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Abstract

The execution of graph algorithms using neural
networks has recently attracted significant inter-
est due to promising empirical progress. This
motivates further understanding of how neural
networks can replicate reasoning steps with re-
lational data. In this work, we study the ability
of transformer networks to simulate algorithms
on graphs from a theoretical perspective. The ar-
chitecture we use is a looped transformer with
extra attention heads that interact with the graph.
We prove by construction that this architecture
can simulate individual algorithms such as Di-
jkstra’s shortest path, Breadth- and Depth-First
Search, and Kosaraju’s strongly connected com-
ponents, as well as multiple algorithms simultane-
ously. The number of parameters in the networks
does not increase with the input graph size, which
implies that the networks can simulate the above
algorithms for any graph. Despite this property,
we show a limit to simulation in our solution due
to finite precision. Finally, we show a Turing
Completeness result with constant width when
the extra attention heads are utilized.

1. Introduction

Recent advancements in neural network models have sig-
nificantly impacted various domains, most notably vision
(Yuan et al., 2021; Khan et al., 2022; Dehghani et al., 2023),
and natural language processing (Wei et al., 2022b; Touvron
et al., 2023). Transformers (Vaswani et al., 2017), at the
forefront of these developments, have become standard for
many complex tasks. These successes have also shed light
on the capabilities of neural networks in algorithmic reason-
ing (Velickovi¢ & Blundell, 2021), such as basic arithmetic
(Lee et al., 2024), sorting (Tay et al., 2020; Yan et al., 2020;
Rodionov & Prokhorenkova, 2023), dynamic programming
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(Dudzik & Velickovié, 2022; Ibarz et al., 2022) and graph
algorithms (Velickovic et al., 2022; Cappart et al., 2023).

In this work, we focus on algorithmic reasoning on graphs.
Current empirical results display a promising degree of scale
generalization on graphs (Yan et al., 2020; Tang et al., 2020;
Ibarz et al., 2022; Veli¢kovi€ et al., 2022; Bevilacqua et al.,
2023; Numeroso et al., 2023). The predominant approach in
these studies is to train a neural network to execute a step of
a target algorithm and use a looping mechanism to execute
the entire algorithm. The looping mechanism is crucial
since it allows the execution of long processes on graphs.
Motivated by these empirical results, our goal is to study
the ability of looped neural networks to simulate algorithms
on graphs of varying sizes. Briefly, by simulation, we mean
the ability of a neural network to provide the correct output
of a step of an algorithm for every step. In all our results we
utilize a looped transformer architecture with extra attention
heads that interact with the graph. Instead of storing the
graph in the input, we encode it using its adjacency matrix
which multiplies the attention head. This allows us to access
data from the adjacency matrix without scaling the number
of parameters of the network with the size of the graph.

Our contributions: We list our contributions below.

1. We demonstrate how a looped transformer architecture
can simulate graph algorithms like Breadth-first search
(BFS) & Depth-first search (DFS) (Moore, 1959),
Dijkstra’s shortest path algorithm (Dijkstra, 1959),
and Kosaraju’s algorithm for identifying strongly con-
nected components (SCC) (Aho et al., 1974). These
algorithms were chosen as part of the CLRS benchmark
(Velickovic et al., 2022). We also use these construc-
tions to create a multitask model capable of simulating
BFS, DFS, and Dijkstra’s algorithm simultaneously.

2. In our results, the largest dimension of any weight ma-
trix in our network, denoted by width, does not scale
with the number of nodes or edges in the graph. This
shows that algorithm simulation is possible for graphs
of varying sizes, although limited by finite precision.
Current results do not consider the looping mecha-
nism and are constrained by the network’s depth/width
(Loukas, 2020; Xu et al., 2020), or they do not consider
graph algorithms (Pérez et al., 2021; Giannou et al.,
2023).
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3. We also provide a Turing Completeness result for the
looped transformer with O(1) width which uses addi-
tional attention heads to interact with the graph.

2. Related work

Empirical: A plethora of papers have been published on the
ability of neural networks to execute algorithms on graphs.
Notable empirical works include Tang et al. (2020); Yan
et al. (2020); Velickovic et al. (2020); Ibarz et al. (2022);
Bevilacqua et al. (2023); Numeroso et al. (2023); Diao &
Loynd (2023); Georgiev et al. (2023a;b); Engelmayer et al.
(2023). These works leverage looping mechanisms and
report favorable scale-generalization results. For a compre-
hensive review, see Cappart et al. (2023).

Theoretical: Currently, three types of complementary re-
sults study the ability of neural networks to execute algo-
rithms. The first type is simulation results such as Siegel-
mann & Sontag (1995); Pérez et al. (2021); Giannou et al.
(2023); Hertrich & Skutella (2023); Hertrich & Sering
(2023). These results are demonstrated by providing an-
alytic expressions of the neural networks that achieve sim-
ulation, similar to our results. For example, Siegelmann
& Sontag (1995); Pérez et al. (2021) use simulations to
prove the Turing Completeness of Recurrent Neural Net-
works (RNNs) and Transformers, respectively. Giannou
et al. (2023) also shows Turing Completeness for Trans-
formers through the simulation of SUBLEQ (Mavaddat &
Parhami, 1988). However, these works do not consider
graph data. Other works, such as Hertrich & Skutella
(2023); Hertrich & Sering (2023) use RNNs and Multilayer-
Perceptrons (MLPs) to simulate graph algorithms to solve
problems like shortest paths, minimum spanning trees, and
maximum flow. Although existing results on graph algo-
rithms or Turing Completeness apply to graph algorithms,
these approaches require the graph to be stored in the in-
put data matrix rather than being part of the architecture.
This imposes limitations on the size of the input graph, as
discussed in Section 4.

The second type of result is using the Probably Approximate
Correct learning framework to study the sample complexity
of neural networks for executing algorithms. In Xu et al.
(2020) the authors show that sample complexity is improved
when the neural network is aligned with the structure of the
algorithm. We also use the concept of alignment in our
constructive proofs. However, our results are about the sim-
ulation of algorithms, which hold for any distribution of the
test graph. Also, Xu et al. (2020) does not employ a looping
mechanism. The third type is impossibility results. In this
case, it is shown that neural networks cannot execute certain
algorithms when the depth and width of the network are
smaller than a lower bound. In Loukas (2020) the author
studies the ability of graph neural networks to solve vari-

ous graph problems and also proves Turing Completeness.
However, all results are limited by the depth and the width
of the neural network which scales with the size of the input
graph. In our case, due to the looping mechanism, the depth
and width of the network are constant, and a single neural
network can solve a particular problem for any input graph,
subject to limitations imposed by finite precision.

3. Preliminaries

This section establishes preliminaries for our task of algo-
rithmic simulation on graphs. Recognizing that an algorithm
consists of multiple steps, we start by defining simulation
for an individual step. Consider hp : X — ) as the func-
tion we aim to simulate and hr : X’ — ) as the neural
network designed for this purpose. Note that hr and hp
might operate in different representation spaces. For in-
stance, X and ) might be the set of natural numbers while
X’ and )’ might be multidimensional reals. To address
this, we use mappings g. : X — X’ and g4 : J' — Y for
encoding and decoding, respectively. In our constructions in
Section 5.1, g, organizes terms into our input matrix format
and incorporates biases and positional encodings, while g4
simply extracts the appropriate columns from the output.

Definition 3.1 (Simulation). The neural network hr is a
successful simulator of the algorithmic step Ay if for every
input x € X, hp(z) = ga(hr(ge(z))). A transformer is
said to simulate an algorithm if it can simulate each step of
the algorithm (Giannou et al., 2023; Pérez et al., 2021).

We define a graph GG with n nodes by its adjacency matrix
Ae Rim, where A; ; > 0if nodes ¢ and j are connected,
otherwise A; ; is zero. In our work, we also use an input
matrix X € RE*4 where d is the feature dimension and
K > n + 1 is the number of rows that are set according to
the simulation. The structure of X is further explained in
Section 5.1. Because of the mismatch of length between
X and A, we adopt a padded version of A, denoted A €
RE*K  The entries of the first row and column of A are set
to zero. This is to align with the input’s top row, which holds
data not associated with any node, as further discussed in
Section 5.1. The next n rows and columns correspond to the
entries of A. Certain implementations require X > n + 1.
In this case, we further pad A with zeros in the extra rows
and columns beyond the entries of A. For example, in our
Turing Completeness result in Remark 6.6, K can exceed
n + 1 because the number of rows may not be directly
determined by the number of nodes.

4. The Architecture

We utilize a variation of the standard transformer layer in
Vaswani et al. (2017) with an additional attention mecha-
nism that incorporates the adjacency matrix. The additional
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Source code

function dijkstra(Graph, source):
# data initialization

Transformer simulation

function dijkstra(A, source):
# data initialization

1
2
3 (terminate « False pos. encodings[o|p P, P ol o
4 | for each vertex v in Graph.Vertices: terminate|0| 0 0 - ( | X A'-
5 dists[v], prev[v], visit[v] « INF, v, False dists|0|® @ .-« 0 A - (@+1)xd (n+1)%(n+1)
6 | dists[source] < 0 scratchpad[ol 0 0 - 0] X A
7 while terminate not True: while X[terminate] !=1:
8 u argminr dist[u] with visit[u] 7:7Fa\$e " Transformer ‘31‘_*
9 for each neighbor v of u with v visit[v] = False: Attention/GConv azgain layers | e
10 dist_u « dists[u] P P
11 alt « dist_u + Graph.Edges(u, v) Feed-forward B —
=/ read A layer Transformer
12 is_less « alt < dist[v] ! X
E - less_than layer Transformer
13 if is_less: Transformer
- if_less layer Transformer
14 dist[v], prev[v] < alt, u Attention/GConv

15 visit[u] « True
16 terminate « all(visit)
17 return dists, paths

Feed-forward

update_visit layer Transformer
1

terminate layer Transformer

return X[dists], X[paths]

Figure 1. A simplified illustration of the simulation of Dijkstra’s algorithm using a looped transformer with extra attention heads that
interact with the graph. On the left, we display the pseudocode of Dijkstra’s algorithm, serving as the source code. The rightmost section
shows the corresponding simulation via a transformer, where each step of the source code in the loop is simulated using one or more
transformer blocks. We specifically focus on lines 11 and 12, highlighted to demonstrate the simulation of individual functions, as
discussed in Section 5. At the top center of the figure, the encoding of graph information and variable scopes into Aand X is depicted.
For clarity, X is shown in its transposed format. Throughout the transformer loop, A remains constant, while X is updated in each
iteration until the simulation meets its termination criteria. Upon termination, the decoding step extracts columns from X that correspond

to the algorithm’s desired output.

attention mechanism is described by the following equation:
. ~ ~ . T .
PO(X, A) = AU(XWCF;)W}? XT> xwh,

where Wy € R4 W, and Wx € R4*%e are the value,
query, and key matrices, respectively, d, represents the em-
bedding dimension and o denotes the hardmax'+? function.
Note that setting A as the identity matrix reduces equation
(1) to a standard attention head. This modification efficiently
extracts specific rows from matrix A. Conversely, applying
attention to the transpose of A enables the extraction of
columns of A. These variations are important in our con-
structions, and they allow parallel execution of algorithmic
subroutines which are further discussed in Section 5.2. We
define a complete transformer layer as:

f(X, A) = fmlp(fattn(Xa A)) )

'The hardmax is defined by [o(®)]; := Y, . ;¢ ex/ | K|, where
ek is the standard basis vector and K = {k | ®;1 = max(®P;)}.

’The softmax activation function can be used as well, since
softmax approximates hardmax as the temperature parameter goes
to zero. However, softmax introduces errors in the calculations.
To guarantee small errors during the simulation, the temperature
parameter will have to be a function of the size of the graph and
other parameters related to finite precision. Softmax could further
limit the simulation properties of the architecture beyond what we
discuss in Section 6. However, this type of limitation is common,
for example, see Giannou et al. (2023); Liu et al. (2023). In
practice, softmax is preferred over hardmax. For this reason, in our
empirical validation results in Appendix B.3 we also use softmax
in combination with rounding layers in Appendix B.1.

where

fun(X, A) = X + > (X, I41)

i€H
+ ) XA+ D (X, AT)
1€EH A iEHAT

fuip(X) = Zmwm 4 x 70+ = gi)(Z(j)W(j))
forj =0,...,m—1and Z(® = X. Here, X represents
the input matrix and A is the padded adjacency matrix.
Additionally, I, is the identity matrix of size n + 1, m
and ¢ are the number of layers and activation function of
fmrp, respectively. Note that in the formulation of the multi-
head attention, we adopt a residual connection and a sum
of attention heads v in the format described in (2). H,
H,, and H 4T are the index set of attention heads for the
standard attention (Vaswani et al., 2017), as well as for the
versions that utilize the adjacency matrix and its transpose,
respectively. The total number of attention heads is |H| +
|H | + | H 47 |. Furthermore, for the MLP, we define ¢ to
be the ReLLU function, we set m = 4, and we use matrices
W@ e RI*D 4 the parameters of the MLP, where d is the
feature dimension of X . We integrate the bias into the linear
operations by adding bias columns to X and also introduce
a residual connection to fip.

Algorithm 1 demonstrates the use of our model hy, which
is constructed by stacking multiple layers f as depicted
in (2). In this setting, each forward pass feeds its output
to a subsequent pass, creating a looping mechanism. This
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loop continues until a pre-defined termination condition is
met, such as the activation of a boolean element within the
input, denoted by term in Algorithm 1. This setting and
architecture are used to simulate various graph algorithms,
as formally established in the results of Section 6.

Algorithm 1 Looped Transformer (Giannou et al., 2023)

Input: model h7, matrices X and A, column term
1: while X[0,term] is false do
22 X =hp(X, A)
3: end while

4.1. Discussion on the attention head in (1)

While encoding the graph in X is an alternative to our at-
tention head in (1), it is subject to limitations. Specifically,
concatenating the adjacency matrix to X results in linear de-
pendence of the width of the network to the number of nodes,
thereby limiting simulation to graphs with sizes smaller or
equal to the one that the network was set up/trained on. Al-
ternatively, appending the edges of the graph to the input
results in the number of positional encodings being depen-
dent on the edge count, which may increase quadratically
as the number of nodes grows. This can limit simulation
performance when the available positional encodings are
limited, for instance, due to finite precision.

Finally, our attention head in (1) can be viewed as a message-
passing layer that performs two convolutions. The first
convolution corresponds to a complete graph, i.e., standard
attention (Vaswani et al., 2017), and the second is a standard
graph convolution (Kipf & Welling, 2017). Multiplying the
two convolution matrices is important. In particular, the left
multiplication of the attention matrix with Ain (1) allows
for direct and easy access to data from A. This is because the
attention matrix acts as an indicator matrix that extracts rows
from /1, see Section 5.3 for details. Note that our attention
head in (1) differs from Graph Attention Networks (GAT)
(Velickovi¢ et al., 2018), where the graph is incorporated
in the attention mechanism. Although possible to use the
attention mechanism in GAT to access the graph data, the
proofs will be more elaborate than with (1).

5. Simulation Details

Our simulation results are constructive. We set the parame-
ters of the layer in (2) such that we simulate each sub-routine
within each algorithm. We start by describing the input to
the model in Section 5.1. We provide two simulation ex-
amples of common subroutines among all algorithms in
this paper. In Section 5.2 we provide an example of the
implementation of the less-than function. This function is
common among algorithms in this paper, and it illustrates
how the neural network can achieve parallel computation

over the nodes. Next, in Section 5.3 we provide an example
for reading information from the graph. Throughout the sec-
tion, we use Dijkstra’s algorithm as an algorithm example
(as depicted in Figure 1). With the exemption of our Turing
Completeness result in Remark 6.6, it is sufficient to set
K = n + 1 for all algorithms in our paper. For this reason,
and for simplicity, we set K = n + 1 in this section.

5.1. Input matrix

The input matrix encompasses all variables used in the al-
gorithm. In the case of Dijkstra’s algorithm in Figure 1, the
lists of current distances and paths (dists and paths),
and variables like the current node and its distance (u and
dist) are all incorporated into X. Below, we describe in
detail the general structure of X. We refer the reader to
Figure 2 for a visualization of the structure of the matrix X.

