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ABSTRACT

Urban time series forecasting is crucial for smart city development and is key to
sustainable urban management. Although urban time series models (UTSMs) are
effective in general forecasting, they often overlook low-frequency events, such as
holidays and extreme weather, leading to degraded performance in practical ap-
plications. In this paper, we first investigate how UTSMs handle these infrequent
patterns from a neural perspective. Based on our findings, we propose Pattern
Neuron guided Training (PN-Train), a novel training method that features (i)
a perturbation-based detector to identify neurons responsible for low-frequency
patterns in UTSMs, and (ii) a fine-tuning mechanism that enhances these neu-
rons without compromising representation learning on high-frequency patterns.
Empirical results demonstrate that PN-Train considerably improves forecasting
accuracy for low-frequency events while maintaining high performance for high-
frequency events. The code is available at https://github.com/cwang-n
us/PN-Train.

1 INTRODUCTION

Recent advancements in urban time series models (UTSMs) have significantly improved forecast-
ing accuracy, facilitating smart city applications such as optimizing metropolitan transit, managing
pedestrian flow, and enhancing resource allocation for ride-hailing services (Yao et al., 2018; Wu
et al., 2020; Ji et al., 2022). While deep learning models (Geng et al., 2019; Jiang et al., 2023; Gao
et al., 2023) have shown great promise in urban time series forecasting, existing models focus on
capturing cross-variable and temporal dependencies to enhance overall accuracy. However, their per-
formance degrades in many real-world scenarios, especially when forecasting low-frequency events
such as extreme weather, emergencies, holidays (Lee et al., 2022; Lee & Ko, 2024). Accurate fore-
casting of these events is crucial for resource management, allowing ride-hailing companies to adjust
fleets and transit systems to modify schedules, so as to optimize operations and reduce costs during
fluctuating demand (Zhang et al., 2017; Park et al., 2020).
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Figure 1: Examples of high-frequency patterns
during weekdays and weekends, contrasted with
low-frequency patterns on holidays.

Urban time series data exhibits distinct pat-
terns for high- and low-frequency events (Lee
et al., 2019; Wang et al., 2019). As the exam-
ple illustrated in Figure 1, while patterns within
each category remain consistent, significant
differences exist between holiday, weekday,
and weekend patterns. Specifically, weekdays
and weekends represent high-frequency pat-
terns, occurring regularly throughout the year,
whereas holidays are low-frequency, spanning
fewer than 15 days, or approximately 4% of the
year. Deep learning models often struggle to
predict low-frequency events, such as holidays
in the example, largely due to their bias toward
majority patterns and the scarcity of data for
these rare occurrences. Several studies have at-
tempted to improve holiday forecasting, e.g., using exponential-growth models (Wang et al., 2019)
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and support vector regression (Luo et al., 2019a). More recently, deep learning models have in-
troduced memory architectures for retrieving patterns from a pattern bank (Lee et al., 2022; Li
et al., 2022) and dynamic positional embeddings to implicitly capture various patterns (Shao et al.,
2022; Liu et al., 2023), leading to enhanced forecasting accuracy. However, despite improved fore-
casting accuracy, understanding the underlying mechanisms through which these models capture
low-frequency patterns at the neuron level remains unexplored.

In this paper, inspired by the knowledge neurons in large language models (LLMs) (Dai et al., 2022;
Zhao et al., 2024), we investigate two fundamental questions: (1) Do neurons associated with low-
frequency patterns exist in UTSMs? (2) If so, how can we enhance the representation learning of
these neurons to improve urban time series forecasting?

To answer these questions, we perform an in-depth analysis of UTSMs at the neuron level. First, we
introduce a Pattern Neuron Detector (PND), which identifies pattern neurons, i.e., neurons strongly
correlated with low-frequency patterns, using a perturbation-based approach. This method evalu-
ates neuron importance by measuring the impact of perturbations on the model’s output features.
Next, we employ a Pattern Neuron Verifier (PNV) to quantify how these neurons impact forecasting
performance by deactivating them, so as to confirm that neurons specifically tied to certain pat-
terns indeed exist in UTSMs. Based on our findings, we propose Pattern Neuron guided Training
(PN-Train), a novel training method that detects these pattern neurons and fine-tunes them using
a Pattern Neuron Optimizer (PNO) to improve forecasting for low-frequency patterns while main-
taining performance for high-frequency patterns. We summarize our main contributions as follows:

• We conduct the first investigation into neurons associated with low-frequency patterns in
urban time series models (UTSMs) and confirm their existence.

• We introduce PN-Train, a pattern neuron-guided training method for urban time series
forecasting, which effectively detects these neurons using a perturbation-based detector.

• We propose a fine-tuning mechanism that enhances the representation learning of detected
pattern neurons, significantly improving forecasting accuracy.

• Extensive experiments demonstrate that PN-Train significantly improves the forecasting
accuracy of state-of-the-art methods across real-world datasets.

2 PRELIMINARIES

Urban Time Series Forecasting (UTSF) UTSF aims to forecast future time series data using
sensor readings collected from urban environments. The objective is to predict H future values
xτ :τ+H at each time step τ , using a learnable model, UTSM, which leverages a look-back window
of L past observations xτ−L:τ . Additionally, auxiliary features E, such as the time of day, day of
the week, holiday indicators, etc., are incorporated to enhance the forecasting process. Formally, the
prediction task can be formulated as x̂τ :τ+H = UTSM(xτ−L:τ , E). To ensure accurate forecasting,
the UTSM is typically trained using the Mean Absolute Error (MAE) loss function, defined as
L = 1

H

∑H
h=1 ∥x̂τ+h − xτ+h∥1.

Pattern Neurons In a neural network, individual neurons contribute differently to the representa-
tion and memorization of various patterns. Let I(hi, p) denote the influence of neuron hi on pattern
p. A pattern neuron can then be defined as a neuron with a strong influence on a specific pattern,
namely I(hi, p) is high for the particular pattern p.

