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Abstract

While data-driven methods such as neural opera-
tor have achieved great success in solving differ-
ential equations (DEs), they suffer from domain
shift problems caused by different learning envi-
ronments (with data bias or equation changes),
which can be alleviated by transfer learning (TL).
However, existing TL methods adopted in DEs
problems lack either generalizability in general
DEs problems or physics preservation during
training. In this work, we focus on a general
transfer learning method that adaptively correct
the domain shift and preserve physical informa-
tion. Mathematically, we characterize the data
domain as product distribution and the essential
problems as distribution bias and operator bias.
A Physics-preserved Optimal Tensor Transport
(POTT) method that simultaneously admits gener-
alizability to common DEs and physics preserva-
tion of specific problem is proposed to adapt the
data-driven model to target domain utilizing the
pushforward distribution induced by the POTT
map. Extensive experiments demonstrate the su-
perior performance, generalizability and physics
preservation of the proposed POTT method.

1. Introduction

Many scientific problems, such as climate forecasting (Wu
et al., 2023; Verma et al., 2024) and industrial design (Zhou
et al., 2024; Borrel-Jensen et al., 2024), are modelized by
differential equations (DEs). In practice, DEs problems
are usually discretized and solved by numerical methods

since analytic solutions are hard to obtain for most DEs.

However, traditional numerical solvers typically struggle
with expensive computation cost and poor generalization
ability. Recently, dealing DEs with deep neural network has
attracted extensive attention. These methods can be roughly
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divided into two categories: physics-driven and data-driven.
Physics-driven methods such as Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2019; Meng et al., 2024)
optimize neural networks with objective constructed by
equations formulation to approximate the solution func-
tion. Although PINNs methods have great interpretability,
they also suffer from the poor generalization capability and
the requirement of exact formulation of DEs. Data-driven
methods such as DeepONet (Lu et al., 2021) and Fourier
Neural Operator (FNO) (Li et al., 2021) take the alterable
function in the equations as input data and solution function
as output data. The generalization capability of neural oper-
ator models are markedly improved because they can cope
with a family of equations rather than one.

However, data-driven methods are highly dependent on iden-
tical assumption of training and testing environments. If the
testing data comes from different distribution, model per-
formance may degrade significantly. In practice, however,
applying model to a different data distribution is a common
requirement, e.g. from simulation data to experiment data
(Liu et al., 2023). While it is hard to collect sufficient data
from a new data domain, transfer learning (TL) that aims
to transfer model from source domain with plenty of data
to target domain with inadequate data, is widely adopted in
real-world applications (Zhang et al., 2023).

In this work, we carefully analyze the transfer learning set-
tings in DEs problems and modelize the essential problem as
distribution bias and operator bias. Given such perspective,
we fully investigate the existing TL methods used in DEs
problems. Technically, they can be summarized as three
types. (1) Analytic methods (Desai et al., 2022) induce
an analytic expression for parameters of target model, so
the model can be adapted to target domain with few sam-
ples. Nevertheless, they are only feasible in few problems
with nice properties and hence not a general methodology.
(2) Finetuning (Subramanian et al., 2023) the well-trained
source model by target data. It is widely-used in DEs prob-
lems with domain shift due to its simplicity. (3) Domain
Adaptation (DA) (Wang et al., 2024) methods developed
in other areas, e.g., computer vision (CV). They typically
align feature distributions of source and target domains and
remove the domain-specific information, so the aligned fea-
ture is domain-invariant and the predictor trained on source
feature distribution can generalize to target features. Among
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Table 1. Benchmarks used for experiments. The 1st column describes the basic information of the equation and the input and output
functions of the DEs problem. Figures in D1, D2 and D3 are examples of (input,output) pairs from different domains in the transfer tasks.
For 1-d curve plot, the filled regions represent the areas between the curve and the x-coordinate. For 2-d surface plot, the pixel value at
each image pixel corresponds to the function value at the sampling point. Brighter color (yellow) indicates larger value.
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these methods, analytic methods and finetuning directly cor-
rect the operator bias while the DA methods correct the
distribution bias. Nevertheless, when the amount of avail-
able target data is limited, directly correcting operator bias
by finetuning is insufficient. On the other hand, if we only
correct the distribution bias through feature alignment, the
physical relation of DEs may not necessarily be valid in the
aligned feature space, which will eventually fail the oper-
ator bias correction. Therefore, it is important to develop
a general physics-preserved method that can transfer the
model with only a small amount of target data.

Our idea is to characterize the target domain with physics
preservation and then fully correct the operator bias. Specif-
ically, we propose the Physics-preserved Optimal Tensor
Transport (POTT) method to learn a physics-preserved op-
timal transport map between source and target domains.
Then the target domain together with its physical structure
are characterized by the pushforward distribution, which
enables a more comprehensive training for model transfer
learning. Thus, the model’s generalization performance on
target domain can be largely improved even when only a
small number of target samples are available for training.

We conduct evaluation and analysis experiments on different
types of equations with transfer tasks of varying difficulties.
Experimental results demonstrate that POTT outperforms
existing transfer learning methods used in DEs problems.
Our contributions are summarized as follows:

* A detailed analysis of transfer learning for DEs prob-
lems is presented, based on which we propose a fea-
sible transfer learning paradigm that simultaneously

admits generalizability to general DEs problems and
physics preservation of specific problems.