The top row of X stores single variables, encapsulating the
global information relevant to the algorithm. The bottom n
rows of X are reserved for local variables, such as distances
and paths, representing the node-specific data. This storage
structure separates the global context from the more specific,
node-related information of the algorithm. The input matrix
X is augmented with columns for positional encodings, bi-
ases, and a scratchpad area. Each node receives a unique
positional encoding, denoted by p;. These concepts have
been present in various contexts, see Giannou et al. (2023)
for assigning functional blocks to the input and Akyiirek
et al. (2022); Wei et al. (2022a); Giannou et al. (2023) for
the notion of scratch space. Distinct biases are applied to the
top and bottom rows to simulate global and local functions
effectively. X is equipped with flags indicating global or
local states, regulating the algorithm’s flow. These flags can
either permit or prevent overwriting of fields or signal differ-
ent stages in the algorithm’s execution. For example, in all
our simulations each of the last n entries of the node-wise
flag named visit indicates whether the corresponding
node has been visited, while the global variable term, sig-
nals the terminating condition for the algorithm. Finally, the
scratchpad within X serves as a temporary storage space
for variable manipulation or intermediate computations.

5.2. Less-than

The purpose of this operation is to determine whether each
element in a specific column of X is smaller than its coun-
terpart in another column. The result of this comparison is
then recorded in another designated column. In the context
of Dijkstra’s algorithm, as shown in Figure 1, this function
plays a critical role in determining if an alternate path is
shorter than the shortest path currently known.

We express this function as: less-than (X, C, D, E)
= write(X[:,C] < X[:,D], X[:,E]). Here, X
is the input matrix, while C, D, and E are placeholders
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pos. encodings global vars local vars atchpad

r h
0 o |[@FENETE0 0 0 ---]0 0 0
p; = sin(@y) cos(®y) |0 O O ---|1 % ¥y, +--- |0 0 0 ---
P, = sin(®p) cos(ez) ([0 0 O --.-|1 %X, y,-:-|0 0 O
Pp = sin(8p) cos(8y) (0 0O O <+« |1 X, Yo+ |0 0 0 =--

Figure 2. Illustration of the input structure used in the simulation
of graph algorithms. On the left, columns indicate node positions
using circular positional encodings (Liu et al., 2023), detailed in
Section 6. The next blocks on the right denote the global (in red)
and local (in green) variables, which occupy the top and last n
rows of X, respectively. In these blocks, the first column marks
the bias of the corresponding variables. The symbol ¢ indicates
the termination flag, while symbols z, and x;, y;, are generic local
and global variables, respectively. Finally, depicted in the far right
block, the scratchpad is used for temporary storage and calculation.
Non-shaded areas remain null during execution.

for the specified column indices in X. This simulation in-
volves two key steps. First, we approximate the less-than
operator (<) using the following expression:

X[;,C] < X[;,D] ~e ¢ (X[:, D
—'¢(X[;,D

% =
a8
o

D

where € > 0 is a small tolerance value, and ¢ denotes the
ReLU activation function. This operation approximates a
step function of the difference X[:,C]-X[:,D], where
e controls the sharpness of the threshold. If this difference
is larger than ¢, the subtraction of the terms post-ReL.U
equals ¢, which simplifies to 1. If the difference is neg-
ative, both ReLU terms become zero. If the difference
X[:,C]1-X[:,D] is non-negative but less than ¢, the ap-
proximation linearly interpolates between 0 and 1, with
a gradient of e~!. The second operation is the write
function. In this operation, the output of the less-than com-
parison is placed in the specified field, while the original
content of that field is erased. This operation is expressed
as: X[:,E] +X[:,E] -X[:,E]+X[:,S1], where S;
is the scratchpad column that holds the result to be put in E.

Combining these two operations, we define the parameters
for the layer f. To understand the purpose behind each
operation, we start by defining a particular instance of the
matrix X, which is used for this example:

Bgiobal  Bloca  C D E S
1 0 co do e
0 1 C1 d 1 €1

0 1 ¢, d, en

Here, C, D and E are placeholders for column indices used

in (3), S is the scratchpad area, and Bgjoba and Bigcal rep-
resent the biases for global and local variables respectively.
First, in the definition of the attention layer, all values are
set to 0, maintaining only the residual connection. For the
definition of the parameters in f,, we introduce the param-
eters layer by layer, followed by an explanation of what is
achieved at each stage. For the first layer, we have:

1 if(i,j=FE)or(i=D,j€ {S1,52})
-1 ifi=0C, j€ {51,952}

—& if i € {Bgiobal; Biocat}» J = S2

0 otherwise,

W), =

where S and S; are entries in the scratchpad. Here, the
parameters of the first layer W (1) keep the entries of the
target column FE, while it builds the arguments of ¢ in (3),
inserting them in the scratchpad. Storing the intermediate
values in the scratchpad is beneficial to prevent overwrit-
ing issues, as it avoids the use of columns involved in the
definition of the equation. The result is given by:

E S1 SQ
€0 do—CQ do—CQ—e’:‘
€1 dl—Cl d1—01—€

xw =

Subsequently, the parameters of the second layer W (2) are:

1 ifi=F, j=1

W, =] ==
—&- ifi = 5o, ]251
0 otherwise.

Here, W (%) is responsible for subtracting the post-ReLU
terms and dividing them by £~!. This result is then stored
in the scratchpad entry Sy:

E 51

eg co < dg

e1 ¢ <dp

7OW®) ~
en Cn <dp,

Finally, for the two remaining operations, we have:

1,] — .
0 otherwise,
-1 ifi,j=F
WW),; =31 ifi=8, j=F

0 otherwise.
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In these two operations, the output of 57 is preserved and
then placed in the desired field E. Additionally, the entries
of E, which were kept in the first three layers, are subtracted
from the target field in W%, effectively removing the pre-
vious entry in F. Furthermore, to address cases where the
input entries are negative, it is necessary to incorporate addi-
tional parameters. These parameters should follow the same
structure as previously provided, with inverted signs in the
parameters W) and W ®) for columns C, D, and E. These
additional entries are generally placed in the scratchpad.

Parallel computation over the nodes: The node-wise for-
mat in Section 5.1 is particularly beneficial for operations
like less-than in equation (3) because it operates across en-
tire columns. This approach enables parallel processing for
all nodes in a graph, enhancing efficiency in algorithms. For
example, in Dijkstra’s algorithm, the typical implementa-
tion involves iterating through each non-visited neighbor
of a node. However, by integrating an additional masking
function, we can filter out visited or non-neighboring nodes.
This allows us to conduct all necessary comparisons and
conditional selections for every node simultaneously within
the inner loop of the implementation. This modification
enhances the algorithm’s efficiency by reducing the need
for repetitive looping in transformer-based simulations.

5.3. Read row from A

In this section, we provide a configuration of (2) that extracts
a row from the adjacency matrix. We describe the func-
tion as read-A (X, A, C, D) = write(A[C,:],
X[:,D]), where X and A are the input and padded ad-
jacency matrices, while C' and D are the row and column
indices for the respective matrices. The input structure for
this operation requires specialized inputs common to all
algorithms presented in this work. This includes a set of
columns to store the node-wise positional encodings, de-
noted as P. Additionally, a global variable representing the
positional encoding of the node of interest is stored in a
distinct set of columns, marked as P,,.. The structure of the
input matrix X is given below:

P Pcur Bglobal Blocal C D S

0 p; 1 0 co dy
pr O 0 1 c1 dp

Pn 0 0 0 Cn dn

For simplicity, we let the embedding dimension d, = 2,
which corresponds to the dimension of positional encodings.

For the attention head for A4 in (2), we define:

1 ifie {(P)ja(Pcur)j}a .]: 172

Wi, Wao)ii =
(Wie, We) 7 {0 otherwise,

2 ifi = Bupa,j = D
(Wv)ij = {0 slobal>J

The multiplication X WoW - X T results in a matrix where
each element is the inner product between positional encod-
ings of nodes. Positional encodings are formulated such
that (p;, p;) > (pi,pj) whenever i # j for i,j € [n]. By
leveraging this property, we allow the attention matrix to
behave as an indicator function. The result is given below:

otherwise.

1/2‘() 1/2

0 1 - 0

TyvT I S
c(XWoWrX') =1 ulo 0 e
0 0 0

The result of the multiplication of the attention matrix and
A is further multiplied by the input X:

Bgiobal

0
) A,
Ac(XWoWEXT) X =1/2 1

Ai n

The result in column Bgjoba is written in the target column
D by Wy,. Notice that in this case, the target field must also
be erased. This can be done as in Section 5.2, using the
Jfmip and an intermediate scratchpad field, or by leveraging
another attention head to replicate the identity matrix and
subtract the values in the target columns.

6. Theoretical analysis

In this section we demonstrate the ability of the architecture
in (2) to simulate various graph algorithms. We provide em-
pirical validation of the results in Appendix B.3. We discuss
the implications of incorporating attention heads in the form
of (1) and we demonstrate that the overall architecture is
Turing Complete, even when constrained to constant width.
We start by describing the positional encodings we use and
other related parameters in our architecture.

6.1. Positional encodings and increment

In our approach, we use circular positional encodings to
enumerate the nodes in the graph (Liu et al., 2023). This
enumeration is carried out by discretizing the unit circle into
intervals of angle 3. Each node is then represented by a
tuple of sine and cosine values.

3Numerical issues can arise when representing positions by
evenly spaced angles around the unit circle. This is due to the



Simulation of Graph Algorithms with Looped Transformers

For node enumeration, we use the formula p; = R;pi_l

for ¢+ > 1. In this context, ) represents the smallest rotation
that our system can represent with limited precision. This
parameter essentially sets the limit on the number of nodes
we can enumerate, which is capped at | 276! |. This limit
is determined by the precision with which we can represent
5, thus influencing the maximum number of distinct nodes
that can be effectively encoded. This approach inherently
compensates for rotational imprecision since the encodings
are generated by the rotation matrix and not by the trigono-
metric functions of each angle. Although this could affect
the periodicity of the function, our designs do not rely on
this attribute. What is crucial is that the increment function
can be executed by a neural network, and the positional en-
codings satisfy the condition: (p;, p;) > (ps;,p;) fori # j
(see Section 5.3). The rotation matrix I; can be efficiently
implemented as a single linear layer within fyy p. Further-
more, since R; has unitary singular values, all positional
encodings have unitary norms, thus by the Cauchy-Schwarz
Inequality, the inner product property is preserved.

6.2. Maximum absolute value parameter

All algorithms that we simulate utilize a conditional selec-
tion function. The implementation of this function depends
on the parameter {2, which represents the maximum abso-
lute value within a clause. We approximate the conditional
selection function in the following manner:

if-else(c1,co,7) = d(co—7RQ) “
+¢(C1 - (1 _'Y)Q)v

where cp, ¢ € [—€, Q] are the clause values and y € {0,1}
is the condition. When v = 0, the function outputs ¢y, and
c1 otherwise. The complete construction also replicates
the terms for the negative counterparts of the clauses. This
approach relies on 2 to cancel any opposite terms in the
conditional selection. Therefore, () determines the largest
absolute value present in the clauses, and any element larger
than 2 breaks the simulation.

6.3. Results on simulation of graph algorithms

We now present our results on transformer-based simula-
tions of graph algorithms. We first present the simulation

limited precision in representing certain quantities, especially irra-
tional numbers and rational numbers with repeating binary frac-
tions. To mitigate this issue, we start by setting an initial angle
po as (sin 0, cos 0) = (0, 1) and selecting a minimum increment
angle, denoted as 6. We convert the angle § into its nearest sine
and cosine representation that can be exactly represented by the
machine. We denote this approximate angle as 5 and construct
the rotation matrix Rj. Given that this matrix is derived from 5,
it consists of quantities that can be represented by the machine.
Importantly, we ensure that 2; maintains the fundamental attribute
of orthogonality in the rotation matrix.

results for Dijkstra’s algorithm on weighted graphs, accom-
panied by a brief overview of its proof. We then shift our
focus to undirected graphs, examining algorithms such as
Breadth-First Search, Depth-First Search, and the identifica-
tion of Strongly Connected Components. Alongside these
results, we provide an outline of the proofs for the related
theorems. Lastly, we present our results on multitasking,
which combines the constructions of Dijkstra’s algorithm
with those of Breadth-First Search and Depth-First Search,
and discuss the principles behind this construction. The
complete proofs are in the Appendix C.

Theorem 6.1. There exists a looped-transformer hr in the
form of (2), with 17 layers, 3 attention heads, and layer
width O(1) that simulates Dijkstra’s shortest path algo-
rithm for weighted graphs with rational edge-weights, up to
O(61) nodes and graph diameter of O(Qe).

Proof Overview: Theorem 6.1 is proved by construction.
Our proof begins by adapting Dijkstra’s algorithm to fit our
looping structure. This involves unrolling any nested opera-
tions to fit within a single loop, as described in Algorithm 1.
Although these modifications change Dijkstra’s algorithm
from its traditional form, they do not alter its core func-
tionality. In conventional programming, loops within the
code must be completed before the rest of the code can con-
tinue. However, in the absence of additional structures, our
unrolling approach would lead to all instructions being exe-
cuted all at once. This could potentially disrupt the intended
sequence of operations. To address this, we also implement
binary flags and conditional selections, as explained in (4).
These mechanisms are vital for ensuring that certain oper-
ations only modify data under specific conditions. A key
example in our simulations is the minimum function which
has O(n) complexity and runs concurrently with the rest
of the algorithm. When this function is active, it prevents
modifications by other parts of the algorithm. The modifi-
cations can resume once the minimum function has been
completed, at which point it becomes inactive. Finally, each
step of the rewritten algorithm is implemented as a series
of transformer layers in the form of (2), accounting for 17
layers, and three attention heads: two standard and one spe-
cialized over A. Some of the core simulation mechanisms
of these functions are extensively discussed in Section 4
and Section 6, demonstrating that most of the constructions
are based on previously described principles. Furthermore,
Theorem 6.1 is restricted to rational edge weights due to the
inherent limitations of finite precision in representing edge
values. We reweight the edges to circumvent issues arising
from the tolerance ¢ of the less-than function (3), which
may not adequately capture minor path differences. This
involves dividing all edge weights by the smallest absolute
edge weight. Consequently, this ensures that the minimal
non-zero path difference is effectively greater than one. The
graph size is bounded by the enumeration constraints of 5,
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as mentioned in Section 6.1. The dependence on the graph
diameter is attributed to the maximum distance that can be
constructed during the execution of Dijkstra’s algorithm.
Due to the algorithm’s design, which excludes repeating or
negative paths, the quantity is determined by the weighted
graph’s diameter. After the reweighting strategy, the diame-
ter must remain below (2, leading to a dependence of O(€2¢)
on the original graph diameter.

‘We now present our results for algorithms on unweighted
graphs, followed by a collective discussion of their proofs.

Theorem 6.2. There exists a looped-transformer hr in
the form of (2), with 17 layers, 3 attention heads, and
layer width O(1) that simulates Breadth-First Search for
unweighted graphs with up to min(O(5=1), O(Q)) nodes.

Theorem 6.3. There exists a looped-transformer hr in
the form of (2), with 15 layers, 3 attention heads, and
layer width O(1) that simulates Depth-First Search for un-
weighted graphs with up to min(O(5~1), O(2)) nodes.

Theorem 6.4. There exists a looped-transformer h in the
form of (2), with 22 layers, 4 attention heads, and layer
width O(1) that simulates Kosaraju’s Strongly Connected
Components algorithm for unweighted graphs with up to
min(O(671), O(Q)) nodes.

