

1 L . o
LOOCY(A,.0) = — Tt (B Hy.. (K 0 YY) HHT),
©

>‘%3

where
Hy,, =1 K;;(K;;+tA3I)7 " € R#*,
H,,, = diag(H,,,) € R'¢*.

We perform a grid search over 25 logarithmically spaced values in the range [5 x 10~°,1] and
select the value of A, 3 that minimizes the LOOCV loss.

* Slack term estimation: Our doubly robust estimator includes a term of the form
Elpo(Z,a)ho(W,a) | A = a], which requires estimating the conditional mean embed-
ding E[¢z(Z) ® dyw(W) | A = a] as we derive in Section (S.M. [C.3). Using training data
{zi,wi,a; }t, we fit a kernel ridge regression from the inputs {¢4(a;)}!_; to the outputs
{pz(z:) @ dpw(w;)}i_, with the regularization parameter A\pgr. As a result, the LOOCV for
ADR i given by

)\DR >\DR

LOOCV (ApR) = % Tr (ﬂ—l Hy, (Kz7 ® Kww) HIDRIS[—T) ,
where
Hy, =1 Ksa(Kas+th\prI)™' € R
H,,, = diag(H),,) € R"™".
For \pr, we use a grid search over 25 logarithmically spaced values in the range [5 x 107>, 1] to
minimize the LOOCV loss.
F.3.2 Hyperparameter selection for \j, 2, A\, 2, and Avivr

In this section, we provide details of the tuning procedures of the other regularization parameters
AR,25 Ap,2, and Avmvir. Specifically, we leverage the validation loss on a held-out set to tune these
parameters.

* KPV second-stage regression: The second-stage regression in KPV approximates the outcome
bridge function via optimizing the objective given in Equation (20) To tune the regularization
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parameter ), o, we treat the first-stage samples {w;, Z;,a; };*; as a held-out validation set and
minimize the validation loss:

M h

* . 1 — 7~ - — 2
Ah,2 = argmin — Z (yi —(h, fiwz,4(Zi, @) ® ¢A(ai)>) )

n
)

where /. is the solution to the optimization problem in Equation |i , as described in Algorithm ,

and fiyy|z, 4 denotes the estimated conditional mean embedding from the first stage.

In our experiments, we used a grid of 25 logarithmically spaced values in the range [5 x 107>, 1].
* KAP second-stage regression: The second- stage regression of KAP estimates the treatment bridge

function via optimizing the objective given in Equatlon (26). To tune the regulanzatlon parameter

Ap,2, we treat the first-stage samples {w;, Z;, al}l 1 as a held-out validation set and minimize the

validation loss:

o 1 s, o _
L(Sﬁ)r\éﬁp T Z<907.UZ\W,A(wi7ai) ® ¢A(ai)>§{z,4
? =1
Ny My
23S (piawatinn @) @ 6a(@)),
e\ =1 j=1 =A
J#i

This objective admits a closed-form expression:

T

L Val ( ) l A1:m, BTKZZCQKAA CTKZZNBQKAA A1:m,
o) = 5 | [ (B R 6 )| (0T KanB o K| e
) A1:m, ! (BTKZZC’@KAA)i
Q41 (%W)T(BTKZZCVQKAA)% '

Here, the matrices C and C are defined as:
-1
C= (KWW ©Kjiz+ nMcpJI) (Kyww © K44),

_ 1 & ~1 '
Cuj=—— > (KWW OKiz+ ”Mw,lf) (Kwa, © Kag,), Vi
? =1

For full derivation, see Bozkurt et al. [23} Section (13.2.2)]. To avoid overfitting, Bozkurt et al. [23]]
additionally propose minimizing the validation loss augmented by a model complexity penalty:

2
Ap,p = argmin LY () + %Tr((LTL + mAyoI) _1LTL> .
©

for some fixed o, > 0.
In our experiments, we used a grid of 25 logarithmically spaced values in the range [5 x 107°,1]
to tune A\, 2. Following the complexity regularization parameters in Bozkurt et al. [23]], we set
o, = 1 or the synthetic low-dimensional setting as well as the legalized abortion and crime dataset,
and o, = 3 for dSprite and grade retention datasets.

