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Abstract

Numerical reasoning over text requires deep integration between the semantic
understanding of the natural language context and the mathematical calculation
of the symbolic terms. However, existing approaches are limited in their ability to
incorporate domain-specific knowledge and express mathematical formulas over
data structures. Delegating logic reasoning to a relational database is a promising
approach to enhance the reasoning complexity. We study the problem of distilling
natural language text into a relational database with numerical data structure and
querying this database to obtain desired answers. Specifically, given a legal contract
and a set of date-related questions in natural language, we utilize pre-trained neural
network models to create a relational database to retrieve and generate the target
dates. We evaluate our method on the CUAD dataset and demonstrate that our
approach has high correct answer coverage and reduces a significant amount of
incorrect results even without any labels.

1 Introduction
Performing numerical reasoning in Natural Language (NL) reading comprehension remains an
open problem. While large language models like GPT-3 [3], ERNIE3.0 [21], and BERT [8] show
great promise and achieve impressive results in many NL benchmarks, it is still challenging to
perform logical reasoning and numerical calculations. For example, when GPT-J [23], an open-source
implementation of GPT-3, is asked to auto-complete the sentence “The month following January is
_”, it answers “March”. The model is capable of memorizing commonly occurring terms, but it does
not possess factual relations between such concepts. Recent works targeting the DROP benchmark
[9] focus on numerical reasoning over text. However, even the state-of-the-art approach [5] does not
generalize to numerical operations beyond plus and subtract over simple numbers.

We bridge the gap between natural language comprehension and numerical reasoning by representing
an NL document in a Datalog-based relational database. Questions can be represented by Datalog
queries and the desired answer is drawn from the execution output. This representation offers several
benefits. First, the semantic meaning of the NL document can be captured by relations generated using
well-known NLP techniques, such as Semantic Role Labeling (SRL), Named Entity Recognition
(NER), coreference resolution, and synonym resolution. Second, numerical constructs such as integer,
date, and period are native to relational databases, enabling us to do precise computation. Third,
the Datalog query is not only interpretable, but the system can also efficiently collect provenance
information while executing the query, making the prediction fully explainable. Finally, recent
advances in probabilistic and differentiable logic programming [1, 6, 14] can be employed to fine-
tune NL models and also synthesize queries.

In this paper, we focus specifically on date-related question answering (QA) over legal contracts.
Recent works [4] observe that large language models trained on broader datasets struggle to cope



Challenge NR LD Example
Number Calculation 3 7 ... sold for $16.3 million, well above its $12 million high estimate.

Date Retrieval 3 3 ... the Agreement is made as of May 22, 2000 ...
Date Calculation 3 3 .. shall remain effective for 2 years from and after the E.D. ...
Domain Specific 7 3 expiration date = effective date + term

Multi-hop Reasoning 7 3 The Effective Date ... shown by the signatures below.
Table 1: We compare general numerical reasoning required reading comprehension task [9] against date related
questions in legal documents. The legal document has several unique challenges: date focused calculation,
domain specific knowledge, and multi-hop reasoning.

with a specialized domain such as comprehending legal documents (LD). In addition, this setting
poses several unique challenges to traditional NL reasoning systems for numerical reasoning (NR),
as shown in Table 1. We demonstrate that our approach can overcome the challenges above by
evaluating it on the CUAD dataset [10]. The dataset contains 511 legal documents and 5 kinds of
date-related questions (e.g. “the expiration date of this contract”). With 18 Datalog rules in total (3.6
rules per question kind on average), we achieve a 77.7% recall for 1,342 answers of the 5 question
kinds combined.

2 Related Work
There have been several attempts to integrate Natural Language with Databases. Natural language
interface to Database focuses on using natural language to query existing databases, i.e. interfacing
databases with NL. For example, the Spider dataset [24] contains static database schemas along with
SQL queries, enabling recent text-to-SQL approaches [7] to zero-shot generate SQL queries on even
unseen database schemas. We, on the other hand, focus on transforming a natural language passage
into a standalone relational database, rather than focusing on query synthesis.