Low-Frequency Event & Pattern In urban time series data, certain events, such as holidays or
extreme weather, occur infrequently and exhibit a low occurrence rate (Devore, 2000). These events
are defined as low-frequency events as their occurrence rate, S/Z, falls below a small threshold,
where S is the total number of event occurrences and Z is the total number of observation days. The
low-frequency pattern is the distinctive data behavior of these events.

3 PN-TRAIN

In this section, we introduce PN-Train, a training method designed to enhance urban time series
forecasting for low-frequency patterns by identifying and fine-tuning the pattern neurons associated
with these patterns in the UTSM. The overall architecture of PN-Train is illustrated in Figure 2.
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Figure 2: The architecture of PN-Train, which consists of four components: Urban Time Series
Model (UTSM) captures time series patterns from historical data; Pattern Neuron Detector (PND)
identifies neurons associated with specific patterns, such as low-frequency samples; Pattern Neuron
Verifier (PNV) validates the detected neurons; and Pattern Neuron Optimizer (PNO) fine-tunes the
UTSM at the neuron level. LX represents the X-th linear layer in the UTSM.

3.1 PATTERN NEURON DETECTOR FOR URBAN TIME SERIES MODELS

Typically, Urban Time Series Models (UTSMs) are designed to capture patterns from historical
data (Zhou et al., 2020; Liu et al., 2020; 2022). While they can effectively learn frequent patterns
thanks to sufficient training data, the distribution of patterns is often imbalanced in practice (Luo
et al., 2019a; Lee & Ko, 2024). In particular, high-frequency events like weekdays and weekends are
well-represented, making them easier to learn. In contrast, low-frequency events, such as holidays,
have fewer training samples, which results in reduced forecasting performance (Krawczyk, 2016;
Smyl et al., 2023). We hypothesize that some neurons in UTSMs are already tuned to capture low-
frequency patterns based on past encounters with these events. To test this hypothesis, we introduce
a Pattern Neuron Detector (PND) to identify neurons linked to low-frequency patterns.

Neurons in UTSMs UTSMs nowadays are effective at learning patterns from historical data, and a
key component of these models is the linear layer, which is central to pattern learning and memoriza-
tion (Geva et al., 2021; Dai et al., 2022). In this work, we focus on a transformer-based UTSM (Liu
et al., 2023), which employs both linear layers and self-attention layers to model temporal cor-
relations (patterns over time) and spatial correlations (relationships across urban locations). The
detection of pattern neurons in the UTSM is carried out using our proposed Pattern Neuron Detector
(PND), which can be applied to both linear layers and self-attention layers as introduced below.

Pattern Neuron Detector (PND) Inspired by Knowledge Neurons (Tang et al., 2024; Zhao et al.,
2024) in large language models (LLMs), which identify neurons with high activation values, we
define pattern neurons in UTSMs whose contributions to forecasting targets are significant in the
perturbation assessment. Specifically, the influence hk

i of the k-th neuron at the i-th layer can be
quantified by comparing the model outputs when the neuron is deactivated:

I(hk
i |xp) =

∥∥UTSM(xp,W )− UTSM(xp,W \wk
i )
∥∥
1
, (1)

where xp represents an input with the pattern p, W and wk
i denote the weights of the UTSM and

the weights of the neurons respectively, and UTSM(xp,W \wk
i ) represents the model output with

only neuron hk
i deactivated.

As UTSMs contain a vast number of neurons, deactivating each neuron individually is impractical.
Prior work (Zhao et al., 2024) has shown that neurons linked to specific patterns often exhibit high
feature activation values. This suggests that neuron activation values can serve as strong indicators
of their importance in capturing corresponding patterns. We therefore devise an attribute score Attrp
to quantify the influence of the k-th neuron for a specific pattern p given an input xp with this pattern:

Attrp(hk
i | xp) =

∥∥∥∑s,t f(x
p,wk

i )s,t,:

∥∥∥
1
, (2)

where s and t represent spatial and temporal dimensions respectively, and f(xp,wk
i ) is the function

to generate the activation values for the k-th neuron at the i-th layer.
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Algorithm 1: Pattern Neuron Guided Training Method
Input: The urban time series model UTSM ; the training dataset Dtrain and validation dataset Dval; the

size of the detection sample B, and the size of the fine-tuning sample R; and the learning rates for
training, α1, and fine-tuning, α2.

Output: The fine-tuned urban time series model UTSM

// Process fine-tuning samples and training samples
1 Dfinetune ← RandomSample({x ∈ Dtrain | x is a low-frequency sample}, R)
2 Dtrain’ ← Dtrain \ Dfinetune
// Train the urban time series model

3 repeat
4 Randomly select a batch of instances S from Dtrain’
5 Optimize UTSM using AdamW with a learning rate of α1 on batch S.
6 until met the stopping criteria;
// Select detection samples and detect the pattern neurons

7 Ddetect ← RandomSample({x ∈ Dtrain | x is a low-frequency sample}, B)
8 N pl ← PND(UTSM , Ddetect)
// Fine-tune the detected pattern neurons

9 ŷ← UTSM(Dfinetune,N p)
10 L ← MAE(ŷ,y)
11 Optimize pattern neuronsN p using AdamW with a learning rate α2.

// Return the fine-tuned UTSM
12 return UTSM

To detect pattern neurons, we focus on samples that exhibit the patterns of interest. Specifically, for
identifying pattern neurons associated with low-frequency patterns pl, e.g., holidays, we use a set of
samples {x1, x2, . . . , xB}, where B is the number of samples used for detection, and define pattern
neurons as neurons whose attribute scores are high across all the B samples:

N pl =
⋂B

b=1

{
nk
i | rank(Attrp(hk

i | xpl

b )) ≤ ϵN, ∀i, k
}

(3)

where rank(·) gives the rank of the attribution score in descending order for the k-th neuron at the i-
th layer, ϵ is a predefined threshold that determines the fraction of candidate pattern neurons among
all the N neurons in the UTSM given a sample xpl

b .