* PMMR regularization parameter tuning: To tune the regularization parameter Aymvr, we follow
a procedure similar to that used in the second-stage regression of the KPV algorithm. Specifically,
we set aside a small validation subset from the training data {y;, w;, 2;,a;}!_, and evaluate the
validation loss based on the bridge function predictions. We use a grid of 25 logarithmically spaced
values in the range [5 X 1075, 10*3} to tune Apasgr, with 10% of the training set held out as a
validation set.

F.4 Additional numerical experiments with misspecified bridge functions

A higher-resolution version of the misspecification analysis presented in Section (3) (Figure (3)) is
provided below in Figure (@) for enhanced legibility.
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Here, we conduct an additional ablation study to evaluate the robustness of our methods under
misspecification of bridge functions, building on the experimental setup from Section (3). In this
experiment, we introduce higher levels of noise into the bridge function coefficients. Recall that, by
the representer theorem, the bridge functions admit the following forms:

« KPV: h = 31" S agidw (w;) @ paldy),

« PMMR: & = 30| aioo (w;) @ dalay),

« KAP: ¢ = >"0 S yifiz w, a(, ar) ® da(a)

To simulate misspecification, we first train DRKPV (or DRPMMR) in the synthetic low-dimensional

setting and then perturb either the outcome (KPV/PMMR) or treatment (KAP) bridge coefficients by
injecting Gaussian noise.

Figures (5a) and (5b) display DRKPV results, averaged over five independent runs with standard
deviation bands. In Figure @) outcome bridge coefficients are perturbed via a;; < o5 +€;;, where
ei; ~ N (0,0.5). Similarly, in Figure , treatment bridge coefficients are jittered as v;; <— 7 +£i;
with ¢;; ~ N(0,0.5). Despite the misspecification, DRKPV successfully recovers the true causal
function, with the slack term compensating for the introduced error.

Figures and present analogous results for DRPMMR, where Gaussian noise N'(0, 0.5) is
added to one of the learned bridge functions. As with DRKPV, DRPMMR remains robust, accurately
recovering the true causal effect even under significant misspecification.

DRKPV - Outcome Bridge is Misspecified (g2 = 0.2) DRKPV - Treatment Bridge is Misspecified (02 = 0.2
3 = = Ground Truth 4 = = Ground Truth
AT il 3 —
1 N Kernel Alternative Proxy 5 Kernel Alternative Proxy
=== Slack Prediction == Slack Prediction
50 T 1
£ )
ISy WS
-3 -1
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-10  -05 0.0 0.5 1.0 15 2.0 -10  -05 0.0 0.5 1.0 15 2.0
a a
(a) DRKPYV, Outcome Bridge Misspecified (b) DRKPYV, Treatment Bridge Misspecified
DR4PMMR - Outcome Bridge is Misspecified (g2 = 0.2) DR4PMMR - Treatment Bridge is Misspecified (6% = 0.2)
== = Ground Truth
S ~ss 5
0 i o| g — S
. 2| R | Se —
o o 1
E 4 E
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| = S -1
~10( " amel aternative proxy -2
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(c) DRPMMR, Outcome Bridge Misspecified (d) DRPMMR, Treatment Bridge Misspecified

Figure 4: (Duplicate of Figure ) Experimental results in bridge function misspecifications with the
synthetic low-dimensional data with jittering noise sampled from A(0, 0.2): (a) DRKPV estimates
under outcome bridge misspecification; (b) DRKPV estimates under treatment bridge misspecifica-
tion; (c) DRPMMR estimates under outcome bridge misspecification; and (d) DRPMMR estimates
under treatment bridge misspecification.
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Figure 5: Experimental results under bridge function misspecifications with the synthetic low
dimensional data with jittering noise sampled from A(0,0.5): (a) DRKPV estimation when the
outcome bridge is misspecified, (b) DRKPV estimation when the treatment bridge function is
misspecified, (¢c) DRPMMR estimation when the outcome bridge function is misspecified, (d)
DRPMMR estimation when the treatment bridge is misspecified.

F.5 Numerical experiments with Job Corps dataset

In this section, we present numerical experiments with the Job Corps dataset [54, I55], which
we accessed through the public repository provided by Singh et al. [69] (https://github.com/
1liyuan9988/KernelCausalFunction/tree/master). The U.S. Job Corps Program is an edu-
cational initiative designed to support disadvantaged youth. In the corresponding observational
dataset, the treatment variable A captures the total number of hours participants spent in academic or
vocational training, whereas the outcome variable Y measures the proportion of weeks the participant
was employed during the program’s second year. The covariate vector U € R includes demographic
and socioeconomic features such as gender, ethnicity, age, language proficiency, education level,
marital status, household size, among others.

