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ABSTRACT

With the widespread use of AI in socially important decision-making processes, it
becomes crucial to ensure that AI-generated decisions do not reflect discrimination
towards certain groups or populations. To address this challenge, our research
introduces a theoretical framework based on the spider diagram—a reasoning
system rooted in first-order predicate logic, and an extended version of the Euler
and Venn diagrams—to define and verify the fairness of AI algorithms in decision-
making. This framework compares the sets representing the actual outcome of
the model and the expected outcome to identify bias in the model. The expected
outcome of the model is calculated by considering the similarity score between
the individual instances in the dataset. If the set of actual outcomes is a subset
of the set of expected outcomes and all constant spiders in the former set have a
corresponding foot in the expected outcome set, then the model is free from bias.
We further evaluate the performance of the AI model using the spider diagram
which replaces the conventional confusion matrix in the literature. The framework
also permits us to define a degree of bias and evaluate the same for specific AI
models. Experimental results indicate that this framework surpasses traditional
approaches in efficiency, with improvements in processing time and a reduced
number of function calls.

Keywords: bias, discrimination, fairness, spider diagram, first-order predicate logic.

1 INTRODUCTION

AI advancement raises fairness concerns and highlights the necessity of ethical and unbiased AI
models (Mehrabi et al., 2021). It involves ensuring that an algorithm’s predictions do not unfairly
advantage or disadvantage particular subgroups of the population based on their demographic
characteristics. Previous studies have illustrated numerous instances where AI systems have led to
unintended biases. For example, Amazon developed an AI-based recruitment system that favored
male candidates for technical job roles due to gender-biased data used in training the system (Dastin,
2018; Mujtaba & Mahapatra, 2019). Biases have also been observed in facial recognition systems,
which often perform better for certain racial groups and poorly for others (Leslie, 2020). The US
healthcare system was found to be racially biased, favoring white patients over African-American
patients (Obermeyer et al., 2019; Feagin & Bennefield, 2014). Additionally, the COMPAS score,
used in several states to assess inmate risk levels, was reported to be biased against African-American
inmates based on certain fairness measures (Chouldechova, 2017; Berk et al., 2021). Consequently,
there is a need for a standard procedure to verify and measure fairness in AI models (Buyl & De Bie,
2022; Richardson & Gilbert, 2021; Bellamy et al., 2018).

In the realm of evaluating fairness in an AI model, there are multiple approaches. These include
statistical measures, individual fairness considerations, Fairness Through Unawareness (FTU), coun-
terfactual or causal fairness, and logic-based approaches (Ignatiev et al., 2020). It’s important to note
that in the case of counterfactual fairness, a scenario where, for instance, the gender of an individual
is hypothetically changed to a different value would lead to differences in other features as well. This
complexity arises due to the interconnected nature between sensitive and non-sensitive attributes,
making it challenging to accurately assess bias. Likewise, in the case of Fairness Through Unaware-
ness (FTU), when certain features are linked or correlated with sensitive attributes, a model that
overlooks these sensitive features doesn’t guarantee fairness (Castelnovo et al., 2022). In our work,
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we primarily focus on statistical fairness criteria. In the literature, statistical methods like predictive
parity, demographic parity, equalized odds, disparate impact, equal opportunity, and statistical parity
are used to verify fairness in machine learning models (Pessach & Shmueli, 2022; Lohia et al., 2019;
Agarwal et al., 2023). Demographic parity, statistical parity, and Predictive parity refer to the idea
that the proportion of positive predictions should be the same for all groups (Verma & Rubin, 2018)
(Mehrabi et al., 2021) (Dwork et al., 2012) and do not take into account the fact that different groups
may have different base rates or prior probabilities, which can lead to unequal treatment. Equalized
odds mean that the true positive rate and false positive rate should be the same for all groups. This
metric assumes that the costs of false positives and false negatives are equal, which may not be the
case in all scenarios (Hardt et al., 2016). Disparate impact is a measure of whether a model is treating
one group unfairly based on protected characteristics. However, this metric does not take into account
the fact that certain features may be highly correlated with protected attributes, which can make it
difficult to disentangle the impact of different factors on the final outcome (Friedler et al., 2014).
Each of these metrics has its own strengths and weaknesses. They often lack transparency and have
an overhead in terms of processing time and the number of function calls.

This study developed a theoretical framework based on spider diagrams (Howse et al., 2005; Stapleton
et al., 2004) to define and verify fairness in AI. A detailed discussion on the spider diagrams is given
in Section 2.1. This framework based on first-order predicate logic (FOPL) (Andréka et al., 2017;
Kaldewaij, 1990; Barwise, 1977) first identifies α (discriminating) and ω (non-discriminating) classes
from the input data set. It then calculates the expected outcome of every individual in the dataset. The
expected outcome (ground truth) of the model is obtained by considering the similarity score between
the individuals (how much alike the elements are, calculated based on the distance between the values
of corresponding features). The actual outcome is the outcome given by the model’s prediction.
To verify fairness in the model, the framework compares the set of the expected outcomes (G) to
the set of the actual outcomes (A). The model is fair if the former set is a subset of the latter and
vice versa. Further, the bias can be visualized using the spider diagram which gives a higher-order
object-level representation and replaces the conventional confusion metrics used to visualize the
error(bias) and evaluate the performance of the model. The circles in the spider diagram represent
sets G and A. The intersection region of the circles gives the logical condition that corresponds
to the equivalence of spiders in both set G and set A. Using this condition, we define the fairness
of an AI model (Definition 1). For this, the formal proof is explained in Theorem 1 in Section
3.1. By visualizing the bias using the spider diagram, the AI model’s accuracy can be calculated by
dividing the count of individuals in the intersection area of sets representing G and A with the total
number of elements (individuals) in the given dataset. The formal proof is explained in Theorem
2 in Section 3.4. Additionally, the degree of bias for both α and ω classes of individuals in the
dataset can be calculated using Algorithm 1 explained in Section 3.3. To find this, the frequency
of occurrence of α and ω classes in both the actual outcome set (A) and the expected outcome set
(G) is calculated and the detailed steps are shown in algorithm 1. It is found that compared to the
existing methods, the new framework can be used in any data set and it precisely reasons the system’s
behavior. Experimental results show our new method to verify fairness is better by up to 95% in
terms of processing time and 97.7% in terms of function calls (Table 1). Our main contributions are :

• We define FairAI, a framework based on the spider diagram to define and verify fairness (by
visualizing bias) in an AI model (Section 3.1 and 3.2).