Proof Overview: Our proofs for Theorems 6.2-6.4 also
follow a constructive approach. The implementations of
breadth-first and depth-first search are comparable to Di-
jkstra’s algorithm in terms of the number of layers and
attention heads. However, the Strongly Connected Com-
ponents algorithm utilizes significantly more layers and an
additional attention head for A, due to its complexity and the
need for a depth-first search over both A and A". Despite
the absence of edge weights, we encounter an additional
bound of O(€2) on the number of nodes. This stems from
our method of replicating the behavior of queues and stacks,
which are used in these algorithms. Similar to our approach
with Dijkstra’s algorithm, we also incorporate an interaction
with a minimum function. During the execution of the algo-
rithms, priority values are assigned to the neighbors of each
node visited. These assigned values shape the minimum
function’s behavior: increasing priority values mimic the
functionality of a queue while decreasing values replicate
that of a stack. Hence, having more nodes in a graph in-
creases the number of loop iterations, thereby increasing
the absolute value of the priority value. Given that these
priority values feature in conditional selections, they are
also subject to the constraints imposed by €2. Consequently,
the graph’s size limitations are independently determined by
either 6 or 2. In the implementation of Breadth-First Search
(BFS) and Depth-First Search (DFS), since nodes only need
to be visited once, €2 is the maximum node count for which
accurate simulation of any graph is guaranteed. In the im-
plementation of the Strongly Connected Components (SCC)

algorithm, which involves two distinct DFS operations, the
maximum node count is constrained to €2/3. This specific
limit arises from the two-phase process, and also the role of
the first DFS in organizing nodes by their finishing times,
which is further detailed in Appendix C.

‘We now present our results on multitasking, followed by a
discussion of its construction. The following remark encap-
sulates the capabilities of our unified model.

Remark 6.5. There exists a looped transformer hAr in
the form of (2), with 19 layers, 3 attention heads and
layer width O(1) that simulates (i) Depth-First Search and
Breadth-First Search for unweighted graphs with up to
min(O(5~1), O(2)) nodes; and (ii) Dijkstra’s shortest path
algorithm for weighted graphs with rational edge-weights
with up to O(6~') and graph diameter of O(Qe).

Our unified model can simulate any of the three algorithms
with the right input configuration. Although the input struc-
ture remains constant across all three algorithms, it only
needs minor modifications to specify the algorithm to be
executed. This result leverages the construction components
of the previous models and thus inherits the limitations
presented by the previous results. These algorithms share
common structures and functions, which are reused to avoid
redundancy, as well as distinct components specific to each
algorithm, such as variables and functions that need to be
accommodated. For instance, all algorithms use the mini-
mum function as well as a common termination criterion.
The accommodation of unique functions for each algorithm
is achieved through a conditional selection function. This
function determines the variables to be updated, ensuring
the execution reflects the intended algorithmic behavior.

Overall, while our guarantees are limited by parameters ¢,
), and 5 an important question remains: What are the im-
plications of using a graph that fails to meet assumptions in
our theorems? This situation could result in inaccurate simu-
lation outcomes or even a failure to meet the pre-established
termination condition, thus failing to halt as expected.

6.4. Turing Completeness

We now present our result on Turing Completeness of the
architecture in (2). It is important to note that using a graph
convolution operation within the attention mechanism as
shown in (1) might affect the model’s expressiveness. We
demonstrate that a transformer based on this structure is also
Turing Complete. Following the methodology of Giannou
et al. (2023), we demonstrate this claim by successfully sim-
ulating SUBLEQ, a single-instruction language that, with
arbitrary memory resources, is proven to be Turing Com-
plete (Mavaddat & Parhami, 1988).

Remark 6.6. There exists a looped-transformer hr in the
form of (2), which utilizes the modified attention head in
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(1), with 11 layers, 3 attention heads, and layer width O(1)
that simulates SUBLEQ.

Proof Overview: We prove that the architecture in (2) simu-
lates a modified version of SUBLEQ, which is also Turing
Complete. This modification changes the memory structure
of SUBLEQ, utilizing two memory blocks instead of one.
The first block is the standard memory block as in Mavad-
dat & Parhami (1988) which can be read and altered. The
second is a special read-only memory that only stores the ad-
jacency matrix. We introduce this memory modification to
reflect the fact that the architecture in (2) has two inputs, the
data matrix X and the padded adjacency matrix A. The for-
mer is modified at each iteration of the looped transformer
architecture, while the latter is only used in the convolution
stage, and it never changes. The modified version of SUB-
LEQ utilizes data from the graph by reading the data from
the second block and copying them to the first block. We
show that this operation of reading and copying data can be
simulated by our read operation in Section 5.3. The rest of
SUBLEQ can be simulated using generic attention heads
and MLPs similarly to Giannou et al. (2023). The complete
proof is provided in Appendix C.

7. Training Limitations in Algorithm
Simulation

In this section, we address the inherent challenges of recov-
ering the constructive parameters that simulate the aforemen-
tioned algorithms through training. Despite demonstrating
the existence of parameters capable of simulation, discover-
ing them through gradient-based training is challenging.

This difficulty arises from the need to approximate discon-
tinuous functions — such as conditional selection or the less-
than function — with continuous functions. In such cases,
using neural networks to capture the sharp transitions of dis-
continuities leads to severe ill-conditioning. Ill-conditioning
manifests as a sharp and narrow region of the loss function
around the desired solution, which hampers parameter re-
covery during training. Moreover, as empirically demon-
strated in Appendix B.4, the finer the simulation parameters
(e.g., the smaller € is in Equation (3)), the stronger the ill-
conditioning, thus making recovery increasingly difficult.

However, these findings do not undermine the potential of
neural networks to solve such tasks. It simply highlights the
issues related to simulating specific algorithms using neural
networks. Alternatives to this problem are further discussed
in (Hertrich & Sering, 2023), where the authors present algo-
rithms for minimum spanning tree and maximum flow that
circumvent the discontinuities associated with more con-
ventional approaches like Kruskal’s and Edmonds-Karp’s
algorithms, thus avoiding approximation issues.

We believe that, with current training methods, the solutions

that demonstrate good generalization capabilities may also
indicate the existence of algorithms that can effectively solve
these tasks without the use of conditional branching, which
is primarily responsible for the observed discontinuities.

8. Conclusion and Future Work

We present a constructive approach where a looped trans-
former, combined with graph convolution operations, is used
to simulate various graph algorithms. This demonstrates the
potential of looped transformers for algorithmic reasoning
on graphs. This architecture also proves to be efficient, as it
has constant network width regardless of the input graph’s
size, allowing it to handle graphs of varying dimensions.

Outside the scope of simulation, studying looped transform-
ers for graph algorithms within the Probably Approximate
Correct (PAC) learning framework offers an exciting re-
search direction. Specifically, the constructive parameters
0, b, and ¢ are essential in determining which graphs can be
simulated. However, these parameters may also influence
the learnability of algorithmic subroutines. An interesting
research question involves determining the sample com-
plexity of subroutines as a function of these constructive
parameters. Investigating this could further reveal the rela-
tionship between the design of solutions and their learning
effectiveness under the PAC framework.

Impact Statement

Our results demonstrate the potential of neural networks in
handling complex reasoning tasks, a domain traditionally
thought to be exclusive to more explicit classical compu-
tational approaches. By bridging this gap, our research
contributes to the broader comprehension of neural network
capabilities. While our work is theoretical, it is important to
acknowledge that there may be societal implications stem-
ming from our results. However, at this stage, we do not
identify any specific consequences that must be specifically
highlighted here.
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A. Additional related work

A substantial body of research has focused on testing the capability of neural networks to execute algorithms. Early efforts
include models like Hopfield Networks (Hopfield & Tank, 1985), which were applied to combinatorial optimization tasks
(Smith, 1999). Prior to the emergence of transformers, models such as Neural Turing Machines (NTMs) (Graves et al., 2014)
and Memory Networks (Weston et al., 2014) integrated neural networks with external memory, showing strong performance
in tasks like copying and sorting. Subsequent advances were seen by adapting NTMs for learning algorithmic tasks (Kaiser
& Sutskever, 2016), incorporating a dynamic memory (Graves et al., 2016), and utilizing recurrent models to learn multiple
programs (Reed & De Freitas, 2016). These advancements laid the groundwork for concepts used in transformers and this
work. For instance, the addressing mechanism in Graves et al. (2014) is akin to the attention mechanism in transformers, as
well as concepts like scratch space for intermediate computations, as proposed by Reed & De Freitas (2016).

In the more recent developments related to algorithmic reasoning in transformers, dedicated frameworks have emerged
to represent and execute complex algorithmic tasks. An example of this is the Restricted Access Sequence Processing
Language (RASP). RASP allows for the expression of sequences of steps in transformers and can be applied to tasks such as
token counting and sorting. Along this line, Lindner et al. (2023) developed a compiler for translating between RASP and
Transformer models, while Friedman et al. (2023) have designed modified Transformers that can be trained and subsequently
converted to RASP instructions.

B. Implementation details

In this section, we describe aspects of the implementation and empirical verification of our simulations. As mentioned in
Section 4, despite our constructions being based on hardmax, for the purpose of empirical validation and to better align with
the implementation practices in transformers, we utilize the softmax function:

os(zi) = =K

where K represents the number of elements. When using the softmax in attention, we divide all parameters in W and W
by a temperature parameter 7. The value of 7" is important as it determines the sharpness of the softmax operation. As
shown in Giannou et al. (2023) and Liu et al. (2023), as the temperature gets arbitrarily small, the behavior of the softmax
approximates that of the hardmax, which is used in our constructions.

However, it is important to acknowledge that in practice the simulation of all algorithmic steps is subject to numerical
limitations due to floating-point arithmetic. For example, using the minimum angle b thata computer can represent accurately
is impractical. The reason is that this quantity becomes overshadowed by subsequent operations that introduce imprecision,
such as matrix multiplications, and by non-linear elements like the softmax function in the attention stage. In algorithmic
tasks, simulations exhibit a very low tolerance for computational errors. If not properly managed, these errors can propagate,
leading to inaccurate prediction or non-termination. To address this, we adopt a more conservative approach in setting
parameters for 6 and ¢ as described in Appendix B.3. In addition, we incorporate rounding operations for both binary values
and positional encodings, following the structure described in (2).

B.1. Rounding functions

We utilize rounding functions in-between the simulated algorithmic steps to ensure that the computation of binary values
made by the transformer does not include additional errors that propagate along the simulation. To this end, we adapt the
rounding operation presented by Giannou et al. (2023), which can be algebraically expressed as:

round(X [1, C]) ~ 0" (¢(X[;, C] = V/2) = ¢(X[;,C] = (V2 + 1)), Q)

where 7 is a small tolerance value. This implementation can also be done using the structure presented in (2), noting that the
expression in (5) is equivalent to the 1ess—than function presented in Section 5.2, with € = 7, and X[, D] equivalent to
the quantity 1/2.

In practice, the increment function described in Appendix C.1.2 introduces noise in the positional encodings. To counter
this, we employ a rounding procedure for circular positional encodings. This involves using two transformer layers. The first
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layer generates a binary vector based on the current positional encoding We then round this quantity utilizing the procedure
described in (5), and finally obtain the corresponding positional encoding based on the index position using the last layer.

The first attention layer is set up as described in (8), where D is set to Bgiopa, and Spg denotes the target column in the
scratchpad. Another attention head is used to clear the original scratchpad contents, as detailed in (9). The corresponding
Sfuvp in this layer implements Equation (5), with Spg as the source column C.

In the second transformer layer, the matrices W(l), W(l), and W‘(,l) of the first attention head are defined as follows:

14

0 otherwise.

0 otherwise,

(W(l) W(E—;))' o {T1/2 if i = Spg W(l))' o {2 ifi = (P)k,] = (E)k, keo,1
K s ij = ij =

In this layer, E denotes the target columns for inserting positional encodings, and T is an annealed temperature parameter of
softmax, which is set higher than in other implementations (e.g., 7' = 10~°). This ensures that minor differences in this
attention head are minimized, thereby reducing errors in reading positional encodings. Additionally, we use the configuration
of (9) in another attention head to clear the contents of £ and Spg. Lastly, the implementation of fy p, as defined in (10),
clears the last n entries of the target field E.

B.2. Writing prevention after termination

The constructions in the empirical section slightly differ from the ones presented in Appendix C due to an additional
consideration. While the theoretical constructions require delivering accurate outputs upon reaching the termination
condition, one could continue running the looped transformer after the termination flag is activated. To ensure that the solution
is not modified post-termination, we introduce extra constraints in the form of flags that deactivate write permissions once
the termination condition is met. These are articulated through algebraic expressions, easily integrating into the transformer
implementation. In practice, the writing permission flag is not determined solely by the minimum function’s termination flag
(termy;,) for the implementation of Theorem 6.1 and similar algorithms. Instead, we construct a flag defined as write =
termy;, and (not term), which can be implemented as X[ :,write] = ¢(X[:, termy,]-X[:, term]). This
condition ensures that once the algorithm reaches the termination state, writing is forbidden.

Furthermore, we employ a conditional selection mechanism — as explained in Appendix C.1.1 — to maintain the termination
flag, which is activated if the terminating condition is met but the simulation continues running. This is performed by
first moving the calculation of the termination condition to a temporary storage area, denoted as Si;m,. Then, at the end
of each iteration, we execute the layer: cond-select (X, Sterm, term, Sierm, term). This means that if the
recalculated termination condition in Siy is true, then the term variable is updated; otherwise, it remains unchanged,
effectively managing the looped transformer’s operation post-termination.

B.3. Empirical validation

We validate our theoretical results using graphs in the CLRS Algorithmic Reasoning Benchmark (Velickovi¢ et al., 2022).
This benchmark offers data created for multiple tasks, including sorting, searching, and geometry, among others. Additionally,
it encompasses tasks specific to graphs, including those simulated in this study. These tasks are divided into segments with
varying input sizes. For graph-related tasks, the training and validation sets include graphs with 16 nodes, while the test set
contains graphs with 64 nodes. In Table 1, we show that our simulations achieve perfect accuracy across all tested instances,

Table 1. Accuracy over algorithmic tasks on CLRS
Split (size) BES DFS Dijkstra SCC
Train (1000) 100% 100% 100% 100%
Validation (32) 100% 100% 100% 100%
Test (32) 100% 100% 100% 100%

where we also observe the same performance for the multitask model. In our empirical verifications, we consistently apply
specific parameters: an angular increment J set at 1072, a maximum value € of 10°, and a temperature parameter 7" at
10~7. Additionally, in the masking operations such as Appendix C.2.1, we address numerical imprecision during execution
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by using a value that is an order of magnitude smaller than 2. This precaution is crucial because minor inaccuracies that
slightly increase these values above (2 could lead to cumulative errors in the conditional selection function, potentially
impacting the integrity of our results.

Furthermore, beyond the practical considerations discussed in the previous sections, the implementation of breadth-first
search in the CLRS benchmark slightly differs from the one presented in Algorithm 4. This is because, as mentioned in
Velickovi¢ et al. (2022), the results of the algorithm are built on top of the concept of parallel execution, which implies that
for algorithms such as breadth-first search, there is no concept of order in the discovery of neighbor nodes, as outlined in
Cormen et al. (2022). Instead, the order of discovery in CLRS is established by the value of the node index. Therefore, to
address this particularity, the implementation of the conditional selection function in step (9) of Algorithm 4 has another
pair of clauses, which can be expressed by cond-select (X, valpest, order, termy,, order). Essentially,
this variation in the implementation is designed to capture the priority value from the parent node, thereby ensuring uniform
priority assignment across all nodes within the same neighborhood level.

B.4. 1ll-conditioning effects on recovering simulation parameters

In this section, we discuss the challenges that hinder the discovery of simulation parameters for any of the algorithms
presented through training. We begin by examining an important distinction in simulation results: exact versus approximate
representation. When analyzing the expressivity of neural networks, most results focus on their ability to approximate
desired target functions (Cybenko, 1989; Hornik et al., 1989; Lin et al., 2017; Zhou, 2020; Yun et al., 2020). However,
only certain functions can be exactly represented by neural networks, i.e., with no approximation error. In (Arora et al.,
2018), the authors demonstrate that feedforward neural networks with ReLU activation functions are inherently limited to
exactly representing continuous and piecewise-linear functions. This limitation does not prevent such neural networks from
representing other functions, albeit only approximately. This issue extends beyond the specific architecture studied in (Arora
et al., 2018), as it can be argued that any neural network using continuous functions can only approximate discontinuous
functions. Our simulation results directly observe this limitation: the construction of discontinuous functions, such as if-else
or less-than, are subject to a degree of approximation controlled by the parameters {2 and ¢, as shown in Equation (4) and
Equation (3), respectively.

