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ABSTRACT
In this paper, we tackle the new task of video-based Activated
Muscle Group Estimation (AMGE) aiming at identifying active
muscle regions during physical activity in the wild. To this intent,
we provide the MuscleMap dataset featuring >15𝐾 video clips with
135 different activities and 20 labeled muscle groups. This dataset
opens the vistas to multiple video-based applications in sports and
rehabilitation medicine under flexible environment constraints. The
proposed MuscleMap dataset is constructed with YouTube videos,
specifically targeting High-Intensity Interval Training (HIIT) phys-
ical exercise in the wild. To make the AMGE model applicable in
real-life situations, it is crucial to ensure that the model can general-
ize well to numerous types of physical activities not present during
training and involving new combinations of activated muscles. To
achieve this, our benchmark also covers an evaluation setting where
the model is exposed to activity types excluded from the training set.
Our experiments reveal that the generalizability of existing architec-
tures adapted for the AMGE task remains a challenge. Therefore,
we also propose a new approach, TRANSM3E, which employs a
multi-modality feature fusion mechanism between both the video
transformer model and the skeleton-based graph convolution model
with novel cross-modal knowledge distillation executed on multi-
classification tokens. The proposed method surpasses all popular
video classification models when dealing with both, previously seen
and new types of physical activities. The contributed dataset and
code will be publicly available.

CCS CONCEPTS
• Computing methodologies → Activity recognition and under-
standing; Scene understanding.

KEYWORDS
Activate muscle group estimation, activity understanding, scene
understanding.

1 INTRODUCTION
Human activity understanding is important as it enables the devel-
opment of applications and systems that can enhance healthcare,
improve security, and optimize various aspects of daily life by auto-
matically identifying and understanding human actions and behav-
iors [1, 30, 39, 68, 71, 89]. Knowing which skeletal muscles of the
human body are activated benefits human activity understanding,
and sport and rehabilitation medicine from multiple perspectives
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Figure 1: Overview of the proposed MuscleMap dataset (Top)
and the TRANSM3E model (Bottom). Our dataset contains four
data modalities, i.e., RGB, RGB difference (RGB Diff), optical
flow, and 2D skeleton. PE and TF denote the patch embedding
layer and the transformer block, respectively.

and prevents inappropriate muscle usage which may cause phys-
ical injuries [20]. In health care, patients need to know how to
conduct the exercise correctly to recover from surgery [35] or spe-
cific diseases [3], e.g., COVID-19 [58]. Knowledge about muscle
activations allows for user-centric fitness applications providing in-
sights for everyday users or professional athletes who need specially
adapted training. The majority of existing work on Activated Mus-
cle Group Estimation (AMGE) is based on wearable devices with
electrode sensors [15]. Yet, many wearable devices are inconvenient
and heavy [41], even harmful to health [4], and have limited usage
time due to the battery [64]. A big strength of wearable devices is
the high accuracy achieved through direct signal measurement from
skin or muscle tissue. However, such exact bio-electrical changes
are not required in a large number of medical recovery programs,
and knowing the binary activation status of the muscle as shown in
Figure 1 is sufficient in many situations [47, 61, 78]. In contrast to
wearable devices, most people have a video camera available at hand
on their phone or laptop. Applying video-based AMGE on in-the-
wild data collected by using smartphones or other widely available
smart devices would allow for the application of such programs even
without access to specialized hardware. Thereby, end-to-end video-
based AMGE approaches are expected to be developed to prevent
overburdens caused by wearable devices from both physical and
psychological points of view. Can modern deep learning algorithms
relate fine-grained physical movements to individual muscles? To
answer this question, we tackle the barely researched task of video-
based active muscle group estimation under an in-the-wild setting,
which estimates muscle contraction during physical activities from
video recordings without a restricted environment and background
constraints.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Current research in video-based AMGE is limited by small-scale
datasets and constrained data collection settings [13], where the data
is often annotated with sensor signals and confined to restricted
environments, covering only a limited range of actions. However,
with the expansion of deep learning model capacities, there is a
pressing need for larger datasets encompassing a wider variety of
environments and activities. This expansion is vital for advancing
the field of video-based AMGE within the research community.

In this work, we collect the first large-scale in-the-wild AMGE
dataset from YouTube without environment constraints and give bi-
nary activation for different muscle regions by inquiring about sports
field researchers. We created the MuscleMap dataset — a video-
based dataset with 135 different exercises collected from YouTube
considering in-the-wild videos. Each exercise type is annotated with
one or multiple out of 20 different muscle group activations, as de-
scribed in Table 1, which opens the door for video-based activated
muscle group estimation in the wild task to the community. We anno-
tate the dataset in a multi-label manner since human body movement
is produced by the coordinated operation of diverse muscle regions.
To acquire such annotations, we ask two senior researchers in the
biomedical and sports research field to give the annotations.

We select various off-the-shelf Convolutional Neural Networks
(CNNs) [8, 23], Graph Convolutional Networks (GCNs) [11, 36, 81],
and transformer-based architectures [21, 40, 45] from human activity
recognition field together with statistic methods as baselines. Our
proposed MuscleMap benchmark describes a multi-label classifi-
cation problem where each sample might be annotated with one
or up to twenty labels. However, we find that it is challenging for
all these models when they deal with new activity types contain-
ing new activated muscle combinations at test time considering
the AMGE generalizability. Skeleton-based models are observed to
show good performance on the new activity types while working not
well on known activity types. The video-based models show good
performance on the known activity types while delivering limited
performance on the new activity types. An approach that can work
well on both known and new activity types is thereby expected.

