
Journal of Machine Learning Research 25 (2024) 1-45 Submitted 8/21; Revised 11/23; Published 10/24

ENNS: Variable Selection, Regression, Classification and
Deep Neural Network for High-Dimensional Data

Kaixu Yang kaixuyang@gmail.com
LinkedIn Corporation,
Mountain View, California,
USA.

Arkaprabha Ganguli aganguli@anl.gov
Argonne National Laboratory
Lemont, Illinois,
USA

Tapabrata Maiti maiti@msu.edu

Michigan State University

East Lansing, Michigan USA

Editor: Garvesh Raskutti

Abstract

High-dimensional, low-sample-size (HDLSS) data have been attracting people’s attention
for a long time. Many studies have proposed different approaches to dealing with this
situation, among which variable selection is a significant idea. However, neural networks
have been used to model complicated relationships. This paper discusses current variable
selection techniques with neural networks. We showed that the stage-wise algorithm with
the neural network suffers from some disadvantages, such as that the variables entering the
model later may not be consistent. We also proposed an ensemble method to achieve better
variable selection and proved that it has a probability tending to zero that a false variable
will be selected. Moreover, we discussed further regularization to deal with over-fitting.
Simulations and examples of real data are given to support the theory.

Keywords: Deep Neural Network, Variable Selection, Ensemble, High-dimensional data

1. Introduction

High-dimensional statistics modeling (Bühlmann and Van De Geer, 2011) has been popular
for decades. Consider a high-dimensional regression or binary classification problem. Let
x ∈ Rp be the feature vector, and let y ∈ R for the regression problem and y ∈ {0, 1} for the
classification problem be the response. Our goal is to build a model based on the training
sample {(x1, y1), ..., (xn, yn)}. We have more features than the sample size, i.e., p > n.
Moreover, many data have complicated relationships among different variables, which is
hard to capture through a linear model. A neural network is one of the best models for
capturing complicated relationships. Considering a neural network structure between x and
y is interesting.

In general, a high-dimensional model does not have consistent estimations since the
systems have fewer constraints than a number of variables. Two major approaches can

c©2024 Kaixu Yang, Arkaprabha Ganguli, Tapabrata Maiti.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/21-0893.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/21-0893.html

Yang, Ganguli, Maiti

be used to deal with the high dimensionality. The first major approach is to assume that
the feature space is sparse, i.e., only a small fraction of the variables are included in the
modeling with y. A model with only a fraction of the original features enjoys simplicity and
interpretability. Sparse solutions can be obtained using regularization Tibshirani (1996);
Huang et al. (2010) or stage-wise algorithms Efron et al. (2004). Regularization obtains
a sparse solution by shrinking the coefficients of the unimportant features to zero. The
estimated coefficients are shrinkage estimators and thus have a smaller variance Copas
(1983). However, regularization with multiple tuning parameters takes longer and may be
sensitive to the tuning parameters in practice. Stage-wise algorithms add variables one by
one and stop at a preferred time.

The second major approach is projection-based. One finds a lower-dimensional represen-
tation of the original feature space. Linear projection methods include the PCA Hotelling
(1933) in the low-dimensional case and some of its variants Jolliffe et al. (2003); Zou et al.
(2006) in the high-dimensional case. The PCA kernel PCA Schölkopf et al. (1998) performs
PCA on a reproducing Hilbert kernel space to achieve nonlinearity. Manifold learning
Lawrence (2012) embeds the original feature space in a low-dimensional manifold. Except
for manifold learning algorithms that reduce the original dimensionality to 2 or 3 dimen-
sions for visualization, a few manifold learning algorithms include multidimensional scaling
(MDS) by Torgerson (1952), the local linear embedding (LLE) by Roweis and Saul (2000),
and the Isomap by cites tenenbaum2000global. Applications of the manifold learning
algorithms in the high-dimensional setup are studied for specific fields, but a general frame-
work is not available. Another popular dimension reduction technique is the auto-encoder
Kramer (1991), which uses a neural network to encode the feature space and decode the
representation as close to the original feature space as possible. The above methods are
unsupervised, and the lower-dimensional representation is no longer any of the original fea-
tures. Therefore, we lose interpretability by doing so. Current manifold learning algorithms
focus more on data visualization, which reduces the dimensionality to two or three; see, for
example, Wang and Zhang (2019). These applications are not helpful in building models.

On the other hand, neural networks have been utilized to model complicated relation-
ships since the 1940s Kleene (1951), and have gained much more attention since the sig-
nificant improvement in computer hardware in this century. Specifically, Oh and Jung
(2004) showed that the computation of neural networks can be significantly improved by
GPU acceleration rather than running on the CPU, making it easy to train deeper network
structures. Nowadays, variant neural networks are being applied worldwide, including the
convolutional neural network (CNN), recurrent neural network (RNN), residual network
(ResNet), and etc. In theory, neural networks represent complicated relationships mainly
based on the universal approximation theorem Cybenko (1989); Barron (1993); Anthony
and Bartlett (2009); Siegel and Xu (2019). The theorem states that a shallow neural net-
work (neural network with one hidden layer) can approximate any continuous function with
an arbitrarily small error given a vast number of hidden nodes under mild assumptions. In
practice, to reach this good approximation, a huge set of training data is needed since the
number of parameters in a neural network is much more than in other models. Moreover, the
nonconvexity of a neural network structure makes it impossible to obtain a global optimum.
Fortunately, a local optimum of the neural network provides a good approximation.

2

ENNS - Deep Net feature selection

A deep Neural Network (DNN) is a neural network with a deep structure of hidden
layers, which has better performance than a shallow neural network (neural network with
only 1 hidden layer) in many aspects, including a broad field of subjects including pattern
recognition, speech recognition, etc., see, for example, Mizumachi and Origuchi (2016); Li
et al. (2019); Jiang et al. (2019). The deep structure has a greater approximation power
than a shallow neural network. Several articles have been published in the literature on the
approximation power of deep neural networks Bianchini and Scarselli (2014); Poggio et al.
(2017); Shaham et al. (2018); Fan et al. (2020). The results suggest that the use of a deep
neural network helps reduce the approximation error, which is useful in the cases where
the approximation error dominates the total error. Therefore, it’s necessary to consider a
deep neural network model over a shallow model. However, finding a way to train the deep
neural network well on a small sample size is necessary.

This paper will discuss the stage-wise variable selection algorithm with neural networks.
We will show that the existing stage-wise algorithm performs well at the beginning and
selects the correct variables. However, in later steps, the probability that it will select
a correct variable decreases. Thus, we will propose an ensemble algorithm based on the
stage-wise variable selection algorithm, named the ensemble neural network selection al-
gorithm (ENNS). We will show that the new algorithm selects all correct variables with
high probability and its false positive rate converges to zero. Moreover, instead of a regular
neural network trained on select variables, we proposed a few methods to further reduce the
variance of the final model. We will give a numerical comparison of these proposed algo-
rithms and propose an algorithm for the l1 penalized neural network with soft-thresholding
operators.

In Section 2, we will discuss some major related works and the intrinsic dimensionality of
a model. In Section 3, we will present the ideas and algorithms behind the ENNS algorithm
and the methods of increasing stability during the estimation step. In Section 4, we will
provide the theory for the arguments in this paper. In Section 5, we will present the results
of some numerical studies to support our theorems and arguments. Section 7 will discuss
some findings and future work.

2. Related works

In this section, we will discuss some major related works

2.1 The regularization approach

The rich literature has discussed achieving sparsity via regularization, for example, see (Tib-
shirani, 1996; Fan and Li, 2001; Zou, 2006; Yuan and Lin, 2006; Liu and Wu, 2007; Fan and
Lv, 2008; Huang et al., 2010; Marra and Wood, 2011). Let θ be the parameters of a model;
a direct method is to add a zero norm of the parameters ‖θ‖0 to the loss function. How-
ever, optimizing a loss function with zero norms has been proved to be a non-deterministic
polynomial-time hardness (NP-hard) problem Natarajan (1995), which requires exponential
time to solve. However, it has been proved that instead of directly penalizing the number
of nonzero coefficients by l0 norm, l1 type penalty can shrink some coefficients to zero, and
thus the features corresponding to these coefficients are not included in the model (Tibshi-
rani (1996), and this can be extended to adopt group-wise penalizationYuan and Lin (2006);

3

Yang, Ganguli, Maiti

Huang et al. (2010)). The power of regularization is decided through the hyperparameter,
which is also called the tuning parameter, by checking some criterion (BIC Schwarz et al.
(1978), EBIC Chen and Chen (2008), GIC Zhang et al. (2010); Fan and Tang (2013)) or
cross-validations.

Variations of the l1 norm regularization are also widely used. It’s known that l1 norm reg-
ularization yields sparse solution (Tibshirani (1996)), while l2 norm regularization controls
the magnitude of coefficients and kills multicolinearity and overfitting. The l1+l2 norm regu-
larization both yields sparse solution and encourages group effects(Zou and Hastie (2005)).
The lp,1 norm penalization (Yuan and Lin (2006), Argyriou et al. (2007)), where p = 2
matches the group lasso penalty, yields group sparsity. The lp,1, l1 norm penalty, known as
the sparse group lasso penalty Simon et al. (2013), yields both group sparsity and in-group
sparsity solutions. Adaptive methods (Zou (2006)) assign different weights to different co-
efficients using a data-driven method, which obtains oracle solutions. Some variations of
norm regularization methods include the Dantzig selector (Candes et al., 2007), which is a
variation of the lasso. The SCAD (Fan and Li, 2001) is defined from the derivative, instead
of directly defined from the penalty term.

The regularization approach requires the assumption that only a few features are relevant
in predicting the response, all other features either have exactly zero coefficients (strong
sparsity assumption), for example, in the linear regression setup

βj = 0, for j ∈ A0 ⊂ {1, ..., p} and #{βj , j /∈ A0} = q << p,

or the coefficients of irrelevant features are bounded from above by a negligible term (weak
sparsity assumption)∑

j∈A0

|βj | ≤ η and #{βj , j /∈ A0} = q << p

(for example, see Zhang and Huang (2008)). If the sparsity assumption is satisfied, the regu-
larization approach with property penalty will yield a sparse solution with a high probability
that the true subset of relevant features is selected under some common mild conditions.
An advantage of this approach is that we know which features are selected; thus, the model
has rich interpretability.

2.2 Deep neural network approximation

It’s well known as the universal approximation theorem by Cybenko (1989) that a shallow
neural network with k hidden nodes, denoted SNk(x) can be used to approximate any
continuous function f(x) defined in a bounded domain with arbitrarily small error

|SNk(x)− f(x)| < ε

for all x in the bounded domain with a big enough k. This pioneering theorem encourages
the use of neural networks in a wide way. Later, with the development of deep neural
networks, people found limitations of the shallow neural network such that the number
of neurons needed to achieve a desired error increases exponentially Chui et al. (1994,
1996). After that, people found that “the two hidden layer model may be significantly more

4

ENNS - Deep Net feature selection

promising than the single hidden layer model” Pinkus (1999). Sum neural networks, or
equivalently, polynomial neural networks have been studied Delalleau and Bengio (2011);
Livni et al. (2013), and universal approximation property has been established recently by
Fan et al. (2020) that a continuous function in Fnd can be approximated with error ε by a
quadratic network who have depth

O

(
log(log(

1

ε
)) + log(

1

ε
)

)
and the number of weights

O

(
log(log(

1

ε
))(

1

ε
)d/n + log(

1

ε
)(

1

ε
)d/n

)
where d is the dimension of the domain. The approximation theory for regular deep neural
networks has also been established recently. Poggio et al. (2017) showed that a deep network
need

O

(
(n− 1)

(ε
L

)−2
)

model complexity to approximate a L-Lipshitz continuous function of n variables instead
of

O

((ε
L

)−n)
in a shallow neural network. Shaham et al. (2018); Siegel and Xu (2019) provides more
detailed results for the approximation power of deep neural networks.

2.3 Variable selection and regularization in neural networks

In terms of variable selection in neural networks, Castellano and Fanelli (2000) proposes an
algorithm to prune hidden nodes in a low-dimensional setup, and Srivastava et al. (2014)
proposes the dropout technique to eliminate hidden nodes randomly. These methods set
coefficients to zero and thus reduce the generalization variance but do not help in the high-
dimensional setup, where one needs to eliminate input features. La Rocca and Perna (2005)
studied a test procedure to select features in the time series scenario, but this cannot be
generalized to a greater scenario.

In the high-dimensional setup, a neural network has even more parameters and thus is
harder to train than in the low-dimensional setup. When we have a sample size compared
to a huge number of parameters, a neural network usually has a high variance. A few
literature is available in studying this property Feng and Simon (2017); Liu et al. (2017);
Yang and Maiti (2020); Lemhadri et al. (2019). Via group lasso regularization Yuan and
Lin (2006), one can shrink the whole connections of a specific variable to zero exactly,, with
the development of deep neural networks, people found the limitations of shallow neural
networks such that the number of neurons needed to achieve a desired sensitive to a small
change in the tuning parameters in practice. Liu et al. (2017) also presents a stage-wise
variable selection algorithm with neural networks called deep neural pursuit (DNP), which
uses correlation to add new variables and enjoys faster speed. These methods are extensions
of the high-dimensional linear models or additive models, which act as pioneers of this hot
topic.