Relying on approximations for discontinuous functions introduces a significant challenge: ill-conditioning. In discontinuous
functions, small input increments can cause sharp changes in outputs. Capturing this in the linear operations of neural
networks, which must approximate these sharp variations, leads to ill-conditioning. The more precise the approximation, the
more ill-conditioned the solution becomes, directly affecting the discovery of such parameters through training. Even with
strong supervision (Velickovi¢ et al., 2022; Xu et al., 2020) in the form of ground-truth inputs and outputs for every layer,
recovering such approximations is challenging.

Simulation: if-else Simulation: less-than

1010k

1010 - 1 102

101} 1 100

Condition number

1010 L

10° 10" 102 10% 10 10° 10° 107 1077 10° 1070 107t 107 107 107! 10°
Parameter: 2 Parameter: ¢

Figure 3. Condition number of linear layers in the constructions of the if-else (left) and less-than (right) functions. The x-axes indicate the
value of the construction parameters 2 and € of Equation (4) and Equation (3), respectively. A higher 2 improves the simulation quality
for the if-else function, while a smaller € improves the simulation quality for the less-than function.

To illustrate this, we use our construction of the if-else function (Equation (4)), controlled by the parameter €2, which limits
the highest absolute value in any clause, determining the range of the approximation. We then estimate the Hessian with
respect to the loss function as a function of €2, as shown in Figure 3. Analyzing the condition number of this Hessian
provides insight into the sharpness of the region surrounding the optimal solution: a higher condition number indicates a
sharper and narrower region around the local optimum, which complicates recovery during training.
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Our empirical results show that once €2 exceeds 50, the condition number of the Hessian rises above 10'°. This indicates
an optimization landscape so sharp that finding the solution through any learning routine becomes virtually impossible.
To further support this claim, we conducted an additional experiment using the if-else function. We initialized the layer
parameters with the construction values, adding a very small quantity of random noise (of magnitude 10~7). Despite
conducting numerous experiments, initializing the parameters very close to the optimal target, and utilizing various
optimization strategies—including second-order methods—the parameters failed to converge to the target solution.

This experiment further illustrates that any modern architecture relying on continuous functions to approximate disconti-
nuities will struggle to discover parameters through training that achieve perfect (or even good) scale generalization. The
better the scale generalization required, the more severe the ill-conditioning becomes, making it increasingly difficult to
discover good parameters.
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C. Proofs of Theorems
C.1. Preparations for the proofs

In this section, we first introduce key coding primitives that are essential to all the algorithmic simulations presented. We
illustrate these coding primitives through the algorithm of the minimum function. This function is designed to identify the
smallest value in a list, along with its index and other pertinent information. As outlined in Section 6, for each simulated
algorithm, we adapt their formulations to align with the looped architecture of the transformer. Although this architecture
inherently does not support inner loops, we simplify the presentation of the pseudocode by using inner loops solely to
depict functions that are operated in parallel by the transformer. As further depicted in Algorithms 3-6, the iteration of
the minimum function described in Algorithm 2 is executed inside the main loop of the transformer, along with the other
functions of the corresponding algorithms. The algorithm description is also accompanied by comments that enumerate the
steps that are implemented using the layer formulation in (2). Each comment is also linked to the section that provides a
more detailed explanation of its implementation.

Algorithm 2 Iteration of the minimum function (get_minimum)

Input: data z, size n List of values to find the minimum
Input: data zscc, size n

' SCCeur, SCChest = 0, 0 Only used for SCC
: idXeur, Valeyr =0, 0
* idXpest, Valpest = 0, 2
Visitmin = array of size n
for i = 1ton do
ViSitmin[1] = false
end for
. termpmin = false

A R ol

9: if termpy, is true then

11:  termmi, = false (1) Re-initialize variables [C.1.1]
12: end if

13: idXcur = idXeur + 1 (2) Increment position [C.1.2]
14: valey = x[idXcur] (3) Read value at current position [C.1.3]
15: scceur = Tscel[idXeur]

16: condition = valeyr < valpest (4) Compare values [C.1.4]
17: if condition then

18:  valpest, idXpest = Valeur, 1dXeur (5) Update variables [C.1.1]
19: SCChest = SCCeur

20: end if

21: viSityin[idXeyr ] = true (6) Visit current position [C.1.5]
22: termpi, = not (false in visityiy) (7) Trigger termination [C.1.6]

The lines [1-8] consist of the initialization of the data, while the remaining represent the algorithm executed inside the loop.
Note that lines 1, 15, and 19 are highlighted in gray, and are only defined in the case of the Strongly Connected Components
algorithm. As described in Section 5.1, the single variables (e.g. val.,,) occupy the top row, while lists (e.g. visitpyin)
occupy the last n rows of X. Furthermore, the implementation of indexes requires two different representations in the input
matrix X.

In Algorithm 2, these correspond to idx.,, and idxyes: as well as the variables for the Strongly Connected Component
implementation. In X, these indices are represented both as integer numbers and positional encodings. The latter is vital
for algorithm functionality, while integer numbers are key in the decoding phase, forming the output data. Consequently,
ambiguous variables in proofs are referred to using their positional encoding. For example, if 1 dx.,, points to the list’s first
element during execution, it is represented as p; = (sin(61), cos(f;)) — the positional encoding for the first node. The
integer number representation is emphasized when relevant. Finally, the comments that enumerate and describe the steps
executed are the basis for the functions implemented by our architecture.
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C.1.1. CONDITIONAL SELECTION: STEPS (1) AND (5)

This section details the implementation of the conditional selection functions outlined in steps (1) and (5) of Algorithm 2.
We reference the structure of this implementation in the subsequent proofs. In our constructions, we express this operation
as: cond-select (X,V1,Vo,C,E) = write(if-else(X[:,Vi], X[:,Vo], X[:,C]l), X[:,E]). Here,
X is the input matrix; V; and Vj are columns for clause values; C' and E are the condition and target field, respectively. The
approximation of the function i f-else is shown in (4).

Next, we describe how this function is implemented. As with other implementations, we utilize a scratchpad area, denoted as
S, to store intermediate calculations. Each column in this space is indexed by S;. During implementation, we also introduce
more abstract indices for the scratchpad, such as Sigy,,,. While it is understood that this index correlates to a specific integer
number, we adopt this approach to enhance clarity and comprehension. By using such descriptive indexing, we aim to
convey the intended purpose of each allocation in the scratchpad.

As also described in the implementation of the 1ess—than function (see Section 5.2), we set all parameters to zero in the
attention stage, only maintaining the residual connection. Then, for the values of the fyyp, we define:

e E),(Vo,S
1 if (i, ) € (E(E‘/)'lfs‘{:g) 1)}

e Vo,V1,C,E, . e C,51),(Baiobal, S
(W(l))z] _ 1 ifie {BUg|oha1~,Blucal}’ J=1 (W(Q))i,j — —Q if (Z’]) € «“ (leloEalilgz)l 2)}
' 0 otherwise, Q  ifi=C,j=25
0 otherwise,
o 1 ifi=FE j=5
i) e (PR v
(W(S))w - {o }(1 J). (52,51) (W(4))i,j —{_1 ifij—F )
otherwise, 0 otherwise.

In the general construction of the conditional selection function, the first layer, W (1), functions as an identity operator. The
second layer, W) constructs the arguments of ¢ as detailed in (4). The third layer, W3, sums the terms post-ReLU,
and the last layer, W ®) is designed to transfer the term, initially located in the scratchpad, to the specified column E. Our
complete construction also accounts for the negative counterparts of the clauses. For simplicity, the adaptation for these
counterparts is not included in the proofs, as it simply involves inverting the signs of the inputs Vy, V; and F in W) and
W® . While we present an implementation for a single pair of clauses V; and V7, this function can accommodate additional
variables following the same mechanism as in (4), as is done for steps (1) and (5) of Algorithm 2. For example, in the
implementation of Algorithm 2, the conditional selection clause represented in step (5) also needs to update the integer
representation of the index, therefore another pair of clauses is utilized in (5).

Essentially, the general implementation of the conditional selection function operates by choosing a value from two columns
in the input matrix and inserting it into a designated field. However, the implementation varies in the context of the
re-initialization function. In this scenario, the conditional selection is executed between the current values in the algorithm
and their reset versions. Specifically for this function, the reset values must be generated in the first layer and then placed in
the scratchpad, which assumes the role of the V; field in the aforementioned formulation. This adjustment ensures that the
function appropriately handles the re-initialization process within the algorithmic framework.

1 ifi = {Bglobala Bigcal, idXeur, valeur, ..., ViSitmin} J=1
(po)r  if i = (idXeur)k, J = (Siaxe k> k € {1,2}
(W(l))i’j = Q ifi = Valbest,j = Svalbesl (7)
0 if ¢ = valey;, ..., ViSitpin, J = Szero
0

otherwise.

In this implementation, the variable for the current index is reset to a specific value, pg = (sin(0), cos(0)) = (0, 1). This
value does not correspond to any node enumerated and is intentionally reserved in our constructions to represent the
equivalent of the index O in integer numbers. This approach ensures that py serves as a unique and identifiable starting point
or reset state within the algorithm. For the remaining layers, the placeholder of field V; is then occupied by the targets of
w® je. Sidsxe s Ovalyey AN Szero 1n their corresponding operations. Moreover, it is important to note that regardless of the
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established condition, the status of term;, is invariably set to false. Consequently, this field is consistently cleared in every
iteration, similar to the way the target field F is cleared.

C.1.2. INCREMENT POSITION: STEP (2)

After the re-initialization process, the first step that follows is obtaining the next index in the list. In this case, since we
utilize circular positional encodings, all that is needed is to utilize a rotation matrix. The rotation matrix is predetermined by
5, as discussed in Section 6.1. We express this operation as increment (X, C, D) = write (rotate(X[:, Cl),
X[:,D]), where C' and D are the source and target columns. In the implementation of step (2), both C' and D are the
variable idx.,.. Below, we detail the specific set of parameters used to implement this function. Again, in this case, we
only utilize the entries of fy p, while the parameters of f, are set to zero.

COS((S)A ifi = (C)k, j= (Sc)k, ke {1,2}
—sin(d) ifi = (C)1, j = (S0)2
J

(W(l))iJ‘ = sin((f) if’i = (C)Q, | = (SC)I
1 ifieD, j=1
0 otherwise,
. o 1 ifi=(Sc)k,j = (D) ke {1,2}
1 ifie{D,Sc}, j=1 e S
W)y, = ' ' WWy, . =1 ifieD,j=
( Ji 0 otherwise, ( Ji ne . =
0 otherwise.

In this context, the initial entries of the matrix W (1) correspond to the rotation matrix R 5. Additionally, this matrix includes
a unique non-zero entry, specifically designed to reset the target field of the final layer. It is also important to note that the
variables C' and D are represented by a tuple of sine and cosine values, and as such, its coordinates must be accurately
aligned. Moreover, the implementation must account for the fact that positional encodings can possess negative values.
The parameters for these added entries are essentially the inverse of the signs present in W (1) and W*). To facilitate
this process, the implementation also incorporates additional scratchpad entries, which serve to temporarily hold these
intermediate results.

C.1.3. READ VALUE: STEP (3)

Once the node index is updated, we need to retrieve its associated value from the input list, possibly accompanied by other
relevant information. This operation can be expressed as read-X (X, C, D, E) = write(X[C, D], X[1,E]),
where C' and D denote the coordinates of the target entry and F is the placeholder for the target field. In a more basic
form, this operation involves extracting information from a local variable and transferring it into a global variable. For the
implementation of step (3), we utilize this function to extract the entry from the list of values (denoted by x in Algorithm 2)
as well as from the list that encodes the indexes with integer numbers.

The principle for this operation is similar to the extraction of rows or columns of A, as presented in Section 5.3. We employ
a standard attention mechanism (no graph convolution) leveraging the positional encoding of the idx.,, variable to obtain the
entries in the corresponding row.

1 ifie{(P);,(C);}, 1=1,2 1) 2 ifi=D,j=F
W(1)7W(1) i= Jo Jjs ) W, = ) 8
(Wi Q )i 0 otherwise, ( v )i 0 otherwise. ®)

To ensure the target column F is prepared for the insertion of the desired value, we apply a distinct attention mechanism.
This mechanism employs a standard attention head but sets the first entry of XWx and X W, to po. This configuration
guarantees that, when executing a hardmax operation, the attention matrix effectively functions as an identity matrix.
Consequently, this facilitates the removal of any existing entries in the target column FE.

The matrices W}f ), W(2), and W‘(/Q) are defined as follows:

1 if (4, 5) € {((P)1,1), (P)2,2), (Bgiobai; 2) } 2 -1 ifi,j=F
W(2)7W(2) = ) ) ) 3 <) g ’ W, ) i= ’ 9
( K Q ) J 0 otherwise, ( v )’J 0 otherwise. ©)
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This results in the following attention matrix:

p(l Po pi p1 pi P
O_(XWé;)WI({Q)TXT) _ | [ pie e i _
PaPo | PaP1 * PaPn

By employing the value matrix W7y,, we can clear the target column E to insert new values. It is important to note that
the attention head in (8) also adds terms to the last n rows of F, which are undesirable. To counteract this, we use the
parameters of the fyp:

1 ifi,j=F
(W(l))i,j =49 —Q ifi= Byjopa, j = £ (W(Q’g))ivj - {
0 otherwise,

1 ifi,j=F

w® i =
0 otherwise, ( ) J

(10)

-1 ifi,j=F
0 otherwise,

In this construction, the first layer removes the top row entry of E, which is then passed along the second and third layers,
and finally subtracted from the target, removing all entries in the bottom rows.

C.1.4. COMPARE VALUES: STEP (4)

In this stage, we focus on comparing the current value (val.,,) with the best value found so far (valpest). The
implementation of this function is detailed in Section 5.2. In this context, the operation is expressed as less—than (X,
valcyr, Valpest, condition).

C.1.5. VISIT NODE: STEP (6)

Each iteration of the minimum function sets the current node as visited. This action is crucial for the function’s termination
criteria, which checks if all nodes have been visited.

Essentially, the role of this function is to assign a predefined value to a specific entry (X); ;. We express this operation as
write-row(X, C, D, E) = write(X[0,D]l.ex,c), X[:,E]). Here, e; symbolizes the standard basis vector
in an n + 1 dimensional space. The variables C, D, and E in the expression represent columns that contain the row to
be written, the writing content, and the target field, respectively. This writing procedure is analogous to the read function,
previously described in Appendix C.1.3.

The matrices Wy, Wq, and Wy, are defined as follows:

1 ifie{(P);,(C),}, =12 1 2 ifi=D,j=F
W(l), (1) i = J» il ) W() R ) 11
(Wi Q Ji 0 otherwise, ( v )i 0 otherwise. an

In the application of step (6) of Algorithm 2, we set C' to be idXcyr, D to Bglobal, and E to the visity, variable. Additionally,
as also pointed out in Appendix C.1.3, the extra entries generated by the attention head in (11) must also be eliminated.
Contrary to the read function, in this instance, the unwanted entry appears in the top row of the target field. To address
this, we adopt the same strategy as in the read function, utilizing an additional attention head that functions as the identity
function, deleting the top row entry using the global bias Bgjopal.

( ))’ij — {1 if (Z,]) € {((P)lv]-)v ((P)272)a (Bgloba172)}

W(2), 2
( K Q 0 otherwise,

@)~ —1 ifi= Byigpai, j = E
s 0 otherwise.

To define fyLp, we set all its parameters to zero and retain only the residual connection. This approach essentially disregards
any contribution from fyp.

C.1.6. TERMINATE: STEP (7)

At the end of each step of the minimum function, as well as in the other algorithms, we must verify if all nodes have been
visited. If all nodes are visited, this indicates termination, therefore the termination flag must be activated. This process can
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be formulated as all-one (X, C, E) = write(all(X[2:,C]), X[1,E]),whereall isa function indicating
whether all elements are non-zero, while X [2:, C] captures the last n rows of the column C.

We start by defining the attention stage:

1 1
(Wie! Wi

- -1 ifi=FE, j=1

_ 165 € P D, ((P)2:2), Bawwas 2}y )y g =B

_ . . v )ig = 1II'? = Dglobal, J =
otherwise, 0 otherwise

The first attention head, defined as the read function in Appendix C.1.3, is tasked with clearing fields used in the writing
process. Additionally, we define:

—1 if i = Biopa 1 if ¢ = Bgjopal Q ifi=C, j=F
2 e 2 e 2 e .
(W}(())i,j =41 if ¢ = Biocal (Wé) ))i,j =4 —1 ifi= Bl (W\(/ ))i,j =< - ifi=DBgea, j=F
0 otherwise, 0 otherwise, 0 otherwise.

