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Abstract

Actor-Critic methods are a prominent class of modern reinforcement learning
algorithms based on the classic Policy Iteration procedure. Despite many success-
ful cases, Actor-Critic methods tend to require a gigantic number of experiences
and can be very unstable. Recent approaches have advocated learning and using a
world model to improve sample efficiency and reduce reliance on the value function
estimate. However, learning an accurate dynamics model of the world remains
challenging, often requiring computationally costly and data-hungry models. More
recent work has shown that learning an everywhere accurate model is unnecessary
and often detrimental to the overall task; instead, the agent should improve the
world model on task-critical regions. For example, in Iterative Value-Aware Model
Learning, the authors extend model-based value iteration by incorporating the value
function (estimate) into the model loss function, showing the novel model objective
reflects improved performance in the end task. Therefore, it seems natural to expect
that model-based Actor-Critic methods can benefit equally from learning value-
aware models, improving overall task performance, or reducing the need for large,
expensive models. However, we show empirically that combining Actor-Critic and
value-aware model learning can be quite difficult and that naive approaches such as
maximum likelihood estimation often achieve superior performance with less com-
putational cost. Our results suggest that, despite theoretical guarantees, learning a
value-aware model in continuous domains does not ensure better performance on
the overall task.

1 Introduction

Actor-Critic (AC) methods [17, 19, 26, 40, 41] are a prominent class of model-free reinforcement
learning (RL) algorithms based on the classic Policy Iteration procedure. The method consists in
iterating over two main steps: evaluating the agent’s policy (updating the value function estimate of
the expected policy returns), and improving the current policy. Combined with recent advances in
deep neural network function approximators [16], AC methods have obtained impressive results in
many challenging sequential decision making problems such as playing Atari games from image
pixel input [40] and learning complex robot gaits in simulation [22].

Recently, there has been a growing interest in extending AC methods by progressively learning and
using a model of the environment dynamics [7, 8, 10, 15, 23]. The use of a dynamics model (a.k.a.
world model) has been shown to greatly improve sample-efficiency [27, 32, 39], an important aspect
in environments with costly actions (which are arguably more common when one ventures outside of
simulation-based tasks, such as in robotics and industrial applications). Using a world model can also
reduce the algorithm’s reliance on the quality of the estimated value-function through mechanisms

1st I Can’t Believe It’s Not Better Workshop (ICBINB@NeurIPS 2020), Vancouver, Canada.



such as multistep bootstrapping. Moreover, recent work shows that learning a world model is often
easier than finding an accurate value function approximation [9], increasing the stability of RL
methods. Finally, having access to a world model unlocks different learning modalities, such as
learning value functions in Sobolev spaces [10].

Yet learning a world model introduces its own challenges. For instance, the model class may be
misspecified [24], meaning that the function approximator used cannot accurately represent the true
dynamics everywhere on the state space (or even in most of it). In such cases, by attempting to
improve the average accuracy standard model learning approaches such as Maximum Likelihood
Estimation (MLE) may sub-utilize the model capacity and fail at aiding policy learning.

Decision-aware model learning (DAML) [1, 11, 13, 14] tackles this problem by taking the decision
making objective into account when optimizing for the world model. Iterative value-aware model
learning [13] (IterVAML), for instance, introduces a novel model loss function which incorporates the
current estimate of the value function. Under assumptions on the sample collection, model space, and
value function space, the authors of IterVAML were able to theoretically link the performance of a
model-based agent as a function of, among other things, the value-aware model-error (in particular
they have shown that the lower that error, the closer the resulting policy is to the optimal one).1
Although promising in theory, neither the IterVAML work or any subsequent work validated the result
in practical deep RL settings.