5

Yang, Ganguli, Maiti

2.4 Algorithms

Regularization methods usually involve the penalty term l1 of the norm, which is not easy
to solve using regular gradient descent algorithms; see, for example, Wright (2015). This
issue is general for all models with l1 penalty. The regularization path for generalized linear
models can be easily obtained from the coordinate descent algorithms (Wu et al., 2008;
Friedman et al., 2010).

Various algorithms are used to obtain a path selection. The least angle regression
Efron et al. (2004) provides a forward algorithm to add new features by looking at the
correlation. The LARS algorithm, with a simple modification, can be used to obtain the
lasso solution path. Tibshirani (2015) provides a stage-wise algorithm, which provides a
very close solution path to the lasso solution path. Perkins et al. (2003) studied a stage-wise
algorithm to incorporate the l2, l1 and l0 norm penalty with the gradients with respect to
the input weights. The gradient implicitly connects with the correlation studied in Efron
et al. (2004).

As for the other penalties, Tewari et al. (2011) has shown an equivalence between using
the stage-wise algorithm and the group lasso penalty. Liu et al. (2017) has applied the
result on deep artificial neural networks for feature selection.

3. The two-step variable selection and estimation approach

Consider a feature vector x ∈ Rp and a response y ∈ R for the regression setup and y ∈ {0, 1}
in the classification setup. We have data {(x1, y1), ..., (xn, yn)} consisting of independent
observations. Denote the design matrix X = (x1, ...,xn)T ∈ Rn×p and the response vector
y = (y1, ..., yn)T . As mentioned before, we have more variables than observations, i.e.,
p > n. According to the previous discussion, variable selection is an important step in
high-dimensional modeling. If one includes all variables in the model, there will be at least
p parameters to estimate, which can not be done stably with the n observations. If a more
complicated model is needed, the number of parameters will be tremendous, which will
cause severe overfitting and high variance with a small training sample size.

Therefore, we hope that a feature selection step at the beginning can help to pick the
import variables, and another estimation step could build a more accurate model based on
the selected variables. Moreover, we will use deep neural networks as the structure since
they can capture complicated relationships. We will consider a stage-wise algorithm in
the variable selection step, performing a function similar to the DNP model in Liu et al.
(2017). However, we will show that the stage-wise algorithm in DNP suffers from some
disadvantages and propose an ensemble algorithm to relieve this situation. In the second
step, we will discuss the methods to reduce variance and prevent over-fitting, since a deep
neural network with only a few input variables can still have a huge number of parameters.

3.1 The ensemble neural network selection (ENNS) algorithm

Consider the feature selection approach in Liu et al. (2017). Let D : Rp → R be a deep
neural network function that maps the original feature space to the output space. We don’t
specifically mark the number of hidden layers and node sizes in the notation but assume the
deep neural network has m hidden layers with sizes h1, ..., hm. Denote the weight matrices

6

ENNS - Deep Net feature selection

in each layer to be W 0, ...,Wm, where W 0 ∈ Rp×h1 , W i ∈ Rhi×hi+1 for i = 1, ...,m − 1
and Wm ∈ Rhm×1. Denote ti the intercept for the ith hidden layer and b the intercept of
the output layer. Let θ = (W 0, ...,Wm, t1, ..., tm, b) ∈ [−W,W]|θ| be the parameters in the
neural network model. For an input x ∈ Rp, denote the output

ηθ,x = Dθ(x) (1)

where in the regression setup, the output is from a linear layer and η ∈ R, while in the
classification, an extra sigmoid layer is added and η ∈ (0, 1). Moreover, we assume sparse
features, i.e., only a small fraction of the variables are significantly related to the response.
Without loss of generality, we assume

S0 = {1, ..., s}

of the variables are truly non-zero variables.
Define the loss function for regression to be the squared error loss

l(θ) = E
[
(y − η)2

]
(2)

In practice, we work with the empirical loss

l(θ;X,y) =
1

n
‖y − η‖22 (3)

where η ∈ Rn with ηi = ηθ,xi , i = 1, ..., n. Define the loss function for classification to be
the negative log-likelihood, which is known as the cross-entropy loss

l(θ) = E [y log η + (1− y) log(1− η)] (4)

In practice, we work with the empirical loss

l(θ;X,y) =
1

n

n∑
i=1

[yi log ηi + (1− yi) log(1− ηi)] (5)

Let Gi be the gradient of the loss function with respect to W i in the back propagation
process for i = 0, ...,m, i.e.,

Gi =
∂

∂W i
l(θ;X,y), i = 0, ...,m (6)

The DNP algorithm starts with the null model and adds one variable at a time. Let S be
the selected set and C be the candidate set. At the beginning, we have

S = {intercept} and C = {1, ..., p} (7)

The model is trained on S only and the submatrix of W 0 corresponding to the features in
C is kept zero. After training, one chooses a lq norm (usually with q = 2) and computes the
gradient’s norm for each j ∈ C of W 0.

G0j =
∂

∂W 0j
l(θ;X,y), j ∈ C (8)

7

Yang, Ganguli, Maiti

The next variable that enters the model, j+ is

j+ = arg max
j∈C

‖G0j‖q (9)

Then S = S/j+ and C = C ∪ {j+} To increase the stability, instead of computing G0j

directly, the DNP algorithm computes G0j through the average over multiple dropouts.
Let B1 be the number of dropouts, the next variable is

j+ = arg max
j∈C

1

B1

B1∑
b=1

‖Gb0j‖q (10)

where Gb0j denotes the gradient of the loss function with respect to the first layer’s jth

weight vector after the bth random dropout.
The algorithm works because ‖G0j‖q describes how much the loss function will change

when the next update is performed on the weight of the corresponding variable Perkins et al.
(2003). Tewari et al. (2011) also indicates that the selection of the variable by comparing
‖G0j‖q is equivalence to applying the group lasso penalization; see also Liu and Wu (2007).

The algorithm works well at the very beginning, which is described by proposition 4.1
and proposition 4.2 in section 4. However, it suffers from a few disadvantages. First, as we
include more correct variables in the model, the probability that we select another correct
variable decreases. A simulation study in section 5 also provides numeric support for this
argument. Second, one needs to pre-specify how many variables must be selected before
stopping, denoted s0. If this number is more than the number of true variables, denoted
s, there will be s0 − s variables that should not be included but were included, i.e., the
false positive rate could be high. Finally, the model does not use dropout or regularization
during prediction, which has potential over-fitting risk. Here, we propose the ensemble
neural network selection (ENNS) algorithm to remedy these issues, and we will discuss
possible solutions for preventing over-fitting in the prediction step.

One could observe that when a fraction of S0 is already involved in the model, i.e.,
in S, the model is trained such that these variables are used to explain the variations by
all variables in S0. This weakens the effect of those truly nonzero variables in C. These
variables become less important than when no variable in S. Moreover, there are fewer
truly nonzero zero variables in C than at the very beginning, the probability that we select
a correct variable in the next step is

P(jnext ∈ S0) =
∑

j∈S0∩C
P(jnext = j) (11)

which will be even lower as |S0∩C| decreases. Therefore, there will be a nonzero probability
that at one stage the selected variable does not belong to S0. This is described in section
4. We consider an ensemble method to remedy this issue.

The idea behind this ensemble method is similar to bagging Breiman (1996); Bühlmann
et al. (2002). Assume that we want to add sj variables in one step. Consider a bootstrap
sample of size nb from the original sample. The DNP with random initialization is trained
on this sample, which yields a selection set S1 = {j1, ..., jsj}. Rather than just making
one pass, we propose that for b2 in 1, ..., B2 and a bootstrap sample size nr, we perform

8

ENNS - Deep Net feature selection

the feature selection on a random selection of nr observations. Denote the features being
selected in all B2 rounds as

J1 = {j11, ..., j1sj}, ...,JB2 = {jB21, ..., jB2sj}

We will only allow a variable to enter the model if it appears at least [B2ps] times in the
B2 rounds, for a fixed proportion ps. Mathematically,

J = {j in at least [B2ps] of J1, ...,JB2}

is the set of variables that will enter the model in this step.
The reason that this ensemble will improve the selection lies in three points. First, the

algorithm is an averaging of different bootstrapping results thus the effect of some extreme
observations could be averaged out. The final selection result represents the common part
of the whole sample. Secondly, neural network uses random initialization. Though the
predictions seem similar in two different training, the estimated parameters are actually
from different local minimums of the loss function. Therefore, these different training results
represent different aspects of the model. Combining the two reasons, the selection results
are closer to independence if we select a smaller nb compared to n. However, nb can not
be too small to avoid misleading the neural network. Finally, if a variable is selected by
mistake in some round, this is possibly due to the specific bootstrap sample making the
relationship between the variable and the response stronger, which is not general in all
bootstrap samples. In practice, one will observe that though false selection happens, those
false variables are different in different rounds. Therefore, this ensemble will actually make
the probability of false selection tend to zero. This result is described by theorem 4.1 in
section 4. Moreover, if two variables’ interaction effect is important in the model, they are
likely to be included in the same step.

The proposed method may select fewer or more variables than the number of variables
we specified, sj . If the sample is not enough to represent the true relationship between the
variables and the response, it’s possible that the number of selected variables denoted ŝj ,
is less than sj . In this case, we exclude the variables that are already in C from the neural
network and perform another round of variable selection with S = {1, ..., p}/C and then
C = {intercept}. The number of variables selected in this round will be sj − ŝj . On the
other hand, ŝj being more than sj occurs when the selection proportion ps is specified too
small. In this case, the variables would be sorted by their proportions that appeared and
only select the first sj variables in the list.

In summary, we specify a number s0 at the beginning, which means the final model will
include s0 variables. In the jth iteration, let sj be the number of variables to be selected.
Right now there are |Sj | variables in the model, denoted Sj . Let X−n be the sub-matrix of
X where the columns with indices in Sj removed. Train the ensemble on X−n and obtain
selection result Ŝj . Let sj+1 = sj − |Ŝj |. The algorithm is repeated until the model has
selected s0 variables. An algorithm is given in Algorithm 1. Under mild assumptions, the
algorithm will finally reach selection consistency. This argument is described in theorem
4.1 in section 4. Moreover, a comparison of the variable selection performances of different
modeling is presented in section 5.

The computation complexity of the ENNS algorithm on a single machine is the number
of bagged neural networks times the computation complexity of training a single neural

9

Yang, Ganguli, Maiti

Initialize number of selected variables S = ∅, s = 0 and target s0;
while |S| < s0 do

for b = 1, ..., B do
Bootstrap sampling;
Random initialization with zero feature;
Run the DNP algorithm and obtain selection set Jb;

end

Obtain J =
⋃B
b=1 Jb;

Compute JT by filtering number of appearance;
if JT <= s0 − |S| then

S = S ∪ JT ;
Remove the columns in JT from training data;

else
JT is the m− s elements with highest number of appearance;
S = S ∪ JT ;

end

end

Algorithm 1: Algorithm for feature selection ENNS

network, which is equal to O(Bhsnp). Here B is the number of bagged neural networks, h
is the neural network structure complexity, s is the number of variables to be selected, n
is the sample size and p is the variable dimension. However, since the bagging algorithm
has independent elements, it’s easy to parallelize the bagged neural networks by submitting
different jobs. In this case, the computation complexity reduces to O(hsnp), which is the
same as that of DNP in Liu et al. (2017). As a comparison, Liu et al. (2017) also mentioned
the computation complexity of HSIC-Lasso in Yamada et al. (2014), which grows cubicly
with the sample size as O(sn3p).

3.2 Estimation with regularization

In this subsection, we will discuss possible procedures to prevent over-fitting. After feature
selection, the deep neural network can be trained on the selected features. However, the
number of parameters in the neural network model is still huge. A 4 hidden layer neural
network with s selected variables and hidden layer sizes h1, ..., h4 has sh1 + h1h2 + h2h3 +
h3h4 +h4 parameters (without counting the intercepts). For example, if we use the common
hidden layer sizes [50, 30, 15, 10] with the number of selected variables being 5, this brings
2466 parameters. As a comparison, the linear model has 6 parameters, while the GAM
with 4 knots and degree 3 has 36 parameters. Compared to the number of parameters, the
small sample size is still a challenging issue. Therefore, we need to be careful in training the
neural network on the selected variables. A few methods are discussed below. Moreover,
the Xavier initialization Glorot and Bengio (2010) is used here to ensure that the initial
weights are in a proper range.

10

ENNS - Deep Net feature selection

3.2.1 Dropping out and bagging

In the variable selection step, over-fitting is overcome by dropout layers, where we randomly
set parameters to zero in the later layers. However, using dropout layers in prediction is
risky, since we cannot measure the performance of doing a random dropout. One way is
to use bagging again in this step. First, the connections in the estimated neural network,
denoted N , are randomly cut off, i.e., the weights are set to zero. By doing this, we obtained
Nr, where r stands for reduced. Then a prediction is made on model Nr, denoted ŷr. This
process is repeated for K times. Denote the reduced neural networks to be Nkr and their
predictions with ŷkr. In the regression set up, the final prediction is defined as

ŷ =
1

n

K∑
k=1

ŷkr

In the classification set up, the final prediction is defined as

ŷi =

{
1, if p̂i > pc

0, if p̂i < pc
, for i = 1, ..., n

where pc is some pre-specified threshold.

p̂ =
1

n

K∑
k=1

ŷkr

and p̂i is the ith element of p̂. A simulation study is performed in Section 5.