* We propose POTT method to adapt the data-driven
model to target domain utilizing the pushforward distri-
bution induced by the POTT map. A dual optimization
problem is formulated to explicitly solve the optimal
map. The consistency property between the solution
and the ideal optimal map is presented.

* POTT shows superior performance on different types
of equations with transfer tasks of varying difficulties.
Intuitive visualization analysis further supports our
discussion on the physics preservation of POTT.

2. Related Works

2.1. Data-driven methods for DEs problems

In DEs problems, data-driven methods aim to learn the op-
erator between functions. The most widely-used models
are DeepONet, FNO and their variants. Lu et al. (2021)
proposed DeepONet based on the universal approximation
theorem (Chen & Chen, 1995). MIONet (Jin et al., 2022)
extends DeepONet to solve problems with multiple input
functions and Geom-DeepONet (He et al., 2024) enables
DeepONet to deal with parameterized 3D geometries. Li
et al. (2021) proposed FNO by approximating integration
in the Fourier domain. Geo-FNO (Li et al., 2023a) ex-
tends FNO to arbitrary geometries by domain deformations.
F-FNO (Tran et al., 2023) enhances FNO by employing
factorization in the Fourier domain. Recently, transformer
have also been used to construct neural operators (Li et al.,
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2023b; Hao et al., 2023; Li et al., 2023c; Wu et al., 2024).
Although having achieved great success, these data-driven
methods induce a common issue: they are highly dependent
on identical assumption of training and testing environments.
If the testing environment differs, the performance of the
neural operators will significantly degrade.

2.2. Transfer learning

Most transfer learning methods are proposed for Unsuper-
vised Domain Adaptation (UDA) with classification task.
They align the feature distributions of source and target do-
main by distribution discrepancy measurement (Long et al.,
2015), domain adversarial learning (Ganin et al., 2016; Chen
et al., 2022), etc. Recent methods (Chen et al., 2021; Ne-
jjar et al., 2023; Yang et al., 2025) further extend DA to
regression settings with continuous variables. For DEs prob-
lems, Desai et al. (2022) presents analytic transfer methods
for specific equations; finetuning (Xu et al., 2023; Subrama-
nian et al., 2023) and DA methods (Goswami et al., 2022;
Wang et al., 2024) are applied in various tasks. However,
there isn’t a general physics-preserved transfer learning
method developed for DEs problems.

2.3. Optimal transport

OT has been quite popular in machine learning area (Cu-
turi, 2013; Courty et al., 2016). To deal with data of large
scale and continuous distribution, neural OT (NOT) meth-
ods are proposed (Seguy et al., 2018; Korotin et al., 2023).
They typically train the neural network to approximate the
OT map via constructing objective function by various OT
problems (Fan et al., 2023; Asadulaev et al., 2024).

3. Analysis and Motivation
3.1. Problem Formulation

Now we formally modelize the transfer learning settings for
DEs problems. Consider two function space Dy, D,, with
elements k : Q; — R, v : Q, — R. Denote the product
spaces as D = Dy, x D,, and 2 = Qy, x . Suppose there
exist physical relations within the product space D, which
can be characterized as following two forms:

F(k,u) = 0 (Equation form) (D
G(k) = u (Operator form) 2)

Obviously, relation Eq. (2) is the explicit form of the implicit
operator mapping determined by Eq. (1), whose existence
is theoretically guaranteed under certain conditions. Once
the operator G : Dy — D, is solved, we can predict the
desired physical quantities u for a group of k. However,
directly solving the implicit function from Eq. (1) is of-
ten extremely difficult. In such cases, fitting G by neural
network with collected data set {(k, u)} provides a prac-

tical way for numerical approximation, which is exactly
the goal of data-driven methods. Here we slightly abuse
the notations k£ and u to represent both functions and their
discretized value vectors.

An essential limitation is that the learning of the operator
network G depends heavily on the distribution of collected
data. Let P*, P* € Pp be two product distributions sup-
ported on the source and target domain D*, Dt C D, re-
spectively. Then the operator trained from them, denoted
as QS and Gt, are in fact the approximations of G* := G|p-
and Gt := G|pt. When distribution shift occurs between
P¢ and P!, the operator relation also differs. So the transfer
learning problem for DEs can be modelized as

P3(k,u) # P'(k,u),
= G #G.

(Distribution bias)
(Operator bias)

In this situations, the model performance usually degrades
if G* is applied on D! directly. While collecting sufficient
training data is rather difficult in many applications scenar-
ios, a common requirement is to transfer G* to D! with a
small amount of target domain data available.

Formally, given D5 = {(k$, u$)}?",, Dt = {(K5,u}) ?;1,
where nt < n®, the task is to transAfer source model QS to
target domain D? with collected D! and approximate the

physical relation G, i.e. to correct the operator bias.

3.2. Methodology Analysis

Based on problem 3, existing transfer learning methods
either directly correct the operator bias or indirectly correct
the operator bias by aligning the feature distributions, all of
which are subject to certain limitations.

Analytic methods directly correct the operator bias by de-
riving analytic expressions

Gt = H.(G*, DY), )

where H, denotes the ideal analytic formulation. Although
such methods exhibit excellent interpretability, they require
precise physical priors such as the explicit form of the equa-
tion, which is extremely difficult for most of DEs problems.
Therefore, they can only be applied to a limited amount of
problems with well-behaved equations.

