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Abstract
Classifying videos differs from that of images in the need to capture
the information on what has happened, instead of what is in the
frames. Conventional methods typically follow the data-driven ap-
proach, which uses transformer-based attention models to extract
and aggregate the features of video frames as the representation of
the entire video. However, this approach tends to extract the object
information of frames and may face difficulties in classifying the
classes talking about events, such as "fixing bicycle". To address this
issue, This paper presents an Event-level Causal Representation
Learning (ECRL) model for the spatio-temporal modeling of both
the in-frame object interactions and their cross-frame temporal cor-
relations. Specifically, ECRL first employs a Frame-to-Video Causal
Modeling (F2VCM) module, which simultaneously builds the in-
frame causal graph with the background and foreground informa-
tion and models their cross-frame correlations to construct a video-
level causal graph. Subsequently, a Causality-aware Event-level
Representation Inference (CERI) module is introduced to eliminate
the spurious correlations in contexts and objects via the back- and
front-door interventions, respectively. The former involves visual
context de-biasing to filter out background confounders, while the
latter employs global-local causal attention to capture event-level
visual information. Experimental results on two benchmarking
datasets verified that ECRL may better capture the cross-frame
correlations to describe videos in event-level features. The source
codes have been released at https://github.com/wyqcrystal/ECRL.

CCS Concepts
• Computing methodologies→ Artificial intelligence.
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Figure 1: Object-level features v.s. Event-level features. In
the case of “fixing bicycle” from ActivityNet, UniformerV2
misclassifies it as “assembling bicycle”. It stems from overly
focusing on the object-level feature of the “whole wheel”.
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1 Introduction
Video classification aims to automatically identify and categorize
video content into predefined categories. This enables the efficient
retrieval of video from the extensive corpus of the internet. Videos
are not just a collection of static images, but a comprehensive
concept characterized by the cross-frame interconnections among
scenes, events, and objects. In video classification, the modeling of
any specific entity is invariably affected by the presence of the other
two types of entity, thereby impeding its process of representation
learning. Therefore, how to learn the discriminate representations
of the predicted targets from the complex spatio-temporal dynamics
is a permanent challenge in video classification tasks.

To address the spatio-temporal dynamics issue in video classifica-
tion, existing studies attempt to achieve the video understanding by
aggregating all the frame representations via the spatio-temporal
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Figure 2: Illustration of the proposed ECRL. The inherent
background bias and data bias fromvideo sequencesmay lead
to incorrect prediction, like “playing volleyball”. In contrast,
ECRL employs the multi-perspective causal interventions
at the event level to effectively cut off the paths 𝑉 → 𝑆1 and
𝑉 → 𝐶1, thereby enabling precise prediction as “running”.

convolution [11, 28] and the self-attention mechanism [2, 54, 64].
The first type of these studies conducts the sparse sampling on
video sequences to achieve the local feature aggregation [43]. The
second type fully leverages the unsaturated discriminative power of
residual attention to understand the long-term temporal dependen-
cies in video sequences[17]. As stated in the second line of Fig. 1,
these aforementioned methods are profoundly influenced by the
configurations of their visual encoders, which results in an exces-
sive concentration on the object knowledge within each frame. This
leads to a mechanical aggregation of object-level features from each
frame, thereby impeding their in-depth exploration of cross-frame
event correlations. In contrast, the event-level representation in
the third line of Fig. 1 can precisely highlight the position of “hand”
and “whole wheel” during the video sequences modeling, thereby
correctly understanding the category of “fixing bicycle”.

Causal representation learning (CRL), benefiting from its in-
terpretability, has achieved outstanding performance in video un-
derstanding, including Video Moment Retrieval [61] and Video
Question Answering [26, 27]. This arises from the capacity of CRL
to disentangle video representations in a frame-by-frame manner
through the logical reasoning process. It effectively eliminates the
inherent confounding factors that precipitate errors in model recog-
nition, thereby facilitating the mining of event-level knowledge
from the temporal correlations among objects within the video
sequences. These methods typically focus on leveraging the addi-
tional textual knowledge to construct the Structural Causal Model
(SCM), thereby guiding the visual representation modeling by the
multi-model representation alignment [25]. However, these above
CRL-based methods struggle to be directly applied in video classifi-
cation tasks where semantic information is unavailable. Therefore,
how to utilize CRL to model the event-level knowledge from the
video sequences remains an urgent problem to be addressed.

To address this issue, we propose a Event-Level Causal
Representation Learning (ECRL) model for video classification,
which leverages the causal theory to discover the association among
inter-frame objects in video sequences and guide the event-level
representations modeling in current video classification algorithms.
As illustrated in Fig. 2, ECRL is comprised of two principal compo-
nents: the Frame-to-Video Causal Modeling (F2VCM) module and

the Causality-aware Event-level Representation Inference (CERI)
module. Specifically, F2VCM first systematically extracts the back-
ground and foreground content from the raw video sequences to
highlight the indispensable knowledge in each frame. To discover
the event-lavel causal correlation, it simultaneously models the
in-frame object interactions and the cross-frame object correlations
on these continuous back- and fore-ground frames to construct
an event-level causal graph. Recognizing the spurious associations
between the ground-truth category with the background elements
and the intra-frame knowledge, we argue that video classification
is subject to background biases and data biases in video sequences.
Therefore, CERI is introduced to alleviate these inherent biases via
the Background Debiasing (BD) component and the Global-Local
Causal Attention (GLCA) component. Firstly, BD conducts backdoor
interventions to reduce the spurious associations such as “beach,
sky -> playing volleyball”, thereby alleviating the background bi-
ases. In contrast, GLCA implements front-door interventions to
remove data biases within the inter-frame object correlations, high-
lighting the indispensable frames and filter the dispensable frames.
With F2VCM and CERI, ECRL is able to effectively constructs the
video-level causal graph with the intra-frame information and inter-
frame correlations, thereby enabling the structured interventions
to model the informative event-level causal representations.