To tackle the aforementioned issue, we propose TRANSM3E, a
cross-modality knowledge distillation and fusion architecture that
combines RGB and skeleton data via a new classification tokens-
based knowledge distillation and fusion mechanism. To achieve
better extraction of underlying cues for AMGE, we propose and
equip TRANSM3E with three essential novel components, i.e., Multi-
Classification Tokens (MCT), Multi-Classification Tokens Knowl-
edge Distillation (MCTKD), and Multi-Classification Tokens Fu-
sion (MCTF), atop the most competitive performing architecture
MViTv2 [40] as the backbone. As it is fundamental to mine and
predict the activities at the global level for AMGE, the proposed
TRANSM3E, appearing as a transformer-based approach, is endowed
with the capacity for long-term reasoning of visual transformers [76].
Since AMGE is a multi-label classification task, MCT is introduced,
in view that using more classification tokens is expected to introduce
more benefits toward finding informative cues. MCT also builds up
the base for cross-modality MCT-level knowledge distillation.

Knowledge distillation [29] is leveraged for cross-modality knowl-
edge transfer after the feature map reduction of the transformer
block to enable a more informative latent space learning for different
modalities. Transferring cross-modality knowledge during training

Table 1: A comparison among the statistics of the video-based
datasets, where AR, AQA, and CE indicate activity recognition,
activity quality assessment, and calorie consumption estimation.

Dataset NumClips Task MultiLabel NumActions
KTH [32] 599 AR False 6
UCF101 [69] 13,320 AR False 101
HMDB51 [34] 6,849 AR False 51
ActivityNet [7] 28,108 AR False 200
Kinetics400 [7] 429,256 AR False 400
Video2Burn [53] 9,789 CE False 72
MTL-AQA [51] 1,412 AQA True /
FineDive [79] 3,000 AQA True 29
FineGym [65] 32,697 AQA True 530
MiA [13] 15,000 AMGE False 15
MuscleMap135 (Ours) 15,004 AMGE True 135

significantly benefits the model in finding out cross-modality infor-
mative cues for the AMGE task. However, we find that it is difficult
to achieve the knowledge distillation between two models with ob-
vious architecture differences, e.g., graph convolutional networks
(GCNs) and video transformers, considering the alignment of the
feature maps coming from different backbones and modalities to
achieve the appropriate and effective knowledge distillation. Aside
from the architectural differences, we examine that using late fusion
to fuse the skeleton-based model and video-based model can not
achieve a satisfactory performance due to the lack of alignment of
the two different feature domains.

We thereby propose a cross-modality MCT-level knowledge distil-
lation scheme considering knowledge distillation on the intermediate
and final layers by specifically designing a knowledge distillation
MCT for the model of each modality. Alongside the MCT used
solely for the classification, we leverage another MCT to execute
the knowledge distillation for each modality. The cross-modality
knowledge distillation is then executed only between the knowledge
distillation MCTs from the two modalities, whereas existing works
mostly use knowledge distillation calculated from the full embed-
dings or single knowledge distillation token at the final layer and
use a larger teacher [22, 29, 42, 48, 75]. While the mentioned MC-
TKD mechanism integrates cross-modal knowledge into our main
network with additional MCT for the knowledge distillation, another
contribution, MCTF, merges the MCT of the distilled knowledge and
the MCT for classification to achieve a final prediction towards the
active muscle regions during human body motion for each modality.
By combining these three components, TRANSM3E achieves state-
of-the-art performances with superior generalizability compared to
the tested baselines.

In summary, our contributions are listed as follows:

• We open the vistas of video-based Activated Muscle Group
Estimation in the wild task with the aim of lowering the
threshold of entry to muscle-activation-based health care and
sports applications.

• We provide a new benchmark MuscleMap to propel research
on the aforementioned task which includes the large-scale
MuscleMap dataset. We also present a large number of base-
line experiments for this benchmark, including CNN-, transformer-
, and GCN-based approaches.
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• We especially take the evaluation of the generalizability into
consideration by constructing test and validation sets using
new activities excluded during the training.

• We propose TRANSM3E, targeting improving the AMGE gen-
eralizability towards new activity types. Multi-classification
Tokens (MCT), Multi-Classification Tokens Knowledge Dis-
tillation (MCTKD) and Multi-Classification Tokens Fusion
(MCTF) are used to formulate TRANSM3E, which shows
superior generalizability on new activities and introduces
state-of-the-art results on the MuscleMap benchmark.