Finetuning by target domain data also directly corrects
the operator bias, which only further trains the source model
with collected target data:

Gt = min Liasi(D'; Gs), Q)

where L,51 denotes the task-specific training loss. It does
not actively and fully leverage the knowledge of available
source and target domain data. More importantly, when the
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Figure 1. Visualization of COD in task D3 — D3 on Darcy flow.
Figures in the 1st row and 2nd row come from the source do-
main D3 and the target domain Ds respectively. The 1st and
2nd columns present the input and output function sample pairs.
The 3rd column shows the visualization of the corresponding fea-
ture maps from the aligned feature distributions of samples in 1st
column. Features from source and target are analogous but con-
fused. And the physical relation may not necessarily be valid in
the aligned feature space. The prediction shown in the 4th column
shows that the physical structures of u are not fully preserved.

feature

COD pred.

amount of available target data is limited, the predictions of
target samples often exhibit characteristics similar to those
of the source samples because small amount of data is not
enough for parameters of the model to adapt to the target
domain, as discussed in Sec. 5.4.

Distribution alignment methods from DA indirectly cor-
rect the operator bias by aligning the feature distributions.
These methods typically aim to learn a feature map and a
corresponding feature space in which the source and tar-
get feature distributions are aligned. Therefore, a predictor
trained by the source domain features can be expected to
perform well on target domain features:

g* =min dist(gxP*, g P")
9

5¢ . * (NS * (NE 5 (6)
G" =min Luasi(g (D*)U g (D"); G%),

where dist(-, -) denotes a measurement of distribution dis-
crepancy, g is the learned feature map, g P*, g4 P" are the
pushforward feature distributions. DA method is purely
data-driven without the need of physical priors so it is a
general methodology that can be used in most scenarios.
However, the two feature distributions are aligned by remov-
ing the domain specific knowledge so the domain invariant
representations are obtained. In other words, the aligned
feature distribution may lose some domain specific physical
relations of both domain. As shown in Fig. 3.2, the features
of source and target samples are analogous but confused.
It is unclear whether the physical relations are preserved,
which is also indicated by the output of learned Gt.

Motivation of POTT. Generally speaking, apart from an-
alytic methods that are not visable in most cases, directly

correcting operator bias by finetuning only partially trans-
fers with limited target data, while indirectly operator bias
via feature distribution alignment may distort the physical
relations of the DEs problem. Therefore, we propose to
correct the operator bias by characterizing the target domain
with physics preservation and then fully adapting G' to D"

D" =H.(D*, D", R)

4 A PPN 7
G =it Loi(D"UDG), @
where H,, is the formulation that characterizes D! , D is an
approximation of D* and R is the physical regularization.

4. POTT Method

The major obstacle in Eq. (7) is to construct the .. A prac-
tical way is to learn a physics-preserved map 7 between the
product distributions P*(k,u) and P*(k,u), so the target
distribution P! can be characterized by the pushforward
distribution P" = TP, i.e. H.(-) = T(D*).

While the exact corresponding relations between samples
from P* and P! is unknown, it is impractical to train 7 by
traditional supervised learning. In other words, 7 shall be
trained via an unpaired sample transformation paradigm.

In optimal transport (OT) theory, an optimal transport map
between two distributions is the solution of a OT problem
and the computation of the OT problem does not need paired
samples. Therefore, a natural idea is to modelize the ideal
map 7 by an optimal transport map between P* and P?
with physical regularization. In the following sections we
regard the desired map as the OT map T, distinguishing
from map 7' that is not necessary optimal.

4.1. Formulation of POTT
The most widely known OT problems are the Monge prob-
lem and the Kantorovich problem defined as follows:

M(P*,P") = inf /S c(x, T(x)) dP°(x) Q)

Ty Ps=P!

K(P*, Py = inf
n€Il(Ps,Pt)

/ c(x,y) dr(z,y), (9)
Qs xQt

where c¢(x, y) denotes the cost of transporting z € Q°toy €
QLT : Q° — QF denotes the transport map, 7% P* denotes
the pushforward distribution, and IT(P%, P!) denotes the set
of joint distributions with marginals P* and P*.

The Monge problem aims at a transport map 7 that min-
imize the total transport cost, which is called the Monge
map. However, usually the solution of the Monge prob-
lem does not exist, so the relaxed Kantorovich poblem
is more widely used. The Kantorovich problem can be
solved as a linear programming problem. With an en-
tropic regularization added, it can be fastly computed via
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P’ (k,u) ;
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Figure 2. llustration of POTT. Left: Illustration of problem formulation. The distribution bias leads to the bias of physics, i.e. the operator
bias. The task of transfer learning is to correct the operator bias. Right: POTT correct the operator bias by characterizing D* in a
physics-preserved way. (0) Before the model transfer process, source model G is pretrained with sufficient source data. (1) The POTT
map T between source and target domain is firstly learned. (2) The target distribution P’ is characterized by pushforward distribution

P". (3) G* is adapted to G* with Dt and D"

the Sinkhorn algorithm. Moreover, if 7* takes the form
7 = [id, T)x P* € II(P*, P"), then T is the Monge map.