Given the above discussion, it seems just natural to expect that one can boost the performance of
model-based Actor-Critic (MBAC) methods by incorporating value-awareness into model learning.
Guided by that reasoning, in this work we provide an empirical analysis of VAML in the deep RL
setting, with neural network models in continuous control environments. We assess the core claims
of VAML in carefully constructed artificial settings while varying the capacity of the neural network
model. Then, we reformulate IterVAML, originally devised as an approximate value iteration method,
as an approximate policy iteration algorithm, thus obtaining a value-aware MBAC method. To our
surprise, we found that value-aware learning does not provide a clear and consistent advantage over
MLE in our controlled artificial settings. Yet we find some evidence of VAML being advantageous in
dynamical systems common to many deep RL benchmarks. However, upon combining value-aware
learning and model-based policy improvement, we find that the resulting agent is too unstable and that
switching to MLE provides comparable, and sometimes better, performance at lower computational
cost. Our results suggest that, despite theoretical guarantees, learning a value-aware model in
continuous domains does not ensure better performance on the overall task when compared with
conventional likelihood-based model learning methods such as MLE. We speculate that some of the
assumptions behind the IterVAML framework may not transfer to the deep RL setting and that poorly
learned values may negatively impact model optimization.

The rest of this paper is organized as follows. Section 2 delineates related work on model-based
actor-critic methods and decision-aware model learning. Section 3 lays out important background on
Actor-Critic methods and value-aware model learning. Section 4 introduces our proposed adaptation
of IterVAML to the Actor-Critic setting. Section 5 introduces our proposed experiments and discusses
the positive and negative results from each. Finally, section 6 concludes with a discussion of the
possible explanations for the gap between theory and practice, while also pointing to future research
directions to expand our limited understanding of these issues.

2 Related work

Model-based Actor-Critic methods. There has been a growing interest in extending AC methods
by progressively learning and using a model of the environment dynamics. The Dyna framework [36]
lays the foundation many model-based methods by using the model to generate virtual experiences
for use in model-free methods. One of the most successful instantiations of this paradigm in deep RL
is the Model-Based Policy Optimization (MBPO) algorithm [23]. MBPO extends the Soft Actor-Critic
(SAC) algorithm [19] (an off-policy, model-free AC method) by generating short model-based rollouts
branched from real experiences that are then mixed together to augment the experience replay buffer.

1The other relevant quantities in the performance bound are the number of samples and the regression
error when learning the value function. Since these are inherent to any RL algorithm, we emphasize here the
value-aware error.
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MBPO is successful in increasing the sample-efficiency of SAC, but learns its model via maximum
likelihood, ignoring performance on the end task.

Another prominent line of work in model-based AC methods leverages differentiable models to
calculate the gradient of final performance in a policy gradient framework. Stochastic Value Gradients
(SVG) uses reparameterizable models to calculate analytical policy gradients using real experiences
(no virtual samples are generated). SAC-SVG [3] and Model-Augmented Actor-Critic [8] expand this
concept by using model gradients and virtual experiences in the policy update of SAC. Dreamer [21]
uses many of the same ideas, but its model operates in a compressed state space extracted from pixel
observations using variational methods. Only Dreamer, however, incorporates some aspect of the
decision-making task by optimizing its model to predict rewards, but not full returns.

Another way to exploit model derivatives is in learning action-values. In Model-based Action-
Gradient-Estimator (MAGE) [10], the authors also exploit reparameterizable models to compute
action-value gradients used to learn critics in Sobolev space. Built upon the TD3 [17] AC method,
MAGE manages to learn better critics that increase sample-efficiency over the model-free TD3.

Decision-aware model learning. The authors of Value-aware Model Learning (VAML) [14] argue
that optimizing a probabilistic model loss (as in MLE) is overkill since it does not take into account
the end RL task. They show, theoretically and empirically, that incorporating the value function
structure in the model cost produces better results when the model capacity is restricted. However,
VAML’s loss function uses a pessimistic formulation that requires an additional search over the value
function space. IterVAML [13] relaxes this formulation by using the current value function estimate,
produced along the course of the RL algorithm, in the model loss. The authors show, theoretically,
that the value-aware model loss impacts the end task performance, thus optimizing it should lead to
better results. Both VAML and IterVAML lack an in-depth empirical analysis with deep RL models
and complex benchmarks.

In the policy gradient domain, Gradient-aware Model-based Policy Search (GAMPS) [11] optimizes its
model to minimize an upper bound on the error between the true policy gradient and the model-based
estimate. However, GAMPS does not build upon an AC method since it uses its model to approximate
action-values via Monte Carlo methods using long virtual rollouts. In model-predictive control (MPC),
End-to-end MPC [2] leverages learned models in online planning with receding horizon rollouts. The
entire architecture is trained end-to-end, naturally incorporating the end task performance into model
learning. However, the method does not learn a parameterized policy and has to replan for every
action selection.

