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Abstract

We consider minimizing a nonconvex, smooth
function f(x) subject to equality constraints
ci(x) = 0 (equivalently, x ∈ M where M is
a smooth manifold). We show that a perturbed
version of the gradient projection algorithm con-
verges to a second-order stationary point for this
problem (and hence is able to escape saddle points
on the manifold) in a number of iterations that de-
pend only polylogarithmically on the dimension
(hence is almost dimension-free). This matches
a rate known only for unconstrained smooth min-
imization. While the unconstrained case is well-
studied, our result is the first to prove such a
rate for a constrained problem, which includes
examples such as PCA, Burer-Monteiro factor-
ized SDPs, and more. The rate of convergence
depends as 1/ε2 on the accuracy ε, and also de-
pends polynomially on appropriate smoothness
and curvature parameters for the cost function and
the constraints – we define these parameters using
the explicit form of the constraints ci(x) = 0 (in a
representation-dependent fashion), but also briefly
examine a geometric alternative for the manifold
curvature. Future work will examine this geo-
metric setting further, and will consider the more
challenging problems of inequality constraints.

1. Introduction
We consider the optimization problem

minimize
x

f(x), subject to ci(x) = 0, i = 1, ...,m,

(1)
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where x ∈ Rd is the optimization variable, the constraint
set {x | ci(x) = 0} defines a (smooth) manifold M ⊂
Rd, and the function f(x) (nonconvex in general) is twice
differentiable, with a Hessian that is ρ-Lipschitz 1.

First-order optimization methods such as gradient descent
and its variants (e.g., stochastic gradients) and gradient pro-
jection methods (for constrained problems where projec-
tions can be computed) are widely used in machine learning
applications due to their simplicity and favorable computa-
tional properties. When the problem is not convex, much
of the literature focuses on rates of converges to first-order
stationary points. However, an important practical consider-
ation is how fast the algorithm converges to a local minimum
and not just any stationary point—that is, whether the al-
gorithm can escape from a saddle point efficiently, which
also means it can avoid slowing down significantly when
passing near a saddle point. This question has attracted
much interest (Lee et al., 2016; Du et al., 2017; Ge et al.,
2015; Jin et al., 2017a;b), leading to a set of results for the
smooth unconstrained minimization, reviewed below.

Smooth unconstrained minimization. IfM is the entire
space Rd, the problem reduces to an unconstrained noncon-
vex minimization problem. The algorithms as well as their
convergence rates are well understood in the convex case. In
the nonconvex case, existing analysis often focuses on the
rate of convergence to a first order stationary point (where
the gradient is 0), and in this case gradient descent is still
provably powerful. To show convergence to second-order
stationary points, the algorithm has to move away from sad-
dle points. In an asymptotic sense, this is not an issue, since
it is known that gradient descent starting from a random
initial point does not converge to a saddle point (with prob-
ability one) (Pemantle, 1990; Lee et al., 2016). However,
it is still important to quantify the rates: (Du et al., 2017)

1This problem can also be considered purely geometrically,
independent of the representation of the manifold. In this paper,
we focus on explicit constraints given by ci(x), which is more
natural in many cases, and so that our analysis will reveal the effect
of a specific representation on algorithm performance. However,
we also mention connections to intrinsic manifold parameters such
as the manifold curvature, and in the subsection 2.1 we comment
on developing similar results in purely geometric terms.
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shows that gradient descent can be exponentially slow in the
presence of saddle points, and even passing near a saddle
point can cause a significant slow down.