2 RELATED WORK
Activate Muscle Group Estimation (AMGE) analysis is predomi-
nantly performed using electromyographic (EMG) data [5, 74] either
with intramuscular (iEMG) or surface EMG sensors (sEMG). These
methods use EMG data as input and detect activated muscle groups
to achieve an understanding of the human body movement and the
action, while we intend to infer muscle activations from body move-
ments, therefore describing the opposite task. Chiquier et al. [13]
propose a video-based AMGE dataset by using the signal of the wear-
able devices as the annotation. Yet, the data collection setting and
the environment are restricted. The scale of the introduced dataset is
relatively small and it encompasses limited action types. In our work,
we collect a large-scale dataset based on HIIT exercises on YouTube
while delivering binary annotation for each muscle region. We re-
formulate it into a multi-label classification task, namely AMGE in
the wild. The annotations are first derived from online resources and
then checked and corrected by researchers in sports fields.
Activity Recognition is a dominating field within visual human mo-
tion analysis [1, 10, 28, 30, 39, 68, 72, 85, 89] which was propelled
by the advent of Convolutional Neural Networks (CNNs) with 2D-
CNNs [25] in combination with recurrent neural networks (RNNS)
[17] or different variations of 3D-CNNs [8, 23, 54]. More recently,
transformer-based methods advanced over 3D-CNNs, especially
with advanced pre-training methods and large datasets [40, 44, 45].
Action Quality Assessment (AQA) [51, 73] and Visual Calory Esti-
mation (VCE) [53] relate to our work since these methods likewise
shift the question of research from what? to how? with the aim of de-
tailed analysis of human motion. Multimodal data is a common strat-
egy, e.g., by combining RGB video with audio [2, 52, 57], poses [62],
optical flow [57], or temporal difference images [50]. Skeleton data
is also commonly used as a modality for activity recognition on their
own. Yan et al. [81] and follow-up research [11, 36, 66, 67] make
use of GCNs, while competitive approaches leverage CNNs with
special pre-processing methods [14, 19].
Knowledge distillation (KD) [29] became a common technique to
reduce the size of a neural network while maintaining performance.
In review [27], methods can be categorized to focus on knowledge
distillation based on final network outputs (response-based) [31, 87],
based on intermediate features (feature-based) [82, 86], or based on
knowledge about the relations of data samples or features (relation-
based) [9]. Recently, adaptations of distillation for transformer archi-
tectures gained attraction [37, 42]. Fusion strategies can be grouped
into feature-fusion [56] and score fusion [33].

Multi-label classification methods allow for assigning more than a
single class to a data sample. Common strategies include per-class bi-
nary classifiers with adapted loss functions to counter the imbalance
problem [59], methods that make use of spatial knowledge [83, 84],
methods that make use of knowledge about label relations [12, 70],
or methods based on word embeddings [43, 80].
Datasets which combine visual data of the human body with muscle
activation information are sparse and mainly limited to specific sub-
regions of the human body, e.g., for hand gesture recognition [26].
In contrast, a large variety of full-body human activity recognition
datasets were collected in recent years, which are labelled with
high-level human activities [34, 55], fine grained human action seg-
ments [38, 88], or action quality annotations [65]. We leverage such
datasets by extending them with muscle group activation labels.

3 BENCHMARK
3.1 MuscleMap Dataset
With the new video-based active muscle group estimation in-the-
wild task in mind, we collect the MuscleMap dataset by querying
YouTube for the physical exercise video series. The collected dataset
contains 135 activity types as well as 15, 004 video clips and is
competitive compared to other video-based datasets targeting fine-
grained tasks, as shown in Table 1. Twenty activities are reserved for
the validation and test splits of new activities, which are not included
in the training set. MuscleMap targets physical exercise videos from
fitness enthusiasts. High-Intensity Interval Training (HIIT) exercises
are well suited for the AMGE in-the-wild task since they display a
large range of motions that are designed to activate specific muscle
groups and instructional videos provide high-quality examples of
the displayed motion. The collected videos in our dataset are mostly
near-person, which can benefit video-based muscle contribution
understanding for the in-the-wild videos. A small set of activities
from the MuscleMap dataset is shown in the bottom part of Figure 2.
In Table 1, MuscleMap is compared with existing human activity
recognition, action quality assessment, calorie consumption datasets,
and time series-wise muscle activation regression dataset.

3.2 Activated Muscle Group Annotation
We cluster skeletal muscles of the human body into 20 major muscle
groups with binary activation as shown in the checkboxes in Figure 1.
To ensure the quality of the annotation, we ask 2 researchers from the
biomedical and sports fields to give the annotation for each activity
by watching the video from the dataset. If the two biomedical and
sports researchers fully agree with the AMGE annotation towards
one activity, this activity is included in our dataset. Both of the two
annotators are senior researchers in the biomedical and sports fields.

3.3 Evaluation Protocol
To evaluate the generalizability of the leveraged approaches for the
AMGE in-the-wild task, we formulate the new val/test and known
val/test, where we use val and test to indicate the validation set and
the test set, respectively. For MuscleMap, 20 of 135 activities are
leveraged to formulate the new val/test set, which are hollow hold,
v-ups, calf raise hold, modified scissors, scissors, reverse crunches,
march twists, hops on the spot, up and down planks, diamond push
ups, running, plank jacks, archer push ups, front kicks, triceps dip
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Figure 2: An overview of the number of samples and the number of activity types per muscle region (@R), depicted at the top left and
the top right. On the bottom, some activity-specific samples from the MuscleMap dataset are shown according to the corresponding
muscle group.

hold, side plank rotation, raised leg push ups, reverse plank kicks,
circle push ups, and shoulder taps. The activity types for the known
test and known val are the same as the activity types in the train-
ing set. The sample number for train, new val, known val, new
test, known test sets are 7, 069, 2, 355, 1, 599, 2, 360, and 1, 594. The
performances are finally averaged for new and known sets (mean
test and mean val). We randomly pick up half of the samples from
each new activity type to construct the new val while the rest of the
samples from the selected new activities are leveraged to construct
the new test. After the training of the leveraged model, we test the
performance of the trained model on known/new evaluation and
known/new test sets, and then average the performance of known
and new sets to get the averaged performance on evaluation and test
sets by considering both known and new activities which are both
important for the AMGE in-the-wild task.