3.2.2 Stage-wise training

The stage-wise training idea comes from Liu et al. (2017), where the authors used it as a step-
wise variable selection technique. However, here we adopt the idea of training the final model
on the selected variables. The intuition behind this is that at each step, the information
that is already trained remains in the training process. Therefore, adding a new variable
adjusts the previous trained weights. Moreover, training with adaptive gradient algorithm
(Adagrad, Duchi et al. (2011)) allows adaptive learning rates for different parameters and
thus ensures faster and more accurate convergence. In detail, assume that we have selected
m variables J from the ENNS algorithm. Let XJ be the sub-matrix of X whose columns’
indices are in J . Then, the DNP algorithm in Liu et al. (2017) is trained on XJ with |J |
being the target number of variables. A simulation study is performed in Section 5.

3.2.3 l1 norm regularization

It’s mentioned in section 2 that l1 regularization gives sparse neural network and controls
over-fitting by shrinking parameters towards zero, and some parameters can be shrunk to
zero exactly. Therefore, we choose to use l1 norm regularization to control the parameter
size and the number of nonzero parameters.

Let Ŝ be the set of indices of the variables that are selected from the first step. Let
Θ = θ1, ..., θL be the hidden layer weights and T = t1, ..., tL be the hidden layer intercepts

11

Yang, Ganguli, Maiti

(including the output layer). Let f(x; Θ,T) be the neural network structure with such
parameters that maps the original input to the output. In the classification problem, define

Θ̂, T̂ = arg min
Θ,T

− 1

n

n∑
i=1

[
yif(xŜ,i)− log(1 + exp(f(xŜ,i)))

]
+

L∑
l=1

λnl|θL|, (12)

where xŜ,i denotes the ith observation with only the selection variables included.

Direct training of the loss function 12 with the built-in loss penalty l1 directly added to
the loss of cross-entropy does not work well in current neural network libraries, including
tensorflow and pytorch. Therefore, a coordinate descent algorithm is needed to obtain
sparsity in the neural network. Define the soft-thresholding operator S(·, ·) : Rd × R→ Rd
as

(S(x, c))i = sign(xi)(|xi| − c)+, i = 1, ..., d. (13)

The algorithm consists of an iterative process of updating the weights of the neural
network without the penalty l1 and then applying the soft-thresholding operator 13. The
number of epochs is pre-specified. However, the performance on the validation set can be
monitored, and an early stopping criterion can be specified. The training will be stopped if
the performance on the validation set does not improve for a pre-specified number of patience
level. It worth noting that instead of selecting the tuning parameter, a sparsity level of each
layer can be specified. Assuming there are M hidden layers with sizes h1, h2, ..., hM . One
may specify percentile pm for m = 1, ...,M . Denote Wm the weight of layer m and Wpm

the pthm percentile of Wpm . Then for layer m, the soft-thresholding operator can be applied
as S(Wm,Wpm). For example, choosing a percentile of 50 will make a certain layer have
50% sparsity level. An algorithm is given in Algorithm 2. A simulation that compares the
built-in l1 penalty and the soft-thresholding operator is given is Section 5.

Initialize the weights with Xavier initialization;
while Early stopping False OR epochs < k do

One step gradient descent for the neural network part;
for weights in layers do

Apply the soft-thresholding function with a pre-specified percentile;
end
Check early stopping criterion;

end

Algorithm 2: Algorithm for l1 norm estimation using coordinate descent

4. Theoretical Guarantee

In this section, we will develop theoretical support for the proposed methodology. The
methodology supports the intuitions used in the method. A few assumptions are made in
the derivations of the theorems. The first famous assumption in high-dimensional modeling
is sparsity.

12

ENNS - Deep Net feature selection

Assumption 1 (Sparsity) The features are sparse, i.e., only s < o(n) of the p = o(c1e
nc2),

c1 < 0, 0 < c2 < 1 variables are strongly related to the response. Specifically, we assume
y = f∗(XS) + ε, ε ∼ N(0, σ2), where f∗(·) is the true signal, which is a bounded and con-
tinuously differentiable function depending on only the relevant features XS , |S| = s.

Assumption 2 (Hierarchy principle) The signal strength of a feature Xj can be defined
as βj = X ′jf

∗(XS). It prioritizes the linear aspect of the signal over the nonlinear component
and employs it to steer feature sparsity. Additionally, to distinguish the null and non-null
features, we assume, minj∈S |βj | ≥ γn and maxj∈Sc |βj | ≤ o(e−p), where γn is a sequence
that may go to zero, as nm goes to infinity.

Assumption 2 accentuates the predominance of the linear aspect within the signal over
the nonlinear counterpart, utilizing it as a guide for inducing sparsity among features.
This approach closely parallels the hierarchy principle, extensively explored in the field of
statistics (Choi et al. (2010), Yan and Bien (2017)).

Assumption 3 (Design matrix) Considering a fixed design case, we assume the features
are bounded in [−γ, γ] ∈ R, centered, and ||Xj ||22 ≤ τ, j ∈ {1, 2, . . . , p}. Additionally, to
maintain the correlation strength among the features, assume that |X ′1ε|, |X ′2ε|, . . . , |X ′pε| are
associated; i.e. for any non-decreasing function f(·), g(·) : Rp → R,

cov(f(|X ′1ε|, |X ′2ε|, . . . , |X ′pε|), g(|X ′1ε|, |X ′2ε|, . . . , |X ′pε|)) ≥ 0 (14)

We acknowledge that in most instances, the predictors exhibit interdependence, or at least
a subtle correlation. Nonetheless, even a faint correlation introduces significant intricacy to
the methodology. Thus, we hypothesize that while the features might exhibit correlation
among themselves, their correlation with the random noise should be close to zero and
thus they should be associated (Property P4 of associated random variables in Esary et al.
(1967)). Moreover, the assumption outlined in 2 regarding the minute signal strength βj
of null features indirectly constrains the relationship between null and non-null features.
To comprehensively explore correlated predictor scenarios, we will conduct an extensive
simulation study in 5.

For the remainder of our theoretical investigation, we adopt the aforementioned as-
sumptions for ease of the demonstration. The following two propositions illustrate how
the probability of choosing one variable over another in the first step is decided. The first
proposition gives the probability that we select one variable over another, and the second
proposition gives the probability that we will select a correct variable in the first step.

Proposition 4.1 Recall that we will select predictor j if j = arg maxj cj, where cj is the

L2 norm of the gradient with respect to the jth input. Hence, cj being the criterion to select
predictor j, we have

P(cj < ck) =2L (h1,−δ, ρ1) + 2L (h2, δ, ρ2) + Φ(h1) + Φ(h2)− 2 (15)

13

Yang, Ganguli, Maiti

where

L(a, b, ρ) = P(Z1 > a,Z2 > b), (Z1, Z2) ∼ N2(0, 0, 1, 1, ρ), (16)

h1 =
µ1 − µ2√

σ2
1 − 2ρσ1σ2 + σ2

2

, h2 =
µ1 + µ2√

σ2
1 + 2ρσ1σ2 + σ2

2

(17)

ρ1 =
σ2 − σ1ρ√

σ2
1 − 2ρσ1σ2 + σ2

2

, ρ2 =
σ2 + σ1ρ√

σ2
1 + 2ρσ1σ2 + σ2

2

, (18)

δ =
µ2

σ2
(19)

with µ1 = X ′jf
∗(XS), µ1 = X ′kf

∗(XS), σ2
1 = σ2||Xj ||22, σ2

2 = σ2||Xk||22, ρ = X ′jXk and Φ(·) is
the standard normal distribution CDF.

Proposition 4.2 Under assumptions 1, 2 and 3, the probability that we select a nonzero
predictor at the very beginning using the stage-wise neural network selection is

P(A nonzero predictor enters the model first) =
s∑

k=1

∫ ∞
0

fk(x)

p∏
j 6=k

Fj(x)dx (20)

where

Fk(x) =
1

2

[
erf

(
x+ |βk|√

2σ2

)
+ erf

(
x− |βk|√

2σ2

)]
and

fk(x) =
∂

∂x
Fk(x) =

√
2

πσ2
e−

x2+β2k
2σ2 cosh

βkx

σ2
(21)

and erf(·) is the error function. Moreover, if βmax = maxj=1,...,s is bounded, as s → ∞,
the probability is bounded from above

P ≤ 1− δ

where δ is a nontrivial quantity.

Proofs of the two propositions are given in the Appendix. Proposition 4.1 and 4.2
describe the behavior of neural network stage-wise algorithm at the very beginning. The
probability that we select one predictor over another depends on the sum of their signal
strength and the difference in their signal strength. The greater the difference, the higher
the probability that we will select the predictor with higher signal strength. The probability
that we will select a correct predictor at the very beginning is described by the error
function and standard normal density functions. Though the form of the probability looks
complicated, since the error function can be approximated by an exponential function with
proper constants, we can show that in some cases, it is not guaranteed that a variable
entering the model first is a nonzero variable. Specifically, this happens when we have a
low signal strength or a huge number of candidate variables.

So there is a concern that a wrong variable will mistakenly enter the model due to a
special training case of the neural network model, as shown in the previous proposition.
With the bagging algorithm, we are able to eliminate the false positive selections with

14

ENNS - Deep Net feature selection

probability tending to 1. The intuition is that false positive selection of a certain predictor
happens due to a specific observation of the design matrix, which appears to be more
correlated to the response or residual. However, with different sub-samplings, it’s very
unlikely that they yield the same wrong selection. In variable selection algorithms, the
most important property is to be able to select the correct predictors consistently. Here we
show that ENNS enjoys this property in the following theorem.

Theorem 4.1 Assuming sufficient signal strength for the non-null features as specified
in 1,2, 3, assuming the estimated parameters θ̂ share the same bounded parameter space
[−W,W]car(θ), then

1. the probability that the same null predictor appears in B2-bagging rounds tends to zero
asymptotically as B2 increases.

2. the probability that the model is able to include all the non-null predictors in the
selected set tends to one asymptotically.

i.e.
P(Ŝ = S)→ 1 as n→∞ and B2 →∞ (22)

The proof is given in the appendix. In theorem 4.1, we showed that with strong enough
signal strength in the true nonzero variables, the algorithm will be able to select all nonzero
variables with probability tending to 1. The conditions are not verifiable in practice, how-
ever, extensive examples in section 5 show that the ENNS algorithm reaches selection con-
sistency easier than the other algorithms.

For the estimation step, there has been some discussion about the asymptotic prop-
erties such as Feng and Simon (2017); Yang and Maiti (2020), where the results of using
sparse group lasso penalty are given. The l1 norm penalty is actually a special case of the
sparse group lasso with the lasso parameter being 1 and the group lasso parameter being 0.
Therefore, the results of these papers hold as long as we have Ŝ = S0, which has probability
tending to 1 by theorem 4.1. Here we will adapt the theory in Györfi et al. (2006) and will
provide the following result.

Theorem 4.2 Under the assumptions 1, 2, and 3, consider the variables selected from
the ENNS algorithm and the estimation with the l1 regularization method. Denote the l1
regularization tuning parameter with λn and the corresponding Lagrangian parameter Kn.
Denote the hidden layer size with kn. In the regression set up, assume E(Y 2) < ∞, if
Kn →∞, kn →∞ and kns

2K4
n log(knsK

2
n)/n→ 0, we have

lim
n→∞,B2→∞

P
(
E
∫
|fn(x)− f(x)|2µ(dx)→ 0

)
= 1

where fn is the estimated neural network and f is the true function. In the classification
set up, assuming that the probability of response being 1 is bounded away from 0 and 1
by ε̃, denote with Q the maximum number of equivalent neural network classes, choosing
tuning parameter λn ≥ c

√
kn log n/n(

√
logQ +

√
kn log s log(nkn), if log(n)/(nε̃2) → 0,

s2knλ
2
n/(nε̃

2)→ 0 and n−1k
9/2
n s5/2

√
log(sn)→ 0 as n→∞, we have

lim
n→∞,B2→∞

P (R(fn)−R(f∗)→ 0) = 1

15

Yang, Ganguli, Maiti

where R(fn) is the risk of neural network classifier and R(f∗) is the risk of Bayes classifier.

Theorem 4.2 states that under the previously discussed conditions, the regression reaches
weak estimation consistency of the non-parametric function defined in Györfi et al. (2006).
For the classification, the neural network classifier’s risk tends to the optimal risk, Bayes
risk, see for example Devroye et al. (2013). The theorem is a direct result from the existing
results of the low dimension neural network regression model and classifiers. Conditioning
on the fact that we can select all correct variables with probability tending to 1, applying
the full probability formula, the consistency of the two-step approach can be derived with
the low dimensional consistency plus the probability of non-selection-consistency.