To adapt this dataset to the proximal causal learning (PCL) framework, Bozkurt et al. [23]] proposed
synthetic proxy generation schemes specifically crafted to test the limits of the completeness con-
ditions stated in Assumptions (2.3)) and (2.5). We adopt the six experimental settings introduced in
their work to evaluate the performance of our proposed doubly robust estimators.

Setting 1: Let W = U + ¢, and Z = g (U120 / max (U(1:20))) + ¢, where g(x) = 0.8 ;220 4

0.11s applied elementwise, and both the division and maximum operations are performed elementwise.
Here, the notation U (1:2%) refers to the first 20 components of the vector U. Noise terms are sampled

as e ~ N(0,1) Vi=1,...,65 ¢ ~U[-1,1] Vi=1,...,20.

Setting 2: Let Z = U + ¢, and W = g (U129 / max (U1:29))) + ¢,, with ) ~ N(0,1) Vi,
e ~U-1,1] Vi

Setting 3: Let W = U + ¢, and Z = g (U%40) / max (U2049))) + ¢, with €D~ N(0,1) Vi,
e~ U-1,1] Vi
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Setting 4: Let Z = U + ¢, and W = g (U2040) / max (U2010))) 4 ¢, with e} ~ N(0,1) Vi,
e ~U[-1,1] Vi

Setting 5: Let W = U + ¢,, and Z = g (U069 / max (U“060))) 4 ¢, with e} ~ N(0,1) Vi,
e~ U-1,1] Vi

Setting 6: Let Z = U + ¢, and W = g (U060 / max (T(40:60))) 1 ¢, with ) ~ N(0,1) Vi,
) ~U[-1,1] Vi.

Notice that the odd numbered settings are constructed to introduce an incomplete link between
the treatment proxy Z and the confounder U, combined with a nonlinear transformation. These
configurations are prone to violating Assumption that hinges the identifiability of dose-response
with outcome bridge function (see Theorem (2.4))). On the other hand, even numbered settings are
constructed to introduce an incomplete link between the outcome proxy W and the confounder U,
combined with a nonlinear transformation. These setups are likely to violate Assumption (2.5) ,
which underpins the identifiability guarantees of dose response with treatment bridge function (see

Theorem (2.6)).

Bozkurt et al. [23]] showed that their treatment bridge-based method, KAP, produces estimates that
are more closely aligned with those of the oracle method Kernel-ATE [69], which assumes access to
the true confounder U, compared to outcome bridge-based approaches such as KPV and KNC. They
attribute this to KAP’s robustness when the existence of the bridge function is violated, rather than
when the assumption underlying the identifiability of the causal function is compromised. Conversely,
their results suggest that KPV and KNC tend to yield estimates closer to the oracle method in
scenarios where the existence of the bridge function is violated but the assumption ensuring the causal
function’s identifiability remains potentially valid—highlighting their strength under different failure
modes. While these findings emphasize the complementary robustness of the two classes of methods
under varying conditions, determining which condition holds in practice is often difficult. In this
work, we demonstrate that our proposed doubly robust estimators effectively unify the strengths of
both approaches, yielding consistently strong performance across diverse scenarios.

Figure (6) presents the estimated dose-response curves produced by our proposed methods across all
six experimental settings averaged over 5 different realizations with standard deviation envelopes.
For comparison, we include estimates from methods based solely on outcome or treatment bridge
functions, along with the oracle method Kernel-ATE from Singh et al. [69]], which has access to
the true confounder U. For numerical comparison, Table (I)) reports the mean squared distance
between each algorithm’s estimate and that of the oracle method. Across all settings, DRKPV
consistently outperforms its non-doubly robust counterpart KPV, as well as the baselines KNC and
KAP. In Settings 1, 3, 4, and 5, DRPMMR also outperforms its non-doubly robust variant PMMR
and the other baselines. The only exceptions are Settings 2 and 6, where PMMR performs better than
DRPMMR, based on the oracle method’s dose-response estimates as the ground truth.

Table 1: Mean squared distance between each algorithm’s estimated dose-response curve and that of
the oracle method across the six experimental settings for the Job Corps dataset described in Section

(S.M.JF3).

