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ABSTRACT

Transformer-based pre-trained language models have proven to be effective for
learning contextualized language representation. However, current approaches
only take advantage of the output of the encoder’s final layer when fine-tuning
the downstream tasks. We argue that only taking single layer’s output restricts the
power of pre-trained representation. Thus we deepen the representation learned by
the model by fusing the hidden representation in terms of an explicit HIdden Rep-
resentation Extractor (HIRE), which automatically absorbs the complementary
representation with respect to the output from the final layer. Utilizing RoOBERTa
as the backbone encoder, our proposed improvement over the pre-trained models
is shown effective on multiple natural language understanding tasks and help our
model rival with the state-of-the-art models on the GLUE benchmark.

1 INTRODUCTION

Language representation is essential to the understanding of text. Recently, pre-trained language
models based on Transformer (Vaswani et al., 2017) such as GPT (Radford et al.| 2018)), BERT
(Devlin et al.|[2019), XLNet (Yang et al.,|2019), and RoBERTa (Liu et al.,[2019c)) have been shown to
be effective for learning contextualized language representation. These models have since continued
to achieve new state-of-the-art results on a variety of natural language processing tasks. They include
question answering (Rajpurkar et al.| 2018}, [Lai et al., 2017), natural language inference (Williams
et al.,|2018;Bowman et al.,[2015), named entity recognition (Tjong Kim Sang & De Meulder},|2003)),
sentiment analysis (Socher et al., |2013) and semantic textual similarity (Cer et al., [2017}; |Dolan &
Brockett, 2005]).

Normally, Transformer-based models are pre-trained on large-scale unlabeled corpus in an unsuper-
vised manner, and then fine-tuned on the downstream tasks through introducing task-specific output
layer. When fine-tuning on the supervised downstream tasks, the models pass directly the output of
Transformer encoder’s final layer, which is considered as the contextualized representation of input
text, to the task-specific layer.

However, due to the numerous layers (i.e., Transformer blocks) and considerable depth of these pre-
trained models, we argue that the output of the last layer may not always be the best representation
of the input text during the fine-tuning for downstream tasks. [Devlin et al.| (2019) shows diverse
combinations of different layers’ outputs of the pre-trained BERT result in distinct performance
on CoNLL-2003 Named Entity Recognition (NER) task (Tjong Kim Sang & De Meulder, [2003).
Peters et al.| (2018b)) points out for pre-trained language models, including Transformer, the most
transferable contextualized representations of input text tend to occur in the middle layers, while the
top layers specialize for language modeling. Therefore, the onefold use of the last layer’s output
may restrict the power of the pre-trained representation.

In this paper, we propose an extra network component design for Transformer-based model, which is
capable of adaptively leveraging the hidden information in the Transformer’s hidden layers to refine
the language representation. Our introduced additional components include two main additional
components:

1. HIdden Representation Extractor (HIRE) dynamically learns a complementary representa-
tion which contains the information that the final layer’s output fails to capture.
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2. Fusion network integrates the hidden information extracted by the HIRE with Transformer
final layer’s output through two steps of functionalities, leading to a refined contextualized
language representation.

Taking advantage of the robustness of ROBERTa by using it as our backbone Transformer-based
encoder (Liu et al., 2019c), we conduct experiments on GLUE benchmark (Wang et al., |2018)),
which consists of nine Natural Language Understanding (NLU) tasks. With the help of HIRE, our
model outperforms the baseline on 5/9 of them and advances the state-of-the-art on SST-2 dataset.
Keeping the backbone Transformer model unchanged on its architecture, pre-training procedure and
training objectives, we get comparable performance with other state-of-the-art models on the GLUE
leaderboard, which verifies the effectiveness of the proposed HIRE enhancement over Transformer
model.

2 MODEL
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Figure 1: Architecture of our model. HIRE denotes HIdden Representation Extractor, in which the
Bi-GRUs share the same parameters for each layer’s output.

2.1 TRANSFORMER-BASED ENCODER

Transformer-based encoder is responsible for encoding input text into contextualized representation.