The consistency error comes from two aspects: the variable selection error and the esti-
mation error. The intuition behind this is that with a wrong selection result, the estimation
error may be big, however, this happens with probability tending to zero. With a correct
selection result, the estimation error behaves the same as in the low dimensional case, which
converges to zero.

5. Simulation study

In this section, we use a few examples as numerical supports to our arguments in the
previous sections. The code for DNP is composed according to the algorithm outline in Liu
et al. (2017), and the code of ENNS is composed according to the algorithm in this paper.
Both codes can be found at https://github.com/KaixuYang/ENNS.

5.1 Stage-wise correct selection probability decreasing study

In this subsection, we use an example to demonstrate that the chance of selecting a correct
variable in a stage-wise neural network decreases as we have more correct variables in the
model. Consider a design matrix X that is drawn from a uniform distribution between -1
and 1. The sample size is set to n = 1000 and the number of predictors is set to p = 10000.
The first s = 5 predictors are related with the response. We consider three different true
structures of the relationship between the predictors and the response: linear, additive non-
linear and neural network. For the response, we consider two different cases: regression
and classification. In the linear case, the coefficients are drawn from a standard normal
distribution. In the additive non-linear case, the functions are set to

η = sin(x1) + x2 + exp(x3) + x2
4 + log(x5 + 2)− 2 (23)

where y = η + ε in the linear case and prob = σ(η) in the classification case. In the neural
network case, we set hidden layers as [50, 30, 15, 10] and weights from a standard normal
distribution.

For each of the cases, we test the cases when we start from 0 to 4 correct predictors.
In order to eliminate the effect of different signal strengths from different predictors, we
random sample i indices from 1, ..., 5 as the selected variables, for i = 0, ..., 4, and include
these i indices predictors as the initially selected variables. We run a repetition of 1000
times and report the proportion that the next variable that enters the model is a correct
predictor. The results are summarized in table 1.

16

https://github.com/KaixuYang/ENNS

ENNS - Deep Net feature selection

Table 1: The proportion of correct variable selection after 0-4 correct variables in the model,
for different cases over 1000 repetitions. The results show the mean.

y structure 0 variable 1 variable 2 variables 3 variables 4 variables

Reg
Linear .995(.002) .952(.006) .863(.010) .774(.013) .430(.016)

Additive .993(.003) .847(.011) .905(.009) .794(.012) .531(.016)
NN .998(.001) .971(.005) .932(.007) .788(.013) .574(.016)

Cls
Linear .989(.003) .918(.009) .873(.009) .813(.011) .552(.016)

Additive .992(.003) .957(.006) .911(.009) .706(.014) .633(.015)
NN .994(.002) .968(.006) .947(.004) .895(.009) .762(.013)

In the table, we see that the probability of selecting a correct predictor decreases as
we have more correct predictors in the model, in all cases. The only exception is in the
regression set up with additive non-linear structure from 1 variable to 2 variables, which
may due to random error.

5.2 False positive rate study

In this subsection, we use an example to demonstrate that the false positive rate of ENNS
(the probability of selecting a wrong variable) is superior than the pure stage-wise algorithm.
Note that if one set the number of variables to be s, stage wise algorithm always select 5
variables, while ENNS will stop if there isn’t any new variable that satisfy the condition
to be added. Therefore, it’s possible that ENNS selects less number of variables and avoid
wrong selection. We used the same setup as Liu et al. (2017) to generate responses. Two
different types of responses including regression and classification will be considered here.
The input variable X was drawn from U(−1, 1), where the feature dimension p was fixed
to be 10, 000. The corresponding labels were obtained by passing X into the feed-forward
neural network with hidden layer sizes {50, 30, 15, 10} and ReLU activation functions. Input
weights connecting the first s inputs were randomly sampled from N(1, 1) for regression
and N(0, 1) for classification. The remaining input weights were kept zero. For each s =
2, 5, 10, we generated 1000 training samples. In table 2, we report the false positive rate
between the ENNS algorithm and the neural network stage-wise algorithm. Additionally,
we implemented the LassoNet algorithm (Lemhadri et al., 2021) due to its comparative
performances in many application domains.

It can be tested that the ENNS’s false positive rate is significantly less than the false
positive rate of DNP under significance level α = 0.05. This provides strong evidence that
the ENNS is useful in reducing the probability of selecting an incorrect variable.

5.3 Variable selection simulation study

In this subsection, we study the variable selection capability of the ensemble neural network
selection (ENNS) algorithm in a complicated setup. We used a similar setup as in the last
subsection to generate responses. Two different types of responses including regression and
classification will be considered here. The input variableX was drawn from U(−1, 1), where

17

Yang, Ganguli, Maiti

Table 2: Selection false positive rate average of the ENNS, DNP and LassoNet under dif-
ferent number of true variables in 101 repetitions. Standard deviations are given
in parenthesis.

Response Method s=2 s=5 s=10

Regression
ENNS 10.4%(21.5%) 11.5%(22.1%) 12.8%(23.6%)
DNP 22.5%(29.5%) 30.2%(28.7%) 41.4%(33.2%)

LassoNet 30.7% (26.9%) 38.2% (24.6%) 53.1% (39.4%)

Classification
ENNS 4.7%(17.9%) 7.4%(18.6%) 9.8%(20.3%)
DNP 16.5%(24.4%) 24.8%(29.7%) 40.5%(32.8%)

LassoNet 25.3% (26.9%) 33.8% (21.6%) 47.7% (34.2%)

Table 3: Variable selection capacity of ENNS and other methods with low signal strength
in the regression (top) and classification (bottom) setup. The numbers reported
are the average number of selected variables that are truly nonzero. The standard
errors are given in parentheses.

Response Method s=2 s=5 s=10

Regression

ENNS 1.73(0.52) 4.21(0.56) 9.25(1.11)
DNP 1.61(0.50) 3.92(0.56) 8.77(1.13)

LASSO 1.65(0.57) 3.87(0.62) 9.62(1.38)
HSIC-LASSO 1.67(0.47) 3.80(0.66) 3.61(1.17)

LassoNet 1.72(0.31) 4.45(0.51) 8.97(0.48)

Classification

ENNS 1.81(0.49) 4.24(0.87) 8.04(1.25)
DNP 1.67(0.76) 3.76(1.06) 5.95(1.29)

LASSO 1.67(0.56) 3.76(0.75) 5.76(1.38)
HSIC-LASSO 1.67(0.47) 2.80(0.91) 3.61(1.17)

LassoNet 1.73(0.23) 4.06(0.33) 8.39(0.38)

18

ENNS - Deep Net feature selection

Table 4: Variable selection capacity of ENNS and other methods with normal signal
strength. The numbers reported are the average number of selected variables
that are truly nonzero. The standard errors are given in parentheses.

Method s=2 s=5 s=10

ENNS 2.00(0.00) 4.71(0.55) 8.38(2.06)
DNP 1.86(0.35) 4.38(0.84) 7.43(2.36)

LASSO 1.81(0.39) 4.19(1.01) 7.47(2.40)
HSIC-LASSO 1.71(0.45) 3.71(1.12) 4.95(2.13)

the feature dimension p was fixed to be 10, 000. The corresponding labels were obtained
by passing X into the feed-forward neural network with hidden layer sizes {50, 30, 15, 10}
and ReLU activation functions. Input weights connecting the first s inputs were randomly
sampled from N(0, 2) for regression and N(0, 1) for classification. The remaining input
weights were kept at zero. The DNP model was coded according to their algorithm outline
in python with pyTorch. The ENNS algorithm is based on the DNP algorithm with an
ensemble wrapper. The LASSO (Tibshirani, 1996) is implemented by the scikit learn library,
and the HSIC lasso (Yamada et al., 2014) is implemented using the HSICLasso library. In
all these algorithms, the number of selected variables is strictly restricted to the same as
the true number of variables. In the ENNS, we run a bagging of 10 rounds with a selection
proportion of 0.3. We report the average number of correct variables that are selected on
101 repetitions of the data generation in Table 3.

We observe that the ENNS outperforms the other variable selection algorithms in all
three cases, and the difference is significant when s = 10 under a t-test. The ENNS
performs better when there are more nonzero variables. None of the algorithms were able
to reconstruct the original feature indices due to a few reasons: the sample size is relatively
small compared to the number of variables; the data generation through neural network
structures is complicated; and the signal strength is relatively low. Furthermore, it’s worth
observing that LassoNet, owing to its prediction-optimized performance, consistently opts
for a significantly larger number of features. As a consequence, this choice leads to an
increased count of false discoveries. This trend remains consistent across all our numerical
experiments, and as a result, we have chosen not to include its results in the remaining
experiments.

To thoroughly study the variable selection power of the ENNS algorithm, we imple-
mented another simulation case in a classification where we have a higher signal strength
while keeping all other conditions the same. In this simulation study, we increase the mean
of the weights of the nonzero variables to 3.5. With the same implementations, we sum-
marize the results in Table 4. Moreover, Table 5 summarizes the results for signal strength
10.

The ENNS reaches selection consistency when s = 2, while the other compared al-
gorithms still do not have selection consistency. However, all algorithms have obvious
improvements in all cases. We have to admit that selecting the correct subset of variables
in all 101 repetitions is extremely challenging since the data is highly variable in different

19

Yang, Ganguli, Maiti

Table 5: Variable selection capacity of ENNS and other methods with high signal strength.
The numbers reported are the average number of selected variables which are truly
nonzero. The standard errors are given in parenthesis.

Method s=2 s=5 s=10

ENNS 2.00(0.00) 5.00(0.00) 9.90(0.29)
DNP 2.00(0.00) 5.00(0.00) 9.47(1.10)

LASSO 2.00(0.00) 4.90(0.29) 9.23(1.74)
HSIC-LASSO 2.00(0.00) 4.62(0.84) 7.76(2.76)

repetitions. Moreover, when s gets greater, the importance of a few variables are less likely
to be observed from the data.

Moreover, as we know, the bagging algorithm can be paralyzed since different runs are
independent of each other. Therefore, the computational efficiency of this variable selection
algorithm is almost the same as the computation efficiency of a single run.

5.4 Estimation simulation study

In this subsection, we compare the estimation methods in section 3. To fully study the
difference between these methods without the effects of other factors, in this subsection
we assume correct selection and perform the estimation on the correct subset of variables.
The data are generated according to the same scheme as in the last subsection. We will
compare the performance of these different estimation methods for s = 2, 5, 10 assuming
that we know the correct subset of variables. The simulation is run on 101 repetitions of
data generation using different seeds. In the results, we report the RMSE, the MAE and
the MAPE for regression, and the accuracy, the auc score and the f1 score for classification.
These are in Table 6.

On average, we see l1 norm regularization gives best performance, except for the MAPE
of s = 10 in regression. Moreover, we observe that both built-in l1 and soft-thresholding
gives smaller standard errors, which coincides with the shrinkage estimator’s properties.
However, soft-thresholding provides better performance in average than built-in. The reason
is that sparsity is not well supported with most libraries, thus a manual operation is needed
to obtain sparsity.

5.5 Variable selection and estimation

In this subsection, we study the prediction capability of the two-stage approach – ENNS al-
gorithm with l1 neural network, and compare it with the DNP model, the logistic regression
and the HSIC-lasso with SVM. We use the same neural network structure to generate data
as in this section. Over 101 repetitions, we report the average RMSE (rooted mean squared
error), MAE (mean absolute error) and MAPE (mean absolute percent error) for regression
and average accuracy, AUC and F1 Score for classification, as well as their standard errors.
The results are summarized in table 7.

20

ENNS - Deep Net feature selection

Table 6: Prediction results on the testing set using neural networks with and without l1
norm regularization for s = 2, 5, 10. RMSE is rooted mean squared error, MAE is
mean absolute error, and MAPE is mean absolute percent error. Accuracy is the
percentage of correct prediction, auc is area under the ROC curve, and f1 score is
the inverse of inverse precision plus the inverse recall.