Notably, such a detection process can be easily applied to self-attention layers, where the query Q,
key K, and value V are the weights of the attention function:

Attention(x) = softmax
(
Q(x)K(x)⊤/

√
d
)
V (x),

Q(x) = f(x,WQ), K(x) = f(x,WK), V (x) = f(x,WV ).
(4)

In particular, the attribution scores for these layers can be obtained via Equation 2 using f(x,WQ),
f(x,WK), and f(x,WV ) respectively as the function f(xp,wk

i ).

3.2 PATTERN NEURON VERIFICATION AND OPTIMIZATION

In this section, we answer the two key research questions: (1) Do pattern neurons exist for low-
frequency patterns? (2) Can optimizing these pattern neurons improve the performance of UTSMs?
To answer these, we employ a Pattern Neuron Verifier (PNV) to validate the existence of pattern
neurons and devise a Pattern Neuron Optimizer (PNO) to enhance UTSM performance by fine-
tuning the detected pattern neurons.

Pattern Neuron Verifier (PNV) To validate the existence of pattern neurons associated with low-
frequency patterns, we deactivate the neurons identified by the PND and observe the effect on UTSM
predictions. For comparison, we also deactivate a set of randomly selected neurons except for the
pattern neurons while ensuring that the number of randomly deactivated neurons matches that of the
identified pattern neurons at each layer. By measuring the difference in forecasting accuracy, we can
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then confirm the importance of pattern neurons. Particularly, if the prediction error increases signif-
icantly without pattern neurons, the importance of these neurons to forecasting can be validated:

∑D
d=1 ∥yd − UTSM(xd,W \wpattern)∥1 ≫

∑D
d=1 ∥yd − UTSM(xd,W \wrandom)∥1 , (5)

where yd represents the ground truth for the low-frequency sample xd, and D is the number of
verification samples.

Pattern Neuron Optimizer (PNO). If pattern neurons are confirmed to exist, the next step is to
determine whether optimizing these neurons can enhance urban time series forecasting. To achieve
this, we propose a fine-tuning mechanism designed specifically to optimize the detected pattern
neurons. The objective of PNO is to minimize this loss while improving forecasting accuracy for
low-frequency events, and the loss function is defined as:

L(ŷ,y | θwpattern) =
1
R

∑R
r=1 ∥ŷr − yr∥1 , (6)

where θwpattern represents the parameters associated with the pattern neurons, ŷr and yr denote the
prediction and ground truth for the fine-tuning sample xr respectively, and R is the total number of
samples used for fine-tuning. The PN-Train training algorithm is outlined in Algorithm 1.

4 EXPERIMENTS

In this section, we evaluate the capability of our proposed PN-Train by designing experiments to
address the following questions: RQ1: Does PN-Train successfully detect the Pattern Neurons?
RQ2: How does PN-Train perform in comparison to baseline methods across various urban sce-
narios by optimizing the detected Pattern Neurons? RQ3: How does the pattern neuron detector
perform compared to existing neuron detection methods? RQ4: How do the Pattern Neurons in
different UTSM components affect forecasting results? RQ5: How does PN-Train perform under
various hyperparameters? RQ6: How are the Pattern Neurons distributed within the model? RQ7:
Does PN-Train generalize to the broader range of scenarios?

4.1 EXPERIMENT SETTINGS

Datasets We perform experiments on two real-world datasets from two urban scenarios: Metro-
Traffic (Hogue, 2019) and Pedestrian (Fang et al., 2024). Metro-Traffic contains hourly westbound
traffic volumes on Interstate 94 between Minneapolis and St. Paul, MN from 2012 to 2018, including
63 holidays. Pedestrian comprises hourly pedestrian counts from 48 sensors in Melbourne from
2019 to 2022, covering 52 holidays. Detailed dataset statistics are provided in Appendix A.1.

Baselines We evaluate PN-Train against nine widely used baselines, categorized as follows: the
traditional time series model Historical Average (HA); graph-based models including STGCN (Yu
et al., 2018), GWNET (Wu et al., 2019), AGCRN (Bai et al., 2020), PM-MemNet Lee et al. (2022),
and TESTAM (Lee & Ko, 2024); and graph-free models including STID (Shao et al., 2022),
STWA (Cirstea et al., 2022), and STAEformer (Liu et al., 2023). Detailed baseline descriptions
are in Appendix A.2.

Implementation Details All experiments are conducted using PyTorch (Paszke et al., 2019) on
a single NVIDIA A100 80GB GPU. The look-back window L and forecasting horizon H are both
set to 12. The selective ratio ϵ is 0.5, with a pattern neuron detection sample length B of 30 and
a fine-tuning sample length R of 10. We split the dataset chronologically into training, validation,
and test sets in a 6:2:2 ratio. Fine-tuning samples are randomly selected from the holiday data in the
training set and are excluded from training to prevent over-training on the same samples. Detection
samples are randomly selected from the validation set, while test samples are used for verification.
We employ STAEformer (Liu et al., 2023) as our UTSM. During training, the UTSM is optimized
using the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate α1 of 0.001. Early
stopping is applied with a patience of 20 epochs, and the maximum number of epochs is set to 300.
For pattern neuron optimization, the UTSM is fine-tuned using the same optimizer with a learning
rate α2 of 0.002 for one epoch. Further implementation details can be found in Appendix A.3, while
important notations and their parameter settings are in Appendix A.4. The model is evaluated using
MAE, RMSE, and WMAPE, with more details in Appendix A.5.
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4.2 MAIN RESULTS

Validation of Pattern Neurons To address RQ1 and validate the existence of Pattern Neurons, we
use PND to detect them and PNV to evaluate PN-Train’s performance under neuron deactivation.
Original leaves all neurons active, D-PN deactivates pattern neurons associated with holidays as
identified by PND, and D-Random deactivates the same number of neurons randomly.

Table 1: Pattern neuron verification via neuron deactivation. Lower MAE, RMSE, and WMAPE
values indicate better prediction accuracy. † denotes statistically worse results.