NeuralDB [22] constructs Natural Language Database (NLDB) and trains a Neural SPJ (Select-
Project-Join) operator to perform a database query. However, they construct the NLDB from

“corpora that consist of unordered collections of facts expressed as short natural language sentences”,
which does not apply to legal documents, and in general to natural language passages. General NL
passages have rich sentence structures and inter-sentence relations that short sentences cannot capture,
and legal documents commonly employ long, complex, and formal prose. On the contrary, our
relational database construction takes these into account by employing well-known NLP techniques.

Differentiable and probabilistic reasoning has been studied extensively [18]. DeepProbLog [13],
DiffLog [20], and Scallop [1] employ differentiable reasoning on probabilistic databases, which could
be used to extend our framework for fine-tuning NLP models. Further, neural-based approaches to
rule learning such as NTP [14], GNTP [15], and CTP [16] can be used to automatically generate
programmatic queries.

3 Framework
Constructing the Relational Database The first part of our framework concerns constructing a
relational database from the NL document. Our database captures unitary entities such as a verb
(e.g. “continue”), phrase (e.g. “this content license agreement (agreement)”) and date (e.g. “May 22,
2020”). Additionally, it contains relationships between entities that capture the semantic information.
We employ pre-trained NLP models for tokenizing, NER, SRL, synonym resolution, and coreference
resolution. With the full extensional database (EDB) schema shown in Table 2, we describe the four
stages of constructing our relational database:

1. Tokenizing. We first convert the plain text into tokens using an off-the-shelf tokenizer [11]. The
tokenizer not only provides the token with its position in the text but also the token’s part-of-speech
(POS) information. We store the verbs and nouns identified by the tokenizer in relations such as
verb and noun, respectively.

2. Extracting Numbers. Given the sequence of tokens generated by the tokenizer, the NER system
can help us identify numbers and dates in the document. All numerical tokens, such as “Forty” and
“May 20, 2000”, are stored into the num relation with their respective number type (e.g. “cardinal”,
“date”, “period”). For the numbers with type “date” and “period”, we further utilize a date parser

Preprint. Under review.

2



Relation Arguments Generated By

verb (<verb_id|keyword_id>, String) Tokenizer
noun (<noun_id|keyword_id>, String) Tokenizer

phrase (<phrase_id>, String) SRL
num (<num_id>, String, <num_type>) NER

date (<num_id>, Date) NER, DateParser
period (<num_id>, Period) NER, DateParser

arg (<verb_id>, <phrase_id>, <arg_type>) SRL
synonym (<keyword_id>, <noun_id|verb_id>) Similarity Network

coref (<*_id>, <*_id>, String) Corefence Resolution, Regex
overlap (<*_id>, <*_id>) Tokenizer

Table 2: Extensional Database (EDB) Schema. Each row shows the name of the relation, the argument types,
and the method(s) used to generate such relation. Note that we use *_ids to represent entities in the database,
while keeping their raw string form in relations such as verb, noun, and phrase.

to convert the phrase into a unified data structure of Date and Period in our relational database,
before storing them in the date and period relations.

3. Entity Relations within Sentence. We adopt SRL models to link the entities within a single
sentence. SRL aims to capture the semantic meaning by identifying the arguments associated
with each verb in the sentence. For example, in the sentence “Tom kicks the ball”, “Tom” is
the actor (arg0) of the verb “kicks”, while “ball” is the receiver (arg1). We specifically care
about the temporal modifier argument (argm_tmp): in the sentence “... continues for two (2)
years”, the phrase “two years” is a temporal modifier for the verb “continues”. It produces the
arg(<"continues">, <"two years">, "argm_tmp") relation in our database. In addition,
we store an overlap relation between two entities if their positions in the original document have
overlap.

4. Cross-Sentence Entity Relations. To capture relations across sentences, we utilize models
recognizing synonyms and coreferences. We employ a similarity neural network to detect if
two entities are synonyms (e.g. synonym(<"cease", "stop">)), and a coreference resolution
network to detect if two entities are referring to the same concept. As an example, in the sentence
“During the period of three years from the date hereof...”, we have “the date” referencing the
effective date defined in the previous sentence.

All of the relations extracted are associated with probabilities (the softmax output of each model).
Although not explored in the scope of this paper, they allow subsequent differentiable and probabilistic
reasoning systems to rank answers by probabilities and to back-propagate loss for data-efficient
training.