3.4 Evaluation Metric
Mean averaged precision (mAP) is used as the evaluation metric
for the AMGE in-the-wild task. We let l = {𝑙𝑖 |𝑖 ∈ [1, . . . , 𝑁𝑙 ]}
denote the multi-hot annotation for the sample 𝑖 and y = {𝑦𝑖 |𝑖 ∈
[1, . . . , 𝑁𝑙 ]} denote the prediction of the model for the given sample
𝑖. We first select the subset of y and l by calculating the mask through
m = 𝑤ℎ𝑒𝑟𝑒 (l = 1). The corresponding subsets are thereby denoted
as y [m] and l [m]. Then we calculated the mean averaged precision
score using the function and code from sklearn [6].

4 ARCHITECTURE
4.1 Preliminaries of MViT
TRANSM3E is based on the improved multi-scale visual transformer
(MViTv2) [40], which is based on MViTv1 [21]. The model ar-
chitecture of TRANSM3E is shown in Figure 3. Compared with
ViT [18], MViTv1 increases the channel resolution progressively and
reduces the resolution on the spatiotemporal plane simultaneously,
which realizes pooling operations both on Keys (K) and Queries (Q).
The basic idea of MViTv1 is the construction of different low- and

high-level visual modeling stages [21]. Multi-scale pooling atten-
tion is one of the major components of MViTv2 compared with ViT.
MViTv2 uses decomposed relative position embeddings and residual
pooling connections to integrate the principle of shift-invariance into
the model and reduce computational complexity, while the down-
scaling in MViTv1 is achieved by large strides on the Keys (K) and
Values (V).

4.2 Multi-Classification Tokens (MCT)
MCTs are used to harvest more informative components to achieve
good generalizability for AMGE and to construct sender and receiver
for cross-modality knowledge distillation in our work as shown in
Figure 3. In our MCT setting, we directly use the final layer output
of MCT and aggregate the MCT along the token dimension together
with SoftMax to achieve multi-label classification.

Assuming the classification tokens of MCT to be referred to
by {cls𝑗 | 𝑗 ∈ [1, . . . ,𝐶]} and the flattened patch embeddings to be
referred to as {p𝑖 | 𝑖 ∈ [1, . . . , 𝑁𝑃𝑎𝑡𝑐ℎ𝑒𝑠 ]} for the given input video,
where 𝑁𝑃𝑎𝑡𝑐ℎ𝑒𝑠 is the length of the patch sequence, the input of the
first MViTv2 block is

[
cls1, . . . , cls𝐶 , p1, . . . , p𝑁𝑃𝑎𝑡𝑐ℎ𝑒𝑠

]
. The final

prediction y is computed through,

y = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (P𝛼 (
𝐶∑︁
𝑖=1

cls𝑖/𝐶), 𝑑𝑖𝑚 = −1), (1)

where P𝛼 indicates a fully connected (FC) layer projecting the
merged MCT to a single vector with the number of muscle regions as
dimensionality. We make use of the same MCT settings for both the
video-based backbone and the skeleton-based backbone according to
Figure 4. After the first GCN block, the MCT for knowledge distilla-
tion and the MCT for classification are added to the model. We first
flatten the spatial temporal nodes from the graph structure preserved
by the GCN block. We use z∗

𝐺𝐶𝑁
to denote the nodes of the con-

structed graph structure, cls∗𝑚 to denote the MCT for classification,
and cls∗𝑟 to denote the MCT for knowledge distillation regarding
skeleton branch. We then concatenate all of these components along
the node dimension and execute feature projection by using linear
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Classification Token-level Fusion
(CTF)Figure 3: TRANSM3E. The knowledge is distilled between the skeleton branch and the RGB branch, PTs denote the patch embedding

tokens. Three main components are shown, e.g., Multi-Classification Tokens (MCTs), Multi-Classification Tokens Knowledge Distilla-
tion (MCTKD), and Multi-Classification Tokens Fusion (MCTF).

projection layer P𝑚 as follows,

z∗𝐺𝐶𝑁 , cls∗𝑚, cls∗𝑟 = 𝑆𝑝𝑙𝑖𝑡 (P𝑚 (𝐶𝑜𝑛𝑐𝑎𝑡𝑒 (z∗𝐺𝐶𝑁 , cls∗𝑚, cls∗𝑟 ))). (2)

Then we execute an internal knowledge merge from the nodes to the
MCT for the classification, as follows,

ˆcls𝑚 = P𝑠 (z∗𝐺𝐶𝑁 ) + cls∗𝑚, (3)

where P𝑠 denotes a FC layer. Finally, the node features, MCT for clas-
sification, and MCT for the knowledge distillation will be transferred
to the next GCN block and the same procedure will be executed.