Model

Metro-Traffic (Deactivate ratio 7.76%)

Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

Original 446.04 846.75 16.36% 208.84 339.77 6.19% 220.00 379.14 6.58%
D-Random 492.29 833.99 18.05% 263.34 380.46 7.80% 274.11 413.12 8.19%
D-PN 663.46† 1046.40† 24.33%† 474.02† 586.01† 14.04%† 482.93† 615.44† 14.43%†

Model

Pedestrian (Deactivate ratio 9.77%)

Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

Original 109.01 259.79 29.31% 78.82 196.39 21.70% 80.45 200.33 22.12%
D-Random 116.99 264.03 31.46% 91.75 210.79 25.26% 93.12 214.01 25.60%
D-PN 194.53† 370.80† 52.31%† 174.92† 321.45† 48.15%† 175.98† 324.31† 48.38%†

Results in Table 1 confirm the existence of Pattern Neurons, and PND successfully detects them.
Deactivating the neurons identified by PND (D-PN) leads to a significant performance drop com-
pared to the Original, with MAE increasing by 48.75% for the Metro-Traffic dataset and 78.46%
for the Pedestrian dataset for holiday samples. In contrast, randomly deactivating an equivalent
number of neurons (D-Random) causes much smaller degradation: 10.37% for Metro-Traffic and
7.32% for Pedestrian. This stark difference in performance suggests that the neurons detected by
PND are indeed closely associated with the patterns of interest, i.e., holidays.

The findings also show that holiday pattern neurons constitute a small fraction of the entire UTSM,
comprising 7.76% in the Metro-Traffic dataset and 9.77% in the Pedestrian dataset. Despite their
small number, deactivating these pattern neurons significantly degrades performance. Notably, de-
activating neurons associated with low-frequency patterns also negatively impacts the performance
of non-holiday patterns. This occurs because the pattern neurons include those that capture general
time series knowledge critical for all patterns, as they were selected based on their high influence on
overall forecasting accuracy. The variation in deactivation ratios between the two datasets demon-
strates that our PND can dynamically select neurons based on the data, as it identifies pattern neurons
by focusing on those with consistently high attribution scores across all detection samples.

Overall Performance We report the results of PN-Train with baselines in Table 2 to answer
the RQ2. The findings confirm that optimizing the Pattern Neurons improves urban time series
forecasting. PN-Train achieves the best overall performance across both the Metro-Traffic and
Pedestrian datasets.

By fine-tuning the holiday pattern neurons, PN-Train consistently outperforms PN-Train * on
both datasets, as it enhances the model’s ability to capture holiday patterns. While excluding holiday
samples during training causes PN-Train * to underperform its base UTSM (STAEformer) in
the Metro-Traffic dataset, fine-tuning the holiday pattern neurons offsets this and improves forecast-
ing performance. This is because optimizing the holiday neurons helps the network better represent
holidays than training on a mix of low-frequency holiday and high-frequency non-holiday sam-
ples. In contrast, with more frequent holidays in the Pedestrian dataset, excluding some holiday
samples can actually improve accuracy by removing noisy outliers. Nevertheless, fine-tuning the
pattern neurons further enhances PN-Train *, as holiday events, though more frequent, are still
low-frequency overall and may not be fully captured during initial training.

Additionally, fine-tuning the Pattern Neurons not only improves performance on holiday samples
but also enhances non-holiday and overall performance. This is because these neurons also memo-
rize general time series knowledge, such as level and trend (Brockwell et al., 2016), and optimizing
them strengthens the model’s representation learning of general time series. This underscores the
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Table 2: Comparison with baselines on Metro-Traffic and Pedestrian datasets. Lower MAE, RMSE,
and WMAPE indicate better prediction accuracy. * denotes PN-Train without PNO. Best results
are in bold, and second-best are underlined. PN-Train employs STAEformer as its UTSM.

Method Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

M
et

ro
-T

ra
ffi

c

HA 156.64 325.58 42.12% 128.28 270.90 35.31% 129.82 274.14 35.69%
STGCN (Yu et al., 2018) 460.97 739.63 16.91% 289.85 501.33 8.58% 297.90 515.02 8.90%
GWNet (Wu et al., 2019) 534.76 832.13 19.61% 347.50 582.90 10.29% 356.31 596.97 10.64%
AGCRN (Bai et al., 2020) 453.23 738.60 16.62% 280.41 496.75 8.31% 288.54 510.71 8.62%
STID (Shao et al., 2022) 586.90 1031.50 21.52% 216.09 346.81 6.40% 233.54 405.81 6.98%
PM-MemNet (Lee et al., 2022) 554.33 916.78 20.32% 375.88 666.90 11.13% 384.28 680.71 11.49%
STWA (Cirstea et al., 2022) 521.02 820.57 19.11% 355.63 619.28 10.53% 364.36 630.61 10.89%
STAEformer (Liu et al., 2023) 443.23 821.42 16.25% 210.41 343.01 6.23% 221.37 379.29 6.62%
TESTAM (Lee & Ko, 2024) 486.89 857.99 17.86% 335.05 555.09 9.92% 342.19 572.94 10.22%
PN-Train * 446.04 846.75 16.35% 208.84 339.77 6.19% 220.00 379.14 6.58%
PN-Train 430.40 816.50 15.78% 203.62 332.15 6.03% 214.29 369.46 6.40%

Pe
de

st
ri

an

HA 208.49 388.17 64.48% 255.12 471.08 83.46% 253.24 468.01 82.69%
STGCN (Yu et al., 2018) 120.75 258.53 32.47% 101.61 214.32 27.97% 102.65 216.95 28.22%
GWNet (Wu et al., 2019) 119.77 267.48 32.21% 113.69 245.87 31.30% 114.02 247.09 31.35%
AGCRN (Bai et al., 2020) 118.48 267.32 31.86% 108.22 245.55 29.79% 108.78 246.78 29.91%
STID (Shao et al., 2022) 116.42 263.79 31.31% 85.32 206.36 23.49% 87.00 209.87 23.92%
PM-MemNet (Lee et al., 2022) 117.44 265.09 31.58% 112.18 246.64 30.88% 112.48 247.69 30.92%
STWA (Cirstea et al., 2022) 114.18 261.03 30.70% 106.62 234.88 29.35% 106.90 236.13 29.39%
STAEformer (Liu et al., 2023) 115.24 273.64 30.99% 82.23 202.73 22.64% 84.02 207.19 23.10%
TESTAM (Lee & Ko, 2024) 103.79 257.10 27.91% 94.04 219.46 25.89% 94.57 221.67 26.00%
PN-Train * 109.01 259.79 29.31% 78.82 196.39 21.70% 80.45 200.33 22.12%
PN-Train 106.11 253.86 28.54% 78.35 194.72 21.57% 79.85 198.38 21.95%