Let {w1, ..., w,} represent a sequence of n words of input text, Transformer-based encoder encodes
the input sequence into its universal contextualized representation R € R™*¢:
R = Encoder({wy,...,w,}) (1)

where d is the hidden size of the encoder and R is the output of Transformer-based encoder’s last
layer which has the same length as the input text. We call it preliminary representation in this
paper to distinguish it with the one that we introduce in section[2.2] Here, we omit a rather extensive
formulations of Transformer and refer readers to [Vaswani et al.| (2017)), Radford et al.| (2018) and
Devlin et al.| (2019) for more details.

2.2 HIDDEN REPRESENTATION EXTRACTOR

Transformer-based encoder normally has many structure-identical layers stacked together, for ex-
ample, BERT arge and XLNety argg all contain 24 layers of the identical structure, either outputs
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from these hidden layers or the last layer, but not only limited to the latter, may be extremely help-
ful for specific downstream task. To make full use of the representations from these hidden layers,
we introduce an extra component attached to the original encoder, Hldden Representation Extractor
(HIRE) to capture the complementary information that the output of the last layer fails to capture.
Since each layer does not take the same importance to represent a certain input sequence for different
downstream tasks, we design an adaptive mechanism that can compute the importance dynamically.
We measure the importance by an importance score.

The input to the HIRE is {Hy,..., H;,..., H;} where [ represents the number of layers in the
encoder. Here H is the initial embedding of input text, which is the input of the encoder’s first
layer but is updated during training and H; € R™* is the hidden-state of the encoder at the output
of layer j. For the sake of simplicity, we call them all hidden-state afterwards.

We use the same 2-layer Bidirectional Gated Recurrent Unit (GRU) (Cho et al., 2014)) to summarize
each hidden-state of the encoder. Instead of taking the whole output of GRU as the representation
of the hidden state, we concatenate GRU’s each layer and each direction’s final state together. In
this way, we manage to summarize the hidden-state into a fixed-sized vector. Hence, we obtain
U € RUAD>4d wwith 4, the summarized vector of H;;:

u; = Bi-GRU(H;) € R*? (2)
where 0 < ¢ < [. Then the importance value c; for hidden-state H; is calculated by:
a; = ReLUWTu; +b) € R 3)

where W € R*¥*1 and b € R are trainable parameters. Let a={a; } be normalized into a probability
distribution s through a softmax layer:

s = softmax(a;) € R 4)

where s; is the normalized weight of hidden-state 7+ when computing the representation. Subse-
quently, we obtain the input sequence’s new representation A by:

I+1
A= Z s;H; € RnXd (5)
i=0
With the same shape as the output of Transformer-based encoder’s final layer, HIRE’s output A is

expected to contain the additional useful information from the encoder’s hidden-states and we call
it complementary representation.

2.3 FUSION NETWORK

This module fuses the information contained in the output of Transformer-based encoder and the
one extracted from encoders’ hidden states by HIRE.

Given the preliminary representation R, instead of letting it flow directly into task-specfic output
layer, we combine it together with the complementary representation A to yield M, defined by:

M =[R;A;R+ A;Ro A] ¢ RV (6)

where o is element-wise multiplication (Hadamard Product) and [; ] is concatenation across the last
dimension.

Later, two-layer bidirectional GRU, with the output size of d for each direction, is used to fully fuse
the information contained in the preliminary representation and the complementary representation.
We concatenate the outputs of the GRUs in two dimensions together for the final contextualized
representation:

F = Bi-GRU(M) € R"*2¢ (7

2.4 OUTPUT LAYER

The output layer is task-specific. The following are the concerned implementation details on two
tasks, classification and regression.
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For classification task, given the input text’s contextualized representation F, following|Devlin et al.
(2019), we take the first row ¢ € R2? of F corresponding to the first input token (< s >) as the
aggregated representation. Let m be the number of labels in the datasets, we pass c through a
feed-forward network (FFN):

q=WJ tanh(Wlc+ b))+ by € R™ (8)

with W € R2¥x4 W, € R¥>*™ b, € R? and b, € R™ the only parameters that we introduce in
output layer. Finally, the probability distribution of predicted label is computed as:

p = softmax(q) € R™ )

For regression task, we obtain ¢ in the same manner with m = 1, and take ¢ as the predicted value.