Our purpose is to characterize P' by P" = Tz P*, so we
focus on the Monge problem. Actually, the physical rela-
tion in DEs problems is a constraint between the marginal
distributions P, and P,,. Thus, rather than consider a com-
mon Monge problem, a more reasonable perspective is to
consider an OT problem between two product distributions,
which is known as the Optimal Tensor Transport (OTT)
problem. Under this perspective, we propose the physics-
preserved optimal tensor transport (POTT) problem:

Definition 4.1 (POTT). Given two product distributions
Ps,P' € Pp, «xp,, define the physics-preserved optimal
tensor transport (POTT) problem as:

inf / c((k,u), T(k,u))dP® 4+ R(Tg,Ty,), (10)
TuPs=Pt [p.
where T' = (T, T,,), T, = T'|p,, T = T|p, . the physical
regularization R (7}, T,,) depends on the physical relation
between the marginal distribution of P".

Specifically, when the pushforward distribution P" perfectly
matches the target distribution P?, the physical relation
within is also obtained. Howeyver, it is hard to achieve in
practice and P" should be regarded as an approximation
or a disturbance of P!. Then we expect P to preserve the
physical relation or, in other words, to approach P! in a
physics-preserved way. We proposed a form of the physical
regularization as

R(Ty, Tw) = m(G(K"),u"

)
= m(GT (k) Tu(w), O

where the m(-, -) is a metric on D,,, e.g. the L2 norm.

4.2. Optimization and Analysis

Existing OTT methods (Kerdoncuff et al., 2022) mainly
focus on the discrete case of entropy-regularized OTT and
solve the optimization problem via the Sinkhorn algorithm,
which is not suitable for OTT with physical regularization.
Motivated by NOT methods, we explicitly fit 7 by a neural
network. A common way to optimize a neural network is
to update the parameters by the gradient of training loss.
But Eq. (10) is a constrained optimization problem and it is
challenging to satisfy the constraint during the optimization
process. Therefore, we introduce the Lagrange multiplier
and reformulate Eq. (10) to the unconstrained dual form.

supinf / ¢ ((k,u), T(k,w)) — F(T(k, w)
;T s (12)
+ Am(GTy(k*), Ty (u®))dP* + | f(k,u)dP".
Qt
Optimization with gradient descent tends to converge to a
saddle point (T*, f*). Following previous work (Fan et al.,
2023), we can verify the consistency between 7™ and 7.

Theorem 4.2 (Consistency). Suppose the dual problem
Eq. (12) admits at least one saddle point solution, denoted
as (T*, f*). Let L be the objective of Eq. (12). Then

e the dual problem Eq. (12) equals to the Kantorovich
problem with physical regularization in terms of total
cost, i.e. L(P*,T*, f*) = K(P*, P') + R(T™).

 fTLP° = P?, then Eq. (12) degenerates to the dual
form of the primal Monge problem Eq. (8), T* is a
Monge map, i.e. L(P%,T*, f*) = M(P*, P!).

The proof of Thm 4.2 can be found in Appendix B. Theo-
retically, if the Monge map exists, i.e. P" = P?, then P"
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Table 2. Evaluation results of Burgers’ equations. The source and target domain of each task are shown in the 1st row. The amount of
available target data is shown in the 2nd row. Relative MSE is recorded. The smaller value is better. The best result of each task is in bold.

D1 — Do D1 — Ds Ds — Do AVERAGE

METHOD 50 100 50 100 50 100 50 100

TARGET ONLY 0.1842 0.1229 | 0.1173 0.0968 | 0.1842 0.1229 | 0.1619 0.1142
SOURCE+TARGET | 0.3960 0.3982 | 0.3486 0.3350 | 0.3145 0.2930 | 0.3530 0.3421
FINETUNING 0.2001 0.1191 | 0.1049 0.0801 | 0.1546 0.0938 | 0.1532 0.0977
TL-DEEPONET 0.1623 0.1182 | 0.1275 0.1127 | 0.1763 0.1436 | 0.1554 0.1248
DARE-GRAM 0.1727 0.1145 | 0.1241 0.1099 | 0.1752 0.1393 | 0.1573 0.1212
COD 0.1713 0.1225 | 0.1288 0.1105 | 0.1818 0.1525 | 0.1606 0.1285
POTM \ 0.1528 0.0965 \ 0.0950 0.0705 \ 0.1249 0.0757 \ 0.1242  0.0809

automatically admits the physics contained in P!. The solu-
tion of the Monge problem is the desired physics-preserved
OT map. However, as mentioned in Sec. 4.1, in most cases
the Monge problem has no solution and the Monge map
does not exists. Therefore, the saddle point 7™ is not an
optimal solution of the physics-regularized Monge prob-
lem. In this situation, Thm 4.2 states that Eq. (12) equals to
physics-regularized Kantorovich problem in terms of total
cost. Thus, the learned 7™ can be regarded as a compromise
solution between the Monge problem and the Kantorovich
problem. Importantly, the physical regularization encour-
ages physics preservation during the training process of
T, which is crucial for the approximation of P?. Further
illustration can be found in Sec. 5.5.