Response Metric Method s=2 s=5 s=10

Regression

RMSE
Neural Network 31.24(13.32) 69.46(37.40) 136.64(60.54)

Xavier initialization 18.64(11.07) 58.89(27.73) 136.58(65.57)

l1 built-in 20.47(9.62) 59.37(23.61) 129.55(50.48)

l1 soft-thresholding 5.97(4.18) 45.83(33.06) 109.31(47.24)

Stage-wise 10.59(11.20) 47.64(22.69) 117.65(43.96)

Bagging 25.48(10.89) 59.49(26.53) 133.45(59.72)

MAE
Neural Network 16.45(10.91) 52.85(28.47) 103.76(45.99)

Xavier initialization 13.65(8.06) 45.34(22.18) 105.17(53.66)

l1 built-in 15.56(7.76) 45.32(18.34) 98.54(38.36)

l1 soft-thresholding 4.37(3.02) 35.49(26.21) 83.85(36.45)

Stage-wise 7.91(8.23) 38.86(20.00) 89.82(33.82)

Bagging 14.77(7.92) 43.16(20.51) 99.38(41.66)

MAPE
Neural Network 0.012(0.015) 0.030(0.026) 0.033(0.026)

Xavier initialization 0.009(0.009) 0.027(0.022) 0.029(0.017)

l1 built-in 0.011(0.012) 0.029(0.023) 0.032(0.021)

l1 soft-thresholding 0.005(0.007) 0.017(0.010) 0.029(0.023)

Stage-wise 0.007(0.007) 0.019(0.015) 0.027(0.016)

Bagging 0.010(0.010) 0.026(0.024) 0.030(0.022)

Classification

Accuracy
Neural Network 0.944(0.026) 0.886(0.037) 0.841(0.041)

Xavier initialization 0.952(0.026) 0.891(0.034) 0.831(0.036)

l1 built-in 0.927(0.031) 0.844(0.085) 0.752(0.110)

l1 soft-thresholding 0.964(0.028) 0.908(0.029) 0.855(0.031)

Stage-wise 0.945(0.030) 0.886(0.038) 0.804(0.042)

Bagging 0.877(0.069) 0.806(0.068) 0.753(0.087)

AUC
Neural Network 0.942(0.027) 0.882(0.038) 0.837(0.042)

Xavier initialization 0.951(0.027) 0.891(0.034) 0.825(0.037)

l1 built-in 0.924(0.031) 0.833(0.100) 0.734(0.123)

l1 soft-thresholding 0.964(0.029) 0.905(0.029) 0.851(0.032)

Stage-wise 0.943(0.031) 0.884(0.038) 0.800(0.041)

Bagging 0.877(0.065) 0.803(0.063) 0.751(0.084)

F1 Score
Neural Network 0.943(0.027) 0.887(0.045) 0.841(0.049)

Xavier initialization 0.952(0.026) 0.892(0.041) 0.832(0.048)

l1 built-in 0.927(0.031) 0.824(0.192) 0.732(0.200)

l1 soft-thresholding 0.965(0.026) 0.908(0.036) 0.857(0.033)

Stage-wise 0.944(0.031) 0.883(0.042) 0.806(0.049)

Bagging 0.870(0.077) 0.792(0.060) 0.748(0.088)

21

Yang, Ganguli, Maiti

Table 7: Model performance of the combination of ENNS algorithm and l1 thresholding
estimation, compared with DNP, Lasso and HSIC-Lasso for s = 2, 5, 10 cases in
both regression and classification. The average performance of 101 repetitions
with their standard errors in parenthesis are presented.

Response Metric Method s=2 s=5 s=10

Regression

RMSE

ENNS+l1 15.67(30.35) 48.14(21.16) 174.08(65.38)

DNP 25.42(33.16) 62.63(29.02) 178.91(60.15)

Lasso 79.44(67.31) 104.19(49.38) 192.04(77.34)

HSIC-Lasso 56.32(59.41) 86.77(47.51) 188.35(56.48)

MAE

ENNS+l1 12.03(23.68) 40.12(19.95) 132.07(44.99)

DNP 20.15(27.15) 47.85(22.31) 136.06(45.95)

Lasso 64.11(54.63) 81.97(39.76) 147.86(60.21)

HSIC-Lasso 42.89(34.66) 70.04(41.23) 144.37(48.15)

MAPE

ENNS+l1 0.012(0.025) 0.028(0.036) 0.041(0.037)

DNP 0.017(0.028) 0.032(0.032) 0.042(0.041)

Lasso 0.042(0.029) 0.046(0.035) 0.046(0.025)

HSIC-Lasso 0.033(0.021) 0.036(0.025) 0.048(0.024)

Classification

Accuracy

ENNS+l1 0.967(0.029) 0.848(0.025) 0.756(0.067)

DNP 0.933(0.076) 0.822(0.068) 0.736(0.064)

Lasso 0.732(0.103) 0.726(0.071) 0.692(0.075)

HSIC-Lasso 0.805(0.094) 0.798(0.094) 0.706(0.081)

AUC

ENNS+l1 0.959(0.036) 0.834(0.024) 0.709(0.058)

DNP 0.898(0.148) 0.780(0.100) 0.699(0.052)

Lasso 0.652(0.121) 0.640(0.102) 0.625(0.068)

HSIC-Lasso 0.774(0.125) 0.748(0.121) 0.677(0.061)

F1-Score

ENNS+l1 0.962(0.037) 0.859(0.036) 0.708(0.089)

DNP 0.903(0.208) 0.761(0.199) 0.705(0.100)

Lasso 0.590(0.299) 0.604(0.250) 0.634(0.192)

HSIC-Lasso 0.744(0.206) 0.731(0.242) 0.666(0.208)

22

ENNS - Deep Net feature selection

Our proposed algorithm obtained a slight performance boost via the ensemble method.
Moreover, the standard errors of these results are slightly greater than the standard errors in
the last subsection, where the estimation was done assuming correct selection. The increase
in standard errors is mainly due to the selection variations.

5.6 Correlated predictors

In this subsection, we use an example to study the numerical performance of the proposed
algorithm in a correlated predictor situation. We will consider two different correlations:
ρ = 0.3 and ρ = 0.7. The results for ρ = 0 will also be included as a comparison. Let
u1, ..., un be i.i.d. standard normal random variables, xij be i.i.d. standard normal random
variables, which are independent of u1, ..., un, for i = 1, ..., n and j = 1, ..., p. Do the
transformation xij = (xij + tui)/

√
1 + t2 for some t, then we obtained standard normal

correlated variables

cor(xij , xik) =
t2

1 + t2
, i = 1, ..., n; j = 1, ..., p

Taking t =
√

3/7 gives correlation 0.3 and taking t =
√

7/3 gives correlation 0.7. Then
we truncate the random variables to interval [−1, 1]. The structure to generate response is
kept the same as in the last subsection. The results of variable selection and estimation is
given in table 8.

From the table, we see that in the correlated cases, the model works almost as well as
when there is no correlation. All models select fewer variables when the correlation is higher,
and this is a well-known symptom of variable selection with correlated predictors. However,
this does not affect the estimation step and sometimes even improves the estimation results.
The reason could be that we have fewer variables; thus, the model is simpler. Since the
predictors are correlated, we do not lose too much information by not selecting some of
them. Moreover, some results not in the table include the false positive rate, where the
average for ENNS is 0.05 ± 0.03, while that of the DNP is 0.29 ± 0.14. Therefore, ENNS
includes fewer redundant variables in the estimation step and achieves better performance.

6. Real data examples

In this section, we evaluate the performance of the two-step model on some real-world data
sets.

6.1 Variable selection: MRI data

In this example, we evaluate the variable selection capability with other variable selec-
tion models and compare the results with the biological ground truth. The data used in
this example come from Alzheimer’s disease neuroimaging initiatives (ADNI), see http:

//adni.loni.usc.edu/. The data includes neuroimaging results from n = 265 patients,
including 164 Alzheimer’s (AD) patients and 101 cognitively normal (CN) individuals.
145 regions of interest (ROI) that span the entire brain were calculated using Multi-
Atlas ROI segmentation, and 114 ROIs were derived by combining single ROIs within
a tree hierarchy to obtain volumetric measurements from larger structures. Therefore,

23

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/

Yang, Ganguli, Maiti

Table 8: Selection and estimation comparison for predictors with correlation 0, 0.3 and
0.7. The number of nonzero predictors is set to 5. For selection, the average
number of correct selected variables with its standard error is given. For estimation
the average RMSE or AUC with their standard errors is given. The results are
averaged over 101 repetitions.

Response Model
selection

ρ = 0.0 ρ = 0.3 ρ = 0.7

Regression
ENNS+l1 3.81(0.79) 3.27(0.75) 2.29(0.70)

DNP 3.48(0.96) 2.95(0.79) 2.14(0.56)

LASSO 3.38(0.90) 2.85(0.79) 2.11(1.12)

Classification
ENNS+l1 3.66(1.05) 3.25(0.76) 2.38(0.72)

DNP 3.62(1.09) 3.43(0.91) 2.71(1.03)

LASSO 3.55(0.79) 2.90(1.31) 1.95(0.72)

Response Model
estimation

ρ = 0.0 ρ = 0.3 ρ = 0.7

Regression
ENNS+l1 40.82(19.46) 37.17(27.29) 43.18(44.47)

DNP 81.43(46.00) 92.91(65.25) 101.15(90.63)

LASSO 131.37(74.22) 151.16(108.88) 113.30(97.54)

Classification
ENNS+l1 0.856(0.040) 0.875(0.061) 0.907(0.030)

DNP 0.774(0.100) 0.766(0.106) 0.793(0.092)

LASSO 0.598(0.083) 0.634(0.117) 0.683(0.116)

24

ENNS - Deep Net feature selection

p = 259 ROIs were used in this example. Details of the pre-processing method can be
found in https://adni.bitbucket.io/reference/docs/UPENN_ROI_MARS/Multi-atlas_

ROI_ADNI_Methods_mod_April2016.pdf. Among these ROIs, biologically important fea-
tures are picked, see Table 9, where red indicates the most important, yellow means second
importance, and green means third importance. The combinations and all other ROIs are
not listed.

The full data set is used for variable selection, and the selection result is chosen such
that a 3-fold cross-validation performs best. We run the ENNS algorithm along with the
LASSO and the DNP. The selection results are presented in Table 9. Note here if a model
selects a simple combination of some features, these features are also marked as selected.
Moreover, Table 10 shows the number of combined features selected for the models and
the number of false positive selections. We observe that LASSO misses a lot of important
features and selected only 1/4 of the combined features as neural networks. This indicates
that the features may have a complicated relationship with the response. ENNS performs
better than the shallow DNP in terms of the metrics in table 10, where IS is a weighted
average score with the weights for red, yellow and green being 3, 2 and 1, respectively, NI is
the number of selected important variables; and NU is the number of selected unimportant
variables. As a property of the ENNS, it selects fewer false positive variables. It’s hard to
track the combined features since a lot are involved. However, the combinations represent
biological intuitions. Neural networks select more combined features and perform better in
this sense.

6.2 Regression: riboflavin production data

In this example, we consider the riboflavin production with bacillus subtilis data, which is
publicly available in the ‘hdi’ package in R. The data set contains a continuous response,
which is the logarithm of the riboflavin production rate, and p = 4088 predictors which are
the logarithm of the expression level of 4088 genes. There are n = 71 observations available.
All predictors are continuous with positive values.

We perform 50 repetitions of the following actions. The data is split into training (56)
and testing (15) observations. The training data is further split into training (49) and
validation (7). The training data is normalized with mean zero and standard deviation
one. We train the ENNS algorithm to select variables and perform the l1 neural network to
make prediction. Along with our proposed algorithms, we compare the performance with
the lasso penalized linear regression, which is implemented by the scikit-learn library in
python; the group lasso penalized generalized additive model in Yang and Maiti (2018),
where the code can be found at https://github.com/KaixuYang/PenalizedGAM; and the
sparse group lasso penalized neural network in Feng and Simon (2017). Figure (1) shows the
average testing mean squared error (MSE) along with the number of selected features for
different models. Our proposed algorithm converges fast and performs competitive. Table
11 shows the average prediction accuracy with standard error in parenthesis and the median
number of variables selected. Our proposed method has competitive mean performance but
lower standard error.

The final model of small sample utilizes only 2 hidden layers, with over 90% sparsity to
prevent over-fitting, which is necessary for this small training sample size, 49. Training with

25

https://adni.bitbucket.io/reference/docs/UPENN_ROI_MARS/Multi-atlas_ROI_ADNI_Methods_mod_April2016.pdf
https://adni.bitbucket.io/reference/docs/UPENN_ROI_MARS/Multi-atlas_ROI_ADNI_Methods_mod_April2016.pdf
https://github.com/KaixuYang/PenalizedGAM

Yang, Ganguli, Maiti

Table 9: Variable selection result for the AD data. The table includes all biologically impor-
tant variables with three levels: red (very important), yellow (secondly important)
and green (thirdly important). The non-important variables are not included in
the model. Checkmarks indicate whether the corresponding algorithm selected the
variable or not.

Gene code R31 R32 R36 R37 R38 R39 R40 R41 R47 R48 R49 R50 R51
Lasso X X X X X
DNP X X X X X X X
ENNS X X X X X X X X X X X X

Gene code R52 R55 R56 R57 R58 R59 R60 R81 R82 R85 R86 R87 R88
Lasso X X
DNP X X X X X X
ENNS X X X X X X X

Gene code R100 R101 R102 R103 R106 R107 R116 R117 R118 R119 R120 R121 R122
Lasso X X X X
DNP X X X X X X
ENNS X X X X X

Gene code R123 R124 R125 R132 R133 R136 R137 R138 R139 R140 R141 R142 R143
Lasso X X X X X X X X
DNP X X X X X X X X
ENNS X X X X X X X X X

Gene code R146 R147 R152 R153 R154 R155 R162 R163 R164 R165 R166 R167 R168
Lasso X X X X X X
DNP X X X X
ENNS X X X X X X X X

Gene code R169 R170 R171 R178 R179 R186 R187 R190 R191 R194 R195 R198 R199
Lasso X X X X X X
DNP X X X X X
ENNS X X X X X X

Gene code R200 R201 R202 R203 R204 R205 R206 R207
Lasso X X X
DNP X X X X
ENNS X X X X

Table 10: Variable selection result for the AD data. The reported numbers include IS,
the weighted average of selected important variables with the weights being 3, 2
and 1 for red (most important), yellow (secondly important) and green (thirdly
important), respectively; NI, number of important variables selected; and NU,
number of unimportant variables selected.