significance of identifying pattern-related neurons to preserve overall performance and even enhance
it. Although TESTAM performs well on holiday samples in the Pedestrian dataset by leveraging dif-
ferent experts, its overall performance is limited by the routing mechanism. In contrast, PN-Train
addresses low holiday performance at the neuron level without degrading non-holiday performance,
leading to better results across all scenarios.

4.3 MODEL ANALYSIS

Study on Pattern Neuron Detector We further assess our proposed PND by comparing it with
recent neuron detection techniques to address RQ3. Specifically, we evaluate the following variants
of PN-Train, including: w/o PND: excludes the PND; w GD: replaces PND with the gradient-
based detector from (Chen et al., 2024). w FD: replaces PND with the perturbation-based detector
from (Zhao et al., 2024). The results are shown in Table 3.

Table 3: Results of PN-Train with different neuron detection techniques.

Model

Metro-Traffic

Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

w/o PND 1082.46 1444.20 60.80% 1294.44 1664.49 38.34% 1284.47 1654.78 38.39%
w GD 438.32 826.83 16.07% 206.84 335.71 6.13% 217.73 373.58 6.51%
w FD 434.76 825.71 15.94% 204.52 333.76 6.05% 215.36 371.80 6.44%
PN-Train 430.40 816.50 15.78% 203.62 332.15 6.03% 214.29 369.46 6.40%

Model

Pedestrian

Holiday Non-Holiday Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

w/o PND 238.24 426.90 64.06% 225.54 378.80 62.09% 226.23 381.56 62.20%
w GD 108.27 256.64 29.12% 79.94 196.20 22.01% 81.48 199.94 22.40%
w FD 107.55 256.26 28.92% 78.93 195.39 21.73% 80.48 199.16 22.13%
PN-Train 106.11 253.86 28.54% 78.35 194.72 21.57% 79.85 198.38 21.95%

The results confirm the importance of neuron detection. Performance drops significantly without it,
as fine-tuning all parameters in the UTSM based on low-frequency patterns leads to overfitting. In
contrast, UTSMs with neuron detection, i.e., w GD, w FD, and PN-Train, effectively identify and
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fine-tune only the pattern neurons, preventing overfitting and preserving the model’s generalization
capability. It also reveals that perturbation-based detectors outperform gradient-based methods in
urban time series forecasting, as they directly measure how changes impact predictions, offering
clearer insights into neuron importance. While gradient-based methods capture sensitivity to pa-
rameter changes, they fall short in demonstrating a neuron’s overall impact on forecasting accuracy.
Our proposed PND is a finer-grained perturbation-based detector that evaluates how changes af-
fect predictions at each linear layer in the UTSM, rather than focusing only on attention scores and
feed-forward layers as in w FD. This allows PND to achieve the best performance.

Ablation Study We design the following variants to answer RQ4 by evaluating the effectiveness
of the pattern neuron optimizer (PNO) on different transformer-based UTSM components, includ-
ing: w/o PNO: excludes the PNO in PN-Train; w/o SD: omits optimization of pattern neurons
in the spatial transformer; w/o TD: omits optimization of pattern neurons in the temporal trans-
former; w/o AD: omits optimization of pattern neurons in self-attention mechanism; w/o FD: omits
optimization of pattern neurons in the feed-forward layer.
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(a) Ablation study on Metro-Traffic dataset.
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(b) Ablation study on Pedestrian dataset.

Figure 3: Ablation study results.

The results presented in Figure 3 confirm that PNO significantly enhances forecasting performance.
Across both datasets, the absence of PNO leads to a notable decline in accuracy, particularly in
holiday scenarios. Fine-tuning the Pattern Neurons across all UTSM components proves crucial,
as each component addresses a distinct aspect of the data: the spatial transformer learns spatial
correlations, the temporal transformer captures temporal patterns, the attention mechanism refines
short-term dependencies, and the feed-forward layer enhances long-term memory. PN-Train fine-
tunes Pattern Neurons in all components, consistently outperforming its variants and highlighting
the importance of identifying and fine-tuning Pattern Neurons across the entire model.

Hyperparameter Study We investigate the effects of hyperparameters in PN-Train to address
RQ5. Specifically, we examine three key hyperparameters: the selection ratio (ϵ), the number of
detection samples (B), and the number of fine-tuning samples (R). The results in Figure 4 reveal:
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Figure 4: Hyperparameter study on Metro-Traffic dataset.

There is a trade-off between holiday and non-holiday performance. When ϵ = 1, all neurons in the
UTSM are fine-tuned. Increasing ϵ from 0 to 0.7 improves holiday performance, but non-holiday
performance declines as ϵ increases from 0.5 to 0.7. This occurs because, with a larger ϵ, too many
Pattern Neurons, including those responsible for general time series knowledge, are detected and
fine-tuned, leading to overfitting the UTSM to holiday patterns. We opt for ϵ = 0.5 as it provides
the best balance between holiday and non-holiday performance.
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A detection sample size of B = 30 is sufficient to identify the Pattern Neurons. Increasing the
number of detection samples reduces the number of neurons associated with low-frequency patterns
being selected, as we only detect neurons with high attribution scores across all detection samples.
Consequently, using a larger number of detection samples may cause certain pattern neurons to go
undetected due to slight variations in holiday patterns.

PN-Train achieves the best performance when R = 10, indicating that fine-tuning specific neu-
rons associated with low-frequency patterns is low-cost, requiring only a few samples to boost per-
formance for both low- and high-frequency patterns.