3 Background

We consider the agent-environment interaction modeled as a Markov Decision Process [38]
(S,A,P∗,R∗, ρ, γ). At every timestep t ∈ N, the agent observes the current state st ∈ S from
the set of possible states. It may then select an action at ∈ A from the set of possible actions to
perform in the environment. The environment then transitions to the next state st+1 ∼ P∗(· | st,at),
by sampling from the transition probability kernel, and emits a reward signal rt+1 ∼ R∗(· | st,at).
We assume the initial state is sampled from some initial state distribution, s0 ∼ ρ.

We overload notation to let r(s,a) = Er∼R∗(s,a)[r] denote the expected immediate reward from
(s,a). The agent’s objective is to select actions that produce the highest cumulative discounted
rewards, or return, from the initial state: E[

∑∞
t=0 γ

tr(st,at)], where γ ∈ (0, 1) defines the agent’s
degree of preference for immediate against delayed rewards.

3.1 Actor-Critic methods

Actor-Critic methods approach the RL problem by searching for a policy π(a | s), an action distribution
conditioned on states, that induces the highest return. The general approach starts with an initial
policy estimate π0 and then iterates over two main steps: policy evaluation and policy improvement.

Policy evaluation consists of computing the policy’s action-value function: the expected return from
each state when committing to an initial action, Qπ(s,a) = Eπ[

∑∞
t=0 γ

tr(st,at) | s0 = s,a0 = a].
One can perform policy evaluation in theory by starting with an initial guess Q0 and repeatedly
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applying to it the Bellman operator Tπ ,

(TπQ)(s,a) = r(s,a) + γ Es′∼P (s,a)[V (s′)] , (1)

where V (s) = Ea∼π(s)[Q(s,a)]. The sequence (Q0, Q1, Q2, . . .) generated by this procedure is
guaranteed to converge (in infinity norm) since the operator is a contraction and its unique fixed point
is the policy’s true value function, Qπ [38].

Policy improvement consists of computing a policy which maximizes the estimated action-value
in each state. For the special case of deterministic policies, this step consists of setting π(s) =
argmaxa∈AQ

π(s,a) everywhere in the state space. This procedure is guaranteed to produce a
policy as good as, or better than, the original [37]. In the general case of stochastic policies, policy
improvement can be cast as an optimization problem in the space of policies

πk+1 ← argmax
π∈Π

E
s∼ν

[
E

a∼π
[Qπk(s,a)]

]
, (2)

where ν(s) is some state distribution.

The names "actor" and "critic" come from the intuitive role that each component plays: the policy
chooses actions, hence it’s the "actor"; the value function evaluates the policy, hence it’s known as
the "critic".

Actor-Critic methods in deep RL [16] update neural network estimators πθ and Qφ for actor and
critic respectively (where θ ∈ Rn and φ ∈ Rd denote the parameters). In this setting, the evaluation
and improvement steps described above are casted as optimization problems w.r.t. the networks’
parameters , which are updated via stochastic gradient descent (SGD) [33]. For instance, many
methods performance policy evaluation by turning the value update into a regression problem:

φk+1 ← argmin
φ

E
s,a,r,s′∼D

[
(Qφ(s,a)− (r + γQφ(s

′, πθ(s
′)))

2
]
, (3)

where D is some dataset of collected experiences. Due to the nonlinear nature of neural networks,
deep AC methods have no convergence guarantees to optimal policies and value functions. However,
the representation capacity and flexibility of neural networks allowed tackling many new problems
(e.g., continuous-action domains and learning from pixels) which were previously too challenging for
classic methods.

3.2 Value-aware model-learning

Model-based RL adds one more function approximator to be estimated from the available data: a
model of the transition dynamics, P̂ ≈ P∗. In IterVAML [13], the model is used as a proxy for the
real dynamics in the Bellman optimality operator

(T ∗Q)(s,a) = r(s,a) + γ Es′∼P∗(s,a)[V (s′)] , (4)

where V (s) = argmaxaQ(s,a). Akin to the Bellman operator, the optimality operator is also
a contraction, however its unique fixed point is the optimal action-value function, Q∗(s,a) =
argmaxπ Q

π(s,a). This operator is used in the value iteration procedure, which computes the
value of the optimal policy directly instead of alternating between policy evaluation and policy
improvement. Similar to actor-critic methods, approximate value iteration (AVI) algorithms use
parametric estimators and sampling in practice.