In practice, we parametrize the map 7', dual multiplier f
and the operator G by neural networks Tp, f, and G, with
parameters denoted by 6, ¢ and 7). k£ and w are discretized
into vectors and an alternative of the metric m(-,-) is the
L2 norm in the vector space. Besides, the operator G in the
physical regularization term Eq. (11) is substituted by the
finetuned G/, as an approximation. So the overall objective
of POTT method is

maxmin Y c((kf,u3), To(ki, uf)) — fo(To(k], u;
¢X0;((z ) To (ks ui)) = fo(To(K7, ui))
+AIGER = ufll3 + D fo(kf,ub)
=1

Hlnil’l Z ﬁtask (g}](k;), U;) + 6 Z Aétask (gAf,(k:)a Uf),
=1 =1

(13)
where k] = Ty, (kf),ul = Ty, (ui). Liask is the task
specific loss. A and 8 are hyper-parameters. An intuitive

illustration is shown in Fig. 4.1.

5. Experiment

We conduct evaluation and analysis experiments on three
different equations with transfer tasks of varying difficulties.
Implementation details are provided in Appendix C.

5.1. Benchmarks

Following previous works, we take the 1-d Burgers’ equa-
tion, 1-d space-time Advection equation, and 2-d Darcy
Flow problem as our benchmarks. A brief introduction of
these DEs problems and the transfer tasks can be found in
Tab. 1. To simulate scenarios of domain shift, we adjusted
the sampling distribution of input functions and the param-
eters of the equations to generate three different domains
for each equation, denoted as D1, D, and Ds. We generate
1000 training samples for each domain of Burgers’ equa-
tion and 2000 samples for Advection equation and Darcy
Flow. Model trained with such number of samples can be
regarded as oracle of the domain. To fully investigate the
effectiveness of transfer learning methods in DEs problems,
we consider two scenarios that only 50 and 100 target data
samples are available for training. For all transfer tasks, we
use 10 extra target domain samples for validation and 100
for testing. The relative Mean Square Error

,',,MSE — ||up7“€d _ ugt”%
gt 13

(14)
is reported, where u4¢ denotes the ground truth of output u.

5.2. Comparision methods

As discussed in Sec. 3.2, analytic methods are hard to apply
in general data-driven DEs methods. So we compare POTT
with finetuning and DA methods.

Finetuning. Finetuning is the most widely used transfer
method in DEs problems. So we regard it as the baseline
for comparision. Besides, training from scratch with target
data and training from scratch with mixed data from both
domains are also included as baseline methods, denoted by
Target only and Source+Target, respectively.

DA methods. Both the input and output functions of DEs
problems are continuous variables, which means the transfer
learning problem should be categorized as Domain Adapta-
tion Regression (DAR) problem. TL-DeepONet (Goswami
et al., 2022) is a representative method proposed for DEs
problems. Besides, we adopt state-of-the-art DAR methods
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Table 3. Evaluation results of Advection equations.

D1 — Do Dy — D1 D3 — Do AVERAGE
METHOD 50 100 50 100 50 100 50 100
TARGET ONLY 0.2162 0.1261 | 0.1585 0.1182 | 0.2162 0.1261 | 0.1970 0.1235
SOURCE+TARGET | 0.2347 0.1400 | 0.7299 0.4041 | 0.3969 0.1574 | 0.4538 0.2338
FINETUNING 0.0247 0.0143 | 0.2193 0.0891 | 0.1257 0.0723 | 0.1532 0.0977
TL-DEEPONET 0.0587 0.0127 | 0.2365 0.1047 | 0.1534 0.0685 | 0.1495 0.0620
DARE-GRAM 0.0572 0.0121 | 0.2227 0.0805 | 0.1687 0.0700 | 0.1495 0.0542
COD 0.0530 0.0120 | 0.2252 0.0785 | 0.1593 0.0644 | 0.1458 0.0516
POTT | 0.0207 0.0112 | 0.1872 0.0787 | 0.1016 0.0613 | 0.1032 0.0504

Table 4. Evaluation results of Darcy flow.

TASK Dy — D1 D1 — Ds Dy — Ds ADVERGE
METHOD 50 100 50 100 50 100 50 100
TARGET ONLY 0.1615 0.1122 0.2925 0.2493 0.2925 0.2493 0.2488 0.2036
SOURCE+TARGET | 0.7113 0.7600 0.1581 0.1409 0.3535 0.2381 0.4076 0.3797
FINETUNING 0.1426 0.0869 0.1556 0.1605 0.4693 0.3553 0.2558 0.2009
TL-DEEPONET 0.1410 0.0805 0.1539 0.1481 0.4514 0.2842 0.2488 0.1709
DARE-GRAM 0.1395 0.0805 0.1533 0.1441 0.4509 0.2842 0.2479 0.1696
COD 0.1367 0.0794 0.1527 0.1481 0.4437 0.2836 0.2444 0.1704
POTT | 0.1362 0.0762 0.1397 0.1404 0.3527 0.2271 0.2095 0.1479

DARE-GRAM (Nejjar et al., 2023) and COD (Yang et al.,
2025) to further investigate the effectiveness of DA meth-
ods. Since DARE-GRAM and COD are unsupervised DAR
methods proposed for tasks in computer vision, we add the
supervised target loss to them for fairness.

5.3. Evaluation result

We evaluate these transfer learning method in some hard
tasks that need more proactive transfer.