Pattern Neuron Visualization To address RQ6, we visualize attribution scores for holiday pat-
terns in the Traffic dataset, which reveals the distribution of Pattern Neurons across UTSM layers.
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(a) Visualization of detection sample #3 for Metro-Traffic dataset.
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(b) Visualization of detection sample #13 for Metro-Traffic dataset.

Figure 5: Visualization of neuron importance, i.e., normalized attribution scores, across USTM
layers. LX represents the X-th linear layer in the transformer. TQ, TK, TV, TF, and TS represent
neurons in the temporal transformer’s query, key, value, first linear layer, and second linear layer,
respectively, while SQ, SK, SV, SL, and SF denote the same in the spatial transformer. Pattern
Neurons are highlighted in yellow.

Figure 5 shows that neurons with high attribution scores consistently appear in similar positions,
identifying specific holiday neurons that can be detected with a small number of samples. The
number of holiday neurons varies between the temporal and spatial transformers, with more concen-
trated on the query and key components, emphasizing the role of attention mechanisms in detecting
low-frequency patterns like holidays. Furthermore, the distribution of pattern neurons across layers
reflects a hierarchical structure, where shallow layers capture general patterns and middle layers
refine lower-level features. The visualization of neuron importance for low- and high-frequency
patterns, as well as for the Pedestrian dataset, can be found in Appendix A.7.

Generality Study To further evaluate the generality of PN-Train for RQ7, we present results on
the GBAP dataset1, which spans five years (2017-2021) of traffic flow data and covers both holidays
and parades.

The results in Table 4 confirm that PN-Train can effectively handle broader urban data beyond
traffic and pedestrian counts and can address multiple low-frequency patterns through sequential
fine-tuning. It achieves the best overall performance, improving accuracy on holidays and high-
frequency patterns by fine-tuning pattern neurons in its UTSM model, i.e., STAEformer. While
its parade performance is comparable due to STAEformer’s limitations, PN-Train still achieves
an 18.80% MAE improvement, with 18.80% on holidays and 9.86% on parades over baseline mod-

1GBAP is extracted from the LargeST dataset (Liu et al., 2024)
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Table 4: Comparison with baselines on GBAP dataset under holidays and parades.

Method Holiday Parade Others Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE
G

BA
P

HA 55.63 76.11 14.88% 48.09 62.53 13.03% 52.13 77.60 16.88% 52.18 77.55 16.83%
STGCN 38.74 54.67 10.36% 27.52 37.28 7.46% 29.58 45.18 9.57% 29.72 45.33 9.59%
GWNet 42.75 61.67 11.44% 27.69 38.10 7.50% 31.04 47.88 10.05% 31.22 48.12 10.07%
AGCRN 38.61 54.26 10.33% 26.18 35.19 7.10% 28.81 44.17 9.33% 28.96 44.34 9.34%
STID 38.25 54.29 10.23% 26.28 34.84 7.12% 25.43 39.85 8.23% 25.64 40.11 8.27%
PM-MemNet 34.97 49.23 9.36% 26.41 35.82 7.16% 29.00 43.85 9.39% 29.09 43.93 9.39%
STWA 40.53 58.04 10.84% 25.66 35.22 6.95% 30.75 46.90 9.96% 30.86 47.01 9.96%
STAEformer 32.39 45.65 8.67% 27.08 37.20 7.68% 25.33 39.92 8.20% 25.45 40.01 8.21%
TESTAM 33.86 48.04 9.06% 31.98 45.34 8.66% 28.08 43.52 9.09% 28.18 43.60 9.09%
PN-Train 32.25 45.44 8.62% 26.73 36.68 7.24% 25.25 39.81 8.18% 25.37 39.90 8.18%

els, demonstrating the effectiveness of neuron-level fine-tuning in enhancing UTSM capabilities.
Additional results on low-frequency events and datasets are provided in Appendix A.6.

5 RELATED WORK

Urban Time Series Forecasting is essential for many smart city applications, driving the cre-
ation of diverse Urban Time Series Models (UTSMs). Early efforts relied on classical models
like ARIMA (Williams & Hoel, 2003; Tran et al., 2015) and Holt-Winters (de Assis et al., 2013;
Brügner, 2017), but these methods often struggle to capture the complex patterns inherent in urban
data. Recently, deep learning-based models, including graph-based approaches (Zheng et al., 2020;
Wu et al., 2019; Bai et al., 2020; Wu et al., 2020), graph-free methods (Deng et al., 2021; Shao et al.,
2022; Liu et al., 2023; Wang et al., 2024), and data-adaptive approaches (Chen et al., 2021; Wang
et al., 2023; Li et al., 2024; Zhou et al., 2024), have gained prominence for their ability to learn
non-linear relationships. However, their focus on overall accuracy often leads to neglect of low-
frequency patterns with limited training data (Krawczyk, 2016). Although some works can tackle
the imbalanced pattern distribution at the network level using time-varying optimization (Hou et al.,
2021), key-value memory retrieval (Lee et al., 2022), or Mixture of Experts frameworks (Lee & Ko,
2024), neuron-level analysis of UTSMs has not been examined. In this work, we investigate neurons
associated with low-frequency patterns and confirm that fine-tuning these neurons further enhances
the network’s forecasting capability.

Neuron Interpretability has gained significant attention for explaining neural networks across var-
ious applications, from visual (Bau et al., 2017; Mu & Andreas, 2020) to language models (Bau
et al., 2019; Xin et al., 2019; Dalvi et al., 2020). Recent studies (Dai et al., 2022; Wang et al., 2022)
show that specific neurons in large language models capture knowledge-specific contexts. To de-
tect knowledge neurons, existing methods include gradient-based techniques (Dai et al., 2022; Chen
et al., 2024), entropy-based activation analysis (Tang et al., 2024), and perturbation-based differ-
ence evaluation (Zhao et al., 2024). While neuron manipulation of detected neurons has improved
multilingual capabilities (Tang et al., 2024; Zhao et al., 2024), neuron interpretability in UTSMs
remains underexplored. Although ComS2T (Zhou et al., 2024) categorizes neurons as invariant or
dynamic, it does not analyze those associated with specific knowledge, making it unsuitable for
interpreting pattern-associated neurons. In this work, we employ a fine-grained perturbation-based
approach to interpret neurons in UTSMs, revealing the existence of neurons specifically associated
with low-frequency patterns in urban time series forecasting.