• We develop an algorithm 1 to calculate the degree of bias for discriminating (non-protected)
and non-discriminating (protected) classes (groups) of individuals in an AI model.

• We demonstrate that the use of spider diagrams for visualizing bias (errors) is more optimized
than the confusion matrix in terms of processing time and function calls (Table 2).

• Further, we show that the spider diagram can be used to measure the performance of the
model (accuracy, precision, recall, sensitivity, specificity, etc.,) (Theorem 3).

The paper is structured as follows: Section 2, includes the formal definition of AI model used in this
paper, and a brief overview of calculating the expected outcome of an AI model. In Section 2.1, we
provide an overview of the spider diagram. In Sections 3.1 and 3.2, we describe the methodology
used to define and verify fairness in an AI model based on the spider diagram (formal theorem with
proof). In Section 3.3, we discuss the Algorithm 1 to find the degree of bias of an AI model. In
Section 3.4, we briefly describe FOPL formulas for the performance evaluation of an AI model.
Experimental results are discussed in Section 4. In Section 5, we conclude with our findings.
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2 PRELIMINARIES

In this study, we use an AI model defined by (Das & Rad, 2020) with two demographic groups
(subpopulation)—non-protected (α) and protected (ω)—based on the sensitive attribute(s) (race,
age, gender) identified from the dataset. This work considers sensitive attributes to ensure that the
algorithm does not discriminate against certain groups. The scope of this work is on the classification
models. For example, if an algorithm is used to identify loan defaulters, using a sensitive attribute
like gender or age can help to ensure that the algorithm does not unfairly discriminate against women
or the elderly. We use ω and α to represent protected and non-protected groups of individuals
in an AI model (based on the sensitive attribute(s) like race, age, sex, etc.,). Protected groups
are advantaged and non-protected groups are disadvantaged by the algorithm’s decision. This is an
assumption that aligns with past experiences (Chouldechova, 2017; Dastin, 2018). We use a dataset D
containing N data points (instances), where each instance is a tuple ⟨x ∈ RK , y ∈ {0, 1}, ŷ ∈ {0, 1}⟩
representing the input vector, expected outcome label, and the actual outcome label respectively. i.e.,
D = {(xn, yn, ŷn)}Nn=1. We use the notation xi to denote an individual in D and yi to denote the
corresponding outcome. Further, we have a function (model) M that predicts the outcome y given
input x. i.e., M : x → y. In this paper, we introduce the notations G and A to denote the sets of
expected and actual outcomes respectively, produced by an AI model. We use the term sensitive or
protected attributes interchangeably in this work. We use the terms instance, entity, and individual
interchangeably. In this paper, we use the symbol # to represent the count of individuals in the sets
G and A.

In this work, the expected outcome of the model is obtained by considering the similarity score
between the individuals in the dataset. To find this, our method picks a random data point from the
dataset as a generator. For finding the similarity, the distance between a point (instance in D) and
the generator can be calculated. In this paper, we use Euclidean distance, also called the L2-norm to
calculate similarity metrics using (1). Compared to other distance metrics in literature, Euclidean
distance provides a straightforward geometric interpretation and can be used in various data scales due
to scale invariance. It preserves geometric features for continuous data, which makes it a commonly
used metric in numerous fields due to its simplicity and versatility (Alpaydin, 2014). Consider two
points Qi and Qj and a generator Q1. Qi maps to the set of Q1 (i.e., the outcome of Qi and Q1 are
equal), if the distance between itself and Q1 is less than the distance from Qj to Q1 (Okabe & Suzuki,
1997). Let a1, a2, . . . , am be the attributes, that include both sensitive attributes (i.e. race, ethnicity,
sex) and non-sensitive attributes in the model. Here m denotes the total number of attributes in the
model. Calculate the distance between two different entities/individuals using the formula given
below:

∆(Q1, Qi) =

√√√√ N∑
i=1

m∑
j=1

(Q
aj

1 −Q
aj

i )2 (1)

In (1), Q1 is taken as a generator point and Qi corresponds to an entity in the data set. The shorter
the distance between entities, the similarity between them increases. We can say if two entities Q1

and Qi are similar, the expected outcome of both given the set of attributes a1, a2, ...am should be
the same. i.e. they both should be classified into the same class label (0 or 1) depending on the
class of Q1. If we repeat this for all rows of entities, then the similarity between them is calculated.
Hence, we get the expected outcome for all instances in D. The entities/individuals (instances) with
equal merits (similarity score) get equal output and entities with different merit (similarity score)
proportions will be mapped to different output classes. For doing this we assume a threshold value t
which is assumed to be equal to the average of Euclidean distance calculated for each data point. If
the value of similarity between Q1 and Qi from (1) is less than or equal to the threshold, then Qi

should be mapped to the output class of Q1 otherwise to the other class. In the context of AI models,
bias refers to the presence of systematic errors or inaccuracies in the way the model operates. Bias
can arise from a number of factors, including the data used to train the model, the algorithms and
assumptions used in the model, and the way the model is designed and implemented (Bellamy et al.,
2018). This can result in the model making decisions or predictions that are unfair or discriminatory
towards certain groups of individuals, based on factors such as race, gender, or socioeconomic status.
Addressing bias is an important area of research in the field of AI and machine learning (Mehrabi
et al., 2021). In this paper, we use a logical reasoning system based on first-order predicate logic
(FOPL) called spider diagrams to define fairness and visualize bias. FOPL provides a formal and
precise representation of knowledge and relationships (Manna, 1969; Van Emden & Kowalski, 1976).
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It allows for clear and unambiguous statements about the relationships between entities and their
properties. This is crucial in applications where understanding the reasoning process and transparency
is important.