DRKPV DRPMMR KPV PMMR KNC KAP
Set. 1 0.87+030 1.17+049 1558+238 155044 445+137 1.95£0.21
Set.2 1.78+0.83 2.02+050 430+205 0.84+0.21 2.74+1.12 9.67£2.95
Set.3 2.58+0.65 1.17+0.20 892+333 163+035 649£1.59 3.154+0.96
Set. 4 229+043 187+0.31 5.25+4.01 1.96 +£0.14 286+2.11 4.12+1.21
Set.5 1.07+0.43 0.89+0.34 1020+5.32 1.26+0.30 445+£2.29 183+0.71
Set. 6 0.99+042 1.03+0.13 499+259 0.62+0.19 287+1.02 2.70+£1.48

F.6 Ablation study: hyperparameter sensitivity on the length scale

Here, we investigate the sensitivity of our methods to the selection of the kernel length-scale hy-
perparameter, [, for the Gaussian kernel used throughout our experiments. In the main paper (and
detailed in Section (S.M.[F.I)), we employed the median heuristic to set the length scale. This process
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Figure 6: Dose-response estimation curves for the Job Corps experimental settings described in
Section (S.M. [E3). Figures (6a)-(6f) display the dose-response estimates from our proposed methods,
DRKPV and DRPMMR, compared against KPV, PMMR, KNC, KAP, and the oracle method, Kernel-
ATE.

involves setting ! equal to the 0.5-quantile of the computed pairwise distances across all training data.
To demonstrate the robustness of our proposed DRKPV and DRPMMR methods, we vary the quantile
value used for setting [ for each of the involved kernels. Specifically, we test the algorithms on the
synthetic low-dimensional setting (with ¢ = 2000) and the Legalized Abortion & Crime dataset
by varying the quantile within the set {0.25,0.4,0.5,0.6,0.75,0.9}. The corresponding results are
presented in Table (2). The table demonstrates that the performance of both DRKPV and DRPMMR
is stable across a broad range of length-scale quantile selections, and confirms that the 0.50-quantile
(median heuristic) is a robust choice. Degradation in performance is only significant at the extreme
high end of the scale (e.g., the 0.90-quantile in the synthetic dataset), indicating that our methods are
generally robust to the specific selection of .
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Table 2: Ablation study on hyperparameter sensitivity: Mean Squared Error (MSE) across different
length-scale (¢) selections for the RBF kernel. The length scale is set to the specified quantile of

pairwise distances.

Algorithm | Quantile | MSE (mean + std)
\ | Synthetic Low-Dim | Abortion & Crime
0.25 0.055 £ 0.035 0.024 £ 0.007
0.40 0.028 + 0.016 0.020 £ 0.014
0.50 (Median) |  0.026 + 0.015 0.018 + 0.010
DRKPY 0.60 0.027 + 0.018 0.019 + 0.012
0.75 0.034 £ 0.019 0.023 + 0.016
0.90 0.22 £ 0.096 0.021 + 0.018
0.25 0.026 + 0.011 0.016 = 0.005
0.40 0.020 £ 0.011 0.015 + 0.008
0.50 (Median) | 0.019 + 0.012 0.016 = 0.009
DRPMMR 0.60 0.024 + 0.018 0.018 = 0.009
0.75 0.034 + 0.033 0.025 + 0.013
0.90 0.22 £ 0.130 0.022 £ 0.015

E.7 Ablation study: performance with the Matérn kernel class

We now demonstrate the performance of our proposed methods across different kernel choices by
conducting an experiment with the Matérn kernel class in the synthetic low-dimensional setting (with
t = 2000) and the Legalized Abortion & Crime dataset.

As detailed in Section (S.M. [F.I), the Matérn kernel is controlled by the smoothness parameter v. In
this study, we focus on cases where v is a half-integer, i.e., v = p 4+ 1/2 where p is an integer. The
closed form polynomial expression is given in Equation (37).

We report the performance of our proposed methods, DRKPV and DRPMMR, for varying values of
the integer p within the set {0, 1,2, 3, 10}. This range allows us to explore kernel smoothness from
the least smooth Exponential kernel (v = 1/2, p = 0) up to an approximation of the highly smooth
Gaussian kernel (v = 10.5, p = 10).

Table 3: Ablation Study: Mean Squared Error (MSE) for various Matérn kernel selections, controlled
by the smoothness parameter « = p + 1/2.