Since the model is used for AVI, IterVAML optimizes for the error between T ∗Q and T̂ ∗Q,∥∥∥(P∗ − P̂ )V ∥∥∥2

2,ν

.
= E

s,a∼ν

[∣∣∣∣∫ (P∗(s′ | s,a)− P̂ (s′ | s,a))V (s′)ds′
∣∣∣∣] , (5)

where ν is some state-action distribution and V is defined as in eq. (4). In contrast, the model loss
function used in MLE ignores the structure of the current value estimate:

LMLE(P ) .= E
s,a∼ν

[
E

s′∼P∗(s,a)
[− logP (s′ | s,a)]

]
. (6)

The authors of IterVAML argue that minimizing the error in eq. (5) leads to better models for AVI,
especially when the model setM does not contain the true dynamics, P∗. A shortcoming of this
formulation is the difficulty of implementing it in continuous action environments, since the argmax
underlying the state-value in eq. (5) is difficult to compute.
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Algorithm 1: Value-Aware MBAC

Input: Initial parameters θ0, φ0, ψ0 for actor, critic and model respectively; number of
iterations K; model interval M

Output: Stochastic policy
1 D(0) ← ∅
2 for k = 0, 1, . . . ,K − 1 do
3 Generate training set {(si,ai, ri, s′i)}ni=1 by following πθk in the environment.
4 D(k+1) ← D(k) ∪ {(si,ai, ri, s′i)}ni=1
5 ψk+1 ← ψk
6 if k % M then
7 Find ψk+1 by minimizing eq. (9) w.r.t. model parameters

8 Find φk+1 by approximate policy evaluation via eq. (7) using D(k+1) and Pψk+1

9 Find θk+1 by approximate policy improvement via eq. (2) using Qπφk+1
and D(k+1)

10 return πθK

4 Policy iteration with value-aware models

We now present our adaptation of IterVAML as a value-aware model-based AC method.

4.1 Model-augmented value learning

We adopt the policy evaluation version of IterVAML as a generic procedure for learning the value
function in an Actor-Critic algorithm.2 Given an initial guess Q0, the algorithm generates a sequence
(Q0, Q1, . . .) by repeatedly applying the update Qk+1 ≈ T̂πQk. Here, T̂π is the same as eq. (1)
with the parametric model Pψ substituted for P∗. Similar to most AC methods, we approximate the
theoretical formulation as a regression problem. Effectively, this is a modification of eq. (3) with
virtual next-state samples

φk+1 ← argmin
φ

E
s,a∼D

(Qφ(s,a)−(r(s,a) + γ E
s′∼Pψ(s,a)

[Qφ(s
′, πθ(s

′)]

))2
 , (7)

assuming knowledge of the reward function (which we do in our experiments in the next section).

4.2 Value-aware model optimization

Considering the approximate model-based Policy Evaluation procedure described above, we optimize
the model to minimize the difference between TπQk and T̂πQk, where Qk is the current iterate of
the API algorithm. Thus, we define the value-aware error incurred by a model P as

c22,ν(P , Vk)
.
= ‖(P∗ − P )Vk‖22,ν

= E
s,a∼ν

[∣∣∣∣∫ (P∗(s′ | s,a)− P (s′ | s,a))Vk(s′)ds′
∣∣∣∣2
]
,

(8)

where Vk is defined as in eq. (1) and ν is some state-action distribution. This is identical to the cost
defined in IterVAML, except that the current policy is used in the computation of Vk.

We assume access to limited samples from the distribution of states and actions and its corre-
sponding next-states (sampled from the transition dynamics P∗) in the form of a replay buffer
D = {(si,ai, s′i)}Ni=1. Thus, we minimize the following cost w.r.t. the model

LVAML(P , V ) =
1

N

∑
(si,ai,s′i)∈D

∣∣∣∣V (s′i)− E
s′∼P (si,ai)

[V (s′)]

∣∣∣∣2 . (9)

2See section 3 of IterVAML’s supplementary material.
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Figure 1: Results on the artificial environment.