2.1 SPIDER DIAGRAMS

Figure 1: Spider diagram ex-
ample.

Spider diagrams are higher-order representations of Venn diagrams
and are equivalent to monadic FOL with equality. Here each closed
curve is used to represent a set and is labeled and enclosed in a
rectangle. The sets are divided into regions. A basic region is a
region in the plane enclosed by a curve. The intersection, union, and
difference of the two regions will be a region provided it is non-empty.
A zone is a region having no other regions in it. Each zone contains a
group of spiders (denotes the existence of elements in the set) residing
in it. A spider is a plane tree with vertices (feet) placed in different
zones and edges (line segments or tie) are used to connect between
them (Howse et al., 2005). If one of the feet (vertex) of the spider
is in a zone, it implies the spider touches the zone and resides in it and is called the habitat of the
spider. Zones can be shaded or unshaded. The shading of zones represents an empty set if there is no
spider residing in it, otherwise, this gives the upper bound of cardinality. Each spider denotes distinct
individuals and if they are connected by a tie (edge), they both represent the same individual (Fish &
Flower, 2005; Stapleton & Howse, 2006; Gil et al., 1999; Delaney et al., 2008; Stapleton et al., 2009).
This implies that the region they both reside (habitat) will be the same. If there are two constant spider
X and Y habitats of the region r1 and r2 respectively are connected with a tie, then both X and
Y represent the same individual (element), and hence r1=r2. Spiders can be of different types like
existential spiders (used to represent existential quantization, i.e., there exists), universal spiders (used
to represent universal quantization, i.e., for all), and constant spiders (used to represent individuals in
a relation). We recommend that interested readers to refer (Howse et al., 2005; Stapleton & Howse,
2006) for further details. Figure 1 presents an example of a spider diagram. It contains two sets
labeled as C and D with four zones. Two zones are shaded. The diagram contains two spiders—a
single-footed spider inside the zone D \ C and a two-footed spider residing in zone C \ D or C ∩ D
(i.e., completely inside the set C).

3 METHODOLOGY

3.1 FRAMEWORK FOR FAIR AI BASED ON SPIDER DIAGRAMS

AI fairness refers to the extent to which an artificial intelligence system treats all individuals or groups
fairly and equitably, without creating or perpetuating biases or discrimination. Achieving this requires
identifying and addressing sources of bias in the data used to train the algorithm, designing and testing
the algorithm to detect and mitigate potential biases, and evaluating the algorithm’s performance on
various fairness metrics (Lohia et al., 2019). Here, we formally define AI fairness using a logical
condition based on the spider diagrams.
Definition 1. The AI model M represented using a constant spider diagram is fair for a dataset D,
set of actual outcomes A and set of expected outcomes G, if ∀gi ∈ G(∃ai ∈ A =⇒ gi = ai), where
gi and ai are the expected and actual outcome of an individual xi.

An AI model is unbiased if it satisfies the properties of fairness, transparency, and explainability.
In this research, we focus on fairness to ensure the model is unbiased. Theorem 1 gives formal
proof for the same. If the model is fair, then all spiders lie inside the intersection area of the sets
G (set of the expected outcome of the model) and A (set of the actual outcome of the model) and
the set representing the actual outcomes should be a subset of the expected outcomes. The zone
{{G∩A}, ϕ} represents the logical condition that the spider is residing only in the intersection region
of G and A and not outside it. Hence in an AI model, if all spiders lie inside the zone {{G ∩ A}, ϕ},
then the model is unbiased. Demonstration of the working of the spider diagram for bias visualization
and fairness verification is explained in Figure 7 given in Appendix B.
Theorem 1 (Fair AI). An AI model is unbiased if all spiders lie inside the zone {{G ∩ A}, ϕ}.
(Proof in Appendix A)
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3.2 BIAS VISUALIZATION USING SPIDER DIAGRAMS

In this work, we use spider diagrams with constants to visualize bias in an AI model. We use the
formal definition of a constant spider diagram from (Stapleton et al., 2013) to represent model M as
shown below.

Definition 2. A constant spider diagram used to represent an AI model M is a tuple ⟨L, S, Z, f,R⟩
where:
L ∈ {A,G}, is a finite set of labels where G = {yi ∈ {0, 1}, finite set of expected outcome} and
A = {ŷi ∈ {0, 1} is a finite set of actual outcome}
S is a set of constant spider labels representing individuals, i.e., {(gi, ai) : gi ∈ G and ai ∈ A, i =
1, . . . , N}
Z ⊆ {(z, L \ z) : z ⊆ L} is a finite set of zones inside z and outside L \ z.
f : S → Z is a function that maps each constant spider to a zone. If f(ai) = z ∈ Z, then ai resides
in zone z.
R ∈ Z \ {∅} is the set of regions, where ∅ denotes the empty set.