6 CONCLUSION

We introduced PN-Train, a novel training method featuring a perturbation-based neuron detector
to confirm pattern neurons in urban time series models. Building on this, we proposed a pattern
neuron optimizer that fine-tunes these neurons to improve forecasting for low-frequency patterns,
such as holidays. Our experiments showed that fine-tuning less than 10% of the neurons significantly
boosts accuracy for these patterns. We also found that in transformer-based urban time series models,
the key and query components are critical for capturing patterns. We hope our findings provide a
fresh perspective and inspire further exploration of time series models at the neuron level. Future
work will study the theoretical foundations of neuron interpretability.
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A APPENDIX

A.1 DATASET DETAILS

Table A.1 provides a summary of the statistical information for the two real-world datasets, Metro-
Traffic (Hogue, 2019) and Pedestrian (Fang et al., 2024). This includes the time span of each dataset,
the selected frequency and sensor size, as well as the number of weekdays, weekends, and holidays
within the time span.

Table A.1: Statistics of the datasets.

Dataset Time Span Frequency Sensor Size Weekdays Weekends Holidays
Metro-Traffic 10/02/2012 - 30/09/2018 1 hour 1 1,731 694 63

Pedestrian 11/02/2019 - 31/10/2022 1 hour 48 971 388 52

A.2 BASELINES

To thoroughly evaluate our model, we compare PN-Trainwith nine widely used urban time series,
including the following:

• HA is a traditional time series model that forecasts future values by averaging historical data for
corresponding time slots.

• STGCN (Yu et al., 2018) is a graph-based UTSM that employs graph convolution networks to
capture spatial dependencies among citywide sensors and uses a 1D convolution network to model
temporal dependencies.

• GWNET (Wu et al., 2019) enhances STGCN by introducing a self-adaptive graph neural network to
learn dynamic spatial dependencies and uses stacked dilated causal convolutions to model tempo-
ral patterns.

• AGCRN (Bai et al., 2020) is a graph-based model that captures region-specific spatio-temporal
correlations through an adaptive graph convolutional recurrent network.

• STID (Shao et al., 2022) is a graph-free UTSM that encodes spatial and temporal identities using
an embedding layer and applies Multi-Layer Perceptrons to learn spatio-temporal correlations in
urban time series data.

• PM-MemNet (Lee et al., 2022) uses a key-value memory structure to cluster traffic patterns and
dynamically retrieve relevant ones for assisting predictions.

• STWA (Cirstea et al., 2022) is a graph-free urban traffic series model (UTSM) that employs
location- and time-specific parameters to enable a spatio-temporal aware attention mechanism.

• STAEformer (Liu et al., 2023) improves upon STID by introducing spatio-temporal adaptive
embeddings, allowing the vanilla transformer to learn dynamic spatio-temporal correlations more
effectively.

• TESTAM (Lee & Ko, 2024) is a graph-based UTSM that captures dynamic spatial relationships
through an adaptive graph-based attention mechanism and employs a mixture of experts to capture
both regular and irregular patterns in urban time series.

A.3 EXPERIMENTAL SETUP

All experiments were conducted on an NVIDIA A100 80GB GPU and repeated three times. We
used the AdamW optimizer (Loshchilov & Hutter, 2019) with a 0.001 learning rate, early stopping
with the patience of 20 epochs and a maximum of 300 epochs. The batch size was 32, with a look-
back window (L) of 12 and a forecast horizon (H) of 12. Implemented in PyTorch (Paszke et al.,
2019), our method used the official code for all baselines. STAEformer (Liu et al., 2023) served
as our UTSM, with all other parameters the same as the original model.

A.4 NOTATIONS

In this section, we present a table of important notations in Table A.2.
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Table A.2: Table of important notations in PN-Train.

Notation Description Parameter
L Look-back window 12
H Forecast horizon 12

Attrp Attribution score for pattern p -
ϵ Selective ratio for neurons with high attribution scores 0.5
B Sample sizes for pattern neuron detection 30
D Sample sizes for pattern neuron verification -
R Sample sizes for pattern neuron optimization 10

A.5 METRIC DETAILS

Following the previous studies (Wang et al., 2021; Lee & Ko, 2024), we evaluate performance using
three metrics, each assessing the model from a different perspective: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Weighted Mean Absolute Percentage Error (WMAPE). MAE
measures the average L1 distance between predicted values and the ground truth, making it less
sensitive to outliers. RMSE, as the square root of the average L2 distance, gives more weight to
outliers. WMAPE evaluates accuracy based on percentage errors, which is scale-independent.

MAE = 1
ξ

∑ξ
i=1

∣∣ŷi − yi
∣∣ ,RMSE =

√
1
ξ

∑ξ
i=1 (ŷ

i − yi)
2
,WMAPE =

∑ξ
i=1|ŷi−yi|∑ξ

i=1|yi|
(7)

where ŷi and yi denote the predicted values and ground truth, and ξ is the total number of samples.

To ensure a comprehensive evaluation across all patterns, we evaluate the forecasting performance
separately for low-frequency events, high-frequency events, and overall.

A.6 FORECASTING PERFORMANCE UNDER VARIOUS LOW-FREQUENCY EVENTS

We have discussed PN-Train for well-defined low-frequency events, such as holidays, which are
critical for smart city applications (Cools et al., 2007; McElroy et al., 2018; Luo et al., 2019b), in
Section 4.2 and explore its generalization in Section 4.3. This section demonstrates that PN-Train
is also capable of handling various low-frequency events, including unpredictable ones such as ex-
treme weather2.

Table A.3: Comparison with baselines on Metro-Traffic and Pedestrian datasets under holidays and
extreme weather conditions. PN-Train employs STAEformer as its UTSM.

