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Abstract

Recent development of large language mod-001
els (LLMs) for code like CodeX and CodeT5+002
demonstrates tremendous promise in achieving003
code intelligence. Their ability of synthesizing004
code that completes a program for performing005
a pre-defined task has been intensively tested006
and verified on benchmark datasets including007
HumanEval and MBPP. Yet, evaluation of these008
LLMs from more perspectives (than just pro-009
gram synthesis) is also anticipated, considering010
their broad scope of applications in software en-011
gineering. In this paper, we explore the ability012
of LLMs for testing programs/code. By per-013
forming thorough analyses of recent LLMs for014
code in program testing, we show a series of in-015
triguing properties of these models and demon-016
strate how program testing ability of LLMs can017
be improved. Following recent work that uses018
generated test cases to enhance program syn-019
thesis, we further leverage our findings in im-020
proving the quality of the synthesized programs021
and show +11.77% and +4.22% higher code022
pass rates on HumanEval+ comparing with the023
GPT-3.5-turbo baseline and the recent state-of-024
the-art, respectively.025

1 Introduction026

Large language models (LLMs) are advancing027

rapidly in understanding The community has wit-028

nessed a surge in the development of large lan-029

guage models (LLMs), which have achieved in-030

credible ability in understanding and generating031

not only texts but also code. LLMs for code032

(CodeX (Chen et al., 2021), StarCoder (Li et al.,033

2023b), CodeT5+ (Wang et al., 2023b), etc) have034

been widely adopted to a variety of applications to035

achieve code intelligence. However, current eval-036

uation of these LLMs mostly focuses on program037

completion/synthesis, despite the models can also038

be utilized in other applications. As the field con-039

tinues to advance, evaluation of these models from040

more perspectives is anticipated, which could facil- 041

itate deeper understanding of the LLMs. 042

The ability of automatically generating proper 043

test suites is of great desire to software engineer- 044

ing, yet challenging. Being learning-based or not, 045

current test generation efforts (e.g., fuzzing) primar- 046

ily focus on creating diverse test inputs to identify 047

faults in the code as much as possible via maximiz- 048

ing their coverage, e.g., line coverage and branch 049

coverage (Fioraldi et al., 2020; Tufano et al., 2022; 050

Dinella et al., 2022; Lemieux et al., 2023; Xia et al., 051

2023). Although such test inputs try to verify the 052

(non-)existence of crashes and hangs of the tested 053

code, they lack the ability of determining whether 054

the code adheres to the aim of the function which 055

is represented by input-output relationships. Au- 056

tomatic test case generation for this aim not only 057

requires an high coverage of the code being tested 058

but also necessitates a correct understanding of 059

the “true” desired input-output relationships in the 060

tested code, leaving it a challenging open problem. 061

Being capable of synthesizing correct code im- 062

plementations given docstrings, LLMs for code 063

seem capable of understanding the desired input- 064

output relationship of a function described in nat- 065

ural language. This capability inspires applying 066

these LLMs to generating test cases automati- 067

cally (Chen et al., 2021). However, the ability 068

of these models for program testing has not been 069

systematically evaluated. In this paper, we sys- 070

tematically compare the ability of recent LLMs 071

for code in testing from two perspectives focus- 072

ing on both the correctness and diversity of the 073

test cases, considering that 1) program testing is 074

of great interest in software engineering and soft- 075

ware security as mentioned and 2) automatically 076

generated test cases can further be adopted to im- 077

prove the program synthesis performance (Chen 078

et al., 2023). Our analyses focus on algorithmic 079

coding, based on the popular 164 problems from 080

HumanEval+ (Liu et al., 2023a) and 427 sanitized 081
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problems from MBPP (Austin et al., 2021). It is082