(a) Spider diagram for bi-
ased AI model

(b) Spider diagram for un-
biased AI model

Figure 2: Spider diagrams

Spider diagrams help to compare the actual and expected outcome of the α and ω classes visually as
shown in the above figure. Fig 2a and 2b represent spider diagrams for a biased and unbiased model
respectively. It shows the mapping of elements in the actual outcome (A) of ω and α classes to the
expected outcome (G) set. If two spiders X and Y are connected by a tie then, it gives the mapping
of spiders into a zone. Here Y → X mapping represents constant spider Y in set A is connected
with a tie to constant spider X in set G or G ∩ A. Hence, X and Y are the two feet of a spider i.e.,
X = Y . Similarly, S → T mapping represents spider S is connected to spider T from set G to A
or G ∩ A. If an AI model M can be represented using this diagram, and if it follows the logical
constraint (∀S ∈ G(∃T ∈ A(S = f.T ))) ∧ (∀Y ∈ A(∃X ∈ G(Y = f.X))), where f is a mapping
function which maps the spider to the zone it belongs to, then model M is free from bias. Fig 2a
represents a spider diagram for a biased AI model where the logical condition does not hold true and
there exist some spiders in sets G and A which are not connected by a tie. This indicates that there
are some elements that are not common across these sets. On the other hand, Fig 2b holds the logical
condition for an unbiased AI model as no spiders lie outside the intersection area.

Using the spider diagram for bias visualization helps us to replace the confusion matrix used to
measure and evaluate the performance of an AI model. Confusion matrix may sometimes lead
to misclassification especially when the number of output classes increases. In such cases, False
Negatives (FN) for one class can be False Positives (FP) for another (Beauxis-Aussalet & Hardman,
2014). Also, to fully understand the error rates, the user must go through the matrix’s columns and
rows. Yet, this examination provides only a high-level overview of the errors and doesn’t shed light
on the distribution of α and ω groups within each error categories. Hence in our work, we replace
the confusion matrix with the spider diagram. This method of bias visualization helps to reduce the
ambiguity in using confusion matrices and gives a detailed bias visualization with reduced function
calls and processing time as shown in Figure 3.

3.3 DEGREE OF BIAS FOR α AND ω CLASSES IN AN AI MODEL

Algorithm 1 describes the method to find the degree of bias for α and ω classes in the model based
on their occurrence frequency in the actual and expected outcome. The degree of bias for the groups
(classes) of individuals is a number between +1 and –1 with 0 meaning no bias. 0 to +1 indicates a
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bias towards the group (i.e., the model is favoring the group) and 0 to –1 indicates a bias against the
group (i.e., the model is not favoring the group). In this paper, the ω class of individuals (which is
the protected group) will always have a degree of bias 0 or a value between 0 and +1 whereas, the α
class of individuals (non-protected group) always have a degree of bias between –1 to 0. The detailed
experimental values of the degree of bias for various datasets used in this paper are shown in Fig 5 in
section 4.

Algorithm 1 Degree of bias for α and ω classes in an AI model

1. Input: A: set of actual outcome, G: set of expected outcome
2. Output: Degree of bias (d) of classes α and ω in sets A and G.
3. int i, N ≥ 0 /*i is the loop variable,N represents the number of individuals in dataset*/
4. initialize i, Aα, Aω, Gα, Gω, dα, dω ← 0

5. Aα, Aω ← getfrequency(A) /* stores the frequency of α and ω classes in actual outcome
set. */

6. Gα, Gω ← getfrequency(G) /* stores the frequency of α and ω classes in expected
outcome set. */

7. dα ← (Aα−Gα)
(#α) /*dα stores the value of degree of bias for α class in the model*/

8. dω ← (Aω−Gω)
(#ω) /*dω stores the value of degree of bias for ω class in the model*/

9. getfrequency(B) /* function definition using B as formal parameter. */
10. while ( i ̸= N) do
11. if(B ̸= ∅) then
12. if(α ∈ B) then
13. Bα ← Bα + 1 /* increments Bα if output is α */
14. else Bω ← Bω + 1 /* increments Bω if output is ω */
15. end if
16. end if
17. i← i+ 1 /*increments i by 1 */
18. end while
19. return Bα, Bω

20. return dα, dω

In Algorithm 1, line 3 signifies the declaration of two variables: i which serves as the loop variable,
and N , which stores the total number of records in the dataset. Line 4 initializes the following
variables to zero: i, Aα, Aω, Gα, Gω, dα, and dω. In this context, Aα and Aω are used to store
the frequency of occurrences of α and ω within the actual outcome set, while Gα and Gω are used
for the same function for the expected outcome set. The variables dα and dω are used to store the
extent of bias associated with the α and ω classes in the model denoted as M . Line 5 calculates
the frequency of α and ω within the set A, while Line 6 performs a similar calculation for the set
G. Lines 7 and 8 are responsible for determining the bias degree (d) for both the α and ω classes
within an AI model using the formula specified in the algorithm. Here, #(α) and #(ω) represent
the total count of occurrences of the α and ω groups in the input dataset. Lines 9–19 are the logic
of the function to calculate the count of positive predictions (frequency of occurrence) of α and ω
in set A and G. In line 10, if the condition holds true after substituting the value of i for the current
iteration, lines 11–17 will be executed. Line 11 verifies whether the set B is not empty, while line 12
checks whether the value in B for the current iteration corresponds to α. If this condition holds true,
line 13 is executed, leading to an increment in the value of the variable Bα. Conversely, if the value
is ω, line 14 is executed, incrementing the variable Bω by 1. Subsequently, in line 17, the value of
i is incremented, and the control returns to line 10, repeating this process until i reaches N . Once
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the condition is no longer satisfied, the algorithm returns the values of Bα and Bω. Finally, line 20
returns the degree of bias values, dα and dω .