2.5 TRAINING

For classification task, the training loss to be minimized is defined by the Cross-Entropy:

1 T
L(6) = =7 > _log(pi.) (10)
i=1

where @ is the set of all parameters in the model, T is the number of examples in the dataset, p; . is
the predicted probability of gold class ¢ for example 7 .

For regression task, we define the training loss by mean squared error (MSE):

T

L(6) = %Z(Qi —yi)? (11

i=1
where ¢; is the predicted value for example ¢ and y; is the ground truth value for example .
3 EXPERIMENTS

3.1 DATASET
We conducted the experiments on the General Language Understanding Evaluation (GLUE) bench-

mark (Wang et al. 2018)) to evaluate our proposed method. GLUE is a collection of 9 diverse
dataset for training, evaluating, and analyzing natural language understanding models.

3.2 MAIN RESULTS

Single Sentence  Similarity and Paraphrase Natural Language Inference

Model CoLA SST-2 MRPC QQP STS-B MNLI-m/mm QNLI RTE
(Mc) (Acc) (Acc)  (Acc) (Pearson) (Acc) (Acc)  (Acc)
MT-DNN 63.5 94.3 87.5 91.9 90.7 87.1/86.7 92.9 83.4
XLNET-large 69.0 97.0 90.8 92.3 92.5 90.8/90.8 94.9 85.9
ALBERT-xxlarge (1.5M) 714 96.9 90.9 92.2 93.0 90.8/- 95.3 89.2
RoBERTa-large 68.0 96.4 90.9 92.2 92.4 90.2/90.2 94.7 86.6
RoBERTa+HIRE 69.7 96.8 90.9 92.0 92.4 90.7/90.4 95.0 86.6
+1.7)  (+0.4) - (-0.2) - (+0.5/+0.2) (+0.3) -

Table 1: GLUE Dev results. Our results are based on single model trained with single task and
a median over five runs with different random seed but the same hyperparameter is reported for
each task. The results of MT-DNN, XLNET arge, ALBERT and RoBERTa are from |[Liu et al.
(2019b), |Yang et al.| (2019), [Lan et al.| (2020) and [Liu et al.| (2019c). See the lower-most row for
the performance of our approach. Mc, acc and pearson denote Matthews correlation, accuracy and
Person correlation coefficient respectively.

' All the datasets can be obtained from https://gluebenchmark.com/tasks
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Model Params Shared
M) M)
ALBERT-xxlarge 235 -
MT-DNN 350 340
RoBERTa 355 -

RoBERTa+HIRE 437 -

Table 2: Parameter Comparison.

Table [I] compares our method with a list of Transformer-based models on the development set.
Model parameter comparison is shown in Table 2] To obtain a direct and fair comparison with
our baseline model RoBERTa, following the original paper (Liu et al., 2019c), we fine-tune
RoBERTa+HIRE separately for each of the GLUE tasks, using only task-specific training data. The
single-model results for each task are reported. We run our model with five different random seeds
but the same hyperparameters and take the median value. Due to the problematic nature of WNLI
dataset, we exclude its results in this table. The results shows that ROBERTa+HIRE consistently
outperforms RoBERTa on 4 of the GLUE task development sets, with an improvement of 1.7 points,
0.4 points, 0.5/0.2 points, 0.3 points on CoLA, SST-2, MNLI and QNLI respectively. And on the
MRPC, STS-B and RTE task, our model get the same result as ROBERTa. It should be noted that
the improvement is entirely attributed to the introduction of Hldden Representation Extractor and
fusion network in our model.