Constructing Programmatic Queries We now describe how we construct programmatic queries
for each of the 5 kinds of date-related questions in the CUAD dataset. In general, each query contains
two parts of reasoning: equivalence and association. First, we want to find the words and phrases that
are equivalent to the keyword in the question (e.g. “effective date”), using relations such as overlap,
synonym and coref. Then, we can start from such words and phrases to find the associated dates,
using SRL relations such as arg. Figure 1 shows a concrete example of a query applied to the text to
derive the expected answer. The full set of queries and the helper rules are provided in appendix A.

... the Agreement is made as of May 22, 2000 ...

argm_tmp

eff_date_id(N) :- eff_date_verb(V), num(N, _, "DATE"), arg(V, N, "argm_tmp").

Figure 1: This rule extracts the effective date id, asking for the date that is associated to a verb which is equivalent
to the keyword "effective date". Since the verb “is made” is a relaxed synonym of the keyword “effective date”,
and it has a temporal modifier “May 22, 2000”, executing the rule yields the id of the phrase “May 22, 2000”.

Domain knowledge such as “expiration date = effective date + term period” can be incorporated in
the queries as well. With native support for the Date and Period data types, our relational database
system enables arithmetic operations such as M = D + P, that performs addition between a period P
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... shall remain effective for two (2) years from and after the Effective Date ...
term_id(N)  :- term_verb(V), num(N, _, "PERIOD"), argm(V, N, "argm_tmp").

exp_date(M) :- eff_date_id(E), term_id(T), date_id(E, D), period_id(T, P), M = D + P.

argm_tmp

Figure 2: The expiration date is calculated from the effective date plus the term length. The term period, "two
(2) years", is extracted by the first rule, similar to Figure 1. Then, according to the second rule, expiration date is
calculated with a native plus function operating over the effective date and the term length. Specifically, the date
"May 22, 2000" plus the period "two (2) years" gives us the result "May 22, 2002".

and a date D. We employ the Magic-Set Transformation [2] to improve the efficiency of the query
execution. This optimization cuts down the execution time from hours to less than 10 seconds.

4 Evaluation
Dataset. We evaluate our approach on date-related questions in the CUAD dataset: agreement
date, effective date, expiration date, notice period before the expiration date, and the renewal term.
Each task contains a legal document, a question, and a ground truth answer with its explanation. We
ensure that no invalid answers, such as “[]/[]/[]” or empty labels exist in our dataset. In total, we have
collected 1,342 annotations over 511 legal documents for the 5 kinds of questions.

Figure 3: Recall on the CUAD dataset. Rkw
i represents

the ith rule of the question kw. The “multiple rules” cate-
gory covers tasks that multiple rules can solve, while the
other categories represent tasks that can only be solved
by the specific rule. The full list of Rkw

i is provided in
the appendix.

Metrics. We propose a different metric for
fine-grained date comparison. The original
CUAD paper adopts the Jaccard similarity co-
efficient to compare the predicted string and the
explanation string. However, in date calcula-
tion questions, an explanation may not directly
reflect the real answer. Therefore, we use an off-
the-shelf date parser to extract the numerical
form of the ground truth gtn and the prediction
ŷn. If gtn is of type Date, the accuracy is 1 if
gtn and yn are exact match; if gtn is of type
Period, the accuracy is 1 if gtn and yn are
within ε error bound.

Algorithm setup. Our algorithm heavily re-
lies on pre-trained neural networks. We select
the best performing neural networks from spaCy
and allenNLP libraries. Specifically, we use
the "en_core_web_lg" network in spaCy [11]
to perform tokenization and similarity checks;
state-of-the-art coreference resolution network
[12]; ELMO-NER for named entity recognition [17]; and SRL-BERT for semantic role labeling [19].
We set the ε comparing two periods to be 0.01. We construct the 18 rules by analyzing 100 tasks in
the dataset.

Results. Figure 3 shows the evaluation results on the CUAD dataset. Overall, our approach
achieves a 77.7% recall rate on the dataset without fine-tuning. For instance, the rule "expiration
date = effective date + term length" succeeds in calculating 64 unique solutions for the question
"expiration date." This means more than 24% of expiration date’s answers do not directly occur in
the passage. Instead, date calculation is required to solve these problems.