3.4 AI MODEL’S PERFORMANCE METRICS IN SPIDER DIAGRAMS: FORMULA
INTERPRETATION

(Sokolova et al., 2006) calculates accuracy as the number of correct predictions, i.e., true positives
and true negatives divided by the total number of predictions. However, in this work, spider diagrams
are used to evaluate the performance of the model. Hence a new formula has been proposed to
calculate accuracy. According to this, the accuracy of an AI model can be calculated by dividing
the count of individuals in the intersection area of sets representing G and A in the spider diagram
with the total number of elements (individuals) in the given dataset. The formal proof is as shown in
Theorem 2. Additionally, the logical framework explained in this paper provides a way to describe
the performance metrics of an AI model using formulas based on the spider diagrams. The formulas
are obtained based on Theorem 3.
Theorem 2 (AI accuracy). The accuracy of an AI model M represented using a constant spider
diagram can be expressed as the frequency of spiders residing in zone {{G ∩ A}, ϕ}.
Theorem 3. For an AI model M represented using a constant spider diagram, the sensitivity,
specificity, and precision can be represented using the formulas as follows:

Sensitivity = #g∈ G ∩ A | g = 1
#g∈ G | g = 1

Specificity = #g∈ G ∩ A | g = 0
#g∈ G | g = 0

Precision = #g∈ G ∩ A | g = 1
#a∈ A | a = 1

Where g and a represents each individual in the sets G and A.

Proofs of Theorems 2 and 3 are given in Appendix A.

4 EXPERIMENTS

This paper introduces a theoretical framework for verifying fairness in an AI model. The key goal of
this framework is to ensure that similar people are treated similarly by a classification model. The
framework is tested using five datasets – social network ads prediction, loan approval prediction (dat,
c), German credit score prediction (dat, b), UCI adult (dat, a) and US faculty hiring (dat, d) (Wapman
et al., 2022) named as D1, D2, D3, D4, and D5 respectively in this paper (Please refer Appendix D
for further experimental details). The experimental results show that the proposed method to verify
fairness ( given in Theorem 1 in Section 3.1) is more optimized in terms of processing time and the
number of function calls compared to the existing approaches including Demographic Parity (DP)
(Dwork et al., 2012), Predictive Parity (PP) (Verma & Rubin, 2018) and Equalized Odds (EO) (Hardt
et al., 2016). Table 1 shows that the new method is optimized up to 95 % in terms of processing time
and 97.7 % in terms of the number of function calls.

Table 1: Performance comparison of EO, PP, DP with Fair AI to verify fairness

EO PP DP Fair AI % Improvement

Dataset Function
calls

Time
(ms)

Function
calls

Time
(ms)

Function
calls

Time
(ms)

Function
calls

Time
(ms)

Time Function
calls

D1 3487 12 3830 12 1783 5 263 1 96.5 97.1
D2 3226 9 3811 15 1522 8 263 2 93.7 96.9
D3 3589 8 3966 12 1953 4 111 3 87.5 98.8
D4 3226 25 3827 44 1522 24 177 1 98.8 97.9
D5 4866 339 5630 142 2372 142 263 2 99.6 97.9
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Figure 3: Bias visualization of various
datasets using spider diagram.

Figure 3 presents the visual depiction of bias within
the models for various datasets calculated using the
spider diagrams. Here we use stacked bar graphs to
represent the results for better visualization. These
graphs offer insights into the distribution of classifica-
tion metrics (specifically, False Positives (FP), False
Negatives (FN), and Correct Predictions labeled as CP
which includes both True positives (TP) and True Nega-
tives (TN)) across different classes (α and ω) in various
datasets. For instance, let’s consider dataset D5 (US
faculty hiring that discriminates against women candi-
dates): In this dataset, the stacked bar graph makes the
model’s bias evident. It indicates that around 75.7% of
instances from the class labeled as α receive False Neg-
ative predictions, while only 24.2% of instances from
the class labeled as ω experience False Negatives. Ad-
ditionally, for False Positive predictions, about 78.4%
of instances from class ω are favored, whereas class α
only sees 21.5%. This analysis unmistakably reveals
the model’s inclination towards favoring class ω over class α. This interpretation can be applied to
the other datasets to visualize bias in a similar manner.

Table 2 presents the experimental result for comparison of the spider diagram and confusion matrix.
This shows that the performance evaluation using the spider diagram is more optimized in terms
of processing time and the number of function calls than the confusion matrix. Here the number
of recursion or function calls can be crucial in assessing a model’s performance for a few reasons.
Firstly, it indicates the computational load and efficiency of the model. A high number of recursive
calls can suggest increased computational complexity, potentially leading to longer processing times
or resource-intensive operations (Grzeszczyk, 2018; Ousterhout; Asadi et al., 2013). Graphical
visualization of the results are shown in Figures 4a and 4b.

(a) Spider diagram vs confusion matrix in terms of num-
ber of function calls

(b) Spider diagram vs confusion matrix in terms of pro-
cessing time

Figure 4: Spider diagram vs confusion matrix

Table 2: Performance comparison of confusion matrix and spider diagram

Confusion matrix Spider diagram % Improvement

Dataset Function calls Time (ms) Function calls Time (ms) Time Function calls

D1 214031 427 72488 178 58.3 66.1
D2 214146 466 72641 201 56.8 66.0
D3 214155 476 75242 212 55.4 64.8
D4 214155 256 113772 196 23.4 46.8
D5 214227 532 56200 403 24.3 73.7
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Figure 5: Degree of bias for α and ω class
in the datasets

In Section 3, we presented an algorithm to calculate
the degrees of bias in an AI model for classes α and ω.
The degrees of bias for various datasets are calculated
and the results are given in Figure 5. As discussed
in Subsection 3.3, the degree of bias value for a class
ranges from -1 to +1, with 0 meaning no bias. A value
from -1 to 0 indicates the algorithm is biased against
the particular class in the model, and a value from 0
to +1 indicates a bias towards the class. As an exam-
ple, for dataset D5, the model is biased against α class
with a degree of−0.96 and biased towards ω class with
a value of +0.4. Here biased against means dispro-
portionately disadvantaged and biased towards means
advantaged by the model.