Qs

Single Sentence

ilarity and Paraphrase Natural Language Inference

Model CoLA SST2 MRPC  QQP  STS-B  MNLI-m/mm QNLI RTE WNLI Score
85k 67k 3.7k 364k 7k 393k 108k 2.5k 634
BERT* 60.5 949  893/85.4 72.1/89.3 87.6/86.5 867859 927 701 651 805
MT-DNN® 684 965  927/903 73.7/89.9 9110907  87.9/87.4 960 863 890 876
FreeLB-RoBERTa®  68.0 968  93.1/90.8 74.8/90.3 923/92.1  9L1/90.7 956 887 89.0 884
XLNet* 702 971 929905  747/904  93.0/92.6  90.9/90.9 - 885 925 -
ALBERT* 69.1 971 93.4/912  742/90.5 925920 913910 - 892 918 -
ROBERTa/ 678 967  923/89.8 743/90.2 922/919  90.8/90.2 954 882  89.0  88.
RoBERTa+HIRE ~ 68.6  97.1  93.0/90.7 74.3/902 924920  90.7/904 955 879 89.0 883
(+0.8)  (+0.4) (+0.7/+0.9) - (H+0.2140.0)  (0.11+0.2)  (+0.1) (0.3 - (+0.2)

Table 3: GLUE Test results, scored by the official evaluation server. All the results are obtained from
GLUE leaderboard (https://gluebenchmark.com/leaderboard). The number below
each task’s name indicates the size of training dataset. Recently the GLUE benchmark has forbidden
all the submissions to treat the QNLI as a ranking task, which results in the missing of some models’
accuracies on the QNLI “Devlin et al. (2019); YLiu et al. (2019b); 9Zhu et al.| (2020); dYang et al.
(2019); 9Lan et al.|(2020); /ILiu et al.| (2019c).

Table 3| presents the results of HIRE enhancement and other models on the test set that have been sub-
mitted to the GLUE leaderboard. Following|Liu et al.|(2019c)), we fine-tune STS-B and MRPC start-
ing from the MNLI single-task model. Given the simplicity between RTE, WNLI and MNLI, and the
large-scale nature of MNLI dataset (393k), we also initialize ROBERTa+HIRE with the weights of
MNLI single-task model before fine-tuning on RTE and WNLI. We submitted the ensemble-model
results to the leaderboard. The results show that ROBERTa+HIRE still boosts the strong ROBERTa
baseline model on the test set. To be specific, ROBERTa+HIRE outperforms RoBERTa over CoLA,
SST-2, MRPC, SST-B, MNLI-mm and QNLI with an improvement of 0.8 points, 0.4 points, 0.7/0.9
points, 0.2/0.1 points, 0.2 points and 0.1 points respectively. In the meantime, ROBERTa+HIRE
gets the same results as ROBERTa on QQP and WNLI. By category, ROBERTa+HIRE has better
performance than RoBERTa on the single sentence tasks, similarity and paraphrase tasks. It is worth
noting that our model obtains state-of-the-art results on SST-2 dataset, with a score of 97.1. The re-
sults are quite promising since HIRE does not modify the encoder internal architecture (Yang et al.,
2019) or redefine the pre-training procedure (Liu et al., | 2019c¢) , getting the comparable results with
them.
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4 ABLATION STUDY

In this section, we perform a set of ablation experiments to understand the effects of our proposed
techniques during fine-tuning. All the results reported in this section are a median of five random
runs.

4.1 MODEL DESIGN CONSIDERATION

CoLA STS-B
Model (Mc)  (Pearson)
Our model 69.7 92.4
w/o HIRE 68.5 91.5

w/o Fusion network  68.2 92.2

Table 4: Ablation study over model design consideration on the development set of CoLA and STS-
B. The result for each model is a median of five random runs. Both HIRE and fusion network
significantly improve the model performance on all two datasets.

To individually evaluate the importance of HIRE and fusion network, we vary our model in the
following ways and conduct the experiments on the development set of CoLA and STS-B. The
results are in Table

* We remove the HIRE from our model and pass the preliminary representation R directly
into the fusion network. In order to keep the fusion network, we fuse the preliminary
representation with itself, which means we define instead M by:

M = [R;R;R+ R; Ro R] ¢ R"% (12)

The results are presented in row 2.