Algorithm ‘ Smoothness Parameter (p) ‘ MSE (mean + std)

| Synthetic Low-Dim | Abortion & Crime

0@ =0.5) 0.032 £0.016 0.019 £ 0.007

1 (v =1.5) 0.022 £ 0.013 0.022 £ 0.015

DRKPV 2(v =12.5) 0.022 £ 0.013 0.020 £ 0.012
3 =23.5) 0.022 £ 0.013 0.023 £0.017

10 (v = 10.5) 0.024 £ 0.015 0.023 +£0.014

0@ =0.5) 0.029 £0.011 0.016 £ 0.003

1 (v =1.5) 0.019 £ 0.013 0.019 £ 0.009

DRPMMR 2(v =2.5) 0.019 £ 0.013 0.018 £0.010
3 =3.5) 0.018 £0.013 0.018 £ 0.010

10 (v = 10.5) 0.022 £ 0.016 0.021 £ 0.011

F.8 Scalability analysis: impact of Nystrom approximation on performance

We now analyze the computational complexity of our proposed DRKPV method and introduce the
Nystrom approximation as a technique to enhance its scalability for large datasets. While we focus
on DRKPV for simplicity, this discussion extends directly to DRPMMR.
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The DRKPV framework comprises three primary computational components: 1) the KPV algorithm
(Algorithm @), 2) the KAP algorithm (Algorithm @)), and 3) the estimation of the slack correction
term (step 3 in Algorithm (T))). We break down the complexity analysis as follows:

* KPV Algorithm (Stage 1): Utilizes n;, data samples and involves the inversion of an nj, X np
Gram matrix, yielding a complexity dominated by the matrix inversion, O(n3 ).

* KPV Algorithm (Stage 2): Uses m;, data samples and requires the inversion of mj, x m; Gram
matrix. Its complexity is therefore O(m; ).

» KAP Algorithm (Stage 1): Uses n,, data samples and involves the inverting an n, X n, Gram
matrix, with a complexity of O(n?).

» KAP Algorithm (Stage 2): The complexity is dominated by the inversion of (m,, + 1) x (m, +1)
matrix, scaling with O(mi), where m,, is the number of samples in the second stage.

* KAP Algorithm (Stage 3): Leverages t, data samples, and its complexity is governed by
inversion of ¢,, X t,, Gram matrix, scaling with O(3).

* DRKPYV - Slack correction term: As outlined in Equation (6)), this step requires inverting a ¢ x ¢
Gram matrix, where ¢ is the total number of data samples. Hence, the computational complexity

is O(t3).
In conclusion, the overall computational complexity of our method, DRKPYV, is dominated by the

inversion of the largest matrix, scaling as O(#3). This is similar to the complexity of standard kernel
methods like kernel ridge regression.

In general, the O(¢3) computational complexity is a significant bottleneck for applications involving
large datasets. To address this, we propose the Nystrom approximation as a concrete step towards
making our method more scalable.

Nystrom approximation: Recall from Equations (38)-(39), the kernel ridge regression (KRR)
estimator for the conditional mean function fy = E[Y | X = z] uses observational data {z;,y; }!_;
and is given by:

@)=Y (Kxx +tAI) "' Kx,.

As detailed in the complexity breakdown above, the required matrix inversion of the ¢ x ¢ matrix
(K xx + t\I) makes this solution expensive to compute, as the complexity scales cubically with the
number of data points. The Nystrom approximation technique [73]] tackles this bottleneck by relying
on a low-rank approximation to the Gram matrix K x x. This approximation is constructed by using
a smaller subset of landmark points {s; }}_, C {z;}!_,, where p < t. These landmarks are typically
selected using various sampling schemes [[74]]. The closed form expression with this approximation
is given by (See Eqatuion (2) in [73]):

N -1

f2) =Y Kxs (KxsKxs +t\Kss) Kz (42)
where [KXS]i,j = k)((l’i,sj‘), [Kgg]ij = kx(si,sj), and [KSar]z = k;{(s,;,z). The pI‘i—
mary computational advantage of this Nystrom form is that the matrix requiring inversion,

(KisKxs+ t)\KSS)_l, is now only p x p. Assuming that the number of landmarks p is sub-
stantially smaller than the total number of samples (p < t), the computational cost of kernel ridge
regression solution is reduced from O(t?) to O(p?t).

We apply this low-rank approximation to the computationally intensive kernel regression stages in
our DRKPYV algorithm:

» KPV (Stage 1): Kernel ridge regression from the input features {¢z(z; ® ¢4(a;))};", to the
observations {yy (w;) } ;.