4.3 Multi-Classification Tokens Knowledge
Distillation (MCTKD)

Multi-Classification Tokens Knowledge Distillation (MCTKD) is
one of our main contributions. To the best of our knowledge, we
are the first to introduce this technique which can enable knowledge
distillation on the multi-classification tokens between two backbones
with obvious structure differences. Through our observation in this
work, we find that directly merging the feature from the skeleton-
based model and video-based model can not achieve a satisfactory
performance due to the huge structure and modality difference. To
achieve appropriate feature fusion between two architectures on dif-
ferent modalities with obvious differences, we need a new solution
focusing on this issue. Knowledge distillation, which has the capa-
bility to accomplish the feature space alignment, is firstly explored
in our work on the MCT perspective to assist the cross-modality
feature fusion for the AMGE in-the-wild task.

In the past, transformer-based knowledge distillation mainly fo-
cused on using intermediate full patch embeddings [48] or final
classification token [75], while we propose knowledge distillation
on the proposed MCT for both intermediate and final layers by using
additional MCT for the knowledge distillation.

The underlying benefit of MCTKD is that the token number of
the MCT is fixed, while knowledge distillation on the patch embed-
dings [22] may encounter the alignment issue when facing different

GCN block

Flatten

KD-MCT
CLS-MCT

GCN block

+

C
oncat

KD-MCT

CLS-MCT CLS-MCT

KD-MCT

Figure 4: An overview of the modified GCN block with knowl-
edge distillation MCT and classification MCT.

modalities with different token sizes. Instead of directly distilling
knowledge from the MCT of an auxiliary modality towards the MCT
of a major modality, knowledge distillation MCT is introduced to
serve as a knowledge receiver. This approach avoids disruption on
the MCT for classification for the major modality, i.e., RGB video
modality. The knowledge distillation MCT of the major modality
branch is denoted as cls𝑟 = {cls𝑟,1, cls𝑟,2, ..., cls𝑟,𝐶 } and the knowl-
edge distillation MCT from the branch of auxiliary modality is
indicated by cls𝑠 = {cls𝑠,1, cls𝑠,2, ..., cls𝑠,𝐶 }, MCTKD is achieved
by applying KL-Divergence (KL-Div) loss after each feature map
reduction block of MViTv2 on cls𝑟 and cls𝑠 :

𝐿𝑀𝐶𝑇𝐾𝐷,𝑎𝑙𝑙 = (
𝑁𝐵∑︁
𝑖=1

KL-Div(cls𝑖𝑟 , cls𝑖𝑠 ))/𝑁𝐵, (4)

where 𝑁𝐵 and 𝐿𝑀𝐶𝑇𝐾𝐷,𝑎𝑙𝑙 refer to the block number and the sum
of MCTKD losses. 𝐿𝑀𝐶𝑇𝐾𝐷,𝑎𝑙𝑙 is combined equally with the binary
cross entropy loss (𝐿𝐵𝐶𝐸 ).

4.4 Multi-Classification Tokens Fusion (MCTF)
Multi-Classification Tokens Fusion (MCTF) is designed to fuse
MCT for knowledge distillation and the MCT for classification as in
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Figure 3. We use cls𝑟 to denote the knowledge distillation MCT, and
cls𝑚 denotes the classification MCT. K, Q, and V for each MCT can
be obtained through linear projections P𝑚
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as follows,

K𝑚,Q𝑚,V𝑚 = P𝑚𝐾 (cls𝑚), P𝑚𝑄 (cls𝑚), P𝑚𝑉 (cls𝑚),
K𝑟 ,Q𝑟 ,V𝑟 = P𝑟𝐾 (cls𝑟 ), P

𝑟
𝑄 (cls𝑟 ), P𝑟𝑉 (cls𝑟 ) .

(5)

After obtaining the Qm/r, Km/r, and, Vm/r from the MCT for classifi-
cation and the MCT for the knowledge distillation, a mixed attention
mechanism is calculated as follows,

A𝑚𝑚𝑚 = P𝑚𝑚 (𝐷𝑃 (𝐴𝑡𝑡 (Q𝑚,K𝑚,V𝑚))),
A𝑚𝑚𝑟 = P𝑚𝑟 (𝐷𝑃 (𝐴𝑡𝑡 (Q𝑚,K𝑟 ,V𝑚))),
A𝑚𝑟𝑚 = P𝑟𝑚 (𝐷𝑃 (𝐴𝑡𝑡 (Q𝑟 ,K𝑚,V𝑚))),

(6)

where 𝐴𝑡𝑡 denotes the attention operation 𝐴𝑡𝑡 (Qm/r,Km/r,Vm/r) =
𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (Qm/r@Km/r) ∗ Vm/r) and DP indicates Dropout. The
above equations provide attention considering different perspectives
including self-attention A𝑚𝑚𝑚 and two types of cross attention, i.e.,
A𝑚𝑟𝑚 and A𝑚𝑚𝑟 which use the Queries from the MCT for the clas-
sification and the Keys from the MCT for knowledge distillation
and vice versa. The same procedure is conducted for the knowledge
distillation MCT to generate A𝑟𝑟𝑟 , A𝑟𝑟𝑚 , and A𝑟𝑚𝑟 with DP by,

A𝑟𝑟𝑟 = P𝑟𝑟 (𝐷𝑃 (𝐴𝑡𝑡 (Q𝑟 ,K𝑟 ,V𝑟 ))),
A𝑟𝑟𝑚 = P𝑟𝑚 (𝐷𝑃 (𝐴𝑡𝑡 (Q𝑟 ,K𝑚,V𝑟 ))),
A𝑟𝑚𝑟 = P𝑚𝑟 (𝐷𝑃 (𝐴𝑡𝑡 (Q𝑚,K𝑟 ,V𝑟 ))).