This results in the following attention matrix:

11 1 0[Yn - Yn
T -1 — -1 1[0 - 0

U(XWS)WI(E)TXT) =ol2] . o = (12)
1| -1 1 il o 0

The top row of the attention matrix is crucial as it aggregates the last n terms of the matrix X. In addition, since our
construction only uses columns with null values at the top row, the remaining n rows in (12) do not add any contribution in
any field. We first define the terms for fyp, followed by an overview of how this implementation simulates the desired
behavior.

1 ifi=FE, je{E, Sg}

1 ifie{FE, Sg,Sx}, j=1
ifi=FE, j=5; (W(2’3))i,j={ ifi e { g, Sp}, j=1

Wy,
( )ij 0 otherwise,

I
|
_

0 otherwise,

1 ifie{E Sz}, j=FE
(WWy, ;=3 -1 ifi=S8g, j=FE

0 otherwise.

In the implementation of the fup, the entries for Sk and Sz are used to remove the entries pre-MLP, in both positive and
negative cases. In summary, the entire operation performs as follows: ¢(1 — Q + 2/n>",(X[i,C])). When the sum of
elements in C is less than n, the term —¢) dominates, ensuring a resulting flag of zero. However, once all nodes are visited,
X[:, C] offsets the negative influence of €2, thereby activating the flag.
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C.2. Proof of Theorem 6.1

In this section, we introduce the constructions utilized to simulate Dijkstra’s shortest path algorithm (Dijkstra, 1959). This
algorithm aims to determine the shortest path between any node of a weighted graph and a given source node. To this
end, we first present an overview of the implementation strategy, which accompanies the limitations that are described in
Theorem 6.1. These are then followed by the specific construction of each step of the algorithm.

Implementation overview: Executing Dijkstra’s algorithm consists of an iterative process that detects the node with the
current shortest distance from the source node, updating the shortest path distances to neighboring nodes and marking
the given node as visited. This process continues until all nodes have been visited. In our implementation, we simulate a
minimum function that operates in the column that stores the distances. This operation is alternated with the main execution
of the algorithm, that is, the section that reads the adjacency matrix and updates the distances. This is made possible by the
conditional selection mechanism and the minimum function’s termination flag, which conditions any writing operations in
the main execution of the algorithm.

Specifications of the architecture: In the following pseudocode description, we show the steps required to execute the
algorithm. Each of the steps has an associated transformer layer in the form of (2) that implements the corresponding
routine. In the case of Dijkstra’s algorithm, there is a total of 17 steps, and therefore our implementation requires 17 layers.
Furthermore, throughout the implementation details of each step, no configuration uses parameters whose count scales with
the size of the graph, thus accounting for constant network width.

Limitations: Beside the enumeration and the minimum edge limitations explained in Section 6, the diameter of the graph
also imposes a limitation on the set of graphs our constructions can represent. Unlike the implementation of the other
algorithms, the priority for selecting a node is determined by its current distance from the source node. As explained
in Section 6.2, the constructions of conditional selection functions are limited by 2, the largest absolute value that can
be utilized in a conditional clause. This constructive limitation constrains the distances that can be represented. More
specifically, the greatest distance between any pair of vertices in the graph is bounded by (2. Because of the reweighing
scheme discussed in Section 6, which guarantees that the smallest difference between any paths is lower bounded by &, the
reweighted edges will be greater than their original values. Therefore, bounding the greatest distance of the reweighted
graph is equivalent to bounding the diameter of the original graph to be O({2e).

In the remaining parts of the proof, we start by presenting the revised version of the algorithm, followed by the construction
of each step that has not been covered in previous algorithms.
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Algorithm 3 Dijkstra’s algorithm for shortest path

Input: integer start
Input: matrix A, sizen X n

. prev, visit, dists, diStSmasked, changes, is_zero, candidates = arrays of size n

: fori=1tondo .
visit[i], dists[i], prev[i] = false, €2, i

end for

. visit[start] =0

: term = false

AR R R T

Initialization of min-variables

8: while term is false do
9: fori=1tondo

10: if visit[i] is true then

11: distSmaskea[i] = 2 (1) Mask visited nodes [C.2.1]
12: else

13: distSmasked[1] = dists[i]

14: end if

15:  end for

16:  get_minimum(distSmasked) (2-8) Find minimum value [C.1]

17 if termy,;, is true then

18: node = idXpest

19: dist = valpes (9) Get minimum values [C.2.2]
20:  end if

21:  candidates = A[node, :] (10) Get row of A [C.2.3]
22: fori=1tondo

23: is_zero[i] = (candidates[i] < 0) (11) Mark non-neighbors [C.2.4]
24:  end for

25: fori=1tondo

26: candidates[i] = candidates[i] + dist (12) Build distances [C.2.5]
27:  end for

28: fori=1tondo

29: changes|i] = candidates[i] < dists[i] (13) Identify updates [C.2.6]
30: end for

31: fori=1tondo

32: if term;, is false and is_zero[i] is true then

33: changes[i] =0 (14) Mask updates [C.2.7]
34: end if

35:  end for

36: fori=1tondo

37: if changesli] is true then

38: prev[i], dists[i] = node, candidates[i] (15) Update variables [C.2.8]
39: end if

40:  end for

41:  visit[node] = visit[node] + termp;, (16) Visit node [C.2.9]
42:  term = not (false in visit) (17) Trigger termination [C.2.10]

43: end while
return prev, dists

C.2.1. MASK VISITED NODES: STEP (1)

In the execution of Dijkstra’s algorithm, visited nodes are excluded from future iterations. Our implementation achieves this
by masking distances, ensuring that masked values are ignored during the minimum function execution.

Before delving into the parameter configuration of this layer, it is crucial to address the initialization of the dists variable,
which stores current distances. In Dijkstra and other algorithms, this variable is initialized to Q) = Q — e. This setup ensures
that, during the minimum function phase, there is a preference for unvisited nodes - that is, nodes not adjacent to any visited
node at a certain point in the execution - over those already visited. Conversely, initializing all nodes to €2 would result in
the masking operation treating unvisited and visited nodes equally, thereby disrupting the accuracy of the simulation.
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Implementing the masking operation in our context closely resembles the conditional selection function in Appendix C.1.1,
with a key difference in its initial setup. This variation primarily involves the definition of the first two layers, which we
define as follows:

(Svy,S2)

1 1f<Z,j)€ (EwE)v(V()vSl)}
1oifie { g0 =i

Bgloval , Blocal ol (C, 51),(Bgobal, S2),
(W(1)>Z,j =40 ifi= Blocalaj _ SV1 (W(Q))Zj — —Q if (17.]) S (Bloca],gSQ) }
0 otherwise, €@ fi=Cj=5
0 otherwise,

Unlike the approach outlined in (6), the masking operation does not have a V7 counterpart already calculated. To this end,
we first generate create a mask of magnitude €2 over all nodes, and insert it in a scratchpad space denoted by Sy, . Then for
the second layer, we simply redirect the definition presented in (6), from the dependency from V; to the dedicated column
Sy, . These adjustments are processed by the remaining layers of the implementation, ensuring the correct nodes are selected
for further operations in the algorithm. For the application in step (1) of Algorithm 3, we set Vj to dists, C'to visit,
and E to distspaskeq.

C.2.2. GET MINIMUM VALUES: STEP (9)

The purpose of this function is to update the values node and dist once the minimum function terminates. To this end,
we also utilize the formulation of the conditional selection function, expressing it as cond-select (X, [idXpest,
valpest ], [node, dist], termyi,, [node, dist]). Note that in this formulation, the fields Vj, Vi, and F
take in multiple values. The implementation for this case is similar to that presented in Appendix C.1.1, matching the order
of the elements in each of these fields.

C.2.3. GET ROW OF THE ADJACENCY MATRIX: STEP (10)

Once the variable node is updated, the corresponding row of the adjacency matrix A must be extracted. To this end, we
refer to the implementation described in Section 5.3, setting P, to node.

C.2.4. MARK NON-NEIGHBOR NODES: STEP (11)

In this operation, all non-neighbor nodes must be indicated by 1 in their corresponding coordinates of the is_zero variable.
For this implementation, we set all attention parameters to zero, and define fyyp as follows:

1 if (4, 7) = {(Biocal, Szero), (is-zero, is_zero) } 1 i = {Spe Vi
if t = {Syer0,i8_zero}, 7 =1
(W), ; ={ —Q ifi = candidates, j = Syero W23y, = e J
0 therwi 0 otherwise,
otherwise,

1 if i = Syero, j = is_zero
(WWy, ;={ —1 ifi,j=is_zero
0 otherwise.

In effect, we create a list of ones, which are then subtracted by all non-zero entries of candidates, multiplied by —£2.
This ensures that all non-neighbor nodes are set to one, while the remaining are zero. In addition, the existing entries in the
variable is_zero are erased.

C.2.5. BUILD DISTANCES: STEP (12)

In this step, the distance to the current node must be combined with the weighted edges. To explain this process further,
the operation copies a value from the top row across the bottom n rows of X. This operation can be formally expressed as
repeat-n(X, C, D) = write(1,41X[1,C], X[:,D]).Here, 1, is the all-ones vector of size n + 1, which
is multiplied by the first entry of the column C'. The result is then written in column D.
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The first attention head is defined as:

1 ifi=1B 1 ifie{B , B 1 ifi=C, j=F
(W[((l))i,j _ I .global (W(l))l o I { global local} (W\(/l))i,j _ I : J
0 otherwise, 0 otherwise, 0 otherwise.

This configuration leads to the following attention matrix:

o(XWPWPTXT) =0 | 2 (13)

Equation (13) demonstrates that the operation on X captures elements from the first row and distributes them across its
subsequent rows The second attention head is defined as follows:

1 i (4,5) € {(P)1.1), (P)2,2), (Baobas 2)} - (2) -1 ifi=CEj=E
W(2), (2) = ; s L)y » &)y g ) W. = T 14
(W WG )iy 0 otherwise, (Wi 0  otherwise. (19

The attention head in (13) also generates unwanted values in the top row, which are eliminated by retrieving the column C'
that contains the top row value replicated earlier. As for the configuration of fy p, all its values are set to 0, only utilizing
the residual connection.

For the specific application to step (12) in Algorithm 3, this is applied to val.,, so that its value is distributed along
all candidates entries in X. However, since this field already contains the edges from the adjacent nodes, we set
( W‘(,Q))(valm valo) = 0, effectively ignoring the deletion of the target field. Furthermore, notice that this operation builds
the distance for all nodes, including both neighbors and non-neighbors. The subsequent step in Algorithm 3 addresses the
non-neighbors by applying a masking technique. Moreover, two additional variables are replicated: the minimum function’s
termination flag, utilizing repeat-n (X, termyi,, termpinn), as well as the integer representation of the current
node, through repeat-n (X, nodejn:, nodejncn).

The repeated integer representation of the node (node;+ ) is employed in step (15) for updating the previously visited
node. On the other hand, the repeated termination flag (t ermy;, ) is utilized in step (16) to mask operations if the minimum
function is still in progress.

C.2.6. IDENTIFY UPDATES (13)

In this step, the distances computed in candidates are compared against the current distances. To this end, we utilize the
implementation described in Section 5.2 and write: less—than (X, candidates, dists, changes).

C.2.7. MASK UPDATES: STEP (14)

After performing the comparison, the variable changes indicates which nodes require updates. It is important to note
that the comparison results should be set to false for non-neighbor nodes and when the termination flag of the minimum
function is not active. We express this condition as follows: changes[i] = changes[i] and termy, and
(not is_zerof[i]).

In terms of implementation, we begin by setting the parameters of fy, to zero and define the parameters of fyyp as follows:

P (changes, changes), (termpin_n, changes),
1 if 1,] € { (changes, Schzmgc.\)

(W) =41 ifie {Bgilj;jfr]g;m} , j = changes
0 otherwise,
1 if 7, 7 = changes
1 if i € {changes, Schanges },J = ¢ o i
(W(2’3))i,j = {0 otherwise £ (W(4))i,j =4 —1 if i = Schanges, j = changes
’ 0  otherwise.
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In this implementation, we write the necessary logical condition as ¢(changes[i] + termyi, — is_zero[i] — 1).
This ensures the result equals 1 only when all conditions are satisfied. Additionally, in this implementation, the variable
termpyin ., is determined in step (12) by repeating the status of the flag t ermy;,, along the last n rows of X.

C.2.8. UPDATE VARIABLES: STEP (15)

Once all the conditions have been imposed on the variable changes, the next step consists in updating the necessary
values based on this decision variable. The expression in line [38] of Algorithm 3 is implemented as cond-select (X,
[nodeintn, candidates], [prev, dists], changes, [prev, dists], utilizing the conditional selec-
tion function described in Appendix C.1.1. Here, the variable node; +_, is the list containing the repeated entries of the
current node in its integer form, as executed in step (12).

C.2.9. VISIT NODE: STEP (16)

The principle for marking a node as visited follows the same implementation outlined in Appendix C.1.5. We write
this function as: write-row (X, node, termyi,, visit). Itis important to note that in the application of the
write—row function, we assign the variable D the variable term,;,. This assignment is crucial because it ensures that
the visit function is activated only when the minimum function’s termination flag is also active.

C.2.10. TERMINATE: STEP (17)

The termination function follows the implementation of Appendix C.1.6 by setting all-one (X, visit, term).
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C.3. Proof of Theorem 6.2

In this section, we introduce the constructions used to simulate the Breadth-First Search (BFS) algorithm (Moore, 1959).
The objective of this algorithm is to systematically explore nodes in a graph, starting from a root node and moving outward
to adjacent nodes and beyond. First, nodes directly adjacent to the root are visited, followed by their neighbors, and so on.
We will begin with an overview of our implementation strategy, including its limitations as detailed in Theorem 6.2 Next,
we present the specific constructions of each step of the algorithm.

Implementation overview: In BFS, node traversal is typically managed using a queue (Cormen et al., 2022). In this way,
nodes nearer to the source node are discovered and queued for visitation first. In this process, we also record their immediate
predecessor, i.e., the node through which it was discovered. This continues until all nodes connected to the source node have
been visited. Our implementation of BFS simulates a queue using a priority list combined with a minimum function, similar
to the approach in Appendix C.2. Each time a node is selected by the minimum function, the priority value increases, thereby
assigning lower priority to subsequent nodes discovered through it. This strategy effectively emulates the first-in-first-out
nature of a traditional queue.

Specifications of the architecture: We outline the algorithm’s execution steps in the Algorithm 4. Each step correlates with
a transformer layer, as represented in Equation (2), executing the respective routine. In the case of the Breadth-First Search,
there is a total of 17 steps, and therefore our implementation requires 17 layers. Furthermore, throughout the implementation
details of each step, no configuration uses parameters whose count scales with the size of the graph, ensuring constant
network width.