worth noting that the model may encounter various083

scenarios when generating test cases. It may gen-084

erate test cases when provided with only natural085

language descriptions of the desire of the program,086

or it could generate test cases when given an “op-087

timal” oracle implementation. In more complex088

situations, it may even need to test its own imper-089

fect generated code or the code generated by other090

models. We consider 4 test-case generation set-091

tings (i.e., “self-generated” which uses each LLM092

to test code synthesized by the LLM itself, “cross-093

generated” which lets all LLMs to test the same094

code synthesized by a group of four LLMs , “or-095

acle” which tests an oracle implementation, and096

the “placeholder” in Figure 1) and test a collection097

of 11 competitive LLMs for code. We conducted098

a variety of experiments, from which intriguing099

takeaway messages are delivered.100

As previously mentioned, several very recent pa-101

pers (Shi et al., 2022; Li et al., 2023a; Chen et al.,102

2023) have shown that appropriate usage of gener-103

ated test cases can improve the quality of program104

synthesis. Yet, the quality of generated test cases105

largely impacts the performance of such methods.106

Due to the lack of systematic evaluation of the test-107

ing ability of LLMs for code, it is unclear how to108

craft test cases that could be potentially more help-109

ful to program synthesis. The studies in this paper110

also shed light on this. We will show that, sub-111

stantially improved program synthesis performance112

can be gained by utilizing takeaway messages in113

our studies. Specifically, we can achieve +11.77%114

higher code pass rate on HumanEval+, in compar-115

ison with the GPT-3.5-turbo baseline. Compared116

with a very recent state-of-the-art called CodeT, our117

solution gains +4.22% higher code pass rate.118

2 Evaluation Metrics119

To make the evaluation more reliable and com-120

prehensive, it is crucial to first design some suit-121

able metrics, like BLEU (Papineni et al., 2002),122

ROUGE (Lin, 2004), and the pass rate (Chen et al.,123

2021) for evaluating machine translation, text sum-124

marization, and program synthesis, respectively. In125

this section, we specify two main evaluation met-126

rics to evaluate the program testing ability of LLMs,127

from the perspective of correctness and diversity.128

Pass rate In software engineering, we expect129

test cases to represent some desired “ground-truth”130

functionality of the tested program/code. In prac-131

tice, such “ground-truth” functionality can be de- 132

scribed in the header comments of a function (i.e., 133

docstrings of the function) and tested using the ora- 134

cle implementation, as in HumanEval (Chen et al., 135

2021) and MBPP (Austin et al., 2021). The ora- 136

cle program/code should be able to pass the test, 137

if a generated test case is correct. Therefore, we 138

leverage the pass rate as a measure to evaluate the 139

correctness of the generated test cases. For a fair 140

comparison, we instruct each model to generate 141

three test cases in the prompt, and, when a model 142

generates more than three test cases, we select the 143

first three for evaluation. Assuming that there are 144

in total M programming problems in an experi- 145

mental dataset and, for each problem, we have N 146

program/code implementations to be generated test 147

cases for. Each model has only one chance to gen- 148

erate these test cases for each program/code. Then, 149

we calculate the pass rate as: 150

P =
1

MN

M∑
i=1

N∑
j=1

pij
nij

, (1) 151

where nij is the number of test cases in Qij which 152

includes no more than three test cases generated 153

for the j-th program/code implementation of the 154

i-th problem by the evaluated LLM at once, i.e., 155

Qij = {(xijk, yijk)}k, and pij is the number of 156

test cases (in Qij) that do not fail the oracle. 157

The pass rate defined in Eq. (1) measures cor- 158

rectness of the generated test cases. However, as 159

can be seen in Figure 1, the model can generate du- 160

plicate test cases that are less helpful, even though 161

they are correct. To avoid such an evaluation bias, 162

we further advocate deduplication in the set of test 163

cases that are considered as correct, which leads to 164

computation of a deduplicated pass rate defined as 165

P ′ = 1
MN

∑∑
p′ij/n

′
ij , where we use ′ to denote 166

the numbers of unique test cases. 167

Coverage rate In addition to the above pass 168

rates, we further consider coverage rate as a more 169

fine-grained metric for evaluating the diversity of 170

the generated test cases. According to its definition, 171

converge rate computes the degree to which the 172

code is executed, given a test case. Since, for each 173

program/code, we keep no more than three test 174

cases at once, we calculate how much percentage 175

of the control structure is covered given these test 176

cases. Similar to Eq. (1), we evaluate the perfor- 177

mance of testing all programs/code over all M×N 178
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times of generation, i.e., we calculate179