In Section 3.4, we present Theorem 2 to calculate the
accuracy of an AI model using a formula based on the spider diagram. Figure 6 represents the
optimization of the proposed formula 2 compared to the conventional method (Sokolova et al.,
2006) used to calculate accuracy. The results show that the processing time of the proposed formula
is nearly constant irrespective of the size of the dataset whereas, in the conventional method as the
size of the dataset increases the processing time also increases linearly. Figure 8 in Appendix F
illustrates the relationship between accuracy and fairness of the proposed method across 5 distinct
datasets.

5 CONCLUSION

Figure 6: Performance comparison
of AI accuracy 2 formula with
the conventional formula (Sokolova
et al., 2006) based on confusion ma-
trix

This paper presents a logical framework for defining and ver-
ifying the fairness of an AI model, along with an approach
for evaluating model performance that serves as an alternative
to the traditional confusion matrix. Additionally, this method
introduces a more formal and precise way of expressing ac-
curacy, specificity, and sensitivity formulas using the spider
diagram, which adds a new dimension to the representation
of these concepts. This framework also permits us to define
the degree of bias and calculate the same to detect bias in the
AI model. As shown in our experimental results, compared
to existing approaches in the literature, the new framework
is designed to detect potential bias with fewer function calls
and in less processing time and hence improves the efficiency.
The experimental findings showed that replacing the confusion
matrix with the spider diagram for performance evaluation
of the model offers better performance in terms of reduced
processing time and function calls.

Given the importance of having a general framework for verify-
ing the discrimination of AI models against particular groups in
society, this work can be used to formulate a logical condition
to ensure fairness in such models. Currently, the framework is
tested on a few datasets which are limited in the number of records. While this is sufficient to reach
a conclusion about the framework’s performance, certain flaws will become evident when tested
on a large-scale dataset. In future work, we can plan to measure the performance and stability of
the model when tested on a large dataset. Adding to this, the study can be extended to investigate
accuracy-fairness tradeoff in case of dataset bias. Also, this framework can be extended further to
incorporate other crucial considerations such as privacy and explainability.
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APPENDIX

A PROOFS OF THEOREMS

Theorem A.1 (Fair AI). An AI model is unbiased if all spiders lie inside the zone {{G ∩ A}, ϕ}.

Proof. Suppose all spiders lie inside the zone {{G∩A}, ϕ}, then take a random spider gi ∈ G .Since
all spiders lie in {{G ∩ A}, ϕ},

gi ∈ G ∩ A =⇒ gi ∈ G ∧ gi ∈ A.

Similarly ai ∈ A lie inside {{G ∩ A}, ϕ}.

=⇒ ai ∈ A ∧ ai ∈ G ≡ G ⊆ A ∧ A ⊆ G

When we write this in first-order logic we get,

∀gi ∈ G(∃ai ∈ A =⇒ gi = ai) ∧ ∀ai ∈ A(∃gi ∈ G =⇒ gi = ai)
≡ ∀gi ∈ G(∃ai ∈ A =⇒ gi = ai).

This shows that in an AI model M represented using spider diagram if all spiders lie inside the zone
{{G ∩ A}, ϕ}, then the model is fair and hence concluded as unbiased.

Theorem A.2 (AI Accuracy). The accuracy of an AI model M represented using a constant spider
diagram can be expressed as the frequency of spiders residing in zone {{G ∩ A}, ϕ}.

Proof. The statistical formula for accuracy is given by (TP+TN)
N where N is the total number of

predictions in M , TP represents true positive outcomes and TN represents true negative outcomes.
They can be represented in first-order logic as,

TP= (#i : 0 ≤ i ≤ N : gi = 1 ∧ ai = 1)
TN =(#i : 0 ≤ i ≤ N : gi = 0 ∧ ai = 0)

where gi and ai are spiders representing individual i residing in sets G and A respectively.

TP + TN = (#i : 0 ≤ i ≤ N : gi = ai)

This gives the count of spiders where gi = ai. For gi to be equal to ai in the spider diagram, gi should
be connected by a tie to ai and both should lie in the same zone. =⇒ TP + TN = #(G ∩ A).
Hence the accuracy can be given by #(G ∩ A)

N which gives the frequency of spiders residing in the
zone {{G ∩ A}, ϕ}

Theorem A.3. For an AI model M represented using a constant spider diagram, the sensitivity,
specificity, and precision can be represented using the formulas as follows:

Sensitivity = #g∈ G ∩ A | g = 1
#g∈ G | g = 1

Specificity = #g∈ G ∩ A | g = 0
#g∈ G | g = 0

Precision = #g∈ G ∩ A | g = 1
#a∈ A | a = 1

Where g and a represents each individual in the sets G and A.
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Proof. True Positives (TP ), True Negatives (TN ), False Positives (FP ), and False Negatives (FN )
can be represented in First-order logic as shown below. True positives, in the context of binary
classification models, refer to the instances or data points that are correctly identified as belonging
to the positive class by the model. In other words, a true positive occurs when the model’s actual
outcome is positive (i.e., 1) and matches the expected outcome, which is also positive (i.e., 1). When
the expected outcome is positive for an individual i within the dataset D, it can be represented as
gi = 1. Similarly, when the actual outcome is positive, it can be denoted as ai = 1. Using these
representations, we can formulate the FOPL (First-Order Predicate Logic) formula for True Positives
as demonstrated below. This approach can be extended to derive formulas for True Negatives, False
Negatives, and False Positives, respectively.