5 Conclusion and Future Work
We introduced a neural symbolic approach to perform numerical reasoning over legal contracts.
The natural language processing networks convert the legal documents into a database, while a
Datalog engine performs high-level reasoning atop the database. Our approach can capture the
semantics of legal documents, perform a precise calculation over numerical constructs, and maintain
the explainability of the reasoning process. In the future, we plan to fine-tune the pre-trained neural
networks through a differentiable probabilistic Datalog engine. Another interesting direction we
intend to explore is to automatically generate logic rules from natural language questions.
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A Rules

We manually write down the rules by analyze 100 question and answer pairs. Here is the set of rules
that leads to the final results.

Rule Description The date that is equivalent to the keyword "effective date".

Datalog Query effective_date_id(NID) :-
effective_date_noun(NID), num(NID, _, "DATE").

Table 3: Effective Date & Agreement Date, Rule 1

Rule Description The date that is associated with equivalents of "effective date".

Datalog Query effective_date_id(NID) :- effective_date_verb(VID),
num_id(NID, _, "DATE"), argm(VID, NID, "argm_tmp").

Table 4: Effective Date & Agreement Date, Rule 2

Rule Description The date overlaps with the equivalents of the keyword "effective date".

Datalog Query effective_date_id(NID) :-
effective_date_noun(NID1), equiv_date(NID1, NID).

Table 5: Effective Date & Agreement Date, Rule 3

Rule Description The date overlaps with the phrase associated with equivalence of "effective date".

Datalog Query effective_date_id(NID) :- effective_date_verb(VID),
equiv_date(NID1, NID), argm(VID, NID1, "argm_tmp").
Table 6: Effective Date & Agreement Date, Rule 4

Rule Description The date that is equivalent to the keyword "expiration date".

Datalog Query expiration_date_id(NID) :-
expiration_noun(NID), num(NID, _, "DATE").

Table 7: Expiration Date, Rule 1

Rule Description The date that is associated with equivalents of "expiration date".

Datalog Query expiration_date_id(NID) :- expiration_verb(VID),
num(NID, _, "DATE"), argm(VID, NID, "argm_tmp").

Table 8: Expiration Date, Rule 2

Rule Description The date overlaps with the equivalents of the keyword "expiration date".

Datalog Query expiration_date_id(NID) :-
expiration_noun(NID1), equiv_date(NID1, NID).

Table 9: Expiration Date, Rule 3

Rule Description The date overlaps with the phrase associated with equivalence of "expiration date".

Datalog Query expiration_date_id(NID) :- expiration_verb(VID),
equiv_date(NID1, NID), argm(VID, NID1, "argm_tmp").

Table 10: Expiration Date, Rule 4
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Rule Description Expiration date = effective date + expiration date.

Datalog Query expiration_date_id(M) :- effective_date_id(NID),
date_id(NID, D), period_id(PID, P), term_id(PID), M = D + P.

Table 11: Expiration Date, Rule 4

Rule Description The period that is associated with equivalents of "term".

Datalog Query renewal_term_id(NID) :- term_verb(VID),
num(NID, _, "PERIOD"), argm(VID, NID, "argm_tmp").

Table 12: Renewal Term, Rule 1

Rule Description The date that is associated with equivalents of "term".

Datalog Query renewal_term_id(NID) :- term_verb(VID),
num_id(NID, _, "DATE"), argm(VID, NID, "argm_tmp").

Table 13: Renewal Term, Rule 2

Rule Description The period overlaps with the phrase associated with equivalents of "term".

Datalog Query renewal_term_id(NID) :- term_verb(VID),
equiv_period(NID1, NID), argm(VID, NID1, "argm_tmp").

Table 14: Renewal Term, Rule 3

Rule Description The date overlaps with the phrase associated with equivalents of "term".

Datalog Query renewal_term_id(NID) :- term_verb(VID),
equiv_date(NID1, NID), argm(VID, NID1, "argm_tmp").

Table 15: Renewal Term, Rule 4

Rule Description The period associated with both "termination" and "notice".

Datalog Query notice_period_id(NID) :- notice_verb(VID),
termination_verb(VID), num(NID, _, "PERIOD"), argm(VID, NID, "argm_tmp").