C =
1

MN

M∑
i=1

N∑
j=1

cij , (2)180

where cij is the per-test-case branch coverage rate.181

We apply the pytest 1 library to evaluate the branch182

coverage for all the three test cases for each code183

and average the results for all programs/code and184

all problems. Apparently, C ≤ 1, and a higher C185

shows better testing ability of an LLM, since we186

expect all parts of the programs/code to be executed187

to find our all potential bugs.188

3 Large Language Models for Code189

In this section, we outline the evaluated models.190

We adopt some “small” models whose numbers191

of parameters are around 1B (to be more specific,192

from 770M to 1.3B in our choices) and some larger193

models that achieve state-of-the-art performance in194

the task of program synthesis.195

For small models, we use InCoder (1.3B) (Fried196

et al., 2023), CodeGen2 (1B) (Nijkamp et al.,197

2023a), CodeT5+ (770M) (Wang et al., 2023b),198

and SantaCoder (1.1B) (Allal et al., 2023).199

As for larger models that achieve state-of-the-200

art program synthesis performance, we use Code-201

Gen2 (16B) (Nijkamp et al., 2023a), CodeGen-202

Multi (16B) (Nijkamp et al., 2023b), CodeGen-203

Mono (16B) (Nijkamp et al., 2023b), StarCoder204

(15B) (Li et al., 2023b), WizardCoder (15B) (Luo205

et al., 2023), CodeGeeX2 (6B) (Zheng et al.,206

2023), and GPT-3.5-turbo. For these LLMs,207

we tested pass@1 of all models except GPT-208

3.5-turbo (whose result can be directly collected209

from Liu et al. (2023a)’s paper). By sorting210

pass@1 from high to low, they are ranked as: GPT-211

3.5-turbo (61.7%), WizardCoder (46.23%, 15B),212

CodeGeeX2 (29.97%, 6B), StarCoder (27.9%,213

15B), CodeGen-Mono (26.15%, 16B), CodeGen2214

(19.33%, 16B), CodeGen-Multi (15.35%, 16B).215

The ranks on the MBPP dataset are similar. Refer216

to Appendix A.1 for more details of these models.217

4 Code to be Tested218

For evaluating the testing ability of LLMs, we need219

an oracle to express the ground-truth functionality220

of the tested code. Fortunately, current datasets221

for evaluating program synthesis performance of-222

ten provide such oracles (see HuamnEval (Chen223

1https://pytest.org

et al., 2021) and MBPP (Austin et al., 2021)). In 224

our experiments, we utilize an amended version of 225

HumanEval called HumanEval+ (Liu et al., 2023a), 226

together with MBPP (the sanitized version). These 227

datasets are established to evaluate basic Python 228

programming performance of LLMs, and they con- 229

tain 164 and 427 problems, respectively. 230

4.1 Imperfect Code Implementations 231

In order to simulate real-world scenarios where the 232

tested code is often buggy, we first adopt synthe- 233

sized programs/code as the programs/code to be 234

tested, considering that the synthesis of even state- 235

of-the-art LLMs is still imperfect. We evaluate 236

the performance of each LLM in testing code that 237

was generated by itself (which is denoted as “Self- 238

generated”) and code in a set consisting of pro- 239

gram completion results of several different LLMs 240

(which is denoted by “Cross-generated”). That 241

said, the compared LLMs take different code im- 242

plementations when generating test cases for each 243

programming problem in the self-generated setting. 244

Whereas, in the cross-generated setting, the same 245

program/code implementations are given to differ- 246

ent LLMs for generating test cases for comparison. 247

In practice, we apply InCoder (1.3B), CodeGen2 248

(1B), CodeT5+ (770M), and SantaCoder (1.1B) 249

to construct the cross-generated program/code set, 250

while, in the self-generated setting, each LLM first 251

synthesize code and complete a program to ful- 252

fill the requirement of each programming problem, 253

and the LLM then generates test cases with the 254

synthesized programs/code in its prompts. The 255

temperature for all LLMs is uniformly set to 0.2 256

for synthesizing the programs/code in both settings. 257

We obtain 100 program/code completions for each 258

problem and we prompt each LLM to generate 3 259

test cases for every program/code implementation 260

in the self-generated setting, and we sampled 100 261

implementations from the synthesis results of In- 262

Coder (1.3B), CodeGen2 (1B), CodeT5+ (770M), 263

and SantaCoder (1.1B) to form the cross-generated 264

code set, i.e., we have N = 100 for these settings. 265

We follow the same way of generating code 266

as introduced in the papers of these LLMs. For 267

model without instruction tuning, like InCoder and 268

CodeT5+, we synthesize programs/code using the 269

default prompt given by each programming prob- 270

lem in the test dataset, while, for models that have 271

adopted instruction tuning, e.g., WizardCoder, we 272

use the recommended prompt in their papers. 273
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Figure 1: Testing (a) self-generated code, (b) cross-generated code, (c) oracle, and (d) placeholder.
Model Size Pass@1 Pass@10 Pass@100

InCoder 1.3B 6.99%/14.06% 14.20%/34.98% 23.76%/55.34%
CodeGen2 1B 9.19%/17.50% 16.06%/36.86% 25.90%/59.32%
CodeT5+ 770M 12.95%/28.02% 25.09%/47.69% 37.56%/65.26%

SantaCoder 1.1B 15.21%/29.42% 26.01%/51.30% 43.80%/69.10%

Table 1: Program synthesis performance of the small LLMs (whose number of parameters is around 1 billion)
evaluated on HumanEval+ / MBPP (sanitized).