4.3 Model-based Actor-Critic

Algorithm 1 summarizes the overall method, which essentially adds a model learning step (lines
5-8) and virtual samples for the critic update (line 9) to an otherwise model-free AC method. Our
approach is similar to MBPO [23] with 1-step rollouts, except we don’t store virtual experiences in
the replay buffer and instead sample fresh ones in every critic update. We use Adam [25] as the
gradient-based optimizer for lines 7, 8, and 9 to find model, critic and actor parameters respectively
in each iteration.3

Since algorithm 1 is an off-policy method, we adopt the Soft Actor-Critic [19] formulation of API
to have stable actor and critic updates and encourage exploration. This amounts to adding policy
entropy coefficients to model, actor and critic loss functions (due to the definition of the state-value
function in maximum entropy RL), but does not alter the underlying reasoning behind each update.4

5 Experiments

Here we perform an empirical analysis of value-aware model learning in the deep RL setting. Through-
out all our experiments, we use simple Multilayer Perceptrons (MLPs) for the model parameterization,
mapping state and action vectors to the means and variances of a diagonal Gaussian distribution. The
distribution is used for sampling an estimated difference between the current state and the predicted
next one (similar to residual connections in deep learning). For gradient estimation of the value-aware
error defined in eq. (8), we use the pathwise derivative estimator w.r.t. the model’s parameters [35].
Code for our experiments is freely available and open-source.5

5.1 Unrealizable vs. realizable domains

In this experiment we evaluate one of the underlying premises of VAML: that optimizing for value-
aware error will yield better models when there is inherent model approximation error. To test this
hypothesis, we took the following steps.

We defined an artificial environment where the transition dynamics are given by a randomly initialized
2-layer MLP (same architecture as described in the previous section). We initialized the model with
the same architecture of the dynamics (but different parameters), for the realizable case, and with one
less hidden layer for the unrealizable case (so that the model cannot fully capture the real dynamics).
We then initialized a random uniform policy and collected two sets of data in the fake environment:
one for training (50 thousand transitions) and one for testing (one thousand transitions). For the value
function, we randomly initialized an MLP with one hidden layer mapping state vectors to scalar
values. We then optimized the model via SGD for several epochs with early stopping on a validation

3Actor and critic updates use only one stochastic gradient step on each invocation of lines 9 and 10.
4See section 4.1 of the SAC paper for theoretical foundations and definition of the soft Bellman operator.
5A Git repository will be linked upon publication.
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Figure 2: Value-aware error incurred by models trained via different methods in different environ-
ments.

set (taken as a subset of the training subset). Finally, we computed the empirical value-aware error of
the learned models in the test set.

In our experiments, we notice that the Gaussian variance learned by value-aware models tends to
collapse towards zero. To counteract this, we used a model loss that combines the value-aware and
maximum likelihood losses,

LMODEL(Pψ, V ) = αLMLE(Pψ) + (1− α)LVAML(Pψ, V ) , (10)

where α ∈ [0, 1]. In what follows, we also refer to α in eq. (10) as the MLE coefficient.

Figure 1 shows results across different sizes of the hidden layers in the dynamics MLP, where error
bars denote one standard deviation across five repetitions of each experiment and ‘alpha’ is the MLE
coefficient. The realizable setting results are somewhat surprising, with VAML beating MLE by a
small margin even though the true dynamics are in the model class. As alluded to before, we notice,
upon closer inspection, that the Gaussian variance learned by VAML tends to 0, therefore the slight
advantage might be simply due to the value-aware model never sampling values too far from the
mean. On the other hand, VAML provides a narrow and inconsistent advantage over MLE, with highly
overlapping error bars in most cases. Therefore, we cannot ascertain that VAML is better than MLE in
this artificial setting.

5.2 Value-aware error optimization in practice

Our intent in this experiment is to evaluate the feasibility of optimizing the value-aware error in
unknown environments, without yet incorporating model-based policy improvements. Thus, we
optimize models on data gathered during training runs of the SAC algorithm, without using the model
to influence Actor-Critic updates. We consider two environments from the OpenAI Gym [6] toolkit
for RL research: Hopper-v3 and Walker2d-v3. We run SAC on each environment for 200 thousand
timesteps and save the policy, value function and replay buffer at different timesteps. We use these to
check how well we can fit value-aware models at different training phases, since data collection and
value function structure change over the course of the algorithm.