Burgers’ equation. As shown in Tab. 2, the improvement
of POTT compared to finetuning is substantial. When the
amount of target data is only 50, POTT reduced the relative
error by 23.64% (from 0.2001 to 0.1528) in task D; — Dy
and by 19.21% (from 0.1546 to 0.1249) in task D3 — Ds.
When the amount of target data is 100, although the perfor-
mance of finetuning greatly improves, POTT still largely
reduces the relative error by 18.98% and 19.30% in task
Dy — Dy and D3 — Ds,. In the relatively simple task
D1 — Ds, although finetuning already achieves satisfactory
results, POTT can still reduce the relative error by about
10%, while TL-DeepONet, DARE-GRAM and COD even
caused negative transfer and result in larger relative error.

Advection equation. As shown in Tab. 3, POTT signif-
icantly reduces the relative error in every task. In task
D1 — D, with 50 target samples, DAR methods fail to
correct the operator bias due to limitation of target data. In
contrast, POTT remarkably achieves a reduction of 16.19%
compared to finetuning. When the amount of target data
comes to 100 and the performance of DAR methods is im-
proved, POTT reduce the relative error to lower value. In

average of all tasks, POTT reduce the relative error by about
16% compared to finetuning.

Darcy flow. As shown in Tab. 4, with limited target samples,
the relative errors of finetuning and training from scratch
are large. Model trained from scratch with mixed data is
even misled and the prediction error is very large. In task
Dy — D3 where the two domains differ significantly, the
performance of finetuning is not satisfactory. Although
DAR methods show great improvement compared to fine-
tuning, their enhancement is limited in the extremely chal-
lenging task in which only 50 target samples are available.
In contrast, the performance of POTT is very impressive. In
the task with 50 target samples, the relative error of POTT
decreased by nearly 25% (from 0.4693 to 0.3527), achiev-
ing a model capability comparable to that of finetuning with
100 target samples. In the task with 100 target samples, the
reduction even reaches 36.08% (from 0.3553 to 0.2271),
remarkably surpassing all DAR methods. In tasks Dy — Dy
and D; — Ds that are simpler than Dy — D3, POTT still
reduce the relative error compared to finetuning and DAR
methods in every transfer task.

In summary, POTT’s capacity to improve model’s perfor-
mance is related to the difficulty of the transfer task. In the
difficult tasks that finetuning is not satisfying, POTT shows
great enhancement on cross-domain generalization.

5.4. Visualization analysis of Qt

Fig. 5.3 illustrates the outputs and error maps for the same
target sample predicted by POTT, finetuning, and COD on
the Darcy D3 — D5 task with 100 target samples.
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k(x)

POTT pred.

u(x) FT. pred.

COD pred.

POITT err. FT.err. COD err.

Figure 3. Visualization of learned Operator network G: on Darcy Flow. Since the input and output functions in Darcy Flow are two-
dimensional, they can be intuitively visualized as images, where the pixel value at each image pixel corresponds to the function value at
the sampling point. Brighter colors (yellow) indicate higher values. The 1st and 2nd columns show the input and output function pair
from target domain. The 3rd, 4th and 5th columns show the output functions predicted by POTT, finetuning (denoted as F.T. for short) and
COD, respectively. The 6th, 7th and 8th columns show the error between the predictions and the ground truth.

As shown in 3rd, 4th and 5th columns, despite only 100
target samples are available for training, outputs predicted
by POTT are consistent with the ground truth globally. The
shape and the variation trend are quite similar to the ground
truth. By contrast, predictions of finetuning indicate that the
transferred model fails to learn the right shape and variation
trend. Outputs predicted by COD are relatively consistent
with ground truth globally. However, the transferred model
fails to correctly predict the large value area.

In the error maps shown in 6th, 7th and 8th columns, the
bright areas in the error maps of POTT are the smallest
among the three methods. Especially, the error maps of
finetuning shown in 7th column clearly exhibit the char-
acteristics of source domain distribution, i.e. the distinct
triangular patterns, which strongly supports the discussions
in Sec. 3.2. Besides, as shown in 8th column, the bright
yellow areas in the error maps of COD are larger than POTT.
This indicates that although the feature distribution learned
by COD has certain similarity to the target domain, it does
not fully preserve the physical structure of the function,
resulting in the loss of some physical information.

5.5. Ablation analysis of physical regularization

To investigate the effect of the physical regularization in
Eq. (10), we implement an ablation analysis on task D; —
Dy of Darcy flow with 100 target samples. As shown in
Fig. 5.4, the outputs of OTT map roughly shape like the
ground truth in large value area. However, the triangular
structure of target sample is not preserved, indicating the
loss of some physics structure. In contrast, with physical
regularization, the outputs of POTT map exhibit similarity

AN
SARE

sre Usor Uporr Uorr

Figure 4. Visualization of POTT map and OTT map on Darcy Flow.
Images in 1st and 2nd columns are selected u(z) pairs from source
and target domain. The 3rd and 4th columns show the transported
u(z) from source samples to target domain via POTT map and
OTT map respectively.

in the large value area as well as consistency of the triangular
structure, verifying the preservation of physics.