4.2 Optimal Code Implementations (Oracle)274

As a reference, we also report the performance of275

generating accurate and diverse test cases when the276

written code is perfectly correct, which is achieved277

by adopting the oracle as the programs/code to be278

tested (and such a setting is denoted by “Oracle”).279

Since (Liu et al., 2023a) have reported that some280

oracle code in the HumanEval dataset can be in-281

correct, we adopt the amended oracle set in Hu-282

manEval+ in this setting. We further used the re-283

vised oracle code implementations instead of the284

original ones in evaluating the pass rate (i.e., P ′)285

of the generated test cases. Considering that the286

public datasets often only provide one oracle im-287

plementation for each problem, and to keep the un-288

certainty of evaluation results consistent, we copy289

the oracle implementation by 100× and we prompt290

to generate 3 test cases for each of these copies. It291

can be regarded as letting N = 100, just like in the292

previous settings in Section 4.1.293

4.3 No Implementation (Placeholder)294

In certain scenarios, we require test cases before295

the function/program has been fully implemented,296

hence we also evaluate in a setting where the main297

body of a tested function/program is merely a place-298

holder, as depicted in Figure 1(b). This scenario 299

often occurs when the main code has not yet been 300

implemented for a function/program or the test en- 301

gineer does not want to introduce implementation 302

bias to the LLM when generating test cases for 303

a function/program. We denote such a setting as 304

“Placeholder” in this paper. We also let N = 100, 305

as in the oracle setting. 306

5 Test Case Generation 307

In this section, we introduce how test cases can 308

be generated, when the implementation of a func- 309

tion/program is given as described in Section 4. 310

In this paper, a desired test case is a pair of input 311

and its expected output for the function/program 312

defined in the context. As an example, Figure 1 313

demonstrates some test cases for the programming 314

problem of checking whether the two words satisfy 315

a specific rotation pattern. To generate test cases, 316

we use the LLMs introduced in Section 3. 317

We wrote extra prompts to instruct the LLMs to 318

generate three test cases for each given code which 319

include docstrings that describe the purpose of this 320

function, as depicted in Figure 1. Our instruction 321

commands the LLMs (1) to “check the correctness 322

of this function with three test” and (2) to start writ- 323
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ing test code with an “assert” statement and the324

tested function, which specifies the format of the325

test cases as input-output pairs that can be parsed.326

For instance, given the example in Figure 1, the ex-327

tra prompt should be “# Check the correctness328

of this function with three test cases \n329

assert cycpattern_check”.330

We then concatenate the extra prompt with the331

code and feed the concatenation into each LLM, for332

extracting test cases from the model output. When333

using HumanEval+ and MBPP, we try removing334

test cases in the docstrings of the function, if there335

exist any, just to get rid of the broad hints from the336

docstrings (Chen et al., 2023). The temperature for337

generating test cases is kept as 0.2.338

Once obtained, the generated test cases are then339

compiled, and evaluated for their correctness and340

diversity to report the pass rate P ′ and the coverage341

rate C. When calculating, for each problem and342

every set of completions generated, we create a343

temporary folder.344

6 Main Results for Test Case Generation345

The experiment results of small and large LLMs on346

HumanEval+ can be found in Table 2 and Table 3,347

respectively. Table 4 shows the results on MBPP.348

There are several takeaways from these tables.349

• First, the test cases generated by LLMs can350

show a descent pass rate, and this pass rate351

is even higher than the code pass rate on Hu-352

manEval+, which holds for both large and353

small LLMs. Such a result is consistent with354

intuitions from previous work which rejects355

code that cannot pass the generated tests to356

improve the quality of program synthesis.357

• Second, the correctness of the generated test358

cases is positively correlated with the LLM’s359

ability of generating code (see Figure 2, where360

each red cross represents the performance361

of a model), which means an LLM show-362

ing the state-of-the-art program synthesis per-363

formance is possibly also the state-of-the-art364

LLM for program testing.365

• Third, as can be seen in Tables 3 and 4, gen-366

erating test cases using large LLMs with their367

self-generated code (in the prompts) often368

leads to a higher level of correctness, com-369

pared with the placeholder results. This ob-370

servation is in fact unsurprising, considering371

that generating code first and test case after- 372

wards resembles the chain-of-thought prompt- 373

ing (Wei et al., 2022) (if adopting the place- 374

holder is regarded as a plain prompting), 375

which is beneficial to reasoning. Moreover, 376

the self-generated performance of an LLM 377

sometimes even outperforms its testing per- 378

formance with an oracle, and we ascribe this 379

to: 1) randomness in the style of the oracles 380

which are few in number and/or 2) less dis- 381

tribution shift between self-generated code in 382

prompt and the training code, for some pow- 383

erful LLMs. 384

• Fourth, with only a few exception, test cases 385

obtained using the oracle code exhibit slightly 386

higher code coverage, while the coverage 387

rate achieved in the other settings (i.e., the 388

self-generated, cross-generated, and the place- 389

holder settings) is often slightly lower. 390

The above four takeaway messages can all be 391

inferred from Tables 2, 3, and 4. In addition to 392

all these results, we conduct more experiments to 393

achieve the following takeaway messages. 394

• Fifth, by analyzing the relationship between 395

the quality of code in prompts and the cor- 396

rectness of test, we found that correct code 397

implementation in the prompt often leads to 398

higher quality of test code generation than the 399

case when some incorrect code is given. We 400

conducted an experiments where we first se- 401

lect programming problems in HumanEval+, 402

where the code pass rate of an LLM is nei- 403

ther 0% or 100%. Then we separate self- 404

generated programs/code of the model into 405

two groups, with one group only contains 406

programs/code that are considered as correct 407

and the other only contains incorrect pro- 408

grams/code. In Table 5, we compare the per- 409

formance of using these two sorts of code in 410

the prompt, for generating test cases using 411

the same LLM. Apparently, the quality of test 412

cases obtained with correct programs/code is 413

obviously higher. We further evaluate the over- 414

all testing performance of LLMs with only 415

correct self-generated programs/code, if there 416

exists any, in their prompts. Unlike in Ta- 417

ble 5 where we do not take problems that 418

can be 100% or 0% solved, we take all given 419

problems in this evaluation, except, for ev- 420

ery problem, we eliminate all incorrect self- 421
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Model Size Oracle Self-generated Cross-generated Placeholder

InCoder 1.3B 21.31% (61.43%) 23.37% (59.36%) 22.72% (61.10%) 25.19% (62.75%)
CodeGen2 1B 31.63% (71.55%) 30.62% (69.38%) 30.93% (69.70%) 30.69% (69.00%)
CodeT5+ 770M 35.43% (71.45%) 32.34% (70.45%) 31.49% (69.75%) 32.67% (70.67%)

SantaCoder 1.1B 30.97% (71.46%) 30.43% (70.81%) 30.13% (70.55%) 30.78% (71.24%s)

Table 2: The pass rates (and coverage rate) of the test cases generated on HumanEval+ in different settings for
LLMs with around 1 billion parameters.