* We remove the fusion network, and take the outputs of HIRE as the final representation of
the input and flow it directly into the output layer and present the results in row 3.

As can be seen from the table, to use of HIRE to extract the hidden information is crucial to the
model: Matthews correlation of CoLA and Pearson correlation coefficient of STS-B drop dramat-
ically by 1.2 and 0.9 points if it’s removed. We also observe that fusion network is an important
component that contributes 1.5/0.2 gains on the CoLA and STS-B tasks. The results are aligned
with our assumption that HIRE extracts the complementary information from the hidden layers
while the fusion network fuses it with the preliminary representation.

4.2 EFFECT OF DYNAMIC MECHANISM

Method Mc
HIRE (dynamic) 69.7

mean, all 25 layers 68.9 (-0.8)
mean, last 6 layers 68.0 (-1.7)
mean, first 6 layers 68.8 (-0.9)
random, all 25 layers 69.3  (-0.4)
random, last 6 layers  68.1 (-1.6)

Table 5: Effect of dynamic mechanism when computing the importance scores. A median Matthews
correlation of five random runs is reported for CoLA on the development set.

We investigate how the adaptive assignment mechanism of the importance score affects the model’s
performance. CoLA is chosen as the downstream task. Table [5compares our proposed mechanism
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Number 0 1 2 3
Mc 68.5 69.3 69.7 685

Table 6: Ablation study over GRU layer number in fusion network on the development set of CoLA.
The results are a median Matthews correlation of five random runs. The best result is in bold.

with diverse fixed combinations of importance scores over different range of layers: first 6, last 6 or
all 25 layers. Two strategies are studied: mean and random. In the mean situation, we suppose all
the layers contribute exactly the same. On the contrary, under the random condition, we generate a
score for each layer randomly and do the SoftMax operation across all the layers.

From the table, we observe that fixing each layer’s importance score for all examples hurts the model
performance. Across all rows, we find that none of single strategy can yield the best performance.
The results enable us to conclude that the hidden-state weighting mechanism introduced by HIRE
may indeed adapt to diverse downstream tasks for better performance.

4.3 EFFECT OF GRU LAYER NUMBER IN FUSION NETWORK
To investigate the effect of GRU layer number in the fusion network, we set the GRU layer number

from O to 3 and conduct the ablation experiments on the development dataset of CoLA. Table [6]
shows the results. We observe that the modest number 2 would be a better choice.

5 ANALYSIS
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Figure 2: Left: Distribution of importance scores over different layers when computing the com-
plementary representation for various NLU tasks. The numbers on the abscissa axis indicate the
corresponding layer with O being the first layer and 24 being the last layer. Right: Distribution
of importance scores over different layers for each example of SST-2 dataset. The number on the
ordinate axis denotes the index of the example.

We compare the importance score’s distribution of different NLU tasks. For each task, we run our
best single model over the development set and the results are calculated by averaging the values
across all the examples within each dataset. The results are presented in the left of Figure 2] From
the top to the bottom of the heatmap, the results are placed in the following order: single-sentence
tasks, similarity and paraphrase tasks, and natural language inference tasks. From it, we find that the
distribution differs among the different tasks, which demonstrates HIRE’s dynamic ability to adapt
for distinct tasks when computing the complimentary representation. The most important contribu-
tion occurs below the final layer for all the tasks except STS-B and RTE. All layers have a close
contribution for STS-B and RTE task. In addition, we find that QNLI, a classification task which
requires the model to determine whether the context sentence contains the answer to the question,
relies on layers 2-4 to some extent. In fact, Jawahar et al|(2019) state that BERT mostly captures
phrase-level (or span-level) information in the lower layers and that this information gets gradually
diluted in higher layers. Since QNLI is derived from the span extraction question answering dataset
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SQuAD, where the answer is a span of the input text, we speculate that HIRE takes advantage of
this information when making the prediction.