Limitations: In addition to the enumeration limitation discussed in Section 6, simulation is also constrained by the largest
priority value that can be utilized. A node is visited only once, and the priority value increments with each selection. Hence,
for a graph of size n, the priority can grow to a maximum of n as well As detailed in Section 6.2, the conditional selection
functions are limited by €2, the highest absolute value in a conditional clause. This limitation restricts the maximum usable
value and consequently the largest graph size that can be simulated. Specifically, based on conditional selection limits, the
largest feasible graph is bounded by O(2)

In the remaining parts of the proof, we start by presenting the revised version of the algorithm, followed by the construction
of each step that has not been covered in previous algorithms.
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Algorithm 4 Breadth-first search

Input: integer start
Input: matrix A, sizen X n

: order=0

. prev, visit, orders, ordersmasked, changes, disc = arrays of size n

fori =1tondo R
visit[i], disc[i], orders[i], prev[i] = false, false, €2, i

end for

. visit[start] = order

term = false

A R L AT

Initialization of min-variables

9: while term is false do
10: fori=1tondo

11: if visit[i] is true then

12: orderspasked[i] = €2 (1) Mask visited nodes [C.2.1]
13: else

14: orderSmasked[1] = orders|[i]

15: end if

16:  end for

17:  get_minimum(ordersmasked) (2-8) Find minimum value [C.1]

18:  if termy,;, is true then

19: node = idXpest (9) Get minimum value [C.2.2]
20:  endif

21:  Aiow = A[node,:] (10) Get row of A [C.2.3]
22:  order = order + termpy;, (11) Update priority factor [C.3.1]
23: fori=1tondo

24 change = termmin is true and disc[i] is false

25: changes|i] = change is true and Ao [i] is 1 (12) Identify updates [C.3.2]
26:  end for

27: fori=1tondo

28: if changes|i] is true then

29: prev[i] = node (13) Update variables [C.2.8]
30: orders[i] = order

31: end if

32:  end for

33:  visit[node] = visit[node] + termpi,
34:  disc[node] = disc[node] + termmin
35: fori=1tondo

36: disc[i] = disc[i] or changes]i] (14) Visit and discover nodes [C.3.3]
37:  end for

38:  interrupt = disc == visit (15) Compare visited and discovered nodes [C.3.4]
39:  term = not (false in visit) (16) Trigger termination/interruption [C.3.5]

40:  term = (term or interrupt) and termmin  (/7) Trigger termination by interruption [C.3.6]
41: end while
return prev

C.3.1. UPDATE PRIORITY FACTOR

In this stage, as outlined in Algorithm 4, the priority factor, denoted by order, needs to be increased. This adjustment
ensures that updated nodes are assigned a lower priority in the list. It is important to note that order is only modified upon
the activation of the minimum function’s termination flag, which guarantees its update only when necessary.

Furthermore, the priority factor is utilized in the update step (13), so its value must be made available to all nodes. This
means that not only this value is increased, but also distributed for the local variables, in a variable we denote as order,.

This implementation can be seen as a direct application of the repeat —n operation, detailed in Appendix C.2.5, being
expressed as repeat-n (X, [termgi,, order], [order,, order,]).Furthermore, to ensure that the updated

value is kept for the next iterations we set (W‘(,Q))([ermmim ordery = 1 in the definition of (14) Furthermore, as in the application
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of Appendix C.2.5 to Dijkstra’s algorithm, the termination flag for the minimum function as well as the integer representation
of the current node are also repeated along the last n rows.

C.3.2. IDENTIFY UPDATES: STEP (12)

In this step, we want to prevent any changes for non-neighbor nodes (i.e. A, [1]=0), discovered nodes (i.e. disc[1]=1),
or if the minimum function’s termination flag (termy,;,) is deactivated. This step closely follows the implementation of the
masking function described in Appendix C.2.7.

However, in this case, we implement the following logical expression: changes [i] = A, [1] and termy;, and
(not disc[i]). We define the parameters of fyp as follows:

1 if i, j € {(Arow, changes), (termpmin_n, changes), (changes, Schanges) }
(W(l))m- =< —1 ifi € {Bgopar, Bioca, disc}, j = changes

0 otherwise,

| ifie {ch g V=i 1 if ¢, 7 = changes
if ¢ changes, ] =1 e .
(W(273))i’j = . £ changes ] (W(4))i,j =41 ifi= Schanges>.7 = changes
0 otherwise, ]
0 otherwise.

In this implementation, we write the logical condition as ¢(A o, [1] + termyin, [1] — disc[i] — 1). This ensures
the result equals 1 only when all conditions are satisfied. Additionally, in this implementation, the variable termy;
is determined in step (11) by repeating the status of the flag term,;, along the last n rows of X, as described in
Appendix C.3.1.

C.3.3. VISIT AND DISCOVER NODES: STEP (14)

In this step, both discovered and visited nodes are updated. This implementation closely follows Appendix C.1.5, where
we write write—-row (X, node, termgi,, visit) and write-row (X, node, termg;,, disc). The di-
vergence from the implementation of Appendix C.1.5 is that, for the definition of fyyp we let:

(W(l))‘ o 1 if ¢ = changes, 7 = disc (W(2’3’4))~ o 1 if4,5 =disc
I 0 otherwise, “d 0 otherwise,

This extra modification ensures that all nodes that were changed in the previous step are also marked as discovered. In
addition, since the condition for change requires nodes not to have been discovered, this formulation does not overcount
discovered nodes.

C.3.4. COMPARE VISITED AND DISCOVERED NODES: STEP (16)

The principle of utilizing a priority list to determine which nodes to visit introduces a challenge in the simulation of the algo-
rithm: the scenario when the graph is disconnected. As it stands, without any interruption mechanisms the implementation
described in Algorithm 4 would erroneously visit nodes disconnected from the chosen root node, compromising the integrity
of the simulation. To resolve this, we introduce an interruption criterion to identify when all nodes connected to the root
have been visited.

This is achieved by comparing the list of visited nodes with the list of discovered nodes. After the first node is selected by
the minimum function, a connected sub-graph is entirely visited if its list of visited nodes is the same as the discovered
nodes. In this step, we examine whether each element in the visit variable corresponds to its counterpart in the disc
variable. To this end, we set the attention parameters to zero and define the parameters of fyp as follows:
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U if (0,9) € { G B B} 1 i (3, ) € {(Bioca, S1), (equal, equal)}
WMoy = =1 if (4, §) € {(visit, S2), (disc, $1)}  (WP)iy =41 ifie {8, S}, j=5
0 otherwise, 0 otherwise,
e . 1 ifi=.51, j =equal
1 ifi € {equal,S1}, j =1 e
(Wi = {0 otherwise (W®W); ;=< =1 ifi,j = equal
’ 0 otherwise.

In this operation, we compute the subtraction of visit minus disc and also disc minus visit. Ideally, if the two
lists are identical, both subtractions should result in zero, leaving only the bias term introduced. The outcome of these
computations is then stored in a variable named equal, which we utilize in the next step of the operation.

C.3.5. COMPUTE TERMINATION AND INTERRUPTION CRITERIA

The termination operation is described in the same form as Appendix C.1.6, and expressed as: all-one (X, visit,
term) . A key addition to this calculation is the inclusion of the condition for the equal variable, computed in the previous
step and described in Appendix C.3.4. To streamline the process, we consolidate the comparison done in the previous
step into a single variable, denoted interrupt. Consequently, we write this expression as all-one (X, equal,
interrupt).

C.3.6. COMBINE INTERRUPTION AND TERMINATION FLAGS

After calculating both the interruption and termination flags, the final step is to combine them using the following logic:
term = (term or interrupt) and termy;,. The extra condition on the termination of the minimum function
ensures that the simulation does not terminate in the first iteration, since in that stage, visit and disc list are both
initialized with zeros. We implement this condition by setting the parameters of fyy, to zero, and we define the parameters
of fumrp as follows:

el . (term, term),, ( Bgiobal ; Bglobal ) » el term, t (S1,51),
LG5) € { e ) e ) i) € {ammeiam i |
1 e . 2 e .

(W( ))i,j =43-1 ifi=term, j =5, (W( ))i’j =43-1 ifi= Bglobalz j=51

0 otherwise, 0 otherwise,

1 if =5, j =term

1 ifie{term, S}, j=1 e

(W(B))i’j N {0 otherwise (W(4))m' =4 -1 ifij=term
’ 0 otherwise.

This above construction essentially realizes the intended logical condition through the following operation: term =
¢ (¢ (interrupt — term)+ term+ termy;, — 1). Here, the inner ReLU function, when added to term, calculates
the logical disjunction, and the sum of this result with the other terms forms the input for the second ReLU function, thereby
computing the logical conjunction.
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C.4. Proof of Theorem 6.3

This section outlines the constructions used for simulating the Depth-First Search (DFS) algorithm (Moore, 1959). DFS
traverses nodes from the most recently discovered node, aiming to visit all nodes by progressing from one branch to its end
before moving to another branch. Initially, we provide an overview of our DFS implementation approach, addressing its
constraints as specified in Theorem 6.3. Next, we present the specific constructions of each step of the algorithm.

Implementation overview: One alternative to avoid the recursive formulation of DFS is to use a stack guided by node
discovery order (Cormen et al., 2022). In this way, nodes are explored in the order they are found, recording their immediate
predecessor. This continues until all nodes connected to the source node have been visited. Our implementation of DFS
simulates a stack using a priority list combined with a minimum function, similar to the approach in Appendix C.3. The
priority decreases with each node selection via the minimum function, prioritizing newly discovered nodes, thus replicating
the last-in-first-out property of a stack.

Specifications of the architecture: We outline the algorithm’s execution steps in the Algorithm 5. Each step correlates with
a transformer layer, as represented in Equation (2), executing the respective routine. In the case of the Depth-First Search,
there is a total of 15 steps, and therefore our implementation requires 15 layers. Furthermore, throughout the implementation
details of each step, no configuration uses parameters whose count scales with the size of the graph, ensuring constant
network width.

Limitations: In addition to the enumeration limitation discussed in Section 6, simulation is also constrained by the largest
priority value that can be utilized. A node is visited only once, and the priority value decreases with each selection. Hence,
for a graph of size n, the absolute priority value can grow to a maximum of n as well As detailed in Section 6.2, the
conditional selection functions are limited by (2, the highest absolute value in a conditional clause. This limitation restricts
the maximum usable value and consequently the largest graph size that can be simulated. Specifically, based on conditional
selection limits, the largest feasible graph is bounded by O(£2)

In the remaining parts of the proof, we start by presenting the revised version of the algorithm, followed by the construction
of each step, particularly those not covered in earlier algorithms.
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Algorithm 5 Depth-first search

Input: integer start
Input: matrix A, sizen X n

: order=0

: prev, visit, orders, ordersmasked, changes = arrays of size n

: fori=1tondo A
visit[i], orders[i], prev[i] = false, €2, i

end for

. visit[start] = order

: term = false

PRNDURE LY

Initialization of min-variables

9: while term is false do
10: fori=1tondo

11: if visit[i] is true then

12: ordersmaskea[i] = 2 (1) Mask visited nodes [C.2.1]
13: else

14: ordersmasked[1] = orders|[i]

15: end if

16:  end for

17:  get_minimum(ordersmasked) (2-8) Find minimum value [C.1]

18:  if termyy,, is true then

19: node = idXpes (9) Get minimum value [C.2.2]
20:  end if
21:  Aiow = A[node,:] (10) Get row of A [C.2.3]
22:  order = order - termpmin (11) Update priority factor [C.4.1]
23:  visit[node] = visit[node] + termmpin (12) Visit node [C.2.9]
24:  for:=1tondo
25: change = termu;s is true and visit[i] is false
26: changes|i] = change is true and Aw[i] is 1 (13) Identify updates [C.4.2]
27:  end for
28: fori=1tondo
29: if changes|i] is true then
30: prevl[i] = node (14) Update variables [C.2.8]
31: orders[i] = order
32: end if
33:  end for
34:  term = not (false in visit) (15) Trigger termination [C.2.10]
35: end while

return prev

C.4.1. UPDATE PRIORITY FACTOR: STEP (11)

In this step, the priority factor, indicated by order in Algorithm 5, is reduced. This adjustment ensures that updated nodes
receive a higher priority than the remaining in the priority list, effectively replicating the behavior of a stack.

The implementation of this routine is largely based on the construction detailed in Appendix C.3.1 used in the Breadth-First
Search (BFS) algorithm, with a few key modifications. Specifically, we alter the values in the construction as follows:
(WMV )termmin, ordern = —1 and (W )V )termy,,, order = —1. These modifications are important as they enable the
priority factor to decrease with each iteration of the main algorithm.

C.4.2. IDENTIFY UPDATES (13)

This step follows the same implementation of Appendix C.3.2, replacing the variable disc with visit.
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C.5. Proof of Theorem 6.4

In this section, we introduce the constructions utilized to simulate Kosaraju’s Strongly Connected Components (SCC)
algorithm (Aho et al., 1974). This algorithm aims to detect the strongly connected components of a graph. A strongly
connected component in a graph is a subgraph in which every vertex is reachable from every other vertex through directed
paths. To this end, we first present an overview of the implementation strategy, which accompanies the limitations that are
described in Theorem 6.4. These are then followed by the specific construction of each step of the algorithm.

Implementation overview: Executing Kosaraju’s SCC algorithm first consists of performing a depth-first search on the
source node. To implement this, we create a priority list whose updated values get decreased at each iteration, effectively
replicating the behavior of a stack. For the current node in the execution, we check whether its neighbors have been visited.
If so, the corresponding value on the second priority list is updated. This procedure simulates the insertion of nodes in a
stack based on their finish times, as described in Kosaraju’s SCC algorithm.

This process continues until each node has its values updated in the second priority list, which can take as much as 2n if
the graph is a path. The end of this process triggers a partial termination criterion, which activates the second phase of
the algorithm. In the second part, we perform another depth-first search. However, this time, the search is determined by
the priority set in the previous phase, and it is performed on the transposed version of the graph, i.e. with the edges in the
reverse direction. The index to indicate a strongly connected component is the source node of the breadth-first search of
each subgraph. This process continues until all nodes have been visited, for a total of 3n node visits.

Specifications of the architecture: In the following pseudocode description, we show the steps required to execute the
algorithm. Each of the steps has an associated transformer layer in the form of (2) that implements the corresponding
routine. In the case of Kosaraju’s Strongly Connected Components algorithm, there is a total of 22 steps, and therefore our
implementation requires 22 layers. Furthermore, throughout the implementation details of each step, no configuration uses
parameters whose count scales with the size of the graph, thus accounting for constant network width.

Limitations: Beside the enumeration limitations explained in Section 6, the number of node updates also determines the
size of the graph that can be simulated. This is because the update process is governed by a single variable (denoted order
in Algorithm 6) that decreases every update. As discussed in Section 6, since the constructions are limited to a certain size
in the input, one of the restrictions of simulation is that the graph size can have at most €2/3 nodes.

In the remaining of the proof, we start by presenting the revised version of the algorithm, followed by the construction of
each step that has not been covered in previous algorithms.
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Algorithm 6 Strongly Connected Components (SCC) Algorithm

Input: integer start
Input: matrix A, sizen X n

1 term, termpay, order, nodes = false, false, 0, 0
: ordersmasked, Changesi, changess, changess, nvisit = arrays of size n
sccs = array of size n, init. [1,...,n]

: Visity, visite, visits = arrays of size n, init. false
: ordersy, orderss = arrays of size n, init. Q

. orders; [start], orderss[start] = order, order

Initialization of min-variables

8: while term is false do
9:  orders = ordersz if termy,y is true else orders;

10:  visit = visits if termp. is true else visity (1) Select list to find minimum [C.5.1]
11: fori=1tondo

12: ordersmasked[1] = €2 if visit[i] is true else orders|i] (2) Mask visited nodes [C.2.1]
13:  end for

14:  get_minimum(ordersmasked, SCCS) (3-9) Find minimum value [C.1]

15:  write; = termpy;, and not termpar

16:  writez = termmyin and termpa (10) Update write flags [C.5.2]
17:  if termpyy is true then

18: node, scc = idXpest, SCChest (11) Get minimum values [C.2.2]
19:  endif

20:  Arow, Acol = A[node,:], A[:, node] (12) Get row/column of A [C.5.3]
21:  visity[node] = visit[node] + write;

22:  visitz[node] = visit[node] + writes (13) Visit nodes [C.5.4]
23: fori=1tondo

24 nvisit = (visity [i] and Asow[i] is 1) or Acew[i] is O

25: nvisit[i] = nvisit and write; is true (14) Check visited neighbors [C.5.5]
26:  end for

27:  nvisity = not (false in nvisit) (15) Check if all neighbors are visited [C.5.6]
28:  visitg = visitg[scc] (16) Check if SCC is visited [C.5.7]
29:  noder = scc if visits. else node s (17) Update reference node [C.1.1]
30: fori=1tondo

31: changes; [i] = write; and (Asw[i] is 1) and not visit, [i]

32: changess[i] = writes and (Acq[i] is 1) and not visits[i]

33:  end for

34:  changesz[node] = nvisit,; and write;

35:  order = order - termmpin (18) Identify updates and update priority [C.5.8]
36: fori=1tondo

37: orders [i] = order if changes [i] else orders; [i] (19) Update variables I [C.2.8]
38: ordersz[i] = order if changes2[i] else ordersz/[i]

39: visita[i] = visit, [i] if changess[i] else visita[i] (20) Update variables II [C.2.8]
40: ordersz[i] = order if changess[i] else ordersa[i]

41: sces[i] = nodeyr if changess|i] else sces[i] (21) Update variables 111 [C.2.8]
42:  end for

43:  term = not (false in visits)

44:  termp = not (false in visity) (22) Trigger (partial) termination [C.5.9]

45: end while
return sccs

C.5.1. SELECT LIST TO FIND MINIMUM: STEP (1)

As mentioned in Appendix C.5, the implementation of the Strongly Connected Components Algorithm utilizes a two-staged
approach consisting of two breadth-first searches. As demonstrated in Appendix C.4, the depth-first search is implemented
using the minimum function and a priority list. To enable the change between stages, we utilize a conditional selection
function, as formalized in Appendix C.1.1 to select between the two priority lists and their corresponding lists of visited
nodes for masking. We express this function as cond-select (X, [ordersy, visitsg], [orders, visitsal,
termparc, [orders, visit]).
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C.5.2. UPDATE WRITE FLAGS: STEP (10)

In this step, we utilize the partial termination criterion termg,+ to indicate which part of the function should be activated
in the next steps of the execution. To this end, we implement the logical conditions expressed in lines [15-16] of Algorithm 6
as follows:

1 if i,j € {(writeq, write, ), (writeo, writez), (termpmin, S1), (termmyin, S2), (termpar, S2)
Wy, =L -1 ifije { (termpar, S1), (Bglobat, S2)
0 otherwise,

) ) ) 1 ifi e {(Sy,writer), (S2, writea) }
1 if i € {writeq, writeg, S1,S5%},j =1 e . . .
(W(273))i’j = { ! 221 2} J (W(4))i’j =< -1 ifz € {ertel, erteg},] =1
0 otherwise, )
0 otherwise,

We erase the original content from the write; and writes columns and insert write; = ¢@(termyy,, — termpart) and
writey = ¢(termpmin + termp, — 1), respectively, which simulate the corresponding logical conditions.