TP=(#i : 0 ≤ i ≤ N : gi = 1 ∧ ai = 1)
TN=(#i : 0 ≤ i ≤ N : gi = 0 ∧ ai = 0)
FP=(#i : 0 ≤ i ≤ N : gi = 0 ∧ ai = 1)
FN=(#i : 0 ≤ i ≤ N : gi = 1 ∧ ai = 0)

Here, gi and ai are the spiders representing individual i in the sets G and A respectively. N is the
total number of instances in the dataset. The symbol #i denotes the number of individuals for which
the specified condition is satisfied.

Case 1. (Sensitivity)— The statistical formula for sensitivity is TP
TP+FN .

TP=(#i : 0 ≤ i ≤ N : gi = 1 ∧ ai = 1) ≡ (#g ∈ G ∩ A | g = 1)
TP + FN = (#i : 0 ≤ i ≤ N : (gi = 1 ∧ ai = 1) ∨ (gi = 1 ∧ ai = 0))
≡ (#g ∈ G | g = 1)

Hence, Sensitivity = #g∈ G ∩ A | g = 1
#g∈ G | g = 1

Case 2. (Specificity)—The statistical formula for specificity is TN
TN+FP .

TN=(#i : 0 ≤ i ≤ N : gi = 0 ∧ ai = 0) ≡ (#g ∈ G ∩ A | g = 0)
TN + FP = (#i : 0 ≤ i ≤ N : (gi = 0 ∧ ai = 0) ∨ (gi = 0 ∧ ai = 1))
≡ (#g ∈ G | g = 0)

Hence, Specificity = #g∈ G ∩ A | g = 0
#g∈ G | g = 0

Case 3. (Precision)—The statistical formula for precision is TP
TP+FP .

TP=(#i : 0 ≤ i ≤ N : gi = 1 ∧ ai = 1) ≡ (#g ∈ G ∩ A | g = 1)
TP + FP = (#i : 0 ≤ i ≤ N : (gi = 1 ∧ ai = 1) ∨ (gi = 0 ∧ ai = 1))
≡ (#a ∈ A | a = 1)

Hence, Precision = #g∈ G ∩ A | g = 1
#a∈ A | a = 1

B DEMONSTRATION OF THE METHODOLOGY USING A TOY EXAMPLE

Figure 7 demonstrates the application of spider diagrams in assessing AI models. This example is
constructed from a small dataset and a biased model. In the context of classification, we introduce a
simplified example involving two subgroups within a population distinguished by protected attributes
(blue and red), representing women and men respectively. In the top left set G, ’x’ denotes positive
ground truth. The outcomes of the AI model are presented in the bottom set A on the left side, with
’+’ marks indicating positive predictions. If an individual falls within the protected attribute category
"blue" and has a positive ground truth, and the model predicts a positive outcome for this individual,
then, according to the spider diagram, they are both associated with the same individual situated in
the intersection of sets G and A. By extending this analysis to all other individuals in the expected
outcome set, the resulting visualization can reveal any potential bias in the AI model. The fairness of
the algorithm is assessed using metrics displayed on the bottom right side. In this scenario, the model
exhibits fairness towards men but demonstrates bias against women (i.e., in the case of women, the
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count of ’x’ in the set G given in the top left is 3, whereas the count of ’+’ obtained in the intersection
region of sets G and A is only 2). Further, the degree of bias can be calculated as shown in the
diagram (obtained by finding the ratio between the difference of count of ’x’ in the set G and the
count of ’+’ in set A to the total number of individuals in the subpopulation). The legend box with
symbols is in the bottom left corner.

Figure 7: Fairness evaluation using the spider diagram demonstrated using a toy example

C CORRECTNESS OF ALGORITHM 1

To check the correctness of the algorithm 1, we use the concept of loop invariants. Here N represents
the total number of individuals in the given dataset. P0, P1, and P2 are the predicates formed from
the quantization formula developed for calculating the frequencies of α and ω classes in both actual
and expected outcomes. For example, the predicates are as shown below for the actual outcome.

Aω = (#i:0≤i≤N :A[i] = ω), Aα = (#i:0≤i≤N :A[i] = α) (2)

The above formula calculates the count of the ω class and α class and stores them in variables Aω

and Aα respectively. The loop invariant of (2) is P0 and P1 where the constant N is replaced with
variable n and then the above equation will become as shown here.

P0: Aω = (#i:0≤i≤n:A[i] = ω), P1: Aα = (#i:0≤i≤n:A[i] = α) (3)

From here we assume the postcondition as (P0 ∧ n = N). As an initial condition of loop invariant,
replace n with 0 in (3) which gives Aω ,Aα=0,0 respectively. This specifies the count of occurrence
over the empty range which will always be 0. Hence invariants P0 and P1 hold true for the initial
condition. Now we then consider a random case for n, where n ̸= N and n > 0, i.e., a general case
where n = n+ 1. Hence (3) can be rewritten as follows:

P0: Aω = (#i:0≤i≤n+ 1:A[i] = ω), P1: Aα = (#i:0≤i≤n+ 1:A[i] = α) (4)

To solve this we need to split i from 0 to n and i equals n.

P0: Aω = (#i:0≤i≤n:A[i] = ω) + (A[n] = ω)

P1: Aα = (#i:0≤i≤n:A[i] = α) + (A[n] = α)
(5)

This specifies that when the actual output of the model is 1 when the sensitive attribute is in ω class,
our proposed algorithm is incrementing the count of the corresponding variable Aω, and similarly
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if the output of the model is 1 when the sensitive attribute is α, the corresponding variable Aα is
incremented by 1 which can, in turn, give the count of occurrence of each output class in the actual
output of AI model. For doing this consider postcondition P2 : 0 ≤ n ≤ N .