The right of Figure [2] presents the distribution of importance scores over different layers for each
example of SST-2 dataset. The number on the ordinate axis denotes the index of the example. It
shows that HIRE can adapt not only distinct tasks but also the different examples. In the meantime,
we observe also that even though there are subtle differences among these examples, they follow
certain same patterns when calculating the complementary representation, for example, layers 21
and 22 contribute the most for almost all the examples and also the layers around them. But the
figure shows also that for some examples, all layers contribute nearly equally.

6 RELATED WORK

Transformer model is empowered by self-attention mechanism and has been applied as an effec-
tive model architecture design in quite a lot of pre-trained language models (Vaswani et al., [2017).
OpenAl GPT (Radford et al., [2018)) is the first model that introduced Transformer architecture into
unsupervised pre-training. But instead of unidirectional training like GPT, BERT (Devlin et al.,
2019) adopts Masked LM objective when pre-training, which enables the representation to incor-
porate context from both direction. The next sentence prediction (NSP) objective is also used by
BERT to better model the relationship between sentences. Trained with dynamic masking, large
mini-batches and a larger byte-level BPE, full-sentences without NSP, RoBERTa (Liu et al., [2019c])
improves BERT’s performance on the downstream tasks from a better BERT re-implementation
training on BooksCorpus(Zhu et al., 2015)), CC-News, Openwebtext and Stories. In terms of fine-
tuning on downstream tasks, all these powerful Transformer-based models help various NLP tasks
continuously achieve new state-of-the-art results. Diverse new methods have been proposed recently
for fine-tuning the downstream tasks, including multi-task learning (Liu et al., |2019b), adversar-
ial training (Zhu et al., |2020) or incorporating semantic information into language representation
(Zhang et al.| 2020).

Traditionally, downstream tasks or back-end part of models take representations from the last layer
of the pre-trained language models as the default input. However, recent studies trigger researchers’
interest on the intermediate layers’ representation learned by pre-trained models. When studying
the linguistic knowledge and transferability of contextualized word representations with a series
of seventeen diverse probing tasks, [Liu et al.| (2019a)) observe that Transformers tend to encode
transferable features in their intermediate layers, aligned with the results by [Peters et al.| (2018b).
Jawahar et al.| (2019) show a rich hierarchy of linguistic information is encoded by BERT, with
surface features, syntactic features and semantic features lying from bottom to top in the layers. So
far, to our best knowledge, exploiting the representations learned by hidden layers is still stuck with
limited empirical observations, which motivates us to propose a general solution for fully exploiting
all levels of representations learned by the pre-trained language models. However, we want to note
that a freezing/fine-tuning discrepancy may exist, since previous observations are made by adopting
a feature extracting approach while our work is conducted in the fine-tuning scenario.

Several works have made attempts to utilize the information from the intermediate layers of deep
models (Zhao et al.| 2015; [Peters et al., 2018a; [Zhu et al.l [2018} Tenney et al.l [2019)). [Peters et al.
(2018a) propose a deep contextualized word representation called ELMo, which is a task-specific
linear combination of the intermediate layer representations in the bidirectional LSTM language
model. Tenney et al.| (2019) find that using ELMo-style scalar mixing of layer activations, both
deep Transformer models (BERT and GPT) gain a significant performance improvement on a novel
edge probing task. |Zhu et al.| (2018) adopt a linear combination of embeddings from different
layers in BERT to encode tokens for conversational question answering but in a feature-based way.
Compared with these works, our approach still presents the following innovations: 1) Our dynamic
layer weighting mechanism calculates importance scores for each example over different layers,
which is distinct from previous works (e.g., ELMo), where the contribution score (in the form of a
parameter) for each layer is always same for all the examples of the same task. 2) Our approach
fuses the representation weighted from the hidden layers and the one from the last layer to get a
refined representation. 3) To our best knowledge, our work is the first one that takes advantage of
the pre-trained language model’s intermediate information in the context of fine-tuning.
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7 CONCLUSION