We have conducted extensive experiments on two benchmark
datasets to verify the effectiveness of ECRL, including performance
comparison, ablation study, in-depth analyses, and case studies.
These discoveries demonstrate the efficacious mechanism of ECRL,
which models video-level causal structures with in-frame object
interactions and cross-frame correlations. Additionally, it refines
event-level causal representations through multi-perspective causal
interventions, thereby enhancing the accuracy of video classifica-
tion tasks. To summarize, this paper includes three contributions:
• We propose an Event-level Causal Representation Learning
method to model the event-level spatio-temporal representations
from the causal perspective. To the best of our knowledge, this
is the pioneering solution that models the event-level represen-
tation via causal theory in video classification.
• We introduce two effective F2VCM and CERI modules to con-
struct the video-level causal graph with the intra- and inter-frame
correlations and model the event-level causal representation via
the multi-perspective causal interventions.
• We conduct the visualization analysis to highlight the ability
of ECRL to mitigate the erroneous predictions stemming from
the inherent background bias and data bias, which enables the
precise event-level video understanding of ECRL.

2 Related works
2.1 Video Classifiaction
Video classification aims to find category-related information from
successive frames. With the development of deep learning[13, 14,
29–32, 34, 60], convolutional neural networks have made great
breakthroughs in the field of video classification. TSN [47]suggests
utilizing a sparse sampling strategy for capturing long-range video
segments. I3D [8]advances 2D CNN models by extending them
to 3D CNNs. Non-local [50] employs a non-local block to capture
long-range dependencies in the video through the non-local mean
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Figure 3: Illustration of the framework of ECRL. ECRL proposes a Frame-to-Video Causal Modeling (F2VCM) module to build
the video-level causal graph with the in-frame object interactions and the cross-frame object correlations. To alleviate the
inherent background and data bias in video sequences, ECRL proposes a Causality-aware Event-level Representation Inference
(CERI) module to eliminate these spurious correlations via the back-door and the front-door interventions.

operation. S3D [57]introduces temporal separable convolution and
spatio-temporal feature gating to improve the performance of I3D.
TSM [21] introduces temporal shift operations. SlowFast [12] con-
sists of a slow path and a fast path. TEA [19] adjusts spatio-temporal
features with motion features to enhance motion patterns. X3D
[11] expands 2D networks across dimensions including time, space,
depth, and width. The emergence of Transformers has advanced
video classification. ViViT [2] introduces a transformer model for
video classification, offering variants that consider both temporal
and spatial dimensions. TimeSformer [5] uses individual attention
mechanisms within each patch block, aiding in modeling long se-
quence videos. Swin Transformer [27] merges CNNs and transform-
ers, converting spatio-temporal attention using localized induction
bias and non-overlapping windows.

Existing methods explore spatio-temporal video dynamics but
overlook video and background biases, limiting event-related repre-
sentation and performance. Thus, learning causal event representa-
tions via cross-frame correlations is crucial for video classification.

2.2 Causal Inference in Video Understanding
Causal inference is an analytical tool designed to infer the dy-
namics of events under changing conditions (e.g. different treat-
ments or external interventions) [36]. Compared to conventional
debiasing techniques[49, 53], causal inference[37, 51, 61] shows
its potential in reducing spurious correlations[4] and disentan-
gling model effects[6], thereby achieving better generalisation per-
formance. Causal inference and counterfactual reasoning have
received increasing attention in a variety of tasks in computer
vision[18, 22, 38], including visual explanation[20, 24, 25, 39, 52],
scene graph generation[55], image recognition [9, 18, 33, 40, 65, 66],

video analysis, and visual-language tasks[1, 62]. Existing causal the-
ories are relatively mature in the field of images and are also widely
applied in the domain of videos. Causal graphs are used to establish
causal-effect inference for multimodal video summarization [16].
Dataset selection bias can result in spurious correlations between
speech and video in video grounding tasks [35]. Causal inference
is used to address imbalances in the distribution of the datasets.
The counterfactual-based model ensemble in video anomaly de-
tection integrates long-term and local image contexts for effective
anomaly detection [56]. Causal methods in video moment detec-
tion are used to address spurious correlations between long-tail
annotations, user queries, and moment positions.[61]. Causal meth-
ods are widely used in Video Question Answering (VQA) [55] due
to biases in datasets related to visual, linguistic, and annotation
aspects. These methods enhance the robustness of visual question
answering by exploring potential causal relationships in complex
spatio-temporal scenarios.

However, existing causal methods in the video domain focus
on finding correlations between visual and textual data, require
information other than the video data (e.g., textual information ),
and thus cannot be directly applied to video classification tasks.
The challenge of video classification is the representation of events.
It is important to design a causal model that is suitable for the
video classification task and to find the directly related to the event
information representation via the causal mechanism.

3 Problem formulation
For the video classification task, given a dataset D =

{V𝑖 | 𝑖 = 1, . . . , 𝑁 }, labels Y = {𝑦𝑖 | 𝑖 = 1, . . . , 𝐽 }, and V =

{𝑣𝑖 | 𝑖 = 1, . . . , 𝑡}. Conventional methods extract visual features
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from the video: F𝑣 = Mv (V), whereMv (·) denotes the feature
extractor. Then, the category mapping P(·) predicts the category
of the sample, i.e. P (F𝑣) → 𝑦.