(7)

Then the attention is finalized as,

A𝑚 =𝑆𝑢𝑚(A𝑚𝑚𝑚,A𝑚𝑚𝑟 ,A𝑚𝑟𝑚),
A𝑟 =𝑆𝑢𝑚(A𝑟𝑟𝑟 ,A𝑟𝑚𝑟 ,A𝑟𝑟𝑚) .

(8)

The fused attention is thereby calculated through,

A𝑓 = P𝑓 (𝐶𝑜𝑛𝑐𝑎𝑡 (A𝑚,A𝑟 )), (9)

where P𝑓 denotes an FC layer. The whole procedure is indicated by,

A𝑓 = 𝐶𝐿𝑆𝑓 (𝐿𝑁 (cls𝑚), 𝐿𝑁 (cls𝑟 )), (10)

where 𝐿𝑁 demonstrates the layer normalization and 𝐶𝐿𝑆𝑓 is the
CLS-Fusion. Assuming we use cls𝑎 to denote the average of MCT
for classification and the MCT for knowledge distillation by cls𝑎 =

(cls𝑚 + cls𝑟 )/2, the final classification tokens are harvested by,

cls𝑓 =cls𝑎 +𝐶𝐿𝑆𝑓 (𝐿𝑁 (cls𝑟 ), 𝐿𝑁 (cls𝑚)),
cls𝑓 :=cls𝑎 + 𝐷𝑃 (M𝜃 (𝐿𝑁 (cls𝑓 ))),

(11)

where M𝜃 denotes a Multi-Layer Perception (MLP) based projection
and DP denoted dropout operation. MCTKD and MCTF are added
after 𝑁𝑀𝐶𝑇 epochs of training of TRANSM3E with only MCT, for
both of the leveraged modalities and models. During the test phase,
we make use of the average of the prediction results from the two
branches as the final prediction.

4.5 Implementation Details
All the video models are pre-trained on ImageNet1K [16] using
PyTorch 1.8.0 with four V100 GPUs. To reproduce TRANSM3E,
we first train MViTv2-S with only MCT for classification on RGB
modality and HD-GCN with only MCT for classification on skeleton

modality for 80 epochs and then train TRANSM3E with all compo-
nents for another 80 epochs. We use AdamW [46] with learning rate
of 1𝑒−4. The input video for train, test, and val is center cropped
and rescaled as 224×224 with color jitter parameter as 0.4.

4.6 Analysis on the MuscleMap Benchmark
The results of different architectures on our benchmark are provided
in Table 2. First, the approaches include Random, in which the mus-
cle activation is predicted randomly, and All Ones, in which all the
samples are predicted as using all the muscle regions. These two
simple approaches are used to serve as statistic baselines. Random
and All Ones show overall low performances with <30% mAP on
all the evaluations. These statistical approaches are leveraged to
make comparisons between deep-learning-based approaches to ver-
ify whether the model predicts muscle activation randomly or not.
The skeleton-based approach, e.g., HD-GCN [36], ST-GCN [81],
and CTR-GCN [11], obviously outperform the statistic approaches
and deliver promising performances when dealing with unseen ac-
tivity types. Video-based approaches surpass statistic and skeleton
baselines in terms of the AMGE of the known activities, where
transformer-based approaches, e.g., MViTv2 S/B [40] and VideoSwin
S/B [45], and CNN-based approaches, e.g., C2D [24], I3D [8],
Slow [23], SlowFast [23], are leveraged. MViTv2-S shows good
performance compared with the other methods due to the capability
for reasoning long-term information and the multi-scale pooling
setting which can extract informative cues from different abstract
perspectives, especially with 79.6%, 79.7% for mean val and mean
test on the MuscleMap dataset. However, we find that skeleton-
based approaches work well on the new activities while they can
not deliver satisfactory results on the known activities. On the other
hand, video-based approaches work well on the known activities
while they can not provide promising AMGE results on the new
activities. A good AMGE model is expected to work well in both of
the scenarios.

To simultaneously achieve good performances for both the new
activities and the known activities, we would like to grasp the
advantages both of the skeleton-based approaches and the video-
based approaches. We proposed TRANSM3E, which achieves fea-
ture fusion and knowledge distillation by using multi-classification
tokens (MCT) on both the video-based model and the skeleton-
based model, by using the most outperforming backbones from
the two different modalities, i.e., MViTv2-S and HD-GCN. This
new proposed method incorporates knowledge distillation from the
multi-classification token level and feature fusion from the multi-
classification token level to harvest more underlying attributes of the
body motion which can benefit the activated muscle group estimation
task in the wild task. TRANSM3E surpasses all the others by large
margins. TRANSM3E is a transformer-based approach due to the
capability for long-term reasoning of visual transformers [76] since
the AMGE should consider the activities at the global level, which
requires long-term information reasoning. TRANSM3E has 64.1%,
97.8%, 64.2%, and 81.0% mAP considering new val, known val, new
test, and known test on our benchmark, while the generalizability
to new activities is mostly highlighted. TRANSM3E outperforms
MViTv2-S by 1.4% and 1.3% on the mean val and mean test, which
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Table 2: Experimental results on the MuscleMap benchmark. Here, known val, new val, known test, and new test denote evaluation
and test sets for normal and generalizable validation and test, respectively. mean val and mean test denote the averaged mean average
precision (mAP) of normal and generalizable settings.