Variable selection method IS NI NU

LASSO 1.094 32/86 25/59
DNP 1.428 40/86 15/59
ENNS 1.624 49/86 6/59

26

ENNS - Deep Net feature selection

Table 11: Test MSE with standard error in parentheses and median of number of features
for different models in the riboflavin gene data example.

Model Test MSE Number of features

ENNS+l1 neural network 0.268(0.115) 42
Regularized neural network 0.273(0.135) 44
Linear model with LASSO 0.286(0.124) 38

Generalized additive model with group lasso 0.282(0.136) 46

large batch size, small learning rate, huge number of epochs and early stopping help the
model learn better and prevent over-fitting. We admit that tuning the network structure
and learning parameters are hard, but we obtain better and stabler results once we have
the right numbers.

6.3 Classification: prostate cancer data

In this example, we consider prostate cancer gene expression data publicly available in http:

//featureselection.asu.edu/datasets.php. The data set contains a binary response
with 102 observations on 5966 predictor variables. The data set is a high-dimensional
data set. The responses have values 1 (50 sample points) and 2 (52 sample points), where
1 indicates normal and 2 indicates tumor. All predictors are continuous predictors with
positive values.

We perform 50 repetitions of the following actions. The data is split into training
(81) and testing (21) observations. The training data are divided into training (70) and
validation (11). In each split, the number of class 0 and class 1 observations are kept
roughly the same. We train the ENNS algorithm to select variables and perform the l1
neural network to make predictions. Along with our proposed algorithms, we compare the
performance with the l1 norm penalized logistic regression, the l1 support vector machine
(SVM), both of which are implemented with the scikit-learn library in Python; the group
lasso penalized generalized additive model in Yang and Maiti (2018), where the code can
be found at https://github.com/KaixuYang/PenalizedGAM; and the sparse group lasso
penalized neural network in Feng and Simon (2017). Figure (2) shows the average testing
accuracy over the 20 repetitions and the number of selected features for different models.
Our proposed algorithm converges fast and performs competitively. Table 12 shows the
average prediction accuracy with standard error in parenthesis and the median number of
variables selected. Our proposed methods has competitive mean performance but lower
standard error. One needs to notice that the mean performance is hard to improve further
since the results are already good and reach the bottleneck of the current explanatory
variables. The reason that GAM performs worse than the other models is that the range of
predictor variables is relatively small and skewed. Thus, the basis expansion on GAM does
not work well.

27

http://featureselection.asu.edu/datasets.php
http://featureselection.asu.edu/datasets.php
https://github.com/KaixuYang/PenalizedGAM

Yang, Ganguli, Maiti

Figure 1: Testing mean squared error (MSE) for different models on the riboflavin data.

Figure 2: Testing accuracy for different models on the prostate cancer data.

Table 12: Test accuracy with standard error in parentheses and median of number of fea-
tures for different classifiers in the Prostate gene data example.

Classifier Test accuracy Number of features

ENNS+l1 neural network 0.956(0.053) 15
Regularized neural network 0.955(0.066) 18

Logistic Regression with Lasso 0.933(0.058) 36
l1 penalized Linear SVM 0.950(0.052) 16

Generalized additive model with group lasso 0.918(0.061) 5

28

ENNS - Deep Net feature selection

7. Conclusion

This paper discusses existing methods for dealing with high-dimensional data and how to
apply the stage-wise algorithm to neural networks. We addressed the shortage of current
stage-wise neural network variable selection algorithms and proposed the ENNS to overcome
this shortage. Moreover, we also compared different methods to reduce the over-fitting
issue further after the variable selection step. The methodology was given to support the
argument and new algorithm, and simulation studies were given as additional evidence for
the algorithm to work.

Although some simulations and methodologies have been used to select neural network
variables, the theory of neural networks still deserves much more investigation. We hope
that this paper can work as a pioneer and attract more people’s attention to the field of
neural network theory.

8. Acknowledgement

The authors appreciate the reviewers’ comments, which improved the manuscript. Grants
NSF-1924724, NSF-1952856, and NSF-2124605 partially supported the work.

References

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations.
cambridge university press, 2009.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learn-
ing. In Advances in neural information processing systems, pages 41–48, 2007.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal func-
tion. IEEE Transactions on Information theory, 39(3):930–945, 1993.

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers:
A comparison between shallow and deep architectures. IEEE transactions on neural
networks and learning systems, 25(8):1553–1565, 2014.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media, 2011.

Peter Bühlmann, Bin Yu, et al. Analyzing bagging. The Annals of Statistics, 30(4):927–961,
2002.

Emmanuel Candes, Terence Tao, et al. The dantzig selector: Statistical estimation when p
is much larger than n. The annals of Statistics, 35(6):2313–2351, 2007.

Giovanna Castellano and Anna Maria Fanelli. Variable selection using neural-network mod-
els. Neurocomputing, 31(1-4):1–13, 2000.

Jiahua Chen and Zehua Chen. Extended bayesian information criteria for model selection
with large model spaces. Biometrika, 95(3):759–771, 2008.

29

Yang, Ganguli, Maiti

Nam Hee Choi, William Li, and Ji Zhu. Variable selection with the strong heredity con-
straint and its oracle property. Journal of the American Statistical Association, 105(489):
354–364, 2010. doi: 10.1198/jasa.2010.tm08281. URL https://doi.org/10.1198/jasa.

2010.tm08281.

Charles K Chui, Xin Li, and Hrushikesh Narhar Mhaskar. Limitations of the approxima-
tion capabilities of neural networks with one hidden layer. Advances in Computational
Mathematics, 5(1):233–243, 1996.

CK Chui, Xin Li, and Hrushikesh Narhar Mhaskar. Neural networks for localized approxi-
mation. Mathematics of Computation, 63(208):607–623, 1994.

John B Copas. Regression, prediction and shrinkage. Journal of the Royal Statistical Society:
Series B (Methodological), 45(3):311–335, 1983.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. In Advances
in neural information processing systems, pages 666–674, 2011.

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition,
volume 31. Springer Science & Business Media, 2013.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(Jul):
2121–2159, 2011.

Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regres-
sion. The Annals of statistics, 32(2):407–499, 2004.

J. D. Esary, F. Proschan, and D. W. Walkup. Association of Random Variables, with
Applications. The Annals of Mathematical Statistics, 38(5):1466 – 1474, 1967. doi:
10.1214/aoms/1177698701. URL https://doi.org/10.1214/aoms/1177698701.

Fenglei Fan, Jinjun Xiong, and Ge Wang. Universal approximation with quadratic deep
networks. Neural Networks, 124:383–392, 2020.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American statistical Association, 96(456):1348–1360,
2001.

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):
849–911, 2008.

Yingying Fan and Cheng Yong Tang. Tuning parameter selection in high dimensional pe-
nalized likelihood. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 75(3):531–552, 2013.

30

https://doi.org/10.1198/jasa.2010.tm08281
https://doi.org/10.1198/jasa.2010.tm08281
https://doi.org/10.1214/aoms/1177698701

ENNS - Deep Net feature selection

Jean Feng and Noah Simon. Sparse-input neural networks for high-dimensional nonpara-
metric regression and classification. arXiv preprint arXiv:1711.07592, 2017.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

Evarist Giné and Joel Zinn. Bootstrapping general empirical measures. The Annals of
Probability, pages 851–869, 1990.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory
of nonparametric regression. Springer Science & Business Media, 2006.

Harold Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417, 1933.

Jian Huang, Joel L Horowitz, and Fengrong Wei. Variable selection in nonparametric
additive models. Annals of statistics, 38(4):2282, 2010.

Bing’er Jiang, Tim O’Donnell, and Meghan Clayards. A deep neural network approach to
investigate tone space in languages. The Journal of the Acoustical Society of America,
145(3):1913–1913, 2019.

Ian T Jolliffe, Nickolay T Trendafilov, and Mudassir Uddin. A modified principal component
technique based on the lasso. Journal of computational and Graphical Statistics, 12(3):
531–547, 2003.

H. J. Kim. A class of ratio distributions of dependent folded normals and its applications.
Statistics, 50(4):791–811, 2015. doi: 10.1080/02331888.2015.1094071. URL https://

doi.org/10.1080/02331888.2015.1094071.

Stephen Cole Kleene. Representation of events in nerve nets and finite automata. Technical
report, RAND PROJECT AIR FORCE SANTA MONICA CA, 1951.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neural net-
works. AIChE journal, 37(2):233–243, 1991.

Michele La Rocca and Cira Perna. Variable selection in neural network regression models
with dependent data: a subsampling approach. Computational statistics & data analysis,
48(2):415–429, 2005.

Neil D Lawrence. A unifying probabilistic perspective for spectral dimensionality reduction:
Insights and new models. Journal of Machine Learning Research, 13(May):1609–1638,
2012.

Ismael Lemhadri, Feng Ruan, and Robert Tibshirani. A neural network with feature spar-
sity. arXiv preprint arXiv:1907.12207, 2019.

31

https://doi.org/10.1080/02331888.2015.1094071
https://doi.org/10.1080/02331888.2015.1094071

Yang, Ganguli, Maiti

Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. Lassonet: A neural
network with feature sparsity. J. Mach. Learn. Res., 22(1), jan 2021. ISSN 1532-4435.

You L Li, Jessica Ducey-Wysling, Aurélie D’Hondt, Dongwoon Hyun, Bhavik Patel, and
Jeremy J Dahl. Vector flow imaging using a deep neural network. The Journal of the
Acoustical Society of America, 146(4):2901–2902, 2019.

Bo Liu, Ying Wei, Yu Zhang, and Qiang Yang. Deep neural networks for high dimension,
low sample size data. In IJCAI, pages 2287–2293, 2017.

Yufeng Liu and Yichao Wu. Variable selection via a combination of the l 0 and l 1 penalties.
Journal of Computational and Graphical Statistics, 16(4):782–798, 2007.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. A provably efficient algorithm for
training deep networks. CoRR, vol. abs/1304.7045, 2013.

Giampiero Marra and Simon N Wood. Practical variable selection for generalized additive
models. Computational Statistics & Data Analysis, 55(7):2372–2387, 2011.

Mitsunori Mizumachi and Maya Origuchi. Superdirective non-linear beamforming with
deep neural network. The Journal of the Acoustical Society of America, 140(4):3167–
3167, 2016.

Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM journal on
computing, 24(2):227–234, 1995.

Kyoung-Su Oh and Keechul Jung. Gpu implementation of neural networks. Pattern Recog-
nition, 37(6):1311–1314, 2004.

Simon Perkins, Kevin Lacker, and James Theiler. Grafting: Fast, incremental feature
selection by gradient descent in function space. Journal of machine learning research, 3
(Mar):1333–1356, 2003.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica,
8:143–195, 1999.

Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao.
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a
review. International Journal of Automation and Computing, 14(5):503–519, 2017.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):
461–464, 1978.

32

ENNS - Deep Net feature selection

Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approximation prop-
erties for deep neural networks. Applied and Computational Harmonic Analysis, 44(3):
537–557, 2018.

Jonathan W Siegel and Jinchao Xu. On the approximation properties of neural networks.
arXiv preprint arXiv:1904.02311, 2019.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group lasso.
Journal of Computational and Graphical Statistics, 22(2):231–245, 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

Ambuj Tewari, Pradeep K Ravikumar, and Inderjit S Dhillon. Greedy algorithms for struc-
turally constrained high dimensional problems. In Advances in Neural Information Pro-
cessing Systems, pages 882–890, 2011.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

Ryan J Tibshirani. A general framework for fast stagewise algorithms. The Journal of
Machine Learning Research, 16(1):2543–2588, 2015.

Warren S Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17
(4):401–419, 1952.

Wen-Jen Tsay, Cliff J Huang, Tsu-Tan Fu, and I-Lin Ho. A simple closed-form approxima-
tion for the cumulative distribution function of the composite error of stochastic frontier
models. Journal of Productivity Analysis, 39(3):259–269, 2013.

Rongrong Wang and Xiaopeng Zhang. Capacity preserving mapping for high-dimensional
data visualization. arXiv preprint arXiv:1909.13322, 2019.

Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):
3–34, 2015.

Tong Tong Wu, Kenneth Lange, et al. Coordinate descent algorithms for lasso penalized
regression. The Annals of Applied Statistics, 2(1):224–244, 2008.

Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P Xing, and Masashi Sugiyama.
High-dimensional feature selection by feature-wise kernelized lasso. Neural computation,
26(1):185–207, 2014.

Xiaohan Yan and Jacob Bien. Hierarchical Sparse Modeling: A Choice of Two Group Lasso
Formulations. Statistical Science, 32(4):531 – 560, 2017. doi: 10.1214/17-STS622. URL
https://doi.org/10.1214/17-STS622.

Kaixu Yang and Tapabrata Maiti. Ultra high-dimensional generalized additive model: con-
sistency and tuning parameter selection. Technical report, Michigan State University,
2018.