Figure 2 compares the value-aware error of models learned via different methods. We add a variation
called “regularized VAML” (shortened to “reg-vam” in the plot legends) and used MLE coefficient
of 0.001. The results show a trend of increasing value-aware error over the course of the algorithm
when the model is trained via MLE. On the other hand, value-aware models keep the error under
control throughout training; a promising sign that there’s a qualitative difference between models
learned via different methods.

5.3 Model-based Actor-Critic with value-awareness

In this experiment we deploy algorithm 1 in two continuous control environments from OpenAI
Gym commonly used in deep RL: InvertedPendulum-v2 and Pusher-v2. 6 Our aim was to test if

6We chose lower dimensional tasks due to computation budget restrictions.
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Figure 3: Model-based AC results on InvertedPendulum-v2 and Pusher-v2

minimizing the model’s value-aware error translated into improved performance in the end task.
Thus, we fix all hyperparameters except for the MLE coefficient in the model loss, for which we
considered two values: α = 1 (model training via MLE) and α = 0.001, linearly decaying towards 0
throughout training (regularized VAML). We chose to regularize VAML to keep the Gaussian variance
from collapsing to zero, which rendered updates unstable.

Figure 3 shows the results in the InvertedPendulum-v2 (top) and Pusher-v2 (bottom) environments.
Lines denote the average across 4 independent runs of the algorithm for each configuration. Shaded
regions denote one standard deviation of results. We can see that VAML was able to successfully
achieve a lower value-aware error compared to MLE throughout the majority of training. We can also
see that the value-aware model is not too far behind in negative log-likelihood. However, the end task
performance of the agent using MLE-based model learning is as good as (if not better, as in the case
of Pusher-v2) the performance of the agent using VAML. Failing to establish a significant difference
between the two model-learning methods in these simple environments, we cannot ascertain that
VAML provides an advantage over conventional likelihood-based methods in a MBAC framework.

6 Conclusions and future work

In this work we adapted the ideas of VAML to the Actor-Critic framework. We showed that, despite
promising theoretical results and preliminary experiments, VAML does not translate well to the
deep RL setting, with conventional MLE-based approaches yielding comparable, or better, end task
performance.

Despite these negative results, there are interesting research directions to further our understanding
of the underlying issues with VAML in its current formulation. One concern with the approach in
algorithm 1 is that it is too unstable as a model-based method (we observed that its performance is
sometimes worse than SAC). Stabilizing this base algorithm by conservatively updating the policy or
model [31], or incorporating epistemic uncertainty in model learning with randomized prior functions,
[28] may provide a more solid foundation upon which to compare VAML and MLE-based approaches.

Our results call for a better understanding of the assumptions underlying IterVAML. 7 The paper’s
theoretical analysis assumes data collected in each iteration is independent of all the others, which is
clearly not the case in an approximate policy iteration setting. Moreover the analysis also assumes
the value function is independent of the data and bounded. We also suspect that the interplay between
model and critic may destabilize training (in an already unstable actor-critic framework). We suggest
that the original VAML formulation [14] may be more promising since it decouples the value used in
learning the model from the one used for policy improvement. Moreover, the VAML loss function
may be amenable to optimization via adversarial methods [4] and has a connection to the Wasserstein
distance between model and true dynamics [5].

7See Assumptions 1 and 3 of the IterVAML work.
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A IterVAML’s performance bound

We restate here the error propagation theorem from IterVAML which motivated this work.

Theorem 1 (IterVAML) Consider a sequence of action-value functions (Q̂k)Kk=0 , and their corre-
sponding (V̂k)

K
k=0 , each of which is defined as V̂k(s) = maxa Q̂k(s,a) . Suppose that the MDP is

such that the expected rewards areRmax -bounded, and Q̂0 is initialized such that it is Vmax ≤ Rmax
1−γ -

bounded. Let εk = T ∗P̂(k+1)
Q̂k−Q̂k+1 (regression error) and ek = (P∗−P̂(k+1))V̂k (modeling error)

for k = 0, 1, . . . ,K − 1 . Let πK be the greedy policy w.r.t. Q̂K , i.e., πK(s) = argmaxa Q̂K(s,a)
for all s ∈ S . Consider probability distributions ρ, ν ∈M(S ×A) . We have

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2
[
C(ρ, ν) max

0≤k≤K−1
(‖εk‖2,ν + γ‖ek‖2,ν) + 2γKRmax

]
.