For proving the correctness, consider the case where n,Aω ,Aα=0,0,0. We need to check whether all
invariants hold true. For that substitute n,Aω ,Aα=0,0,0 in (P0 ∧ P1 ∧ P2).

Proof 0 :

(P0 ∧ P1 ∧ P2) (n,Aω, Aα: = 0, 0, 0)

≡ 0 =(#i:0≤i≤0:f.i = ω) ∧ (#i:0≤i≤0:f.i = α) ∧ 0 ≤ 0 ≤ N

≡ 0 =0 ∧ 0 ≤ N ≡ 0 ≤ N

(6)

Since N ≥ 0, we can say that invariance holds true for the initial condition where n,Aω ,Aα=0,0,0.
Now we need to prove for the random case where n ̸= N . Substitute n as n+1 and form the invariant
as shown below.
proof 1 :

P0 ∧ P1 ∧ P2 ∧ n ̸= N

≡ (#i:0≤i≤n+ 1:f.i = ω)∧ (#i:0≤i≤n+ 1:f.i = α) ∧ (0 ≤ n+ 1 ≤ N)

≡ (Aα + (f.n = α)) ∧ (Aω + (f.n = ω)) ∧ (n+ 1 < n) =⇒ n ̸= N

(7)

This clearly shows that the invariant will hold true for any random case where n = n+ 1. At last for
the termination case where n = N , substitute n as N in the predicates P0, P1 and P2 and prove the
equation as shown below.
Proof 2 :

(P0 ∧ P1 ∧ P2) ∧ (n = N)

≡ (#i:0≤i≤N :f.i = ω) ∧ (#i:0≤i≤N :f.i = α) ∧ (0 ≤ N ≤ N)
(8)

Hence termination condition also holds.
Similarly, for the expected outcome the predicates will be as shown below:

Gω = (#j:0≤j≤N :G[j] = ω), Gα = (#j:0≤j≤N :G[j] = α) (9)

The above equation counts the occurrence frequency of ω class and α class in the expected outcome
(output) of an AI model and stores it in variables Gω and Gα respectively. For doing this we need to
form the invariants P0, P1, and P2 as shown below:

P0: Gω = (#j:0≤j≤N :G[j] = ω)

P1: Gα = (#j:0≤j≤N :G[j] = α)

P2: 0 ≤ n ≤ N

(10)

Proof of correctness for (10) remains the same as above. To determine the extent of bias in an AI
model for both the α and ω classes, you can compute bias scores using the following formulas:

For the α class, the bias score is calculated as: dα = (Aα−Gα)
(α)

For the ω class, the bias score is calculated as: dω = (Aω−Gω)
(ω)

These formulas utilize the values obtained from the previous steps, where Gω and Gα represent
expected outcomes, and Aω and Aα represent actual outcomes. These bias scores help quantify the
degree of bias present in the AI model for each respective class, taking into account the number of
instances in each class denoted by (#α) and (#ω).

D EXPERIMENTAL DETAILS

In this work, we take five datasets – social network ads prediction, loan approval prediction (dat, c),
German credit score prediction (dat, b), UCI adult (dat, a) and US faculty hiring (dat, d) (Wapman
et al., 2022) to visualize the bias and to verify fairness in the AI model. The initial step involves
data preprocessing, where certain features are eliminated from the dataset. Afterwards, discrete and
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discretized continuous attributes are encoded using label encoding. The datasets used in this paper is
obtained from the Kaggle website. For creating the model, first we identified α and ω classes based
on the sensitive attributes in the dataset. We then recorded the expected outcome of the model using
Euclidean distance.

Table 3: Datasets used in this paper

Dataset Dataset Number Target Feature #(Instances) Test %

Social Network D1 Purchased 400 20
Loan approval D2 Loan-status 981 20
German credit D3 Risk 1000 20
UCI adult D4 Salary 104099 30
US faculty hiring D5 #(Men, Women) 411544 30

E PERFORMANCE METRICS DETAILS

The following is the list of performance metrics for binary classification mentioned in this paper in
section 3.4.
Accuracy= TP+TN

TP+FP+TN+FN

Sensitivity= TP
TP+FN

Specificity = TN
TN+FP

Precision = TP
TP+FP

We refer interested readers to refer (Raschka, 2014) for further details.

F ADDITIONAL EXPERIMENTS

Figure 8: Demonstrates observable tradeoff between accuracy and fairness.

Figure 8 illustrates the relationship between accuracy and fairness calculated across 5 distinct datasets.
Each bar in the figure corresponds to the accuracy of a specific dataset, while the connecting lines
depict the fairness values. The result suggests a correlation where fairness tends to align with accuracy.

In this section, we present the additional experiment results. In section 4, we use a stacked bar chart
to present the results of the spider diagram for enhanced visualization. In this particular section,
we offer a detailed depiction of bias using spider diagrams obtained from the program. The sets in
each sub-figure represent the group of α, ω, G (Expected outcome), and A (Actual outcome) for
various models. These sets are divided into zones represented using different colors and the number
inside each zone (intersection region of corresponding sets) indicates the count of spiders (instances)
residing in it. As an example, in Figure 9a there are 96275 false positives in the model out of which
20753 are Female (α) and 75522 are Male (ω). The intersection region of sets G and A represents
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the count of instances having Correct Prediction (CP that includes both TP and TN). The region
inside the zone G \ A represents the count of False positives (FP) in the model and the zone A \G
represents False Negative (FN) of the model.

(a) US Faculty hiring (b) UCI Adult

(c) Social Network Ads (d) German credit risk

(e) Loan approval prediction

Figure 9: Bias visualization of various datasets using spider diagram. Number inside each zone
indicates the number of spiders (dataset instances) residing in it.
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