Different from the conventional approaches, the proposed video
classification method ECRL, based on event-level causal representa-
tion learning, first utilizes obtaining the foreground and background
information V𝑠 = {𝑠𝑖 | 𝑖 = 1, . . . , 𝑡}, and V𝑐 = {𝑐𝑖 | 𝑖 = 1, . . . , 𝑡}.
Then, the original frame-level of visual features F𝑣 = Mv (V),
foreground features F𝑠 = Ms (V𝑠 ) and background feature F𝑐 =

Mc (V𝑐 ), whereMs (·) andMc (·) denote the visual feature extrac-
tion network. To construct the causal graph of the video, we further
model the relation between F𝑠 and F𝑟𝑠 = Rs (F𝑠 ) , F𝑟𝑐 = R𝑐 (F𝑐 ) to
get content-level representations of F𝑟𝑠 and background F𝑟𝑐 , where,
Rs (·) and Rc (·) denote the networks for cross-frame correlation
modeling. To address background bias and data bias in videos, we
process F𝑟𝑠 and F𝑟𝑐 via BD module and GLCA module, obtain the
background debiased feature Fcc and the causal representation Fgg.
Finally, we calculate the predictive classification results by mapping
the two features P (Fcc) + P

(
Fgg

)
→ 𝑦.

4 Methods
ECRL introduces an Event-level Causal Representation Learning
method to enhance the model’s causal awareness of event informa-
tion. The architecture of ECRL is illustrated in Fig. 3. An event-level
causal graph is constructed using the Frame-to-Video Causal Mod-
eling (F2VCM) module, which explores the event correlations by
finding the correlation between the foreground and background of
the video frames; the Causality-aware Event-level Representation
Inference (CERI) module eliminates background and data bias in
video data by implementing causal intervention on the causal graph.
This enables the model to find information directly related to event
representation and the causal structure in video classification tasks.

4.1 Frame-to-Video Causal Modeling Module
The Frame-to-Video Causal Modeling (F2VCM) module aims to
build the in-frame causal graph and learn cross-frame causal cor-
relations to create a Structural Causal Model (SCM) suitable for
video classification to assist causal inference. It consists of two
main processes: extracting related visual elements and constructing
content-level representations by modeling inter-frame correlations
between the foreground and background visual elements.

4.1.1 Visual Representation Learning. This module aims to ex-
tract three types of visual information: foreground, background,
and original video frame features. Given a data set of videos
D = {V𝑖 | 𝑖 = 1, . . . , 𝑁 }, we distinguish the foreground S𝑖 from
V𝑖 using a pre-trained Saliency model [23] and then implement
a masking process to obtain the corresponding contextual back-
ground C𝑖 , whereV𝑖 is a video sample. Next, we extract features
using the specified encoder.

𝐹𝑣𝑖 =Mv (V𝑖 ), 𝐹𝑠𝑖 =Ms (S𝑖 ), 𝐹𝑐𝑖 =Mc (C𝑖 ) (1)

where M𝑣 (·), M𝑠 (·), and M𝑐 (·) represent the encoders for the
original video, foreground, and background frames respectively.
𝐹𝑣𝑖 , 𝐹𝑠𝑖 , 𝐹𝑐𝑖 ∈ R𝑡×𝑑 , t denotes the number of frames, and 𝑑 denotes
the dimension of the extracted features.

4.1.2 Cross-frame correlation modeling (CCM) module. We model
causal graph element correlations to extract content-level represen-
tations for event-level causal inference. The CCM employs separate
BCM (Background Cross-frame Modeling) and FCM (Foreground
Cross-frame Modeling) modules for different tasks.

In this section, we use * to refer to foreground S and background
C. For the video frame information 𝐹𝑣𝑖 , the video content features
are obtained by averaging 𝐹𝐿 = 𝛿 (𝐹𝑣𝑖 ) with the dimension 𝐹𝐿 ∈ R𝑑 .
Then we adopt a context generator T∗ (·) to obtain the context vec-
tor and input it together with 𝐹∗𝑖 into the attention frame weighting
module to obtain the weight 𝑤∗. Next, 𝑤∗ is used to weight 𝐹∗𝑖 ,
resulting in the foreground representation of the entire video se-
quence, obtained through association modeling:

𝑤∗ = 𝜙 (H (T∗ (𝐹∗𝑖 ) , 𝐹∗𝑖 ))
𝐹𝑟∗ = 𝜌 (𝑤∗ ⊙ 𝐹∗𝑖 , 𝛿 (𝐹∗𝑖 ))

(2)

whereH(., .) denotes the Hadamard inner product operation, 𝜙 de-
notes the softmax function, ⊙ represents the dot product operation
and 𝜌 means concat and linear operation. We obtain the represen-
tations for video, foreground, and background 𝐹𝐿, 𝐹𝑟𝑠 , 𝐹𝑟𝑐 ∈ R𝑑 .

4.1.3 Causal View at Video Classification Task. We use the struc-
tural causal model to model the variable relationships of complex
spatiotemporal data in video classification tasks. As illustrated in
Fig. 4 (a), it is a directed acyclic graph G = {N , E} in which the
nodes N denote variables and edges E denote association between
variables. The SCM G includes six variables: video 𝑉 , foreground
and background feature 𝑆 , 𝐶 , background and data confounder 𝑍1,
𝑍2, and prediction 𝑌 . The correlations in graph G are as follows:

𝑩1 → 𝒁1 → 𝑽 , 𝑩2 → 𝒁2 → 𝑽 : 𝑩1 and 𝑩2 represent the
background and data bias, leading to spurious correlations between
videos and categories. To cut off the correlation between 𝑉 and
{𝑍1, 𝑍2}, the causal intervention is necessary (Fig. 4 (b) and (c)).