Recall that the theorem above is valid for an approximate Value Iteration setting, whereas in this
work we deal with the approximate Policy Iteration setting. Furthermore, the modeling error in our
setting considers state values as V̂k(s) = Ea∼πk [Q̂k(s,a)].
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Hyperparameter Value
n (line 3) 1
M 200
Optimizer Adam
actor/critic/entropy learning rate 3 · 10−4

model learning rate 10−4

model L2 penalty 10−5

initial entropy coeff 1.0
target entropy −dim(A)
γ 0.99
polyak factor 0.995
replay size 1e5
replay batch size 256
actor/critic hidden layers [256, 256]
actor/critic nonlinearity ReLU
actor max logvar 2
actor min logvar -20
model hidden layers [128, 128]
model nonlinearity Swish
model max logvar 2
model min logvar -20

Table 1: Algorithm 1 hyperparameters

B Algorithm hyperparameters

Table 1 lists the hyperparameters used in algorithm 1, our model-based augmentation of SAC with
value-aware models.

We use Glorot initialization [18] for all networks with defaults parameters via the PyTorch machine
learning framework [30].

Due to limited availability of computational resources, we use a single model network instead of an
ensemble, which is a trend in recent model-based RL methods.

As mentioned in section 4.3, algorithm 1 uses only one gradient step on each call to lines 8 and 9 to
update critic and actor respectively.

We use clipped double Q-learning [17] with target networks, updated after every critic update (line 8)
with polyak averaging of the parameters. In eq. (7), we sample 10 future states from the model and
average the clipped Q-value to approximate the inner expectation.

We use automatic temperature tuning for the entropy coefficient as described in the original paper
[20]. We take one dual gradient step on the entropy coefficient’s loss function right after the actor
update in line 9 of algorithm 1.

We collect 10000 initial transitions by choosing from the action space uniformly at random. Only
after this initial phase do we start acting according to the current policy.

We evaluate the current policy every 2000 timesteps by turning off exploration (sampling from the
mean of the learned Gaussian policy) and computing the average return over 10 episodes.

In terminal transitions due to timeouts, we ignore the termination flag and instead bootstrap from the
final state [29].

We use the Pytorch Lightning [12] framework for training the model. On every call to line 7 of
algorithm 1, we subsample 20% of the current replay buffer as a holdout set, with a maximum of 5000
transitions. After the initial 10000 random uniform transitions, we train the model for a maximum of
1000 epochs. Otherwise, over the normal course of the algorithm, we train the model for a maximum
of 20 epochs or 200 gradient steps. We calculate the validation loss on the holdout set at the end of
every epoch. We early stop training if the validation loss hasn’t improved over 5 consecutive epochs,
where improvement is characterized as any decrease in loss.
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Figure 4: SAC learning curves on Hopper-v3 (left) and Walker2d-v3 (right) of the runs used in the
second experiment.

C Supervised learning experiments details

Experiments in the artifical domain. We use the dynamics architecture described in section 5, a
state space S ⊆ R11, an action space A ⊆ [−1, 1]3, and a horizon of 200 timesteps. The state and
action spaces were chosen to mimic the spaces of the Hopper-v3 task from OpenAI Gym.

We collect 50000 transitions for training (with 20% of them held out for validation) and 1000
transitions for testing. We use a batch size of 128 for training over a maximum of 1000 epochs. We
early stop training if the validation loss (calculated at the end of every epoch) has not decreased for 3
consecutive epochs.

The value function architecture consists of a single-layer MLP with 64 hidden units and ReLU
nonlinearities. We use orthogonal initialization [34] with default parameters via PyTorch.

Experiments on SAC data. Figure 4 shows the episode returns attained by the SAC agent from
which we gathered data for the second experiment.

We take actor, critic, and replay data from different checkpoints of each SAC run to train the model
with. The model architecture is as described in section 5, with each hidden layer having 32 units. We
split the replay data into 70% for training, 20% for validation, and 10% for testing. For each model
training run, we use the Adam with learning rate 10−3 to optimize the model for a maximum of 1000
epochs, early stopping training if the validation loss, calculated once every epoch, does not decay for
10 consecutive epochs. We report in fig. 2 the test loss at the end of each training run.
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