6. Conclusion

In this work, we studied the domain shift issue in DEs
problems, the essential problems of which are modelized
as distribution bias and operator bias. Then we detailedly
analyzed existing TL methods adopted in DEs problems and
propose a feasible POTT method that simultaneously admits
generalizability to common DEs and physics preservation
of specific problem. A dual optimization problem together
with the consistency property is formulated to explicitly
solve the optimal map. Numerical evaluation and analysis
validated the effectiveness of POTT.
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Impact Statement

This paper presents work whose goal is to advance the field
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A. Notations

The notations appear in this paper are summarized as follows:

Table 5. Notations.

| Symbols Meaning
D =Dy X Dy = {(k,u)} General function set
Q= Qr X Qy Domain of function
k=k(x) function defined on Qy,
u = u(z) function defined on €,
F(z; k,u) Differential Equation
G :Dy — D Operator map from Dy, to D,,
P(k,u) Product probability function defined on function set D
p(k,u) Product probability density function of function set D

Pp Set of probability functions defined on D

D Soure domain; a subset of D

Dt Target domain; a subset of D

G° Operator relation on D*

gt Operator relation on Dt

P? Probability function on D*

pt Probability function on D"

T:D — D Function map between D* and D*

T Ideal solution of optimal transport problem
M(P#, P Monge problem between probability P* and P*
K(P*, P") Kantorovich problem between probability P* and P*

R(T) Physical regularization on 7'
m(-,-) Metric defined on D,
Mphy (P, PY) Monge problem with physical regularization
Kpny (P, PY) Kantorovich problem with physical regularization
c(s-) Cost function in OT problem
f Lagrange multiplier
L Objective function of optimization problem
(T*, ) Saddle point solution of dual problem
Gs Approximated operator on D°
Gt Approximated operator on D"
T Approximation of T’

we slightly abuse the notations & and u to represent both functions and their discretized value vectors. The superscript s or t
denotes the domain. The subscript k£ or u denotes the projection of the original product space or distribution.

B. Theory
B.1. Derivation of Eq. (12)
Given POTT problem
inf k Tk dp*® Ty, 1), 15
By, [ oG Tl aP + R T a9

where T' = (T, T,,), Tx, = T'|p,, T, = T'|p, , we reorganize it as a constrained optimization problem:
i%f / c((k,u), T(k,u))dP® 4+ R(Tk, Ty) (16)
s.t.TyP* = P (17)

Following the dual optimization theory, we introduce the Lagrange multiplier f to construct the Lagrange function:

L(T, f)= /Q 5 c((k,u), T(k,u))dP® + R(Tx, Ty) +/Q f(k,u)d(P" — Ty P®). (18)

Xy

11
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Substituting the physics regularization by Eq. (11), it comes to

E(T,f):/Q 0 C((k7U)7T(k,U))*f(T(k%U))+/\d(GTk(k5),Tu(us))dP5+/Q fk,u)dPt. (19)

B Xy

Thus, the dual problem of Eq. (15) is

supinf L(T, f), (20)
f T

which is exactly Eq. (12).

B.2. Proof of Thm. 4.2

We prove Thm. 4.2 based on previous work by Fan et al. (2023).

Theorem B.1 (Consistency). Suppose the dual problem Eq. (12) admits at least one saddle point solution, denoted as
(T*, f*). Let L be the objective of Eq. (12). Then

e the dual problem Eq. (12) equals to the Kantorovich problem with physical regularization in terms of total cost,
ie. L(P,T*, f*) = K(P*, P") +R(T").

s TP = Pt, then Eq. (12) degenerates to the dual form of the primal Monge problem Eq. (8), T* is a Monge map,
ie. L(PS,T*, f*)= M(P*, P").

Proof. (1) Let k" = Ty, (k®),u” = Ty, (u®), the inner optimization problem can be formulated as

irTle(T, f) = inf/ c((k%,u®), Tk, vw®)) — f(T(k*,u®)) + Am(Gk",u")dP?® —|—/ (k' ut)dPt

Qe X s Qi X
- _/ sup {f(£",¢") — [c((k%,u®),(§",¢")) + Am(GE", ()] ydP? +/ S(E  u')dP" (21)
QpxQy (€7,¢7) Qp Xy
- / F(k ut)dPt — / £o (k° ut)dP?,
QX Qy Qi xQy
where
FO (k% u®) = sup (f(€7,¢") —[c((k*u),(§",C")) + Am(GET, C7)]) (22)

(€7¢™)
is the c-transform of the physics-regularized Kantorovich dual problem. Then the optimization problem Eq. (12) becomes
sup [/ (k' ut)dPt — / fo7 (k% u®)dP? |, (23)
f Qp Xy Qp X
which is exactly the physics-regularized Kantorovich problem.

Therefore, if (T, f*) is the saddle point solution of Eq. (12), then f* is an optimal solution of Eq. (23), L(P*,T*, f*) =
K(P#, P") + R(T*), which verifies the first assertion of the theorem.