33

https://doi.org/10.1214/17-STS622

Yang, Ganguli, Maiti

Kaixu Yang and Tapabrata Maiti. Statistical aspects of high-dimensional sparse artificial
neural network models. Machine learning and knowledge extraction, 2(1):1–19, 2020.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-
dimensional linear regression. The Annals of Statistics, pages 1567–1594, 2008.

Yiyun Zhang, Runze Li, and Chih-Ling Tsai. Regularization parameter selections via gen-
eralized information criterion. Journal of the American Statistical Association, 105(489):
312–323, 2010.

Hui Zou. The adaptive lasso and its oracle properties. Journal of the American statistical
association, 101(476):1418–1429, 2006.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Jour-
nal of computational and graphical statistics, 15(2):265–286, 2006.

34

ENNS - Deep Net feature selection

Appendix A. Proof

In this section, we will provide the proof of the theorems in section 4.

Proof of Proposition 4.1

Proof Consider independent observations {(x1, y1), ..., (xn, yn)}. In the regression set up,
we have

y|x1, ..., xp ∼ N (f∗(xS), σ2).

Let Ŝ be the set of variables included in the current model. The algorithm computes

G0j =
∂

∂W 0j
l(θ;X,y) := (G0j1, ..., G0jK)

where K is the size of the first hidden layer. Without loss of generality, we may consider
a shallow network in this part, since there isn’t any predictor x involved in this section, all
estimates can be treated as constants, which are universal for all j′s. We have

G0jk = − 2

n

n∑
i=1

yiâkσ
′(

p∑
j=1

xij θ̂jk + t̂k)xij , k = 1, ...,K

where âk, t̂k are estimated parameters for the initial model and θ̂jk is set to zero for all
input variables at the very beginning. Thus we have

‖G0j‖2 =

√√√√ K∑
k=1

[− 2

n

n∑
i=1

yiâkσ′(

p∑
j=1

xij θ̂jk + t̂k)xij]2

=
2

n

√√√√ K∑
k=1

â2
kσ
′(t̂k)|xT(j)y|

Since the leading constant is independent of j, it’s easier to consider the different part,
denoted

cj = |xT(j)y|
for j ∈ C, where C is the candidate set. The first variable selected is

j+ = arg max
j∈C

cj .

At the very beginning, we have for x ≥ 0 that

P(c1 ≤ x) = P
(
|xT(1)y| ≤ x

)
= P

(
−x ≤ xT(1)y ≤ x

)
= P

(
−x ≤ xT(1)(f

∗(XS) + ε) ≤ x
)

= P
(
−x ≤ β1 + xT(1)ε ≤ x

)
= Φ

(
x− β1

σ‖x(1)‖2

)
− Φ

(
−x− β1

σ‖x(1)‖2

)
(24)

35

Yang, Ganguli, Maiti

where βj = XT
(j)f ∗ (XS) according to Assumption 2. This result implies that greater β

leads to a higher probability of large c1. Then for any two features X(j) and X(k)

P(cj > ck) = P
(
|xT(j)y| > |x

T
(k)y|

)
(25)

Let
Wj = xT(j)y and Wk = xT(k)y (26)

which are both normally distributed. Therefore, cj and ck follow folded normal distribution

cj ∼ FN(βj , σ
2‖x(j)‖22) and c2 ∼ FN(β2, σ

2‖x(k)‖22) (27)

We can calculate

Cov(Wj ,Wk) = Cov(βj + xT(j)ε, βk + xT(k)ε) = σ2xT(j)x(k) (28)

Since both cj and ck are positive, the probability is equivalent to

P(cj > ck) = P
(
cj
ck
> 1

)
(29)

Let
cjk =

cj
ck

Then we have
cjk ∼ RFN(βj , βk, σ

2‖x(j)‖22, σ2‖x(k)‖22, ρ) (30)

where RFN stands for the ratio of folded normal distributions. By theorem 3.1 in Kim
(2015), we have the CDF of cjk

Fjk(x) =2L (h1,−δ, ρ1) + 2L (h2, δ, ρ2) + Φ(h1) + Φ(h2)− 2 (31)

where

L(a, b, ρ) = P(Z1 > a,Z2 > b), (Z1, Z2) ∼ N2(0, 0, 1, 1, ρ), (32)

h1 =
µj − µk√

σ2
j − 2ρσjσk + σ2

k

, h2 =
µj + µk√

σ2
j + 2ρσjσk + σ2

k

(33)

ρ1 =
σk − σjρ√

σ2
j − 2ρσjσk + σ2

k

, ρ2 =
σk + σjρ√

σ2
j + 2ρσjσk + σ2

k

, (34)

δ =
µk
σk

(35)

with µj = X ′(j)f
∗(XS), µk = X ′(k)f

∗(XS), σ2
j = σ2||X(j)||22, σ2

k = σ2||X(k)||22, ρ = X ′jXk and

Φ(·) is the standard normal distribution CDF.
Then we have

P(X(j) will be selected before X(k)) = P(cj < ck) = F12(1) (36)

fully characterized by the signal strength βj , βk, the noise variance σ2 and the feature norms
||X(j)||22, ||X(k)||22, as specified in equations 31, 32.

36

ENNS - Deep Net feature selection

Proof of Proposition 4.2

Proof We continue from the proof of proposition 4.1. Let Ŝ be the set of variables included
in the current model. At the very beginning, we have proved in the proof of proposition 4.1
that

cj ∼ FN(βj , σ
2||X(j)||22) j = 1, ..., p (37)

Denote the event

Ek = {ck > max
i 6=k

ci}, k ∈ S (38)

It’s easy to observe that Ek’s are mutually exclusive. Therefore, we have

P(At least one of {cj , j ∈ S} is greater than all of {cj , j ∈ Sc})

=P

(⋃
k∈S

Ek

)
=
∑
k∈S

P(Ek) (39)

We may calculate

Pr(Ek) = Pr(ck > c(−k,p−1))

where c(−k,p−1) is the largest order statistic of c(1), ...c(k−1), c(k+1), c(p). Let F(−k,p−1) and
f(−k,p−1) be the CDF and PDF of c(−k,p−1), respectively. Then we have

Pr(Ek)

=Pr(ck > c(−k,p−1))

=

∫ ∞
0

Pr(ck > x)f(−k,p−1)(x)dx

=

∫ ∞
0

[1− Fk(x)]
∂

∂x
F(−k,p−1)(x)dx

=
[
[1− Fk(x)]F(−k,p−1)(x)

]∣∣∞
0

+

∫ ∞
0

fk(x)F(−k,p−1)(x)dx

=

∫ ∞
0

fk(x)F(−k,p−1)(x)dx (40)

where the second equality is by the convolution formula, and the fourth equality is by
integration by parts. Therefore,

Pr(At least one of {cj , j ∈ S} is greater than all of {cj , j ∈ Sc})

=
∑
k∈S

∫ ∞
0

fk(x)F(−k,p−1)(x)dx (41)

37

Yang, Ganguli, Maiti

Next, we will show that although this might be a high probability, this will not converge to
one even for large n. Let

pk =

∫ ∞
0

fk(x)P(max
j={1,2,...,p}/{k}

cj ≤ x)dx

≤
∫ ∞

0
fk(x)P(min

j={1,2,...,p}/{k}
cj ≤ x)dx

=

∫ ∞
0

fk(x)

(
1− P(min

j={1,2,...,p}/{k}
cj ≥ x)

)
dx

=

∫ ∞
0

fk(x) (1− P(cj ≥ x, j ∈ {1, 2, . . . , p}/{k})) dx

≤
∫ ∞

0
fk(x)

1−
∏

j={1,2,...,p}/{k}

P(cj ≥ x)

 dx

=

∫ ∞
0

fk(x)

1−
∏

j={1,2,...,p}/{k}

(1− Fj(x)))

 dx (42)

Now, from the properties of folded normal distribution, we have

Fk(x) =
1

2

[
erf

(
x+ |βk|√

2σ2

)
+ erf

(
x− |βk|√

2σ2

)]
and

fk(x) =
∂

∂x
Fk(x) =

√
2

πσ2
e−

x2+β2k
2σ2 cosh

βkx

σ2

where the erf(·) is the Gauss-error function; i.e., erf(x) = 2√
π

∫ x
0 e
−t2dt. For the ease of

calculation, we assumed ||X(j)||22 = 1,∀j = {1, 2, . . . , p}. By the formulas for Fk and fk, we
have

pk =

∫ ∞
0

√
2

πσ2
e−

x2+β2k
2σ2 cosh (

βkx

σ2
)

1−
∏
j 6=k
{1− 1

2

[
erf

(
x+ βj√

2σ2
}
)

+ erf

(
x− βj√

2σ2

)]
}

 dx

=

∫ ∞
0

√
1

2πσ2

[
e−

(x+βk)
2

2σ2 + e−
(x−βk)

2

2σ2

]1−
∏
j 6=k
{1− 1

2

[
erf

(
x+ βj√

2σ2

)
+ erf

(
x− βj√

2σ2

)]
}

 dx

(43)

Do change of variable z = x/σ, we have

pk =

∫ ∞
0

1√
2π

[
e−

(z+
βk
σ)2

2 + e−
(z−βkσ)2

2

]1−
∏
j 6=k
{1− 1

2

[
erf

(
z +

βj
σ√

2

)
+ erf

(
z − βj

σ√
2

)]
}

 dz

(44)

38

ENNS - Deep Net feature selection

Let β̃k = βk/σ, without loss of generality, assume that ∞ = β0 ≥ β1 ≥ ... ≥ βp ≥ βp+1 = 0,
we have

pk =

∫ ∞
0

1√
2π

[
e−

(z+β̃k)
2

2 + e−
(z−β̃k)

2

2

]1−
∏
j 6=k
{1− 1

2

[
erf

(
z + β̃j√

2

)
+ erf

(
z − β̃j√

2

)]
}

 dz

=

p∑
i=0

∫ βi

βi+1

1√
2π

[
e−

(z+β̃k)
2

2 + e−
(z−β̃k)

2

2

]
1−

∏
j 6=k
{1− 1

2

[
erf

(
z + β̃j√

2

)
+ 1{j≥i+1}erf

(
z − β̃j√

2

)
− 1{j≤i}erf

(
β̃j − z√

2

)]
}

 dz

(45)

By the exponential approximation of the error function, see for example Tsay et al. (2013),
there exists c1 and c2 such that

sup
x>0
|erf(x)− (1− exp[−c1x− c2x

2])|

can be arbitrarily small, where approximately c1 ≈ 1.095 and c2 ≈ 0.7565. Consider this
approximation, we have

pk =

p∑
i=0

∫ βi

βi+1

1√
2π

[
e−

(z+β̃k)
2

2 + e−
(z−β̃k)

2

2

]

×

(
1−

∏
j 6=k

{
1− 1

2

[
1 + 1{j≥i+1} − 1{j≤i} − e

c21
4c2

×

(
e
− c2

2

[
z+
(
β̃j+

c1√
2c2

)]2
+ 1{j≥i+1}e

− c2
2

[
z+
(
−β̃j+

c1√
2c2

)]2

−1{j≤i}e
− c2

2

[
z−
(
β̃j+

c1√
2c2

)]2)]})
dz (46)

Here

e
c21
4c2 ≈ 1.48 >> 1

Observe that as when i = s, also observe that assumption 2 indicates maxj=s+1,...,p βj → 0,
we have

s∏
j=1,j 6=k

1

2
e
c21
4c2

[
e
− c2

2

[
z−
(
βj+

c1√
2c2

)]2
− e−

c2
2

[
z+
(
βj+

c1√
2c2

)]2]
→ 0 as s→∞

39

Yang, Ganguli, Maiti

Therefore, the formula of pk can be simplified to

pk = o

(
1

2s
e
sc21
4c2

)
+

s∑
i=0

∫ βi

βi+1

1√
2π

[
e−

(z+β̃k)
2

2 + e−
(z−β̃k)

2

2

]

×

(
1−

∏
j 6=k

{
1− 1

2

[
1 + 1{j≥i+1} − 1{j≤i} − e

c21
4c2

×

(
e
− c2

2

[
z+
(
β̃j+

c1√
2c2

)]2
+ 1{j≥i+1}e

− c2
2

[
z+
(
−β̃j+

c1√
2c2

)]2

−1{j≤i}e
− c2

2

[
z−
(
β̃j+

c1√
2c2

)]2)]})

≤ o

(
1

2s
e
sc21
4c2

)
+

s∑
i=0

(
1

2
e
c21
4c2

)s−i
× 1

2s

[
Φ(β̃i − β̃k)− Φ(β̃i+1 − β̃k) + Φ(β̃i + β̃k)− Φ(β̃i+1 + β̃k)

]
(47)

where Φ is the normal CDF and the inequality is by observing

e−x
2 ≤ 1

and the term in the bracket is less than 2 when j ≥ i + 1. Then summing up p′ks and ob-
serving the double sum is not converging to zero since it consists of a geometric component,
when βmax is not big enough and let s→∞, we have

1−
s∑

k=1

pk

≥1− o

(
s

1

2s
e
sc21
4c2

)
−

s∑
k=1

s∑
i=0

(
1

2
e
c21
4c2

)s−i
1

2s

[
Φ(β̃i − β̃k)− Φ(β̃i+1 − β̃k) + Φ(β̃i + β̃k)− Φ(β̃i+1 + β̃k)

]
≥

s∑
i=1

(
1

2
e
c21
4c2

)s−i s∑
k=1

1

2s
(1− Φ(βmax))− o

(
s

1

2s
e
sc21
4c2

)
≥c− o(1) (48)

This implies, that there is always a positive probability that a null feature gets selected at
the beginning even when n→∞.