Model Size Oracle Self-generated Cross-generated Placeholder

CodeGen-Multi 16B 43.88% (67.91%) 41.85% (69.30%) 40.38% (66.97%) 39.74% (68.28%)
CodeGen2 16B 46.34% (73.07%) 45.44% (73.17%) 42.00% (72.45%) 42.69% (72.86%)

CodeGen-Mono 16B 49.03% (74.82%) 45.73% (73.74%) 43.91% (73.66%) 44.92% (73.63%)
StarCoder 15B 55.07% (76.02%) 52.52% (72.45%) 48.20% (72.30%) 50.58% (74.52%)

CodeGeeX2 6B 57.03% (74.42%) 53.16% (73.55%) 49.28% (70.32%) 51.78% (73.08%)
WizardCoder 15B 53.89% (77.87%) 55.47% (76.07%) 48.02% (75.27%) 49.89% (75.12%)
GPT-3.5-turbo - 71.03% (77.85%) 72.45% (77.24%) 59.24% (74.99%) 66.28% (74.03%)

Table 3: The pass rates (and coverage rate) of the test cases generated on HumanEval+ in different settings for
LLMs whose parameters are obviously more than 1 billion.

generated programs/code if there exist at least422

one correct implementation synthesized by423

the evaluated LLM. By doing so, we can ob-424

serve substantially improved program testing425

ability on HumanEval+ (i.e., 74.95% for GPT-426

3.5-turbo, 56.87% for WizardCoder, 54.33%427

for CodeGeeX2, and 53.24% for StarCoder),428

comparing with the original self-generated re-429

sults in Table 3. The same on MBPP.430

• Sixth, by conducting an additional experi-431

ment, we further compare the quality of test432

cases collected from different positions in the433

generation results. For every set of the three434

generated test cases, we analyze the relation-435

ship between their correctness and the order436

when they are generated. The results are il-437

lustrated in Figure 3. As can be seen in the438

figure, the first generated test case often shows439

the best correctness and the latterly generated440

ones are more incorrect. This may be due to441

the fact that the model tends to first generate442

content with a high level of confidence (which443

is also more likely to be correct).444

7 Improving Program Synthesis Using445

the Generated Test Cases446

High quality test cases are not only desired in pro-447

gram analyses, but also helpful to program syn-448

thesis. Previous methods have successfully used449

generated test cases to improve the performance of450

LLMs in synthesizing programs/code. For instance,451

Li et al. (2023a) designed a special prompt which452

involves the test cases as an preliminary, if they are453

available, for generating programs/code. One step454

further, Chen et al. (2023) proposed CodeT, which455

leverages the LLM to obtain test cases first and tests 456

all synthesized programs/code with these test cases 457

by performing a dual execution agreement, and it 458

picks the code in the largest consensus set (i.e., the 459

consensus set with the most code implementations 460

and test cases) as output to obtain state-of-the-art 461

program synthesis performance. We encourage 462

interested reader to read the original paper. 463

In the previous section, we have obtained results 464

about many intriguing properties of the program 465

testing performance of LLMs for code. In this sec- 466

tion, we would like to drive the readers to think 467

whether it is possible to utilize these results to im- 468

prove the program synthesis performance, consid- 469

ering that the test cases (hand-crafted and given or 470

automatically generated in particular) are widely 471

and successfully used in program synthesis. We 472

shall demonstrate that, by utilizing takeaway mes- 473

sages in Section 6, the program synthesis perfor- 474

mance of previous methods can be improved sig- 475

nificantly. Taking CodeT as an example of the 476

previous state-of-the-art, the method uses a place- 477

holder to generate test cases and treats all the test 478

cases as equally correct as a prior. However, as 479

discussed in our third takeaway message, using 480

self-generated code helps to achieve more power- 481

ful ability in generating correct test cases. More- 482

over, if multiple test cases are provided in a single 483

run of generation given an LLM, the correctness 484

of the test cases decreases with their generation 485

order, as shown in our fifth point. Hence, to obtain 486

superior program synthesis performance, we intro- 487

duce two simple modifications to it: 1) we employ 488

the “self-generated” setting instead of the “place- 489

holder” setting for generating test cases, which 490
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order when being generated.