One way to address this issue is the cubic regularization
algorithm proposed in (Nesterov & Polyak, 2016) Define a
(ε,−√ρε) stationary point where x satisfies ‖∇f(x)‖ ≤ ε,
λmin(∇2f(x)) ≥ −√ρε. When we have access to the
Hessian or a Hessian-vector product oracle, the algorithm
(Carmon & Duchi, 2017) returns a (ε,−√ρε) stationary
point in polylog(d) iterations. This algorithm requires a
Hessian vector product oracle, and when this oracle can
be implemented efficiently (typically by taking the dif-
ference of the gradients at two close points, i.e., Hv =

lim
ε→0

∇f(x+εv)−∇f(x)
ε ), this algorithm is powerful. As a vari-

ation, trust-region algorithm is proposed in (Sun et al., 2015;
2016) and has the same convergence guarantee.

Another line of work is based on simply adding noise to
the gradient to escape from a saddle point. Although gra-
dient descent (without noise) can be exponentially slow in
escaping from saddle points (Du et al., 2017), for noisy
gradient descent, (Ge et al., 2015) and (Jin et al., 2017a)
prove the convergence of stochastic and perturbed gradient
descent to an approximate local minimizer. Compared to
Hessian vector product, gradient descent is simple to apply
and is used broadly in machine learning practice. (Jin et al.,
2017b) analyzes the noise-perturbed heavy ball method,
which increases convergence rate from Õ(ε−2) to Õ(ε−7/4).
(Allen-Zhu, 2017) proposes a stochastic gradient method
with a reasonable convergence rate Õ(ε−3.25) to converge
to (ε,−ε1/4) stationary points.

Equality constrained minimization. For a problem with
equality constraints (or a manifold constraint) the conver-
gence to first order stationary points is well studied (e.g.,
(Tripuraneni et al., 2018; Zhang et al., 2016)). Also (Boumal
et al., 2018) shows that second order algorithms, such as
trust region methods, converge to second order stationary
points.

With exception of appendix B of (Ge et al., 2015), all exist-
ing results on rates of escape from saddles with (noisy) first
order methods apply only to smooth unconstrained prob-
lems. In this case, the Hessian of the function captures the
local curvature, and the direction that decreases the function
value is a negative eigenvector of the Hessian.

Far less is known about constrained problems; even those
with equality (or manifold) constraints only. The only
known rate analysis is given in (Ge et al., 2015) for stochas-
tic projected gradient descent on a manifold parameterized
by a set of equalities ci(x) = 0, i = 1, ...,m where each
constraint ci(x) is smooth. The convergence rate, however,
is polynomial in the problem dimension d, mainly due to
the fact that “too much noise" is introduced in the stochastic

oracle.

Contributions. In this paper, we show that for the con-
strained optimization problem of minimizing f(x) subject
to a manifold constraint (or a set of equality constraints
ci(x) = 0), as long as the function and the manifold are
appropriately smooth, a perturbed projected gradient de-
scent algorithm will escape saddle points with a rate that
has an 1/ε2 dependence on the accuracy ε, a polynomial
dependence on the curvature and smoothness parameters,
and more importantly, a polylogarithmic dependence on
the problem dimension (hence the complexity is almost
dimension-free). This improves the rate of the best known
result for equality-constrained optimization, which was poly-
nomial in dimension(Ge et al., 2015). We also give the ex-
plicit dependence of the rate of convergence on the smooth-
ness parameters.

2. Perturbed projected gradient descent with
equality constraints

We begin by defining parameters that capture the smooth-
ness and curvature of the manifold in problem (1). Us-
ing the notation in (Ge et al., 2015), we represent the
manifold by equalities ci(x) = 0, i = 1, ...,m, and as-
sume ci(x) has βi-smooth gradients. We also assume con-
straints ci, i = 1, ...,m satisfy the so-called αc-RLICQ
(robust linear independence constraint qualification) (Ge
et al., 2015), i.e., the smallest singular value of the matrix
C = [∇c1(x), ...,∇cm(x)] is αc. This is a robust variant of
the well known LICQ (Wright & Nocedal, 1999).