Proof of Theorem 4.1

Proof In this proof, first, we will show the probability that the same zero predictor appears
in k bagging rounds tends to zero as k increases. Then, we prove that the probability that
the model is able to include all the non-null features tens to one asymptotically.

40

ENNS - Deep Net feature selection

At the first step, we have C = {1, ..., p} and S = {} and include the variables sequentially.
At the mth step, denote the candidate set Cm and the selected set Sm. First, assume that
there is at least one non-null predictor in the the candidate set Cm; i.e. |Cm ∩ S0| 6=
φ. Consider the j-th feature and the following estimator: ŝmj = 1{‖Gmj‖2≤tm}. Hence,
conditioning on the observations, there exists a fixed tm such that ŝmj indicates whether the
j-th feature is not selected (=1) or selected (=0). The bagged estimator is defined as

ŝmj,B = E
[
1{‖G∗mj‖2≤tm}

]
(49)

where G∗mj is Gmj evaluated on a bootstrap sample. By the uniform law of large numbers,
see for example Györfi et al. (2006), we have

sup
x,y

∣∣∣∣∣ 1

B2

B2∑
b=1

1{‖G∗mj,b‖2≤tm} − E
[
1{‖G∗mj‖2≤tm}

]∣∣∣∣∣→ 0 as B2 →∞ (50)

Let PBn be the empirical measure of the bootstrap sample. By algebra, in the m-th step,

||Gmj ||2 =

√√√√ k∑
k=1

[
− 2

n

n∑
i=1

(yi − µ̂i)âkσ′(x′iθ̂k + t̂k)xij

]2

(51)

Here, θ̂jk is estimated from data for j ∈ Sm and θ̂jk = 0 for j ∈ Cm, µ̂i) is the neural
network estimate of yi based on XSm,i. Let ε̂i = yi− µ̂i be the prediction error for i-th data

point. Also, let, σ′ik = σ′(x′iθ̂k + t̂k). Then,

||Gmj ||2 =
2

n

√√√√ k∑
k=1

â2
k

[
n∑
i=1

ε̂iσ′ikxij

]2

(52)

≤ 2

n

√√√√ k∑
k=1

â2
k

[
max

i=1,2,...,n
σ′ik

1

n

n∑
i=1

1ε̂ixij≥0 + min
i=1,2,...,n

σ′ik
1

n

n∑
i=1

1ε̂ixij<0

]2

(ε̂′x(j))2

(53)

Similarly,

||Gmj ||2 ≥
2

n

√√√√ k∑
k=1

â2
k

[
min

i=1,2,...,n
σ′ik

1

n

n∑
i=1

1ε̂ixij≥0 + max
i=1,2,...,n

σ′ik
1

n

n∑
i=1

1ε̂ixij<0

]2

(ε̂′x(j))2

(54)

Now, we can decompose the last term in equations 52and 54 as

ε̂′x(j) = (y − µ̂)′X(j)

= (f∗(XS) + ε− µ̂)′X(j)

= X ′(j)f
∗(XS) + ε′X(j) − µ̂′X(j)

= βj + ε′X(j) − µ̂′X(j) (55)

41

Yang, Ganguli, Maiti

Due to the bounded nature of the parameter space Θ and the features by assumption
3, the predicted values µ̂ would be bounded. Hence, by assumption 2 , for j ∈ Cm ∩
S,E||Gmj ||2 ≥ cγn√

n
. Additionally, for j ∈ Cm ∩ Sc, E||Gmj ||2 ≤ c′k

n . Hence, if γn ≥ c′k
c
√
n

,

minj∈Cm∩S E||Gmj ||2 ≥ maxCm∩Sc E||Gmj ||2 .

Hence, from now on, let us set the tm in the bagging estimator 49 as tm = 1
2

(
c′k
n + cγn

n

)
.

Later we will discuss how to estimate the abstract tm by a data-adaptive procedure. Now,
let ||Gmj ||2 = 2

n

√
J where, for any arbitrary θ ∈ Θ,

J =
k∑
k=1

â2
k

[
n∑
i=1

ε̂iσ
′
ikxij

]2

= ck

(
n∑
i=1

(yi −Dθ(xi))σikxij

)2

(56)

Hence, for any fixed θ ∈ Θ,

(yi −Dθ(xi))σikxij ∼ N
(
(f∗(Xi,S)−Dθ(xi))σikxij , σ2(σikxij)

2
)

(57)

Consequently, by the central limit theorem (CLT), for some increasing sequence bn, bn(||Gmj ||2−
c0)→ N(0, σ2

∞).
Now, supθ∈Θ J ≤ KW 2(

∑n
i=1(yi + W)xij)

2 would also follow the CLT. Also, J is con-

tinuous wrt θ; hence supθ∈Θ J ∈ the domain of J . This implies that for an estimated θ̂,

there exists an increasing sequence bn, for which bn(||Gmj(θ̂)||2 − c0)→ N(0, σ2
∞).

Also, as Dθ is Lipsctitz continuous wrt θ, ||Gmj ||2 is bounded. Hence, by Giné and Zinn
(1990) and Bühlmann et al. (2002), the bootstrap consistency is preserved; i.e.,

1

B2

B2∑
b=1

1{‖G∗mj,b‖2≤tm} → Φ

(
bn(tm − c0)

σ∞
− Z

)
as n and B2 →∞ (58)

Now, for j ∈ Cm ∩ Sc,

P(j ∈ Cm ∩ Sm+1 ∩ Sc) = P

(
1

B2

B2∑
b=1

1{‖G∗mj,b‖2≥tm} ≥ ps, j ∈ C
m ∩ Sc

)

≈ P
(

Φ

(
bn(tm − c0)

σ∞
− Z

)
≤ 1− ps

)
→ 0 (59)

Now, consider the other scenario, where Cm∩Sc = φ. Here, we will show that the same null
feature appears more than the threshold-limited number of times in all the bagging rounds
with probability converging to zero. It can be shown as,

P(j ∈ Cm ∩ Sm+1c ∩ Sc) = P

(
1

B2

B2∑
b=1

1{‖G∗mj,b‖2≥tm} ≤ ps, j ∈ C
m

)

= P

(
1

B2

B2∑
b=1

1{‖G∗mj,b‖2≤tm} ≥ 1− ps, j ∈ Cm ∩ Sc
)

≈ P
(

Φ

(
bn(tm − c0)

σ∞
− Z

)
≥ 1− ps

)
→ 1 (60)

42

ENNS - Deep Net feature selection

Hence, the same null feature appears in many bagging rounds only with probability tending
to zero. This further implies that the overall false positive rate of ENNS goes to zero.

Now, to prove that the power of ENNS converges to one, it is sufficient to show that the
model will be able to include all the non-null predictors. Here, WLG, we assume the first
s features are the true non-null features; i.e. S = {1, 2, . . . , s}. Then we consider the worst
case where Sm = {1, 2, . . . , s− 1}, Cm = {s, s+ 1, . . . , p}. Hence,

P(s ∈ Sm+1 ∩ Cm) = P

(
1

B2

B2∑
b=1

1{‖G∗ms,b‖2≥tm} ≤ ps

)

= P

(
1

B2

B2∑
b=1

1{‖G∗ms,b‖2≤tm} ≥ 1− ps

)

≈ P
(

Φ

(
bn(tm − c0)

σ∞
− Z

)
≥ 1− ps

)
→ 0 (61)

Finally, we talk about the abstract form of tm = 1
2

(
c′k
n + cγn

n

)
. This choice was justified

because it can achieve the nice separation between the null and non-null features; e.g.

for j ∈ Cm ∩ S,P (||Gmj ||2 ≥ tm) = 1− Φ
(
bn(tm−E||Gmj ||2)

σ∞
− Z

)
→ 1; and

for j ∈ Cm ∩ Sc,P (||Gmj ||2 ≤ tm) = Φ
(
bn(tm−E||Gmj ||2)

σ∞
− Z

)
→ 1 However, instead of

fixing the tm at this abstract value, we propose to start each iteration by setting tm as
the maximum observed ||Gmj ||2 in the candidate set Cm. Hence, one after another all the
non-null predictors will be selected. Next, as soon as tm becomes the maximum ||Gmj ||2 in
the null feature set, i.e. j ∈ Cm ∩ S,

P(j0 ∈ Cm ∩ Sm+1 ∩ Sc), where j0 ∈ Cm ∩ Sc, ||Gmj0 ||2 = max
j∈Cm

||Gmj ||2

= P

(
1

B2

B2∑
b=1

1{‖G∗mj0,b‖2≥tm}
≥ ps

)

= P

(
1

B2

B2∑
b=1

1{‖G∗mj0,b‖2≤tm}
≤ 1− ps

)

≈ P
(

Φ

(
bn(tm − ||Gmj0 ||2)

σ∞
− Z

)
≤ 1− ps

)
= 1− ps, where ps = 1− o(1/

√
n) (62)

Proof of Theorem 4.2

Proof In this subsection, we prove the estimation and prediction of regression and classi-
fication, respectively. In the regression set up, under assumption 1, we have

y = f(x) + ε = f(xS) + ε

43

Yang, Ganguli, Maiti

We have

P
(
E
∫
|fn(xŜ)− f(xS)|2µ(dx)→ 0

)
=P
(
E
∫
|fn(xŜ)− f(xS)|2µ(dx)→ 0

∣∣∣∣ Ŝ = S
)
P
(
Ŝ = S

)
+ P

(
E
∫
|fn(xŜ)− f(xS)|2µ(dx)→ 0

∣∣∣∣ Ŝ 6= S)P
(
Ŝ 6= S

)
≥P
(
E
∫
|fn(xŜ)− f(xS)|2µ(dx)→ 0

∣∣∣∣ Ŝ = S
)
P
(
Ŝ = S

)
=P
(
E
∫
|fn(xS)− f(xS)|2µ(dx)→ 0

)
P
(
Ŝ = S

)
(63)

Observe that ∣∣∣β̂∣∣∣ ≤ |θ|1 ≤ Kn

According to Györfi et al. (2006), when we perform a neural network estimation on the true
subset of variables, we have that the total error is bounded by the approximation error,
which is bounded according to Fan et al. (2020), plus the estimation error, which is bounded
by the covering number, then by the packing number, then by the Vapnik-Chervonenkis
dimension, and finally by the space dimension, i.e.

E
∫
|fn(xS)− f(xS)|2µ(dx)

=O

(
L

√
kn
n− 1

)
+ δn (64)

where L is the Lipshitz continuity coefficient, kn is the first hidden layer size, and by Györfi
et al. (2006) δn satisfies

P {sup δn > ε} ≤ 8

(
384K2

n(kn + 1)

ε

)(2s+5)kn+1

e−nε
2/128·24K4

n

Under theorem assumptions, the probability above is summable, thus we have the first
probability in 63 converges to 1. On the other hand, by theorem 4.1, we have the second
probability in 63 converges to 1. Therefore, the result for regression set up is proved.

In the classification set up, similarly, we have

P
(
R(fn,Ŝ)−R(f∗S)→ 0

)
=P
(
R(fn,Ŝ)−R(f∗S)→ 0

∣∣∣ Ŝ = S
)
P
(
Ŝ = S

)
+ P

(
R(fn,Ŝ)−R(f∗S)→ 0

∣∣∣ Ŝ 6= S)P(Ŝ 6= S)
≥P
(
R(fn,Ŝ)−R(f∗S)→ 0

∣∣∣ Ŝ = S
)
P
(
Ŝ = S

)
=P (R(fn,S)−R(f∗S)→ 0)P

(
Ŝ = S

)
(65)

By Devroye et al. (2013), we have

R(fn)−R(f∗)→ 0 as n→∞

44

ENNS - Deep Net feature selection

and from theorem 4.1, we have the second probability in equation 65 tends to 1. Combine
these two results, the consistency of classification case is proved.

45

	Introduction
	Related works
	The regularization approach
	Deep neural network approximation
	Variable selection and regularization in neural networks
	Algorithms

	The two-step variable selection and estimation approach
	The ensemble neural network selection (ENNS) algorithm
	Estimation with regularization
	Dropping out and bagging
	Stage-wise training
	l1 norm regularization

	Theoretical Guarantee
	Simulation study
	Stage-wise correct selection probability decreasing study
	False positive rate study
	Variable selection simulation study
	Estimation simulation study
	Variable selection and estimation
	Correlated predictors

	Real data examples
	Variable selection: MRI data
	Regression: riboflavin production data
	Classification: prostate cancer data

	Conclusion
	Acknowledgement
	Proof