Table 16: Notice Period, Rule 1

Rule Description The date associated with both "termination" and "notice".

Datalog Query notice_period_id(NID) :- notice_verb(VID),
termination_verb(VID), num(NID, _, "DATE"), argm(VID, NID, "argm_tmp").

Table 17: Notice Period, Rule 2

Rule Description The period overlapped with the phrase that associates with both "termination" and "notice".

Datalog Query notice_period_id(NID) :- notice_verb(VID),
termination_verb(VID), equiv_period(NID1, NID), argm(VID, NID1, "argm_tmp").

Table 18: Notice Period, Rule 3

Rule Description The date overlapped with the phrase that associates with both "termination" and "notice".

Datalog Query notice_period_id(NID) :- notice_verb(VID),
termination_verb(VID), equiv_date(NID1, NID), argm(VID, NID1, "argm_tmp").

Table 19: Notice Period, Rule 4
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Here are the helper functions.

// Known rules for query construction
decl equiv(Int, Int).
equiv(A, B) :- coref(A, B).
equiv(A, B) :- synonym(A, B).
equiv(A, B) :- equiv(B, A).
equiv(A, B) :- equiv(A, C), equiv(C, B).

decl equiv_date(Int, Int).
decl equiv_period(Int, Int).
equiv_date(A, B) :- overlap(A, B), num_id(B, _, "DATE").
equiv_period(A, B) :- overlap(A, B), num_id(B, _, "PERIOD").

// helpers

decl vid(Int, String).
vid(VID, V) :- argm(VID, _, _), noun_id(VID, V, _).
vid(VID, V) :- argm(VID, _, _), num_id(VID, V, _).

decl eq_start_verb(Int).
eq_start_verb(VID) :- verb_id(VID, "start").
eq_start_verb(VID1) :- verb_id(VID, "start"), equiv(VID, VID1).

decl eq_terminate_verb(Int).
eq_terminate_verb(VID) :- verb_id(VID, "terminate").
eq_terminate_verb(VID1) :- verb_id(VID, "terminate"), equiv(VID, VID1).

decl eq_effective_date_noun(Int).
eq_effective_date_noun(NID) :- noun_id(NID, "effective date", _).
eq_effective_date_noun(NID1) :- noun_id(NID, "effective date", _), equiv(NID, NID1).

decl eq_term_noun(Int).
eq_term_noun(NID) :- noun_id(NID, "term", _).
eq_term_noun(NID1) :- noun_id(NID, "term", _), equiv(NID, NID1).

decl eq_termination_noun(Int).
eq_termination_noun(NID) :- noun_id(NID, "terminate date", _).
eq_termination_noun(NID1) :- noun_id(NID, "terminate date", _), equiv(NID, NID1).

decl eq_notice_noun(Int).
eq_notice_noun(NID) :- noun_id(NID, "notice", _).
eq_notice_noun(NID) :- noun_id(NID, "notice period", _).
eq_notice_noun(NID1) :- noun_id(NID, "notice", _), equiv(NID, NID1).
eq_notice_noun(NID1) :- noun_id(NID, "notice period", _), equiv(NID, NID1).

decl termination_verb(Int).
termination_verb(VID) :- verb_id(VID, V), eq_termination_noun(NID), argm(VID, NID, _).
termination_verb(VID) :- verb_id(VID, V), eq_termination_noun(VID).
termination_verb(VID) :- eq_terminate_verb(VID).

decl effective_date_verb(Int).
effective_date_verb(VID) :- verb_id(VID, V), eq_effective_date_noun(NID),

argm(VID, NID, _).
effective_date_verb(VID) :- verb_id(VID, V), eq_effective_date_noun(VID).
effective_date_verb(VID) :- eq_start_verb(VID).

decl term_verb(Int).
term_verb(VID) :- verb_id(VID, V), eq_term_noun(NID), argm(VID, NID, _).
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term_verb(VID) :- verb_id(VID, "remain").
term_verb(NID) :- verb_id(VID, "remain"), equiv(VID, NID).

decl notice_verb(Int).
notice_verb(VID) :- verb_id(VID, V), eq_notice_noun(NID), argm(VID, NID, _).
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