𝒁1 → 𝑪 → 𝒀 : 𝐶 represents the background confounder. 𝑍1 →
𝐶 means harmful confounding factors making unreliable context
learning, further influencing the prediction of 𝑌 via the link𝐶 → 𝑌 .

𝑽 → 𝑪 → 𝒀 , 𝑽 → 𝑺 → 𝒀 : 𝑆 represents the foreground feature.
These two causal pathways reflect the estimation of 𝑌 based on
unbiased contextual features 𝐶 and content of video frames 𝑉 .

𝑽 ← 𝒁1 → 𝑪 → 𝒀 : We use the backdoor intervention to cut off
the adverse backdoor path and eliminate the impact of 𝑍1, which
misleads the spurious "context->category" correlation (Fig. 4 (b)).

𝑴 ← 𝑽 ← 𝒁2 → 𝒀 : We use a mediator M to construct the
front door path and adopt front door intervention to mitigate the
spatio-temporal data bias in the video. (Fig. 4 (c)).

Training a video classification model focuses on learning true
causal effects. It aims to discern category 𝑌 based on key events
in the video, avoiding spurious correlations from confounders 𝑍1
and 𝑍2. By cutting off these two paths, the causal structure in video
classification is discovered (Fig. 4 (d)).

4.2 Causality-aware Event-level Representation
Inference Module

Through the implementation of the F2VCM module, we have es-
tablished an event-level SCM and conducted targeted causal in-
terventions to derive precise event causal representations. The
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Figure 4: The event-causal intervention process of CERImod-
ule for video classification.

Causality-aware Event-level Representation Inference (CERI) mod-
ule needs to model the event-level representation of the video. First,
we employ a backdoor intervention through a Background Debias-
ing (BD) module to eliminate background biases. Then, we applied
a front-door intervention using the Global-Local Causal Attention
module (GLCA) to remove data biases. Ultimately, we discovered
the SCM for representation learning in video classification, which
enhances the model’s ability to model event-level information.

4.2.1 Background Debiasing (BD) Module by Back-door Causal In-
tervention. To alleviate the background bias We propose a Visual
Context Debiasing (BD) module, which can remove the side ef-
fects caused by the background confounder and facilitate a fair
contribution of diverse backgrounds to video understanding. Im-
plementation details are described below.

In Fig. 4 (b), existing video classification methods use the condi-
tional probability 𝑃 (𝑌 | 𝑉 ), expressed by Bayes’ rule.

𝑃 (𝑌 | 𝑉 ) =
∑︁
𝑧

𝑃 (𝑌 | 𝑉 , 𝑆 = 𝑓𝑟𝑠 (𝑉 ),𝐶 = 𝑓𝑟𝑐 (𝑉 , 𝑧)) 𝑃 (𝑧 | 𝑉 ) (3)

where 𝑓𝑟𝑠 (·) and 𝑓𝑟𝑐 (·) represent CCM module encoding functions.
To mitigate this observation bias caused by 𝑍1, an intuitive idea is
to intervene on 𝑉 to ensure that each contextual semantics con-
tributes equally to the video classification. To address this issue, we
stratify 𝑍1 based on backdoor adjustments[37], and then estimate
the average causal effect based on the context proportion of training
samples and implement intervention on 𝑉 :

𝑃 (𝑌 | 𝑑𝑜 (𝑉 )) =
∑︁
𝑧

𝑃 (𝑌 | 𝑉 , 𝑆 = 𝑓𝑟𝑠 (𝑆),𝐶 = 𝑓𝑟𝑐 (𝑉 , 𝑧)) 𝑃 (𝑍1) (4)

where 𝑑𝑜 (𝑉 ) denote intervene on 𝑉 . By implementing do-calculus
on 𝑉 , the path in Fig. 4 (b) from 𝑍1 to 𝑉 is cut-off, and the model
will approximate causal intervention 𝑃 (𝑌 | 𝑑𝑜 (𝑉 )), rather than a
spurious association 𝑃 (𝑌 | 𝑉 ).
Confounder Dictionary 𝑍1. Given the difficulty of capturing all
real-world confounders, we use a stratified confounder dictionary
𝑍1 = [𝑧1, 𝑧2, . . . , 𝑧𝐿] structured as an 𝐿 × 𝑑 matrix, where 𝐿 is the
context category size and 𝑑 is the background feature dimension,
pre-trained using the UniformerV2 model. For practical applica-
tions, we define the confounder pool as 𝑀𝑏 = {𝒎𝑘 |𝑘 = 1, . . . , 𝑁 },
with 𝑁 representing the number of training samples in the dataset.
We apply k-means++[3] and principal component analysis [41]
to derive 𝑍1 from the confounder pool, ensuring each 𝑧𝑖 reflects
contextual clustering. Specifically, each 𝑧𝑖 is the average feature of
its cluster, calculated as 𝑧𝑖 = 1

𝜎𝑖

∑𝜎𝑖
𝑗=1𝑚

𝑖
𝑗
, where 𝜎 is the count of

contextual features in the 𝑖-th cluster.