* KPV (Stage 2): Kernel ridge regression from the input features {/iyy |z (%, @;) ® ¢.4(as)}i2 to
the observations {g; }." .

+ KAP (Stage 1): Kernel ridge regression from the input features {éw (w0; ® ¢.4(a;))}.7, to the
observations {¢z(2;)} .7, .

» KAP (Stage 3): Kernel ridge regression from the input features {¢ A(di)}§i1 to the observations
{502 (20) 121

* Doubly robust correction term (Equation [29): Kernel ridge regression from the input features
{pa(a)i}:_; to the observations {¢z(2;) @ P (w;) ;.
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The second-stage regression of KAP involves a more specialized setup that deviates from standard
KRR, but it is equally amenable to approximation techniques. Table [ presents synthetic low-
dimensional experiments comparing the full-kernel DRKPV to its Nystrom-approximated version
(p = 500 and p = 1000), where all regularization parameters are uniformly set to 1072, Results
clearly demonstrate that the Nystrom approximation effectively reduces the algorithm’s runtime while
maintaining or even improving prediction accuracy. Future work will also explore stronger scalable
alternatives such as scalable kernel ridge regression [75]] and the neural network approaches [[13}35]],
including for the second-stage regression of KAP.

Table 4: Performance and scalability comparison of DRKPV with Nystrém approximation in synthetic
low-dimensional experiments.

Algorithm Data Size (t) MSE (mean + std) Algo Run Time (s)
DRKPYV (Original) 5000 0.0097 & 0.0046 61.1+0.21
DRKPV (Nystrom, p = 500) 5000 0.0082 + 0.0033 42.5+0.19
DRKPV (Nystrom, p = 100) 5000 0.0071 £ 0.0028 39.2 +0.22
DRKPYV (Original) 7500 0.0070 £ 0.0033 194.5 +0.35
DRKPV (Nystrom, p = 500) 7500 0.0085 + 0.0044 132.7 £ 0.04
DRKPV (Nystrom, p = 100) 7500 0.0091 + 0.0046 127.6 +£0.00
DRKPYV (Original) 10000 0.0065 + 0.0026 453.9 +0.51
DRKPV (Nystrom, p = 500) 10000 0.0059 + 0.0014 306.7 = 0.02
DRKPV (Nystrom, p = 100) 10000 0.0062 % 0.0022 299.5 +0.00
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions and scope,
namely the development of doubly robust estimators for proxy causal learning using kernel
mean embeddings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section (6) discusses the limitations of our work and outlines future directions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

¢ While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide complete proofs and all necessary assumptions for our novel
results, referencing the Supplementary Material when needed. Assumptions and results
from prior work are properly cited and referenced.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include our Python code with instructions and dependencies in the sup-
plementary zip. Experimental setups, hyperparameters, and implementation details are
provided in Sections (5) and S.M.(F), with derivations and pseudocode in S.M. (C).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include our Python code with the supplementary zip file, along with
instructions to reproduce and required packages. Dataset sources and URLs are cited in
Sections (5) and S.M. (F). The synthetic data can be reproduced using our code or the
descriptions provided in the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full details of our experimental setup in the main text (Section (3))
and additional training details, including hyperparameter selection procedures, in the supple-
mentary material (S.M. (F)).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report results over multiple realizations and include boxplots or standard
deviation bars to illustrate the variability and statistical significance of our methods.

Guidelines:
* The answer NA means that the paper does not include experiments.
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10.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

¢ The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We did not report compute resources, as our methods are lightweight and all
experiments can be run on a standard personal computer with Python on it.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
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Justification: Our paper focuses on methodological and theoretical contributions and does
not include a discussion of broader societal impacts. We do not foresee any negative societal
impacts from the research presented.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not applicable to the research presented in this paper.

Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all datasets used: Legalized Abortion and Crime [51}152],
Grade Retention [53,[10], and Job Corps [54}55]]. We also cite the GitHub repository from
Mastouri et al. [[11] where some datasets were sourced.

Guidelines:
* The answer NA means that the paper does not use existing assets.
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14.

15.

* The authors should cite the original paper that produced the code package or dataset.
* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide well-structured code for our methods in the supplementary material
zip file, including a README with instructions to reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve research with human subjects or crowdsourcing.

Guidelines:
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16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only used for grammar and writing assistance, not for core
methodology or scientific content.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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