Define the parameter R = (
m∑
i=1

β2
i

α2
c
)−1/2 = αc/

√∑
i β

2
i ,

which can be seen as a lower bound on the radius of the man-
ifold. Lemma 1 is a restatement of the geometric lemmas
25-27 in (Ge et al., 2015).
Lemma 1. (Ge et al., 2015) We have the following conclu-
sions about R,

• ∀x, x0 ∈M, ‖PT cx0 (x− x0)‖ ≤ 1
2R‖x− x0‖2,

• ∀x, x0 ∈M, y ∈ T cx , ‖PTx0 y‖ ≤
1
R‖x− x0‖‖y‖,

• ∀x ∈M, y ∈ Tx, ‖x+ y − PM(x+ y)‖ ≤ 4‖y‖2
R .

Here, Tx denotes the tangent space of M at x, T cx is its
orthogonal complement (the normal space), and P denotes
orthogonal projection onto a subspace. The following is
our main theorem, which gives the convergence rate of
Algorithm 1 to a second-order stationary point (therefore
escaping saddles) in time 1/ε2 and with only polylogarith-
mic dependence on the dimension d. This is the first almost
dimension-free rate for a nonconvex constrained problem
using (noisy) first order methods.
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The parameters appearing here are all associated with the
smoothness of the Lagrangian L(x, λ∗(x)): l denotes its
Lipshitz constant of L(x, λ∗), βL is the Lipshitz constant of
its gradient, and ρ is the Lipshitz constant of its Hessian.
Theorem 1. Let L(x, λ∗) denote the Lagrangian for
problem (1) with λ∗(x) = argminλ‖∇xL(x, λ)‖2.
Suppose L(x, λ∗) is l Lipschitz, βL smooth, has a ρ
Lipschitz Hessian, and the constraint manifold has
radius R. Then with probability 1 − δ, Algorithm 1 takes
O(max{1, ( l

βLR
)2, ( βLρR )3}βL(f(x0)−f∗)

ε2 log4(dβL(f(x0)−f∗)
ε2δ ))

iterations to reach an (ε,−√ρε)-stationary point.

2.1. Relation to geometric manifold parameters

In this subsection, we examine how the parameter R, which
we defined based on the representation given by ci, relates
to the intrinsic (representation independent) manifold curva-
ture. Let dist(x) : Rd → R denote the distance toM,

dist(x) = min
u∈M

‖x− u‖.

The tangent space and normal space are defined by
directional derivative of dist(x), i.e., dist′(x; v) =
‖PT cx (v)‖, x ∈M. For a manifold, define the smoothness
parameter βM by∣∣dist(x+ y)− dist(x)− ‖PT cx (y)‖

∣∣ ≤ 1

2
βM‖y‖2, x ∈M.

(2)

Note that x ∈M, so dist(x) = 0. Now we restate Lemma 1
in terms of βM which does not depend on the representation.
We show in the supplement that the three inequalities in
Lemma1 hold if we setR = 8/βM. It follows that Theorem
1 can also be expressed in terms of parameter βM.
Theorem 2. Suppose f(x) is smooth in Rd, and the opti-
mization problem is defined on a manifold with smooth-
ness parameter βM. Suppose f(x) is smooth on the
manifold with the following parameters ‖PTx∇f(x)‖ ≤
l, ‖∇xPTx(∇f(x))‖ ≤ βL, and ‖∇xPTx(∇f(x)) −
∇yPTy (∇f(y))‖ ≤ ρ‖x− y‖. Then with probability 1− δ,
Algorithm 1 converges to a (ε,−√ρε)-stationary point (sat-
isfying ‖PTx∇f(x)‖ ≤ ε, vT∇xPTx(∇f(x))v ≤ −√ρε
for all v ∈ Tx, ‖v‖ = 1) in

O( max{1, ( lβM
βL

)2, (
βLβM
ρ

)3}·

βL(f(x0)− f∗)
ε2

log4(
dβL(f(x0)− f∗)

ε2δ
))

iterations.