Instantiation of the Proposed BDM. To implement the theoreti-
cal and imaginative interventions in Eq 4. The BDM is described as
follows. As the computation of 𝑃 (𝑌 | 𝑑𝑜 (𝑉 )) requires multiple pass
backs for all z, to reduce computation, we use Normalised Weighted
Geometric Mean (NWGM) [59] to approximate the results expected
from the above feature layers:

𝑃 (𝑌 | do(𝑉 )) NWGM≈ 𝑃 (𝑌 | 𝑉 , 𝑆 = 𝑓𝑟𝑠 (𝑉 ),𝐶 =
∑︁
𝑧

𝑓𝑟𝑐 (𝑉 , 𝑧)𝑃 (𝑧))

(5)
We parameterize the network model to approximate the condi-

tional probability of Eq. 5, inspired by[48], as follows:

𝑃 (𝑌 | 𝑑𝑜 (𝑉 )) =𝑊𝑎 𝐽 +𝑊𝑏E𝑧 [𝑔1 (𝑧)] (6)

where 𝑊𝑎 ∈ R𝑑𝑚×𝑑𝑎 and 𝑊𝑏 ∈ R𝑑𝑚×𝑑 are learnable parame-
ters. Additionally, 𝐽 = 𝜓 (𝑠, 𝑐) ∈ R𝑑𝑎×1, where 𝜓 (·) represents a
fusion strategy, integrating 𝑠 and 𝑐 into the joint representation 𝐽 .
The above approximation is justified as the influence on 𝑌 comes
from 𝑣 , 𝑐 , and the confounding factor 𝑧. Therefore, we approximate
E𝑧 [𝑔1 (𝑧)] as a weighted integration of all background prototypes.

E𝑧 [𝑔1 (𝑧)] =
𝑁∑︁
𝑖=1

𝜇𝑖𝑧𝑖𝑃 (𝑧𝑖 ) (7)

where 𝜇𝑖 represents the important weight coefficient measuring the
interaction between each 𝑧𝑖 and the original feature 𝐽 , with 𝑃 (𝑧𝑖 ) =
𝑁𝑖/𝑁𝑚 . In practice, we employ two implementation approaches for
𝜇𝑖 : Dot Product (softmax

[
(𝑊𝑐 𝐽 )𝑇 (𝑊𝑑𝑧𝑖 )/

√
𝑑

]
) and Additive At-

tention (softmax
[
𝑊𝑇

𝑒 · Tanh (𝑊𝑐 𝐽 +𝑊𝑑𝑧𝑖 )
]
), where𝑊𝑒 ∈ R𝑑𝑛×1,

𝑊𝑐 ∈ R𝑑𝑛×𝑑𝑎 , and𝑊𝑑 ∈ R𝑑𝑛×𝑑 are mapping matrices.
By using the contextual debiasing module, we end up with a

debiased visual feature of 𝐹𝑐𝑐 . We then input this feature into the
classifier to get the predicted score 𝑆1, where 𝑆1 = classifier (𝐹𝑐𝑐 ).

4.2.2 Global Local Causal Attention(GLCA) Module by Front-door
Causal Intervention. It is very complex and difficult to observe this
data bias 𝑍2, where not all content in the video is assigned to a
category. Fortunately, the front-door adjustment is a feasible way
to compute 𝑃 (𝑌 | 𝑉 ) when 𝑍2 is unobservable (Fig. 4 (c)). Insert a
mediator M between V and Y, we can construct a front door path
𝑉 → 𝑀 → 𝑌 to transmit the knowledge, where 𝑚 denotes the
knowledge selected from M:

𝑃 (𝑌 | 𝑉 ) =
∑︁
𝑚

𝑃 (𝑀 =𝑚 | 𝑉 )𝑃 (𝑌 | 𝑀 =𝑚) (8)

The classification predictor can be represented by 𝑉 → 𝑀 and
𝑀 → 𝑌 . The intervention probability 𝑃 (𝑌 | do(𝑉 )) as follows:

𝑃 (𝑌 | 𝑑𝑜 (𝑉 )) =
∑︁
𝑚

𝑃 (𝑀 =𝑚 | 𝑑𝑜 (𝑉 ))𝑃 (𝑌 | 𝑑𝑜 (𝑀 =𝑚)) (9)

In Fig. 4(c), for the causal link 𝑉 → 𝑀 , the backdoor path be-
tween V and M is blocked by𝑀 ← 𝑉 ← 𝑍2 → 𝑌 . Therefore, the
intervention probability is equal to the conditional probability.

𝑃 (𝑀 =𝑚 | 𝑑𝑜 (𝑉 )) = 𝑃 (𝑀 =𝑚 | 𝑉 ) (10)
𝑀 → 𝑌 : To achieve 𝑃 (𝑌 | do(𝑀 =𝑚)), we can indirectly cut off

the link𝑀 ← 𝑉 to block the backdoor path𝑀 ← 𝑉 ← 𝑍2 → 𝑌 .

𝑃 (𝑌 | 𝑑𝑜 (𝑀 =𝑚)) =
∑︁
𝑣

𝑃 (𝑉 = 𝑣)𝑃 (𝑌 | 𝑉 = 𝑣, 𝑀 =𝑚) (11)



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yuqing Wang et al.

In summary, by applying Eq.9 and Eq.10 into Eq.11, we can
compute the true causal effect between V and Y.

𝑃 (𝑌 | do(𝑀 =𝑚)) =
∑︁
𝑚

𝑃 (𝑀 =𝑚 | 𝑉 )

×
∑︁
𝑣

𝑃 (𝑉 = 𝑣)𝑃 (𝑌 | 𝑉 = 𝑣,𝑀 =𝑚)
(12)

We parameterize 𝑃 (𝑌 | 𝑉 ,𝑀) as 𝑔2 (·) followed by a softmax layer,
as most visual tasks are formulated similarly.