C.5.3. READ ROW AND COLUMN OF A: STEP (12)

Once the node has been selected by the minimum function, we perform the extraction of both a row and a column of A. The
process of reading a row of A is described in Section 5.3, and we can express it as read-A (X, A, node, A,.,) For
the extraction of the column of A, we adopt the same procedure, utilizing an additional attention head that interacts with A.
The implementation details for this operation are similar to the configurations described in Section 5.3, which enables us to
express it as read-A (X, A.T, node, Acol).

C.5.4. VISIT NODES: STEP (13)

In addition to updating the list of visited nodes in the graph, the following step also serves to update an auxiliary variable,
denoted cur_i, which aims to store the position of the current node in a one-hot encoding. This can be easily accomplished
by applying the implementation presented in Appendix C.1.5 as follows: write-row (X, node, write;, cur.i).

C.5.5. CHECK VISITED NEIGHBORS: STEP (14)

Throughout the execution of the first depth-first search, we must check if the neighbors of the current node have been visited.
If this condition is met, the value of this node is updated in the second priority list, replicating the intended behavior of
building a stack. This is because nodes that meet this condition later in the algorithm receive higher priority in the second
list. Additionally, this condition is also used to mask nodes from subsequent steps in the first DFS.

To this end, this process is implemented in two stages: steps (14) and (15). In this step, we verify the condition expressed
in lines [24-25] of Algorithm 6. The parameters of fy, are set according to the implementation of Appendix C.2.5.
More specifically, we implement the routines for repeat-n (X, write;, write; ) and repeat-n(X, writes,
writes, ). We then define the parameters of fyp as follows:

1 ifi,7 € {(Bglobala Bglobal)a (Wl’iteln R writeln)7

(W(l))lJ _ (I‘lViSit7 nViSit), (zAerW7 Sl)} (W(S))ZJ _

—1 if¢=visity, j = S

1 ifi e {nvisit, 51}, j =1
0 otherwise,

0 otherwise,

1 ifi,j € {(writey,,, S1), (nvisit, nvisit) } 1 ifi— S it
ifi =51, j =nvisi

-1 ifi,j =8
(W), = ShImen (WM, =<4 —1 ifi,j = nvisit
-Q ifi= Bglobala J = S1 .
. 0 otherwise.
0 otherwise,

This implementation not only clears the target field nvisit but also simulates the logical conditions of lines [24-25] with
the following expression ¢(write [i] — ¢(Arow[i] — visiti[i])). The extra negative €2 used in W) is to remove any unwanted
entries in the top row.
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C.5.6. CHECK NEIGHBORING CONDITION: STEP (15)

In this step, we check if all neighbors of the current node have been visited. This information is then used to determine
if the current node should be updated in the second priority list. This implementation closely follows the one utilized
for the termination criterion, since it also collects all values along the last n rows of X. Therefore, we can express it as
all-one (X, nvisit, nvisitaii).

C.5.7. CHECK IF CURRENT SCC IS VISITED: STEP (16)

In this stage, we must verify the condition of whether the Strongly Connected Component index that is assigned to the
current node is visited. This condition becomes important in the subsequent step. Initially, the SCC index of each node
is itself. So, throughout the execution of the code, if we encounter an unvisited SCC index, it means that a new Strongly
Connected Component has been found. In this case, the visit... flag must be triggered so that in the next step, the
reference node (node,.r) is updated. To this end, we utilize the same formulation as the read function in Appendix C.1.3
and write read—-X (X, scc, visitsy, visitgec).

C.5.8. IDENTIFY UPDATES AND UPDATE PRIORITY: STEP (18)

This step of execution focuses on increasing the priority value and building the decision lists for the subsequent update steps.
Despite being represented as a global variable, in our implementation of Algorithm 6, we set order to be a local variable,
since it is solely used for updating the values of the priority lists. First, in the definition of f,,, we set all parameters to zero.
In the implementation of fyy p, since we build three decision lists as well as the priority update, the parameters are presented
separately for each of these purposes.

For the update of the priority values, we set:

(W(2’3))< -

9

W), =

0 otherwise,

1 if i € {writey, , writea, },7 = Sorder
0 otherwise,

{1 if i = Sorgers j = i

(W(4))i,j - -1 ifi= Sordery j = order
0 otherwise.

In this part of the implementation, we simply subtract the writing flags that are distributed along the last n rows from the
order variable, thereby increasing the priority of newly updated nodes.

For building the first list of decision variables, we write:

1 ifi € {(Arow,S1), (writeq, , S1), (changesy, changes; )}
-1 ifie {ViSitl, Blocal}, Jj= S1

(W(l))i,j = e .
—-Q ifi= Bglobala J=5
0 otherwise,
o o 1 if i = 51, j = changes;
1 ifi € {S1,changes;}, j =1 e
WDz, = {o otherwise (W)= {1 ifi,j = changes,
’ 0 otherwise,

which simulates the condition in line 31 of Algorithm 6 with the expression: ¢(Aoy[i] + writey, [i] — visity[i] — 1). The
additional entry of —() serves to clear any undesired values in the top row. For the second decision list we write:

1 ifi e {(curi, Sz), (writey, , S2), (nvisit, S2), (changess, changess) }

n?

(W(l))i,j = -2 ifre {Bglobala Blocala }v .7 = Sl
0 otherwise,
e L 1 if : = S, j = changess
1 ifi e {S3,ch , J= e
W), if i {. 5, changesy }, j =i (W®),, =4 —1 ifi, j = changess
0 otherwise, .
0 otherwise,
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where cur_1i is the variable obtained in Appendix C.5.4 which represents the one-hot encoding of the current node. This
operation simulates the condition in line 34 by using the expression: ¢(writeq, [i] + Aow[i] + cur-i[i] — 2).

For the third decision list, we write:

1 ifi € {(Acol, S3), (writey, , S3), (changess, changess) }
-1 ifie {ViSitl, Blocal}a j = S3

(W(l))i,j = e .
—Q if ¢ = Bgiobat; J = 53
0 otherwise,
. 1 if i = S3, 7 = changess
1 ifi € {S3,changess}, j =i e
<W(2’3))i7j N {0 otherwise (W(4))i,j =4 —1 ifi,j = changess

0 otherwise,

This implementation simulates the condition in line 32 using the expression: ¢(Acq[i] 4+ writeq, [i] — visitg[i] — 1).

C.5.9. TRIGGER TERMINATION AND PARTIAL TERMINATION: STEP (22)

The last step of the loop is to verify the termination criteria for the first and second phases of the algorithm. Using the
implementation described in Appendix C.1.6, we simply write these expressions as: all-one (X, visits, term)
and all-one (X, visity, termp,,:). Since these implementations utilize the same attention heads, their implemen-
tations are compatible and can be simply merged.
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C.6. Proof of Remark 6.5

In this section, we present the methodology adopted for constructing a unified model capable of executing multiple graph
algorithms, as stated in Remark 6.5. More specifically, we construct a multitask model that executes three distinct graph
algorithms: Breadth-first search, Depth-first search, and Dijkstra’s shortest path algorithm. We limit our scope to these
three algorithms, considering the complexity and minimal additional insights gained from incorporating more algorithms.
However, this same design principle can be applied to a broader range of algorithms, including Strongly Connected
Components (referenced as Appendix C.5). Incorporating a new set of algorithms could potentially incur the introduction of
new functions and a distinct set of variables to be integrated into the matrix X.

Some initial considerations are necessary to describe the construction strategy. Each algorithm requires a distinct set of
variables and functions. In our constructions, this is reflected as specific columns in the input matrix and the different
implemented layers, respectively. Therefore, a model that unifies different algorithms must accommodate these individual
components without compromising the execution of any particular algorithm. Nevertheless, some algorithms can have
common structures, sharing similar functions or variables utilized in analogous ways. The challenge of multitasking extends
beyond just encapsulating different executions within the same model. It also involves efficiently reusing shared variables
and functions to avoid redundancy, which also significantly reduces overhead in terms of memory (number of columns of
X) or runtime (number of layers).

Our goal is to provide a single implementation capable of executing one of these three algorithms given the appropriate input
configuration. The structure of the input is the same for all three algorithms. However, its configurations slightly change
for the execution of each algorithm. While Breadth & Depth-first search operate on unweighted graphs, the execution of
Depth-first search is distinguished by the activation of a specific flag in X, denoted by ;. For Breadth-first search and
Dijkstra’s algorithm, the configuration of X is the same. What sets Dijkstra’s algorithm apart from BFS is its operation on a
weighted graph, as opposed to the unweighted graphs used by the other two algorithms. This distinction also highlights the
fact that Breadth-first search can be considered a special case of Dijkstra’s algorithm when applied to unweighted graphs.
Consequently, we can leverage a single execution for both breadth-first search and Dijkstra’s algorithm.

Furthermore, all three algorithms share a large portion of similar functions. For example, they all employ the minimum
function during the initial phase of iteration and utilize a similar termination criterion. Our implementation strategy consists
of leveraging this shared structure while individually accommodating the unique functions of each algorithm. The selection
of specific elements necessary for executing a particular algorithm is managed by a selector function. This function
determines the variables that need to be updated, thus ensuring the execution reflects the intended algorithmic behavior.

The comprehensive structure of our implementation is illustrated in Algorithm 7. Non-highlighted lines indicate the shared
structural components common to all three algorithms. In contrast, colored lines denote algorithm-specific adaptations.
Specifically, lines highlighted in blue (18, 22, 29, 38, and 39) are modifications for Depth-first search. Lines in red (24,
25, 30, 36, and 37) indicate the adaptations for both Dijkstra’s and Breadth-first search. Lastly, the lines highlighted in
orange (42-45) represent the conditional selection mechanism. This mechanism is crucial for dynamically selecting the
algorithm-specific elements and the boolean variables that trigger these adaptations.

Since the implementations directly follow the specifications outlined in previous sections, the guarantees for each algorithm
are established according to their respective designs (refer to Appendix C.3, Appendix C.4, and Appendix C.2). Furthermore,
except for the selector function process, the details of each algorithmic step have been thoroughly discussed earlier. In the
following, we present the implementation of the selector function, along with a detailed description of the algorithm.

Additionally, we also conduct empirical validation, as detailed in Appendix B.3. This validation confirms the robustness of
our unified implementation, described in Algorithm 7, which demonstrates a 100% accuracy across all tested instances of
the three algorithms.

C.6.1. UPDATE PRIORITY FACTOR: STEP (12)

As previously discussed in Appendix C.4.1, for the execution of Depth-first search, the priority variable order must be
decreased at each iteration. However, for the multitask model, this process should not be carried out if the model is executing
a different algorithm. To this end, we introduce a condition for updating the priority factor.

In our construction, we substitute the conditional form for an equivalent expression: order = order — ¢(termy, + s — 1).
This ensures that the variable order is only updated if term,;, and v, are activated. We implement this condition by
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setting the parameters of fyy, to zero, and we define the parameters of fy; p as follows:

1 ifi e {termmina’)/s}vj = order U i — ord
W), ={ ~1 ifi = Byopu,j = order ey, |1 6= order
( b , 'glObahJ ( Ji 0 otherwise.

0 otherwise,

—1 if4,j = order
(W, = ,

0 otherwise.

The output of the last layer of fy p is directly added to the residual connection X, effectively replicating the expression
above.

C.6.2. SELECT CANDIDATES AND CHANGES VARIABLES: STEP (17)

The variable candidates represents the values used for updating the current distances or priorities, essential for the
Dijkstra/BFS and DFS algorithms. Specifically, candidates; refers to the candidate values for Dijkstra/BFS, while
candidatess indicates those for DFS. Similarly, the changes variable is a boolean-flag array containing flags that
indicate which values require updating. The variables changes; and changess correspond to the update flags for
Dijkstra/BFS and DFS, respectively.

Finally, during the algorithm’s execution, we must determine which variables are going to be chosen: changes; and
candidates; or changesy and candidatess. This decision is guided by the boolean flag 4, which, when acti-
vated, indicates that the DFS routine should be executed, thereby selecting the second set of variables; otherwise, the first
set is chosen. This expression is implemented as cond-select (X, [changes, candidatess], [changej,
candidatesi], 7s, [change, candidates], utilizing the conditional selection function described in Ap-
pendix C.1.1. Here, the variable v, is also repeated along the last n rows during step (14) of the algorithm, whose
objective is to replicate the top row value along these rows.
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Algorithm 7 General algorithm for DFS/BFS/Dijkstra

Input: integer start
Input: bool .. switch flag
Input: matrix A, sizen X n

. visit[start], order, term = 0, 0, false
. prev, visit, dists, diStSmasked, changes, is_zero, candidates = arrays of size n
for i =1tondo R

visit[i], dists[i], prev[i] = false, €2, i
end for

AR A e

Initialization of min-variables

7: while term is false do

8: fori=1tondo

9: if visit[i] is true then
10: distSmaskea[i] = 2 (1) Mask visited nodes [C.2.1]
11: else
12: distSmasked[1] = dists[i]
13: end if
14:  end for
15:  get_minimum(distSmasked) (2-8) Find minimum value [C.1]
16:  if termpy;, is true then
17: node = idXpest
18: dist = valpes (9) Get minimum values [C.2.2]
19:  endif
20:  Arow = Alnode, :] (10) Get row of A [C.2.3]
21:  fori=1tondo
22: is_zero[i] = (Arowl[i] < 0) (11) Mark non-neighbors [C.2.4]
23:  end for
24:  if v, is true then
25: order = order - termmin (12) Update priority factor [C.6.1]
26: end if
27:  visit[node] = visit[node] + termp;, (13) Visit node [C.2.9]
28: fori=1tondo
29: candidatesy [1] = Arow[i] + dist (14) Build candidates [C.2.5]
30: candidatess[i] = order
31:  end for
32: fori=1tondo
33: changes; [i] = candidates; [i] < dists[i] (15) Identify updates [C.2.6]
34:  end for
35: fori=1tondo
36: changes = termmiy is true and visit[i] is false (16) Build flags [C.2.7/C.4.2]
37: changess[i] = changes is true and Ay [i] is 1
38: if termy,;, is false and is_zero[i] is true then
39: changes:[i] =0
40: end if
41:  end for
42:  if 7. is true then
43: candidates, changes = candidatess, changess (17) Select candidates/changes [C.6.2]
44:  else
45: candidates, changes = candidates;, changes;
46:  end if
47.  fori=1tondo
48 if changes[i] is true then
49: prev[i], dists[i] = node, candidates[i] (18) Update variables [C.2.8]
50: end if
51:  end for
52:  term = not (false in visit) (19) Trigger termination [C.2.10]

53: end while

return prev, dists
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C.7. Proof of Remark 6.6

In this section, we present the results on the Turing Completeness of the architecture described in (2). Previous work by Pérez
et al. (2021) and Giannou et al. (2023) has established universality results for looped transformers with standard attention.
Nevertheless, it is important to assess how the expressiveness of the architecture is affected when graph connectivity is
stored as a separate object and graph convolution is integrated into the attention mechanism.