3. Proof Sketch
The proof adapts ideas from (Jin et al., 2017a), which is
restricted to the unconstrained problem. For ease of notation,
we let R = 8/βM in the proof, and use Lemma 1.

Algorithm 1 Perturbed projected gradient algorithm

Require: Function f(x), initial point x0 ∈ Rd, parameters
l, βL, ρ (associated with the Lagrangian), accuracy ε.M
is the manifold defined by ci(x) = 0, i ∈ [m], with
projection PM; Tx is the tangent space toM at x. B0(r)
is the Euclidean ball of radius r.
Set constants: ν = ρR

ρR+8βL
, r = cν

χ2 ε, χ =

3 max{log(
dβL∆f

cε2δ ), 4}.
Set threshold values: fthres = cν

χ3

√
ε3

ρ , gthres =
√
cν
χ2 ε,

tthres = χ
c2

βL√
ρε , tnoise = −tthres − 1.

Set stepsize: η = cmax

βL
, cmax = O(1, βLR/l, ρR/βL)

chosen properly (described in appendix).
while 1 do

if ‖PTxt∇f(xt)‖ ≤ gthres and t−tnoise > tthres then
tnoise ← t, x̃t ← xt, xt ← PM(xt + ξt), ξt uni-
formly sampled from B0(r).

end if
if t− tnoise = tthres and f(xt)− f(x̃tnoise) > −fthres

then
output x̃tnoise

end if
t← t+ 1.
xt ← PM(xt−1 − ηPTxt−1

∇f(xt−1)).
end while

3.1. Case 1: When the gradient is large

We first consider the case where the norm of the gradient is
large, i.e., ‖PTx∇f(x)‖ ≥ ε. Then

f(x− ηPTx∇f(x)) ≤ f(x)− η‖PTx∇f(x)‖2

+
η2βL

2
‖PTx∇f(x)‖2.

And the increase in the function value caused by projection
is upper bounded by

f(PM(x− ηPTx∇f(x)))− f(x− ηPTx∇f(x))

≤ l‖PM(x− ηPTx∇f(x))− (x− ηPTx∇f(x))‖

+
βL
2
‖PM(x− ηPTx∇f(x))− (x− ηPTx∇f(x))‖2

≤ 4η2‖PTx∇f(x)‖2l
R

+
16η4βL‖PTx∇f(x)‖4

R2
.

The last line uses that ‖PM(x − ηPTx∇f(x)) − (x −
ηPTx∇f(x))‖ ≤ 4‖PM(x − ηPTx∇f(x)) − (x −
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ηPTx∇f(x))‖2/R from Lemma 1. So

f(PM(x− ηPTx∇f(x)))

≤ f(x)− (η − η2

2βL
− 4η2l

R

− 16βLη
4‖PTx∇f(x)‖2

R2
)‖PTx∇f(x)‖2

≤ f(x)− (η − η2

2βL
− 4η2l

R
− 16η4βLl

2

R2
)‖PTx∇f(x)‖2.

Let η = cmax

βL
≤ 1

80 min(1, βLRl )/βL, then when gradient is
bigger than ε, with one iteration the function value decreases
at least 1

4 (cmaxε
2/βL).

3.2. Case 2: Saddle point

Now we observe how the algorithm works at a saddle
point on the manifold, where ‖PTx∇f(x)‖ ≤ ε and ∃v ∈
Tx, vT∇xxL(x, λ∗)v ≤ −γ. For notation simplicity, de-
note gL(x) = PTx∇f(x) = ∇xL(x, λ∗), ∇xxL(x, λ∗) =
HL(x). Denote the current iterate by xt0 . Following (Jin
et al., 2017a), denote

ν =
ρR

ρR+ 8βL
, H = log(

dβL
γδ

),

F = ηβLν
γ3

ρ2
H −3, G =

√
ηβLν

γ2

ρ
H −2,

S =
√
ηβLν

γ

ρ
H −1, T =

H

ηγ
,

f̃y(x) = f(y) + gL(y)T (x− y)+

1

2
(x− y)TPTxt0HL(xt0)PTxt0 (x− y).