Method Holiday Extreme Weather Others Overall

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

M
et

ro
-T

ra
ffi

c

HA 977.20 1347.43 38.64% 1471.16 1844.52 73.38% 736.87 1133.51 21.87% 744.57 1141.54 22.25%
STGCN 502.70 777.93 19.88% 1261.39 1688.29 62.92% 290.26 499.96 8.61% 297.90 515.02 8.90%
GWNet 577.56 885.53 22.84% 1407.70 1837.06 70.21% 348.03 581.17 10.33% 356.31 596.97 10.65%
AGCRN 485.42 762.78 19.20% 1279.55 1760.73 63.82% 281.03 495.32 8.34% 288.54 510.71 8.62%
STID 596.58 1027.33 23.59% 1044.86 1506.94 52.12% 222.37 370.10 6.60% 233.54 405.81 6.98%

PM-MemNet 613.67 975.18 24.27% 1204.70 1663.15 60.09% 376.41 667.21 11.17% 384.28 680.71 11.49%
STWA 518.14 783.14 20.49% 1340.30 1778.30 66.85% 357.02 619.36 10.60% 363.72 630.53 10.87%

STAEformer 409.43 721.50 16.19% 1011.52 1511.97 50.45% 214.60 358.94 6.37% 221.37 379.29 6.62%
TESTAM 453.82 734.22 17.94% 1256.48 1791.29 62.67% 337.00 561.62 10.00% 342.19 572.94 10.22%

PN-Train 406.33 718.56 16.00% 966.82 1454.16 48.22% 213.15 357.59 6.33% 219.77 377.33 6.57%

Pe
de

st
ri

an

HA 159.64 335.08 41.87% 109.25 220.41 34.38% 129.01 272.33 35.46% 129.82 274.14 35.69%
STGCN 129.01 280.76 33.84% 109.46 208.92 34.45% 101.55 214.29 27.91% 102.65 216.95 28.22%
GWNet 128.51 293.30 33.71% 129.28 259.03 40.69% 113.23 244.98 31.13% 114.02 247.09 31.35%
AGCRN 122.53 288.24 32.14% 105.31 202.70 33.14% 108.31 245.70 29.77% 108.78 246.78 29.91%
STID 123.65 290.17 32.43% 85.96 171.74 27.05% 85.63 206.77 23.54% 87.00 209.87 23.92%

PM-MemNet 122.37 286.36 32.10% 107.86 210.53 33.95% 112.18 246.64 30.84% 112.48 247.69 30.92%
STWA 120.30 286.14 31.55% 103.03 197.56 32.43% 106.46 234.61 29.26% 106.79 236.09 29.36%

STAEformer 120.15 296.71 31.51% 97.76 193.38 30.77% 82.44 203.25 22.66% 84.02 207.19 23.10%
TESTAM 111.29 286.88 29.19% 116.99 235.39 36.82% 93.59 218.60 25.73% 94.57 221.67 26.00%

PN-Train 115.85 283.23 30.39% 89.89 178.33 28.29% 79.80 196.79 21.93% 81.24 200.28 22.34%

2https://open-meteo.com/en/docs/historical-weather-api
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In Table A.3, we present the forecasting results of PN-Train during two types of low-frequency
events, including holidays and extreme weather. The results demonstrate that PN-Train effectively
tackles multiple low-frequency patterns and significantly outperforms baseline methods in overall
performance. It enhances overall forecasting accuracy, achieving 36.95% MAE improvement on
the Metro-Traffic dataset and 22.23% on the Pedestrian dataset. Specifically, it improves MAE by
28.78% for holidays and 23.08% for extreme weather on the Metro-Traffic dataset, while achieving
8.33% improvement for holidays and 3.58% for extreme weather on the Pedestrian dataset. This
success stems from its perturbation-based detector, which identifies neurons associated with specific
patterns, enabling targeted fine-tuning. By leveraging relevant samples, PN-Train achieves robust
performance in managing low-frequency patterns. Unlike existing methods (Lee et al., 2022; Lee &
Ko, 2024) that rely on external features (e.g., time of day, day of the week, time step), PN-Train
fine-tunes neurons using historical patterns, reducing reliance on external features. This approach
enhances generalization and ensures superior performance in complex scenarios.

A.7 PATTERN NEURON VISUALIZATION

We further visualize pattern neurons for both low- and high-frequency patterns. Specifically, we
visualize holiday, non-holiday, and holiday-specific neurons on the Metro-Traffic dataset in Fig-
ure A.1.
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(a) Visualization of Holiday Neurons for Metro-Traffic dataset.
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(b) Visualization of Non-Holiday Neurons for Metro-Traffic dataset.
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(c) Visualization of Holiday-Specific Neurons for Metro-Traffic dataset.
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(d) Visualization of General Neurons for Metro-Traffic dataset.

Figure A.1: Visualization of neuron importance, i.e., normalized attribution scores, across USTM
layers for the Metro-Traffic dataset. Pattern Neurons are highlighted in yellow.
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The results confirm our assumption that holiday neurons include those specific to low-frequency
events, which do not contribute to high-frequency events, as well as those that learn general time
series features useful for both low- and high-frequency patterns. Additionally, pattern neurons are
primarily located in the transformer’s query and key components, which are responsible for captur-
ing patterns (Geshkovski et al., 2023).

Furthermore, in Figure A.2, we visualize pattern neurons for the holiday pattern on the Pedestrian
dataset. Similar to the holiday neurons in the Metro-Traffic dataset discussed in the main paper, we
observe that high attribution scores consistently appear in similar positions, with the query and key
components playing a crucial role in emphasizing holiday patterns.
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(a) Visualization of detection sample #1 for Pedestrian dataset.
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(b) Visualization of detection sample #2 for Pedestrian dataset.
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(c) Visualization of detection sample #3 for Pedestrian dataset.
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(d) Visualization of detection sample #4 for Pedestrian dataset.

Figure A.2: Visualization of neuron importance, i.e., normalized attribution scores, across USTM
layers for the Pedestrian dataset. Pattern Neurons are highlighted in yellow.
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