Model #PM MuscleMap @ mAP
known val new val mean val known test new test mean test

Random 0.0M 29.7 29.0 29.4 28.9 29.5 29.2
All Ones 0.0M 28.2 28.1 28.2 27.8 28.6 28.2
ST-GCN [81] 2.6M 90.4 63.5 77.0 90.5 63.3 76.9
CTR-GCN [11] 1.4M 93.7 62.2 78.0 93.6 61.7 77.7
HD-GCN [36] 0.8M 93.4 63.1 78.3 93.4 63.1 78.3
C2D (R50) [24] 23.5M 97.2 59.1 78.2 97.4 58.5 78.0
I3D (R50) [8] 20.4M 97.0 59.4 78.2 97.0 58.4 77.7
Slow (R50) [23] 24.3M 96.8 60.7 78.8 96.9 60.5 78.7
SlowFast (R50) [23] 25.3M 89.7 60.2 75.0 94.4 59.6 77.0
MViTv2-S [40] 34.2M 97.7 61.4 79.6 97.9 61.4 79.7
MViTv2-B [40] 51.2M 97.4 61.2 79.3 97.7 61.0 79.4
VideoSwin-S [45] 50.0M 92.6 58.8 75.7 92.4 58.8 75.6
VideoSwin-B [45] 88.0M 91.8 58.7 75.3 91.9 58.3 75.1

TransM3E (Ours) 55.4M 97.8 64.1 81.0 97.8 64.2 81.0

Table 3: Ablation for TransM3E on MuscleMap.
MCT MCTKD MCTF known

val
new
val

mean
val

known
test

new
test

mean
test

✓ ✓ 95.7 62.1 78.9 95.9 62.0 79.0
✓ ✓ 95.7 62.1 78.9 95.9 62.0 79.0
✓ ✓ 95.4 62.4 78.9 95.6 62.1 78.9
✓ ✓ ✓ 97.8 64.1 81.0 97.8 64.2 81.0

Table 4: Ablation of MCTKD on MuscleMap.

Method known
val

new
val

mean
val

known
test

new
test

mean
test

FL-KD 96.5 63.0 79.8 96.4 63.4 79.9
DE-KD 95.9 63.9 79.9 96.6 63.9 80.3
SP-KD 97.5 63.0 80.3 96.7 63.1 79.9
FL-MCTKD 95.1 63.0 79.1 95.5 62.8 79.2
DE-MCTKD 95.1 63.3 79.2 95.2 63.4 79.3
SP-MCTKD 97.8 64.1 81.0 97.8 64.2 81.0

especially works well for new val and new test as TRANSM3E sur-
passes MViTv2-S by 2.7% and 2.8%. Our method achieves significant
improvements in AMGE through three main strategies: enhanced
attribute reasoning using MCT, effective knowledge exchange be-
tween video and skeleton models, and integration of distillation and
classification MCTs for better information consolidation. Despite its
strengths, the performance gap in AMGE between known and new
activities highlights areas for improvement, particularly in reducing
misclassifications and biases, with more insights to be shared in a
forthcoming ablation study analysis.

4.7 Analysis of the Ablation Studies
Module ablation. The ablation study of MCT, MCTKD, and MCTF,
is shown in Table 3, where we deliver the results for w/o MCT,
w/o MCTKD, w/o MCTF, and w/ all. When we compare the results
between w/o MCT and w/ all, we find that using MCT to enlarge
the attributes prediction space can contribute performance improve-
ments by 2.1%, 2.0%, 2.1%, 1.9%, 2.2%, and 2.0% in terms of known
val, new val, mean val, known test, new test, and mean test.
When comparing the results between w/o MCTKD and w/ all, we
observe that leveraging MCTKD to achieve multi-stage information
exchange from the video model and skeleton model can harvest per-
formance improvements by 2.1%, 2.0%, 2.1%, 1.9%, 2.2%, and 2.0% in
terms of the six aforementioned evaluations. When we compare the
results between w/o MCTF and w/ all, we find that using MCTF to
achieve the fusion between the information derived from the classifi-
cation MCT and knowledge distillation MCT can bring performance
improvements of 2.4%, 1.7%, 2.1%, 2.2%, 2.1%, and 2.1% in terms of
the six aforementioned evaluations.

Table 5: Ablation for the MCTF on MuscleMap.

Method known
val

new
val

mean
val

known
test

new
test

mean
test

Sum [60] 95.4 62.4 78.9 95.6 62.1 78.9
Multiplication [60] 94.5 62.8 78.7 94.7 62.8 78.8
SelfAttention [49] 97.4 62.9 80.2 97.6 62.8 80.2
CrossAttention [49] 94.9 63.7 79.3 95.1 63.5 79.3
MCTF (ours) 97.8 64.1 81.0 97.8 64.2 81.0

Table 6: Comparison of MMF/KD on MuscleMap.