This paper presents Hldden Representation Extractor (HIRE), a novel enhancement component that
refines language representation by adaptively leveraging the Transformer-based model’s hidden lay-
ers. In our proposed model design, HIRE dynamically generates complementary representation
from all hidden layers other than that from the default last layer. A lite fusion network then incorpo-
rates the outputs of HIRE into those of the original model. The experimental results demonstrate the
effectiveness of refined language representation for natural language understanding. The analysis
highlights the distinct contribution of each layer’s output for diverse tasks and different examples.
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A APPENDIX

A.1 DETAILED DESCRIPTIONS FOR THE GLUE BENCHMARK

Three different tasks are presented in GLUE benchmark (Wang et al.,|2018) according to the original
paper:

Single-sentence tasks: The Corpus of Linguistic Acceptability (CoLA) (Warstadt et al.l [2018)
requires the model to determine whether a sentence is grammatically acceptable; the Stanford Senti-

ment Treebank (SST-2) (Socher et al.,|2013)) is to predict the sentiment of movie reviews with label
of positive or negative.
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Similarity and paraphrase tasks: Similarity and paraphrase tasks are to predict whether each
pair of sentences captures a paraphrase/semantic equivalence relationship. The Microsoft Research
Paraphrase Corpus (MRPC) (Dolan & Brockett, [2005), the Quora Question Pairs (QQP) [/|and the
Semantic Textual Similarity Benchmark (STS-B) (Cer et al.,2017) are presented in this category.

Natural Language Inference (NLI) tasks: Natural language inference is the task of determining
whether a “hypothesis” is true (entailment), false (contradiction), or undetermined (neutral) given
a “premise”. GLUE benchmark contains the following tasks: the Multi-Genre Natural Language
Inference Corpus (MNLI) (Williams et al.l [2018]), the converted version of the Stanford Question
Answering Dataset (QNLI) (Rajpurkar et al 2016), the Recognizing Textual Entailment (RTE)
(Dagan et al.l 2006} Roy et al., 2006} |Giampiccolo et al., [2007; [Bentivogli et al., 2009) and the
Winograd Schema Challenge (WNLI) (Levesque et al.,[2012).

Four official metrics are adopted to evaluate the model performance: Matthews correlation
(Matthews, |1975)), accuracy, F1 score, Pearson and Spearman correlation coefficients.

A.2 IMPLEMENTATION DETAILS

Our implementation of HIRE and its related fusion network is based on the PyTorch implementation
of Transformer

Preprocessing: Following |Liu et al.|(2019c¢)), we adopt GPT-2 (Radford et al.,[2019)) tokenizer with
a Byte-Pair Encoding (BPE) vocabulary of subword units size S0K. The maximum length of input
sequence is 128 tokens.

Model configurations: We use ROBERTa; argg as the Transformer-based encoder and load the pre-
training weights of ROBERTa (Liu et al.,2019c¢])). Like BERT srge, ROBERTa orge model contains
24 Transformer-blocks, with the hidden size being 1024 and the number of self-attention heads being
16 (L1u et al., 2019¢; |Devlin et al., [2019).

Optimization: We use Adam optimizer (Kingma & Ba, 2015) with 5; = 0.9, 8 = 0.98 and € =
10~° and the learning rate is selected amongst {1e-5, 2e-5} with a warmup rate of 0.06 depending
on the nature of the task. The number of training epochs ranges from 3 to 27 with the early stop and
the batch size is selected amongst {16, 32, 48}. In addition to that, we clip the gradient norm within
1 to prevent exploding gradients problem occurring in the recurrent neural networks in our model.

Regularization: We employ two types of regularization methods during training. We apply dropout
(Srivastava et al.| 2014)) of rate 0.1 to all layers in the Transformer-based encoder and GRUs in the
HIRE and fusion network. We additionally adopt L2 weight decay of 0.1 during training.

Zhttps://www.quora.com/q/quoradata/First—Quora-Dataset-Release—Question-Pairs
Shttps://github.com/huggingface/transformers
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