𝑃 (𝑌 | 𝑉 ,𝑀) = 𝜙 [𝑔2 (𝑀,𝑉 )] (13)

where 𝜙 denotes the softmax function. To address the cost of for-
warding for all samples is prohibitively high, we still adopt the
NWGM approximation, as shown in the formula.

𝑃 (𝑌 | 𝑑𝑜 (𝑉 )) ≈ 𝜑 [𝑔2 (�̂�,𝑉 )]

= 𝜑

[
𝑔2

(∑︁
𝑚

𝑃 (𝑀 =𝑚 | 𝑓 (𝑉 ))𝑚,
∑︁
𝑣

𝑃 (𝑉 = 𝑣 | ℎ(𝑉 ))𝑣
)]

(14)

where �̂� and 𝑉 stand for the estimates of𝑀 and 𝑉 , while 𝑓 (·) and
ℎ(·) denote the network mapping functions.
Global Clustering Dictionary 𝐺 : To improve representation of
causally perceived visual features, the GLCA module estimates
M and V within a unified attention framework. Local features 𝐹𝐿
come from the input, while global features 𝐹𝐺 are sampled from
a K-means initialized and training-updated dictionary 𝐺 . M and
V are derived from local-local 𝐹𝐿𝐿 and local-global 𝐹𝐿𝐺 features,
respectively. We illustrate using 𝐹𝐿𝐺 .

First, the global-local fusion obtains the fusion feature ℎ =[
𝑊𝑣𝐹𝐺 ,𝑊𝑞𝐹𝐿 ⊙𝑊𝑘𝐹𝐺

]
, where [., .] denotes the join operation, ⊙

denotes the Hadamard inner product,𝑊𝑞,𝑊𝑘 ,𝑊𝑣,𝑊ℎ′ denote the
linear layer weights. Then it goes to the attention unit attention
weights 𝛼 , and weights the local features to obtain the global-local
feature 𝐹𝐿𝐺 , the process is as follows:

𝐹𝐿𝐺 = 𝜙 (𝑅𝐸𝐿𝑈 (𝑊ℎℎ + 𝑏ℎ)𝑊ℎ′ + 𝑏ℎ′ ) ⊙ 𝐹𝐺 (15)

where 𝑏ℎ and 𝑏ℎ′ denote the linear layer bias. The local-local visual
feature 𝐹𝐿𝐿 can be obtained and combined with 𝐹𝐿𝐿 and 𝐹𝐿𝐺 to
obtain the causal representation after the visual front door inter-
vention as 𝐹𝑔𝑔 . We then input this feature into the classifier to get
the predicted score 𝑆2, where 𝑆2 = classifier

(
𝐹𝑔𝑔

)
.

The bias 𝐵1 and 𝐵2 in the video are eliminated using the Event-
detected Causal Graph Construction Module. This results in the
causal-aware structure for video classification shown in Fig. 4(d).

4.3 Training Strategies
In thismodule, themain objective is to integrate the predicted scores
𝑆1, 𝑆2, obtained from the BD and GLCA modules respectively, to
derive the final video classification category. we fusion the scores
𝑆1, 𝑆2, obtaining the 𝑆 , where 𝑆 = 𝑆1 + 𝑆2. The prediction 𝑝 = 𝑒𝑆∑

𝑗 𝑒
𝑆 ,

where 𝑝 represents the predicted final outcome. A single-stage
training model is used to update the model by minimizing the
prediction loss L𝑐𝑒 = 𝐶𝐸 (𝑝, 𝑝′), where CE is the cross-entropy
loss, 𝑝 is the predicted result, and 𝑝′ is the ground truth label.

Training ECRL from scratch is challenging due to uneven feature
distributions. To address this, we use a two-step strategy: pre-train
on raw video frames to extract features and calculate losses, then

Table 1: Statistics of the two wide-used datasets.

Datasets #Class #Training #Testing
MSR-VTT 20 7,010 2,990
ActivityNet 100,000 10,009 4,515

fine-tune the causal intervention framework, enhancing stability
and effectiveness.

5 Experiments
5.1 Experiment Settings
5.1.1 Datasets. We conduct extensive experiments on video clas-
sification datasets MSR-VTT [58] and ActivityNet[7] to verify the
effectiveness of ECRL. Their statistics are shown in Table 1. MSR-
VTT dataset comprises 10,000 video clips. We split it into 9,000 and
1,000 videos for training and testing. ActivityNet consists of 20,000
videos. We clipped the video durations to 0-30 seconds. We remove
video samples that lack labels. We split the data into 1,009 and 4,515
videos for training and testing, respectively.

5.1.2 Evaluation Criteria. Following conventional video classifica-
tion methods [64], we leverage the Accuracy@k with 𝑘 = {1, 5} to
evaluate the video classification performance.

5.1.3 Implementation Details. Following the pre-training of the
large model of UniformerV2 [17], we set 768 as the feature dimen-
sion. We use the Adam optimizer with a learning rate chosen from
1e-6 to 1e-4. The decay rate of the learning rate parameter is se-
lected from 0.1 and 0.5, and the decay interval is 4 epochs. The
batch size is set to 8, and the UniformerV2-based model requires
4-6 hours for training. For confounder dictionary construction, the
backdoor confounder dictionary is sized at 256 for MSR-VTT and
512 for ActivityNet, while the fron-tdoor dictionary 𝑍1 is uniformly
set at 512 with a dimension of 768 across all datasets.