Method known
val

new
val

mean
val

known
test

new
test

mean
test

LateFusionSum [60] 80.6 59.8 70.2 80.1 60.0 70.1
LateFusionConcat [77] 83.5 60.8 72.2 83.3 61.2 72.3
LateFusionMul [60] 82.3 60.4 71.4 82.0 60.9 71.5
Ours 97.8 64.1 81.0 97.8 64.2 81.0

MCTKD ablation. We evaluate the effects of varying the loca-
tion of knowledge distillation application and the knowledge dis-
tillation on a single distillation token (KD) and MCT (MCTKD),
where they are named differently, i.e., KD/MCTKD at the final
layer (FL-KD/MCTKD), KD/MCTKD after token size reduction
(SP-KD/MCTKD), or KD/MCTKD after each MViTv2 block (DE-
KD/MCTKD), in Table 4. Considering different knowledge dis-
tillation localizations, SP-KD and SP-MCTKD achieve the best
performances for KD and MCTKD individually, demonstrating their
superiority of using sparse knowledge distillation settings after the
reduction of the feature map size. When we compare sparse knowl-
edge distillation with dense knowledge distillation, SP-MCTKD
achieves performance improvement by 2.7%, 0.8%, 1.8%, 2.6%, 0.8%,
and 1.7% in terms of known val, new val, mean val, known test,
new test, and mean test. When we compare sparse knowledge distil-
lation with final layer knowledge distillation, SP-MCTKD achieves
performance improvements by 2.7%, 1.1%, 1.9%, 2.3%, 1.4%, and
1.8% in terms of the aforementioned six evaluations.

Using MCTKD in sparse locations—specifically after each fea-
ture map size reduction—yields the best results on the MuscleMap
benchmark. This method enhances the aggregation of AMGE cues
across modalities after pooling, facilitating more effective knowl-
edge distillation. SP-MCTKD surpasses SP-KD by utilizing multi-
classification tokens to expand the prediction space for attributes
during training, thereby capturing and transferring more crucial
AMGE cues from various modalities. Consequently, SP-MCTKD,
which excels in performance, is chosen as the foundation for our
model, facilitating knowledge exchange between skeleton and video
models. SP-MCTKD achieves the best performance and is selected.
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Figure 5: Qualitative results for the MViTv2-S [40] and TRANSM3E. GradCam [63] visualization is given. The ground truth is shown
on the left, and the prediction and gradients of the MViTv2-S [40], and our approach are shown in the middle and on the right.

MCTF ablation. The ablations on MCTF for TRANSM3E are
presented in Table 5, where our approach is compared with exist-
ing fusion approaches, e.g., Sum, Multiplication, SelfAttention, and
CrossAttention. MCTF shows the best performance with 81.0% and
81.0% on mean val and mean test. Compared with CrossAttention,
our MCTF achieves performance improvement by 1.7% and 1.7% in
terms of the mean val and mean test. The superiority of MCTF com-
pared to other approaches, especially on generalizability, depends
on using attention from a more diverse perspective, which benefits
the capability of integration considering different focus formats.

4.8 Comparison with Conventional Multi-modality
Fusion Approaches

Table 6 presents the comparison between TRANSM3E and existing
multi-modality fusion approaches, i.e., LateFuionSum, LateFusion-
Concat, and LateFusionMul. We compare our proposed method to
these conventional multi-modal fusion approaches to illustrate that
the performance improvement of our approach is not solely delivered
by using the feature fusion between the skeleton modality and the
RGB video modality. Compared with the best performing baseline
LateFusionConcat, our approach achieves a performance improve-
ment by 14.3%, 3.3%, 8.8%, 14.5%, 3.0%, and 8.7% in terms of known
val, new val, mean val, known test, new test, and mean test.

4.9 Analysis of Qualitative Results
Qualitative results are shown in Figure 5, the label and GradCam [63]
visualizations of MViTv2-S and TRANSM3E are given from left
to right. The true/missed/false prediction is marked as green check-
mark/purple crossmark/red crossmark. Overall, our approach has

more accurate predictions and fewer false and missed predictions
for all the samples considering known activities, i.e., 1 and 2 in
Figure 5, and new activities, e.g., 3 and 4 , where 1 and 2 are
correctly predicted by our model. TRANSM3E concentrates mostly
on the accurate body regions, e.g., in sample 3 TRANSM3E fo-
cuses on the leg and abdominis related region, while the focus of the
MViTv2-S is distracted, which results in more false predictions of
MViTv2-S. Due to the integration of the learned knowledge from
both the video and skeleton modalities, our model can achieve a
better focus.

5 CONCLUSION
In this paper, we open the vistas of video-based activated muscle
group estimation in the wild. We contribute the first large-scale video-
based activated muscle group estimation dataset considering in-the-
wild video and build up MuscleMap benchmark for the AMGE
by using statistic baselines and existing video-based approaches
including both video-based and skeleton-based methods. We take
additional consideration regarding the AMGE generalizability. We
propose TRANSM3E with multi-classification token distillation and
fusion in a cross-modality manner to enhance the generalization
to new activity types. TRANSM3E sets the state-of-the-art on the
proposed MuscleMap benchmark and it delivers promising general-
izability towards unseen activities in terms of the AMGE in-the-wild
task. In the future, the utilization of large language models (LLMs)
for the purpose of video-based active muscle group estimation is
anticipated to enhance the extensibility of the approach with respect
to estimating muscle groups during novel physical activities.
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