We need Lemma 2, which is similar to Lemma 16 and 17 in
(Jin et al., 2017a). Here is a sketch of the proof. The first
point says that, if the function value is not decreased, then
the iterates stay close to the saddle points; the second point
says that, if the iterates stay close to the saddle points, then
the norm of the movement’s projection onto the smallest
eigenvector increases, and by contradiction, iterates escape
from the saddle point. In the supplement, we prove these
two points.

Lemma 2. Let ‖gL(xt0)‖ ≤ G and
λmin(PTxt0HL(xt0)PTxt0 ) ≤ −γ. There exists a

constant cmax such that ∀ĉ > 3, δ ∈ (0, dκe ], for any
ut0 with ‖ut0 − xt0‖ ≤ 2S /(κ log(dκδ )), κ = βL/γ the
following holds.

• Define

T = min
{

inf
t

{
t|f̃ut0 (ut)− f(ut0) ≤ −3F

}
, ĉT

}
,

then ∀η ≤ cmax/l, we have ∀t0 < t < t0 + T , ‖ut −
x‖ ≤ 200(ĉS ).

• Take two points ut0 and wt0 which are perturbed
from the saddle point (by adding noise to each point),
where ‖ut0 − xt0‖ ≤ r, wt0 = ut0 + µ0re1, e1 is
the smallest eigenvector of HL(xt0), r = S

κ log( dκδ )
,

µ0 ∈ [δ/(2
√
d), 1], and the algorithm runs two se-

quences {ut} and {wt} starting from ut0 and wt0 . De-
note

T = min
{

inf
t

{
t|f̃wt0 (wt)− f(wt0) ≤ −3F

}
, ĉT

}
,

then ∀η ≤ cmax/l, if ∀t0 < t < t0 + T , ‖ut − x‖ ≤
200(ĉS ), we have T < ĉT .

4. Conclusions and Discussion
We have shown that for the constrained optimization prob-
lem of minimizing f(x) subject to a manifold constraint
(or a set of equality constraints ci(x) = 0), as long as
the function and the manifold are appropriately smooth, a
perturbed projected gradient descent algorithm will escape
saddle points with a rate that has an 1/ε2 dependence on
the accuracy, a polynomial dependence on the curvature and
smoothness parameters, and more importantly, a polylog
dependence on the problem dimension (hence it the number
of iterations is almost dimension-free). This improves the
rate of the best known result for constrained optimization,
which was polynomial in dimension (Ge et al., 2015).

Future work with examine modifying the algorithm in
(Tripuraneni et al., 2018) to get an algorithm using the
Riemannian gradient. This is not immediate, because the
retraction map, as an approximated tangent space and mani-
fold mapping, does not appear to yield a sufficiently tight
error bound to prove Lemma 2.

Things become more difficult when the constraints consist
of inequalities. The RLICQ assumption used here is no
longer applicable. As an example, consider ci(x) = xi,
i = 1, ..., d−1 where x ∈ Rd. C is identity without the last
column, whose smallest singular value is 1. If the constraint
is ci(x) = 0, then we have a subspace xd axis, which is easy
to optimize over. If the constraint is ci(x) ≥ 0, the problem
is min f(x), s.t., xi ≥ 0, i = 1, ..., d − 1. Finding its
local minimum falls into an NP-complete problem (Murty
& Kabadi, 1987).

A natural extension of our result is to consider other vari-
ants of gradient descent, such as the heavy ball method,
Nesterov’s acceleration, and the stochastic setting. The
question is whether these algorithms with appropriate modi-
fication (with manifold constraints), would perform not too
differently from the unconstrained case, and whether it is
possible show the relationship between convergence rate
and smoothness of manifold.
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