5.2 Performance Comparison
We compare ECRL with 12 video classification methods, including
X3D[11], TANet[28], TDN[46], GC-TDN[15], H2CN [44], LAPS[63],
ViT[10], ViViT[2], TokShift[64], TimeSformer[5], Video-Swin[27],
and UniformerV2[17]. Note that UniformerV2 is one of the SOTA
methods, and leverage it as the base model. Only the ViT model
leverages pre-trained ImageNet weights, while the remaining mod-
els utilize weights pre-trained on Kinetics400. Specifically, for ViViT
and X3D, we sample 16 video frames for input. For the other models,
we select 8 video frames as input. The best performance is marked
in bold. The following observations can be drawn from Table 2:
• ViT-based architectures outperform ResNet50-based ones on two
datasets. This is due to Vision Transformers employing a self-
attention mechanism that captures global dependencies in videos,
free from the constraints of fixed convolutional structures.
• UniformerV2 outperforms ViT-based architectures by addressing
the local video redundancy issues inherent in Vision Transform-
ers (ViTs), using a combination of convolution and self-attention
within a transformer framework.
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Table 2: Performance comparison of baselines and ECRL .

Method backbone MSR-VTT ActivityNet
ACC@1 ACC@5 ACC@1 ACC@5

X3D X2D 51.17 81.67 71.71 92.00
TANet ResNet50 53.47 81.20 76.13 94.06
TDN ResNet50 50.94 81.00 73.08 91.84

GC-TDN ResNet50 52.17 82.14 75.42 93.79
H2CN ResNet50 51.97 81.67 73.51 92.92

Video-Swin Swin-B 56.42 84.75 83.80 96.37
LAPS ViT-B 54.11 82.58 79.51 95.58
ViT ViT-B 54.54 81.20 80.12 95.18
ViViT ViT-B 55.79 84.95 80.96 95.46

TokShift ViT-B 56.56 84.35 82.03 95.93
TimeSformer ViT-B 55.92 82.54 82.76 96.05
UniformerV2 ViT-B 60.73 85.75 86.77 96.94

ECRL ViT-B 63.41 86.72 89.01 97.68

• ECRL demonstrates superior performance on two distinct
datasets due to its meticulous modeling of category-related event-
level information in video classification, enhancing the model’s
causal perception and overall efficacy.
• The ECRL achieves its most notable performance enhancement
on the MSR-VTT. This improvement is primarily due to the
dataset’s wide variety of events, highlighting our model’s ability
to accurately capture event information in videos.

5.3 Ablation Study
In this section, we further studied the working mechanism of each
module of ECRL, as shown in Table 3. The best performance is
marked in bold. The following findings could be observed:
• Using only foreground (+FCM) or background information
(+BCM) significantly reduces model performance, highlighting
that background information is crucial for complete video repre-
sentation. However, this reliance can also cause confusion.
• Associating fine-grained visual frames (+FCM+BCM+TSC)
is crucial for integrating principal and background frames
(+FCM+BCM). Temporal modeling reduces background-label cor-
relations, improving essential visual data capture.
• Background debiasing (+FCM+BCM+BD) mitigates bias in
video classification. Modeling relationships across frames
(+FCM+BCM+TSC+BD) enhances the BD module’s effectiveness,
allowing more accurate measurement of true causal effects.
• ECRL captures event-level causal representations using SCM by
constructing causal graphs, modeling frame relationships, and
employing causal interventions to eliminate biases.

5.4 In-depth Analyses
5.4.1 Effectiveness Analyses of the background confounders
dictionary 𝑍1. As delineated in Table 5, we scrutinized the effi-
cacy of the background confounder dictionary 𝑍1 within the BD
module. Experimental results show that replacing 𝑍1 with a ran-
dom dictionary significantly deteriorates performance, validating
our contextual prototypes. Using average video features as a con-
founder dictionary is less effective than class-average background
features, indicating that random dictionaries and class averages
are insufficient context confounders and highlight the impact of
inherent background biases on model generalization.

Table 3: Ablation study of ECRL on UniformerV2. ECRL is
equal to "+ FCM+BCM+TSC + BD +GLCA". FCM: foreground
only, without cross-frame modeling. BCM: background only,
without cross-frame modeling; TSC: cross-frame modeling
with background and foreground; BD: Background Debiasing
Module; GLCA: Global-Local Causal Attention Module.

model MSR-VTT ActivityNet
ACC@1 ACC@5 ACC@1 ACC@5

base 60.73 85.75 86.77 96.94
+ FCM 58.90 85.61 85.10 96.66
+ BCM 56.38 83.04 80.34 94.58

+ FCM + BCM 60.33 85.82 86.69 96.47
+ FCM + BCM + TSC 60.60 85.93 86.80 96.51
+ FCM + BCM + BD 61.24 85.42 87.63 97.21

+ FCM + BCM + TSC + BD 62.94 86.36 88.55 97.60
ECRL 63.41 86.72 89.01 97.68

Table 4: The result of different components in E𝑧 [𝑔1 (𝑧)].

Setting MSR-VTT ActivityNet
ACC@1 ACC@5 ACC@1 ACC@5

w/o 𝜇𝑖 62.00 85.82 87.43 97.46
w/o P (𝑧𝑖 ) 62.51 86.26 87.59 97.50

w/Additive Attention 62.71 86.29 87.73 97.52
BD 62.94 86.36 87.92 97.62

Table 5: The results on different versions of confounder dic-
tionary 𝑍1 in BD. Random Dictionary, Average Dictionary,
and Background Dictionary use random features, average
visual features, and the average features of the background
class as confounders, respectively.