Model Size Oracle Self-generated Cross-generated Placeholder

InCoder 1.3B 21.56% (46.81%) 17.98% (46.11%) 19.53% (46.45%) 22.58% (46.72%)
CodeGen2 1B 25.61% (54.26%) 21.85% (53.09%) 23.15% (50.43%) 22.81% (52.11%)
CodeT5+ 770M 29.02% (56.86%) 24.44% (52.31%) 24.84% (53.20%) 25.59% (55.81%)

SantaCoder 1.1B 32.37% (55.68%) 26.40% (52.38%) 26.20% (52.83%) 26.53% (53.86%)

CodeGen-Multi 16B 41.32% (60.63%) 35.96% (59.03%) 34.17%,(58.09%) 34.84% (58.92%)
CodeGen2 16B 45.30% (62.15%) 38.67% (60.16%) 36.77% (58.59%) 37.27% (59.16%)

CodeGen-Mono 16B 50.24% (64.39%) 43.94% (62.94%) 39.55% (61.99%) 42.41% (62.31%)
StarCoder 15B 54.84% (65.10%) 46.77% (63.60%) 42.80% (61.95%) 45.35% (62.66%)

CodeGeeX2 6B 52.45% (64.64%) 44.52% (63.72%) 41.72% (60.48%) 43.86%,(63.51%)
WizardCoder 15B 57.85% (66.68%) 46.56% (64.86%) 41.62% (60.72%) 47.45% (64.54%)
GPT-3.5-turbo - 74.30% (66.19%) 66.14% (65.30%) 49.56% (62.95%) 63.34% (64.72%)

Table 4: The pass rates (and coverage rate) of the test cases generated on MBPP.

Model Size w/ correct code w/ incorrect code #Problem

InCoder 1.3B 28.55% 27.39% 27
CodeGen2 1B 27.25% 25.74% 11
CodeT5+ 770M 40.19% 36.78% 27

SantaCoder 1.1B 37.45% 34.08% 24

CodeGen-Multi 16B 55.49% 50.06% 32
CodeGen2 16B 43.56% 39.31% 29

CodeGen-Mono 16B 45.18% 42.86% 56
StarCoder 15B 58.16% 57.08% 68

CodeGeeX2 6B 52.84% 48.63% 51
WizardCoder 15B 48.02% 45.12% 54
GPT-3.5-turbo - 75.39% 68.52% 126

Table 5: With the correct (self-generated) code, the
LLMs show stronger ability of generating correct test
cases on HumanEval+ (evluated only on those problems
that can neither be 0% solved nor 100% solved), than in
the case where incorrect self-generated code is given in
the prompts.

means we utilized synthesize programs in prompts491

when generating test cases for each program, 2)492

we assign different weights to the generated test493

cases based on their order in each generation result,494

which means we used the rank of each generated495

test case to re-weight its contribution to the consen-496

sus set it belongs to.497

We test the effectiveness of using 1) the prompt498

which involves self-generated (SG) code as the499

test cases generated in this setting show higher500

correctness than the baseline placeholder setting501

and 2) the rank-based re-weighted (RW) test cases,502

in improving program synthesis performance on503

HumanEval+. Following Chen et al. (2023), we504

used a temperature of 0.8 to generate code and self-505

generated test cases. After obtaining the consensus 506

set, we re-weight test case by pi−1 with i being 507

its order in the model output, and we let p = 0.8. 508

That is, instead of directly using their counting 509

numbers, we use the sum of pi−1 and the final score 510

of a consensus set is then the sum of a)
∑

pi−1 511

and b) the number of code implementations in the 512

consensus set, and code implementations in the 513

consensus set with the highest score are considered 514

as the best solutions. 515

Table 6 shows the results. We com- 516

pare CodeT with CodeT+SG, CodeT+RW, and 517

CodeT+SG+RW. For CodeT, we follow their of- 518

ficial implementation and generate 100 × 5 test 519

cases for each problem. For fair comparison, we 520

ensure that our solutions with SR and/or RW gen- 521

erate the same numbers of program implementa- 522

tions and test cases as CodeT does. Hence, for 523

each problem in HumanEval+, we synthesize a pro- 524

gram together with its 5 test cases for 100 times 525

when SR and/or RW are incorporated, i.e., we have 526

i ∈ {1, 2, 3, 4, 5}. It can be seen from the table 527

that both SG and WR improves the program syn- 528

thesis performance considerably on most LLMs, 529

except for Incoder, CodeGen2-1B, CodeT5+, and 530

SantaCoder for which the test cases generated in 531

the placeholder setting show similar or even higher 532

correctness than in the self-generated setting and 533
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Model Size Baseline CodeT + SG + RW + SG & RW

InCoder 1.3B 6.99% 9.85% 9.45% 10.26% 9.98%
CodeGen2 1B 9.19% 15.15% 14.89% 15.67% 15.35%
CodeT5+ 770M 12.95% 16.57% 16.28% 17.19% 16.98%

SantaCoder 1.1B 15.21% 18.43% 18.17% 18.75% 18.63%

CodeGen-Multi 16B 15.35% 24.50% 25.71% 25.72% 26.95%
CodeGen2 16B 19.33% 27.56% 28.51% 28.43% 29.63%

CodeGen-Mono 16B 26.15% 35.63% 36.69% 36.63% 37.95%
StarCoder 15B 27.90% 40.46% 41.21% 42.12% 43.15%

CodeGeeX2 6B 29.97% 44.16% 45.23% 44.92% 46.32%
WizardCoder 15B 46.23% 58.41% 60.13% 59.60% 61.45%
GPT-3.5-turbo - 61.70% 69.25% 72.45% 70.75% 73.47%

Table 6: Program synthesis performance (Pass@1) of
LLMs can be significantly improved by using our take-
away messages in Section 6. The experiment is on
HumanEval+.