To establish Turing Completeness, we adapt the method employed in Giannou et al. (2023). In particular, we illustrate
how our proposed architecture can efficiently emulate SUBLEQ), a single-instruction language recognized for its Turing
Completeness (Mavaddat & Parhami, 1988).

Our discussion begins with an overview of SUBLEQ, followed by the introduction of a modified version termed SUBLEQ™
(read as SUBLEQ minus), which is also Turing Complete. Subsequently, we demonstrate that SUBLEQ™ can be simulated
using a SUBLEQ-like instruction that uses a specialized memory object for the adjacency matrix, which we name Graph-
SUBLEQ. Lastly, we establish that the architecture depicted in (2) is capable of simulating Graph-SUBLEQ.

SUBLEQ: Named for its operation “subtract and branch if less than or equal to zero”, SUBLEQ is a one-instruction set
computer. As detailed in Algorithm 8, it consists of subtracting the content at address a from that at address b, and storing
the result back at b. All these values are stored in a one-dimensional memory array. If the result is non-negative, the
computer executes the next instruction; otherwise, it jumps to the instruction at address c. Despite this operational simplicity,
SUBLEQ is Turing Complete (Mavaddat & Parhami, 1988).

Algorithm 8 SUBLEQ (a, b, ¢)

Input: memory object M, addresses a, b, ¢
1: M[b] = M[b] — M|[a]
2: if M[b] < 0 then
3: gotoc
4: else
5
6

g0 to next instruction
: end if

SUBLEQ™: In the remainder of the proof, we focus on a specialized variant of SUBLEQ, which we refer to as SUBLEQ™.
This modified version operates similarly to the standard SUBLEQ, with a key distinction in handling the adjacency matrix in
memory. In SUBLEQ, a common approach to represent graph adjacency data involves vectorizing the adjacency matrix and
placing it at the beginning of the memory. In this case, specifically in SUBLEQ™, the first n? memory entries, representing
the row-major order vectorization of an adjacency matrix for a graph with n nodes, are set to be read-only. It is important to
note that this read-only constraint on the first n? entries does not diminish the expressive power of SUBLEQ ™. The data in
these entries can always be accessed and then copied into writable memory locations using standard SUBLEQ instructions.
Furthermore, these n? entries may not exist for routines that do not utilize the graph in the proposed way. Consequently,
even with this restriction, SUBLEQ™ remains Turing Complete.

Graph-SUBLEQ: Building upon the concept of SUBLEQ™, we introduce Graph-SUBLEQ, a new formulation with a
distinct approach to memory management. Unlike SUBLEQ™, which uses a single memory object with varying writing
permissions, Graph-SUBLEQ separates its memory into two distinct entities: a writable one-dimensional memory object,
as in standard SUBLEQ), and a separate read-only memory dedicated to storing graph connectivity data. Crucially, in this
second memory, data is arranged in a matrix format, with the same structure as an adjacency matrix.
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Algorithm 9 Graph-SUBLEQ (a, b, ¢,v,)

Input: memory objects M, M¢, addresses a := (a1, az2),b and ¢, flag v,
: if v, is true then

mae = Mglai,az2)
else

mq = MJai]
end if
mp = M[b}
MIb] = mp — maq
: if M[b] < 0 then
gotoc
10: else
11:  go to next instruction
12: end if

R A A ey

The implementation of Graph-SUBLEQ), as shown in Algorithm 9, closely resembles that of SUBLEQ in Algorithm 8. The
main difference lies in the structure of the instructions. While SUBLEQ operates with the triplet a, b, ¢, a Graph-SUBLEQ
instruction is defined by a, b, ¢, 7y,. In this context, a represents a pair of addresses, a; and ay. These addresses serve two
functions: together, they can access an element in the graph memory object Mg, or, using only a;, access an element in the
main memory M. The decision of which memory is accessed by a is determined by the boolean flag v,: if 7, is True, the
instruction accesses the graph memory; otherwise, it accesses the main memory. All other aspects of Graph-SUBLEQ’s
implementation are akin to those of SUBLEQ.

With the frameworks of SUBLEQ™ and Graph-SUBLEQ established, we now present a lemma important for our concluding
remark.

Lemma C.1. Graph-SUBLEQ is Turing Complete.

Proof. To establish the Turing Completeness of Graph-SUBLEQ, we must demonstrate that every instruction in SUBLEQ™
has an equivalent instruction in Graph-SUBLEQ. This equivalence is essential to ensure that Graph-SUBLEQ can perform
all operations that SUBLEQ™ can. The equivalence is examined in two scenarios based on the type of instruction in
SUBLEQ™: instructions that read from the read-only graph adjacency block, and those that read from other memory areas.
To maintain clarity in our notation, we use a, b, ¢ to represent instructions in SUBLEQ™, and a1, a2, b, ¢ for instructions in
Graph-SUBLEQ.

* No access to graph data: To establish equivalence for instructions not accessing graph data, we define 7z = 0, and set
@1 =a—n2a, =0,b=>b—n? and ¢ = c. Here, n represents the size of the graph.

* Access to graph data: For instructions that access graph data, the equivalence is achieved by defining 7 = 1, and
setting @1 = |a/n| and @ = a — na;. We also set b = b — n?, and & = ¢, where n is the size of the graph.

When SUBLEQ™ does not access graph data, the conversion to Graph-SUBLEQ requires a few adjustments to the memory
addresses. In Graph-SUBLEQ), the address ag is not utilized in this scenario. The addresses a and bin Graph-SUBLEQ
are simply the corresponding SUBLEQ™ addresses offset by —n?, to accommodate the different indexing scheme in
Graph-SUBLEQ’s memory objects. For the addresses ¢ and ¢, no modification is needed, as they are already aligned and
refer to elements outside the memory reserved for the graph. In situations where a graph is not used in the memory, n is
equal to 0, making the addresses in SUBLEQ™ and Graph-SUBLEQ naturally align.

In cases where SUBLEQ™ accesses graph data through the address a, we derive the corresponding elements @; and as in
the matrix format of the graph memory. Given that ¢ in SUBLEQ™ represents an entry in the vectorized adjacency matrix
arranged in row-major order, @ is set to the integer part of a/n, and @, is the remainder of the division a/n. This approach
ensures proper alignment of indexes between SUBLEQ™ and Graph-SUBLEQ in both scenarios, thereby showing that
Graph-SUBLEQ is also Turing Complete. O

Having properly defined Graph-SUBLEQ and showing it that is Turing Complete, we now write the Remark 6.6 in its more
precise form:
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Remark C.2. There exists a looped-transformer A in the form of (2), which utilizes the modified attention head in (1), with
11 layers, 3 attention heads, and layer width O(1) that simulates Graph-SUBLEQ.

Proof. In this proof, we employ the architecture outlined in Equation (2) to simulate Algorithm 9. This constructive
approach is used to demonstrate that the architecture is Turing Complete. As with our other proofs, we start by presenting an
adaptation of Algorithm 9 more aligned with our architecture. Within this adapted algorithm, the commands executed inside
the while loop correspond to the instructions of Graph-SUBLEQ. Following the adaptation, we provide a comprehensive
description of the input structure, detailing how the data and commands are organized and processed.

Finally, we delve into the systematic construction of the algorithm. Each step has an associated transformer layer in the
form of (2) that implements the corresponding routine. In the simulation of Graph-SUBLEQ shown in Algorithm 10 there
is a total of 11 steps, and therefore our implementation requires 11 layers, which use a total of 3 distinct attention heads.
Furthermore, throughout the implementation details of each step, no configuration uses parameters whose count scales with
the size of the graph, thus resulting in constant network width.

Algorithm 10 Graph-SUBLEQ (a, b, ¢, v, ) with external memory block

Input: memory objects M, M, instruction list /, instruction index k
while true do

1:
2: ((a1,a2),b,¢,7v.) = I[k] (1) Read instructions [C.7.2]
3 ma = Mgla, ] (2) Read row a1 from M¢ [C.7.3]
4 me,c = mglaz] (3) Read address a from Mg [C.7.2]
5. ma,x = Mlai] (4) Read address a from M [C.7.2]
6: Ma = Maq,q if 7, 1s true else m,, x (5) Select the memory value of a [C.7.4]
7. mpy = MIb] (6) Read address b from M [C.7.2]
8 diff =mp — ma (7) Compute difference between values [C.7.5]
9:  MIb] = diff (8) Write difference in memory [C.7.6]
10: knexk = k+1 (9) Compute next instruction [C.7.7]
11:  condy =diff< 0 (10) Compute condition for k [C.7.8]
12: k = cif condy, is true else Kpex (11) Select next instruction [C.7.4]

13: end while

C.7.1. INPUT INITIALIZATION

We utilize the same format consistently used in this work, having an input matrix X and an external adjacency matrix A. The
structure of the input matrix follows the convention outlined in Section 5.1, incorporating elements such as global and local
variables, positional encodings, and biases. We maintain the same naming convention for consistency, with some adaptations
specific to this context. For instance, we also refer to the list of all positional encodings by P, while the positional encoding
of the current instruction in this implementation is represented by k, as detailed in Algorithm 10.

Given that in Graph-SUBLEQ), the size of the main memory and the graph might differ, directly translating these to the
formats of X and A could result in a dimension mismatch, thereby hindering the multiplication process described in (1). To
address this, we define K = max(|M|,n) + 1, where K is the larger of the two dimensions, either the size of the main
memory or the number of nodes in the graph. This ensures compatibility in dimensions for encoding in X and A. In this
setup, both the instructions and memory are padded with zeros in X and A to align with K.

In terms of specific variable representation, the main memory block, denoted as M, is represented as a single-column local
variable within this framework. The instruction list, labeled as I, comprises a set of local variables, each representing an
address in the instruction set. These are individually identified by their specific assignments. For example, I,,, refers to the
column in the instruction list where addresses a; are stored.

C.7.2. READ FROM INPUT: STEPS (1), (3), (4), AND (6)

In the implementation of the read function within our architecture, we follow the construction outlined in Appendix C.1.3.
For step (1), the operation is expressed as read-X (X, k, I,,, Za, ). Here, k specifies the columns that store the positional
encodings of the current instruction, and Z,, is the variable holding the current value for a;. The same formulation is then
extended to all other values contained in the instruction, that is, as, b, c and ,.

Moving to step (3), after the row of the graph memory is written into the variable m, this value is retrieved using the
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operation read-X (X, Z,,, mg, ma,g). In this context, m, ¢ is the target field where the retrieved value will be stored.

In step (4), the read operation is defined as read-X (X, Z,,, M, m, x). The variable M represents the memory column,
and m,, x is designated to hold the entry of a retrieved from M.

Finally, for step (6), the operation is set as read—X (X, Z,, M, my,). Here, Z; indicates the columns corresponding to the
current address b, and m;, is the variable designated to store the retrieved entry of b from M.

C.7.3. READ FROM A: STEP (2)

The implementation of step (2), which involves reading from the adjacency matrix A, is based on the procedure detailed in
Section 5.3. In this specific application, the read operation from A is described as read-A (X VA Zays mg). Here, Z,,

represents the columns that contain the current value of a1, which is used to locate the specific row in the adjacency matrix
A that needs to be read. The variable m is designated to store the retrieved row from A.

C.7.4. CONDITIONAL SELECTION: STEPS (5) AND (11)

The conditional selection process in steps (5) and (11) of our Graph-SUBLEQ implementation follows the approach outlined
in previous algorithms, as detailed in Appendix C.1.1.

In step (5), the conditional selection operation is expressed as cond-select (X, mq,q, Ma,x; 2y, , Ma). Here, mq is
the target field where the selected value will be stored. Z,, is the variable holding the current value of +y,, which determines
whether to select m,, ¢ (the value from the graph memory) or m,, x (the value from the main memory).

For step (11), the operation is defined as cond-select (X, Z., knext, condy, k). In this context, Z, refers to the
columns that hold the current value of ¢, and knext represents the columns storing the index of the next instruction’s
positional encoding. The conditional logic applied here determines which instruction’s positional encoding, either the
current or next, is to be used based on the condition condy,.

C.7.5. COMPUTE SUBTRACTION: STEP (7)

In step (7) of our implementation, we focus on calculating the difference between the values stored in m; and m,, and
recording the result in a designated column, which we refer to as di £ £. To carry out this operation, we set the parameters
of fam to zero and define the parameters of fyyp as follows:

1 ifi € {(my, S1), (diff, diff) } o ) o
- . 1 ifz € {Sl,SQ,dlff}, =1
(W), =8 -1 ifie {.(mbvsl)» (diff, Sp)} (W), ; = {0 otherwise,
0 otherwise,

1 ifie {S, S}, j=diff
(W(4))i,j =< —1 if4,j = diff
0 otherwise.

Here, the first layers obtain the subtraction of the desired values, while the last layer places the result in the desired field.
Additionally, the original value in diff is also replicated for both its positive and negative versions. These are used in the
final layer to clear the previous entry.

C.7.6. WRITE IN MEMORY: STEP (8)

For the implementation of step (8), where we write the result back into memory, we adopt the methodology outlined in
Appendix C.1.5. We express this operation by write-row (X, Z,, diff, M). In this context, X represents our input
matrix, and Zj, indicates the columns corresponding to the address b in the memory, where the subtraction result (di ff)
needs to be written. The diff value holds the result of the subtraction computed in the previous step. The target for this
write operation is the memory column M, which will be updated with the new value.
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C.7.7. INCREMENT POSITIONAL ENCODING: STEP (9)

The implementation of step (9), which involves incrementing the positional encoding to move to the next instruction, follows
the procedure described in Appendix C.1.2. The operation is defined as increment (X, k, knext). Here, X is the input
matrix, k represents the columns storing the current positional encoding, and &,y denotes the columns that will store the
positional encoding of the next instruction.

C.7.8. COMPUTE CONDITION FOR NEXT INSTRUCTION: STEP (10)

In step (10), we need to check if the result of the subtraction (stored in di f f) is less than or equal to zero. This is similar to
the comparison function in Equation Equation (3), but with a modification to include equality. Essentially, this function will
return true if di £ f is zero or negative, allowing the algorithm to decide the next step based on this condition. In this case,
we approximate the less-or-equal function as follows:

X[:vc] < X[:vD] ~ 5_1 (¢(X[7D] _X[:7C] +5) - ¢(X[7D] —X[:,C])) (15)

where C and D are the columns used for comparison. Notice that in this implementation, different from (3), the argument of
the first ReLU includes an additional positive ¢ value Furthermore, for the application in the context of the simulation of
Graph-SUBLEQ), the utilization of two columns C' and D is not strictly necessary, since the difference between the values is
already stored in the variable di £ f and the comparison is essentially made against zero.

To implement this function, we begin by setting the parameters fu, to zero. Then, we define the parameters of fyp as
follows:

1 if 7,7 = condy 1 if 2,7 = condy
(W(l))ij _ —1 if¢ = diff, j € {S1, 52} (W(Q))ij _ o1 ifi,j =S
’ e ifi = Bgobal, j = S2 ’ —e7 b ifi=25y, j=25]
0 otherwise, 0 otherwise,
e L 1 if i = S1, j = condy,
W) = {(1) ftlllefvjizzndk, b= (W®); ;=< =1 ifi,j = condy
’ 0  otherwise.

In the first layer of the process, we construct the arguments for the ReLLU functions as defined in (15). Additionally, we
maintain the value in condy, to clear the target column. Moving to the second layer, the ReLU terms are then processed by
subtracting one from the other, and the resulting value is divided by €. In the final layer, this computed value is recorded in
the target column, simultaneously erasing its original value.

O

45