Setting MSR-VTT ActivityNet
ACC@1 ACC@5 ACC@1 ACC@5

Random Dictionary 57.93 86.25 82.76 96.05
Average Dictionary 60.00 85.62 86.02 97.23

Background Dictionary 62.94 86.36 87.92 97.62

5.4.2 Effectiveness Analyses of the E𝑧 [𝑔1 (𝑧)]. To validate the
effectiveness of E𝑧 [𝑔1 (𝑧)] each component in the context prototype
integration as shown in Table 4, we conducted experiments by
removing weights 𝜇𝑖 and prior probabilities P(𝑧𝑖 ) to assess the
effectiveness of the weighted integration. The results indicate that
identifying the importance and proportion of each confounder is
crucial for effective causal intervention. It was also found that both
ad_causal and dp_causal paradigms are meaningful and applicable.

5.5 Case Study
5.5.1 Quality Analysis of the Causal Inference Represen-
tation Learning. To illustrate the differences between 𝑃 (𝑌 |𝑋 )
and 𝑃 (𝑌 |do(𝑋 )) after causal inference interventions, we used t-
SNE [45] to visualize the feature distribution of specific categories
(movie, animation, animals, kids, cooking) in the MSR-VTT test set.
As Fig. 5 shows, before causal inference, features for movie and
animation categories were mixed due to the diversity of scenes and
creative backgrounds, causing confusion with other categories and
adding data biases. Using BD and GLCA module, ECRL removed
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(a) UniformerV2 (b) ECRL

movie
animation
animals
kids
cooking

Figure 5: Visualization results of UniformerV2 and ECRL on
the MSR-VTT dataset.

Figure 6: Visualization of attention on sampled frames from
the ActivityNet. Three lines respectively represent the origi-
nal video frame, the corresponding attention map presented
by the UniformerV2 (U) and our ECRL (E).

these biases, making feature distributions distinct and enabling the
learning of causal representations of events.

5.5.2 Visualization of the Event-level Causal Representation
by ECRL. To evaluate ECRL’s efficacy, we compared it with Uni-
formerV2 on the ActivityNet validation dataset, examining their
attention to causally relevant visual information in videos. Using
GradCAM[42] to generate heatmaps, we observed significant differ-
ences. ECRL mitigates erroneous predictions caused by background
biases, as seen in Fig.6 (a) and (b). The base model incorrectly as-
sociates the background (sky and seawater) with "River tubing,"
which ECRL corrects. ECRL focuses on crucial visual information
linked to specific events, reducing biases. In Fig.6 (b) and (d), ECRL
captures foreground details better, enhancing event causality repre-
sentation. Fig.6 (c) shows ECRL’s strong causal perception, focusing
on verbs and nouns in "Getting a haircut," effectively connecting
related event information across frames.

Rock_climbing
Rock climbing：0.94 
Using monkey bar：3e-3
Table soccer：1e-3

Rock_climbing

Rock_climbing

Rock_climbing Rock_climbing

Rock_climbing

Rock_climbing

Rock_climbing
Rock climbing：0.99
Using monkey bar：7e-5
Fixing the roof：2e-5

Hammer throw：0.66
Riding bumper cars：0.23
Shot put： 0.03

Hammer throw：0.66   
Riding bumper cars：0.33
Shot put：1e-3

Layup drill in basketball: 0.13
Rope skipping: 0.10
Breakdancing: 0.08

Breakdancing :0.931
Skateboarding:0.01
Rope skipping: 8e-3

Canoeing:0.35
Rafting: 0.27 
Kayaking:0.16 

Kayaking: 0.89
Canoeing:0.06
Windsurfing:0.02

UniformerV2 ECRL(a) Ground Truth : Rock climbing

(b) Ground Truth : Riding bumper cars

(c) Ground Truth : Breakdancing

(d) Ground Truth : Canoeing

UniformerV2

UniformerV2

UniformerV2

ECRL

ECRL

ECRL

Figure 7: Case Study on ECRL in successful and failure cases.
To qualitatively demonstrate the effectiveness of ECRL in
mitigating background and data bias and discovering event-
related information, we select four frames of four video sam-
ples from ActivityNet. (a) Both models make correct pre-
dictions. (b) Both models make wrong predictions. (c) Only
ECRL makes the correct prediction. (d) Only UniformerV2
makes the correct prediction.

5.5.3 Error Analysis of ECRL. We analyzed both accurate and
erroneous instances within the ActivityNet dataset. Fig.7 shows
that the visualizations illustrate ECRL’s robust capacity for spatio-
temporal reasoning and its efficacy in diminishing fallacious corre-
lations. In scenarios where the subject is prominent and the back-
drop of the video frames remains relatively static (refer to Fig.7
(a)), both the baseline model and ECRL render correct determina-
tions, albeit ECRL with enhanced precision. When the subject is
ambiguous (Fig.7(b)), neither model performs well. ECRL effectively
neutralizes background biases, correcting the baseline model’s mis-
classification of a basketball court as “Layup drill in basketball” to
“breakdancing” (Fig.7(c)). However, in cases of incomplete subjects
and static backgrounds (Fig.7(d)), ECRL can still make errors due
to over-intervention.

6 Conclusion
We propose ECRL (Event-level Causal Representation Learning),
which constructs event-level causal graphs through in-frame and
cross-frame causal learning. ECRL uses backdoor and front-door
interventions to mitigate background and data biases, revealing
the causal structure in video classification. This approach elimi-
nates various biases in continuous video sequences, generating
informative causal representations. Experimental results confirm
ECRL’s effectiveness in reducing biases and capturing cross-frame
correlations for event-level video features.

In the future, we will also continue to investigate the long-term
contextual relationships within complex spatio-temporal environ-
ments. Moreover, how to fully leverage the informative multi-modal
knowledge within the video sequences is also one of our future
research directions.
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