SG fails with them. For some LLMs, SG is more534

powerful, while, on the other models including535

SantaCoder and StarCoder, RW is more powerful.536

By combining SG and RW, the program synthesis537

performance of most powerful LLMs in Table 6538

improves, comparing to only using one of the two.539

On GPT-3.5-turbo and WizardCoder, which are540

the best two models in synthesizing programs, we541

achieve +4.22% and +3.04% performance gains for542

CodeT, respectively, with SG & RW.543

8 Related Work544

Test case generation via program analysis. Gen-545

erating reasonable test cases for analyzing pro-546

grams is a long standing problem in the software547

engineering community. Various program analysis548

techniques, e.g., fuzzing, have been developed for549

achieving this goal. AFL++ (Fioraldi et al., 2020)550

is the most popular tool which incorporate many551

techniques in this category. A major weakness of552

these techniques is understandability of the gener-553

ated test cases.554

Test case generation via deep learning. The555

invention of transformer and self-supervised pre-556

training have brought a breakthrough to pro-557

gramming language processing and program test-558

ing (Fioraldi et al., 2020; Tufano et al., 2022;559

Dinella et al., 2022). After being trained in a self-560

supervised manner on a large and diverse code cor-561

pus, LLMs have demonstrated remarkable abilities562

in understanding and synthesizing programs. We563

have also witnessed the adaptation of pre-trained564

LLMs (e.g., ChatGPT) to fuzzing (Xia et al., 2023)565

very recently. Similarly, Lemieux et al. (2023)566

utilized Codex to provide example test cases for567

under-covered functions, which prevents the cov-568

erage improvements stall. Nevertheless, there still569

lack and require in-depth analyses and intensive570

comparisons of different LLMs in program testing,571

considering that powerful LLMs emerge continu-572

ously. For instance, the recent WizardCoder (Luo573

et al., 2023) exhibits an obvious program synthesis 574

superiority over other contemporary open-source 575

LLMs. In our study, we focus on the analyses and 576

comparison of the LLMs in writing test code and 577

generating test cases. 578

Evaluation of Large Language Model. Re- 579

cently, large language models (LLMs) has incited 580

substantial interest in both academia and industry. 581

In order to evaluate the capabilities of large lan- 582

guage models, a variety of effort have been devoted 583

from the perspectives of natural/programming lan- 584

guage processing accuracy, robustness, ethics, 585

biases, and trustworthiness, etc. For instance, 586

PromptBench (Zhu et al., 2023) demonstrates that 587

current LLMs are sensitive to adversarial prompts, 588

and careful prompt engineering is necessary for 589

achieving descent performance with them. Another 590

example, DecodingTrust (Wang et al., 2023a), of- 591

fers a multifaceted exploration of trustworthiness 592

of the GPT models, especially GPT-3.5 and GPT-4. 593

The evaluation expands beyond the typical trust- 594

worthiness concerns to include several new critical 595

aspects. Agentbench (Liu et al., 2023b) evaluates 596

LLM as agents on challenging tasks in interactive 597

environments. Their experimental results show 598

that, while top commercial LLMs present a strong 599

ability of acting as agents in complex environments, 600

there is a significant disparity in performance be- 601

tween them and their open-source competitors. 602

9 Conclusion 603

In this paper, we have performed thorough analyses 604

of recent LLMs (mostly LLMs for code) in testing 605

programs/code. Through comprehensive experi- 606

ments with 11 LLMs on programming benchmark 607

datasets including HumanEval+ and MBPP (the 608

sanitized version), we have uncovered a range of 609

intriguing characteristics of these LLMs for pro- 610

gram/code testing. We have illustrated how the 611

program testing capabilities of these LLMs can 612

be enhanced in comparing intensive empirical re- 613

sults in four different settings. Based on our find- 614

ings, we are also capable of improving the per- 615

formance of state-of-the-art LLMs in synthesizing 616

programs/code with test cases of higher quality. As 617

a preliminary research work, we believe our paper 618

can provide new research insights and spark new 619

ideas in program/code synthesis, test-case gener- 620

ation, and LLM understanding, and we look for- 621

ward to future exploration in this direction in future 622

work. 623
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Limitations624

Our paper has several limitations: 1) Our method625

uses manually designed prompts to generate ra-626

tionales. However, the choices of prompts may627

have a great impact on the quality of rationales,628

which has not been investigated. 2) Our method629

suffers from efficiency problems. On the one hand,630

the multi-task rationale tuning strategy increases631

GPU memory consumption and introduces extra632

computational overhead. On the other hand, the633

generation of contrastive rationale needs to be car-634

ried out repetitively, increasing the consumption635

of calling LLM API. 3) While our method is de-636

veloped for the CRE task, it can also be applied637

to other continual learning tasks, which will be a638

focus of our future work.639
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A Appendix781