(2) The saddle point (T, f*) satisfy

T*(k*,u®) € argmazer cry f*(€7,¢") = [c (K%, u?), (§7, 7)) + Am(GE", (7] a.s. (24)
=7 (k% u’) = (T (k°,u®)) — [e((k%,u®), T (K%, u®)) + Am(GT K, Tyu®)] (25)
where f*©7(k*,u®) = sup(¢r ¢y (f*(€7,C") = [e (K%, u?), (§7,C7)) + Am(GTk®, Tyu®)]).
With condition 17 P* = P?, the pushforward distribution P" = P¢, then
T*ks T* s\ — kt t
(T2 Toun) = () o6
= m(GTyk*, T:u®) = m(Gk',u') = 0.
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Thus Eq. (12) degenerates to

supinf/ c((k,u),T(k,u))ff(T(k,u))dPSqL/ flk,u)dP?, (27)
T Jaexa. Qi xR

which is exactly the dual form of the primal Monge problem. Then we have
/ c((k%,u®), T* (k% u®)) dP?
Q
= / (T (K%, u®))dP® — / o7 (k% u®)dP?
Q Q
= [ ratyap— [ e )ap e8)
Q Q

_ f*(kt,ut) —f*c’_(ké,us)dﬂ'
Qx0

</ c((k°,u®), (K',u")) dm, V7 € II(P®, P*)
Qx9N
Take infimum on both sides of the inequation, we obtain

inf/ c((k%,u®), T*(k*,u®)) dP?®
T Ja

< inf/ c ((ks, u®), (K, ut)) dm (29)
QxQ

< / o (K, u®), T(k*,u®)) dP?,
Q

where T is any map that satisfies (Id, T')x P* = m € II(P*, P*). Therefore, the solution of the Monge problem exists and
T* is the Monge map. O
C. Experiment details
C.1. Equations, transfer tasks and data generation
C.1.1. BURGERS’ EQUATION
Considering the 1-D Burgers’ equation on unit torus:

Up + Uy = Vigg, x € (0,1),¢ € (0,1], (30)

we aim to learn the operator mapping the initial condition to the solution funciton at time one, i.e. Gy : ug = u(z,0) —
u(zx, 1). We differ the generation of ug and parameter v to construct different domains:

Table 6. Generation of ug and parameter settings in 1-d Burgers’ equation.

SUB-DOMAIN ‘ DESCRIPTION
Dy \ uo ~ N(0,7*(—A +727)72), v = 0.01
Dy | wo ~N(0.2,49*(—A + 7°Z)*®), v = 0.002
Ds | wo ~ N(0.5,625%(—A + 25°7)>?), v = 0.004

The N denotes the normal distribution. The resolution of x-axis is 1024.

C.1.2. ADVECTION EQUATION

The Advection equation takes the form

up +vu, =0, z € (0,1),¢ € (0,1]. (31)
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We aim to learn the operator mapping the initial condition to the solution funciton at a continuous time set [0, 1], i.e. Gy :
ug = u(z,0) — u(z,t). We differ the function types and generation process of uy and parameter v to construct different
domains: The ¢/ denotes the uniform distribution. The resolution of x-axis and t-axis are 100 and 50, respectively.

Table 7. Generation of uo and parameter settings in Advection equation.

SUB-DOMAIN ‘ DESCRIPTION
D1 ‘ uo(z) = ax® +bx +c, a,b,c€U(—1,1),v =3
Do | wo(z) = az® + b2+ cx+d, acl(0,1),b,c €U(—0.5,0.5),d=0.5v=2
Ds | uo(z) = asin(bx +¢), a €U(0,1),b €U(5,10),c e U(-1,1),v =1

C.1.3. DARCY FLOW
The 2-d Darcy flow takes the form

V- (k(x)Vu(@)) =1, z € [0,1] x [0,1]

u(z) =0, € 9([0,1] x [0,1]). (32)

We aim to learn the operator mapping the diffusion coefficient k(z) to the solution function u(x), i.e. Gy : k(z) — u(x).
We use the leading 100 terms in a truncated K arhunen — Loeve (KL) expansion for a Gaussian process with zero mean
and covariance kernel K(z) to generate a(x), and construct different function domains by differ the kernel XC(x, 2’) The

Table 8. Generation of a(x) in Darcy flow.

SUB-DOMAIN | DESCRIPTION
D1 ‘ K(z,z') = exp(— “1‘7;/”5 ), 2, IS A SQUARE WITH VERTICE ON {(0,0), (0, 1), (1,0), (1,1)} IN [0, 1] x [0,1]
D, ‘ K(z,z') = emp(—%), Q. IS A TRIANGLE WITH VERTICE ON {(0,0), (0,1), (0.5,1)} IN [0, 1] x [0, 1]
D3 ‘ K(z,z') = emp(—w), . IS A SQUARE WITH VERTICE ON {(0,0), (0, 1), (1,0), (1,1)} IN [0, 1] x [0, 1]

resolution of = € [0,1] x [0, 1] is 64 x 64.
All data are generated based on code provided by Li et al. (2021) and Lu et al. (2022).

C.2. Implementation details

To test the generalizability of POTT with different models, we employed different backbones on various datasets. On the
Burgers’ equation dataset, G,, is parametrized as a 1-d Fourier Neural Operator (FNO) model, 7} is an operator network
composed of two fully connected networks (FCN), and f is an FCN. On the Advection equation and Darcy flow datasets,
G, adopt a 2-d DeepONet model, Tp has a structure similar to G,,, and f is a convolutional neural network (CNN). We use
Adam as optimizer and the learning rate is 1e — 3 for all tasks. The learning rate of the backbone of G, is ten times smaller
than the last two layers, which is a widely-used technique in transfer learning. A cosine annealing strategy is adopted for
learning rate of G,,.
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