A.1 Models for Code782

InCoder is a unified generative model that can per-783

form program/code synthesis as well as code edit-784

ing, and it combines the strengths of causal lan-785

guage modeling and masked language modeling.786

The CodeGen2 model was trained on a dedupli-787

cated subset of the Stack v1.1 dataset (Kocetkov788

et al., 2023), and its training is formatted with a789

mixture of objectives for causal language model-790

ing and span corruption. CodeT5+ is an encoder-791

decoder model trained on several pre-training tasks792

including span denoising and two variants of causal793

language modeling. SantaCoder was trained on794

the Python, Java, and JavaScript code in the Stack795

dataset. The pass rate (Chen et al., 2021) of pro-796

grams generated by these models is compared in797

Table 1. When evaluating the (program) pass rate,798

we let the model generate 200 code implementa-799

tions for each problem, and we set the tempera-800

ture to 0.2, 0.6, and 0.8 for calculating pass@1,801

pass@10, and pass@100, respectively.802

CodeGen-Multi and CodeGen-Mono are two803

large models from the first version of Code-804

Gen. CodeGen-Multi was first trained on the805

pile dataset (Gao et al., 2020) and then trained806

on a subset of the publicly available BigQuery807

dataset which contains code written in C, C++,808

Go, Java, JavaScript, and Python. Based on the809

16B CodeGen-Multi model, CodeGen-Mono (16B)810

was obtained by further tuning on a set of Python811

code collected from GitHub. Given a base model812

that was pre-trained on 1 trillion tokens from the813

Stack dataset, the 15B StarCoder model was ob-814

tained by training it on 35B tokens of Python code.815

WizardCoder further empowers StarCoder with in-816

struction tuning, following a similar instruction evo-817

lution strategy as in WizardLM (Xu et al., 2023).818

CodeGeeX2, the second generation of a multilin-819

gual generative model for code, is implemented820

based on the ChatGLM2 architecture and trained821

on more code data. GPT-3.5-turbo is a very capable822

commercial LLM developed by OpenAI and we823

accessed it in August, 2023.824

A.2 Further Analysis of Experimental Results825

In this part, we provide further analysis of the ex-826

perimental results in Section 6.827

With regard to the situation where the test case828

quality generated by SantaCoder is lower than that829

generated by CodeT5+ on the HumanEval+ dataset,830

we have explained that this is probably because 831

SantaCoder tends to generate longer and more com- 832

plex test cases. Here we further demonstrate that 833

SantaCoder is capable to generate more accuracy 834

output when given the same testing input as that 835

of CodeT5+’s. To show this, we first extract the 836

input part of the test cases (which includes testing 837

inputs paired with their corresponding outputs) gen- 838

erated by CodeT5+ in the oracle setting. We then 839

let SantaCoder to generate testing outputs given 840

these inputs, and assessed the accuracy of such test 841

cases. The results show that, given these testing 842

inputs already, SantaCoder and CodeT5+ obtain an 843

correctness of 41.67% and 40.34%, respectively, 844

showing that SantaCoder is indeed stronger, if the 845

same testing input is given and it does not have the 846

chance to yeild more complex testing inputs. 847

A.3 Analysis of Code Coverage 848

In the previous sections, when evaluating the code 849

coverage of test cases, we used standard code as 850

the reference. To further assess the code coverage 851

ability of test cases generated by the model, we 852

separately measured the coverage of test cases for 853

their corresponding generated code. This involves 854

measuring the coverage of self-generated test cases 855

for self-generated code and the coverage of cross- 856

generated test cases for cross-generated code. The 857

results are shown in Table 7. 858

A.4 The Influence of Different Prompts 859

As mentioned in Section 5 in the paper, the prompt 860

for generating test cases are given by concatenating 861

the function definitions and docstrings (“def cyc- 862

pattern_check(a, b): \n \t ““‘...."), the code imple- 863

mentation (“c=a \n ....") or a placeholder (“pass"), 864

and a comment given to prompt test case genera- 865

tion (“# Check the correctness of this function with 866

three test cases..."). In our early experiments, we 867

found that modifying the final comment given to 868

prompt test case generation only has a relatively 869

small impact on the test case pass rate. We have 870

tried e.g., “# Verify if the function is accurate and 871

generate three test cases..." and “# Generate three 872

test data to verify the correctness of this function..." 873

and only observed less than 0.50% difference in 874

correctness of the obtained test cases. 875

11



Model Size Self-generated Cross-generated

InCoder 1.3B 54.38% 46.97%
CodeGen2 1B 56.79% 48.78%
CodeT5+ 770M 60.03% 54.16%

SantaCoder 1.1B 56.58% 54.42%

CodeGen-Multi 16B 53.09% 51.27%
CodeGen2 16B 55.66% 53.11%

CodeGen-Mono 16B 57.62% 58.05%
StarCoder 15B 60.29% 55.09%

WizardCoder 15B 71.57% 56.42%
GPT-3.5-turbo - 72.42% 62.91%

Table 7: The coverage rate of the test cases generated
on HumanEval.
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