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Abstract— The cardiovascular disease (CVD) and depression
comorbidity remains diagnostically challenging due to complex
phenotypes and severe class imbalance in real-world health data.
However, conventional resampling methods often fail to preserve
the multimodal structure of high-dimensional clinical and
metabolomics features. This study presents an Al-based pipeline
applied to clinical and NMR-based metabolomics data from the
UK Biobank to compare random downsampling against synthetic
data augmentation using generative models like the conditional
tabular generative adversarial network (CTGAN), the tabular
variational autoencoder (TVAE), and the Tabular Denoising
Diffusion Probabilistic Model (TabDDPM). The synthetic data
produced by the CTGAN achieved the highest fidelity (Jensen-
Shannon divergence 0.06 and average correlation difference 0.11
for the CVD diagnosis outcome). The Al models trained on
synthetic data achieved superior performance across both
classification tasks. For CVD diagnosis, the XGBoost reached 0.91
accuracy and 0.96 AUC, while for comorbid CVD and depression,
0.87 accuracy and 0.92 AUC. These results support synthetic
augmentation as a robust solution to improve diagnostic
performance across imbalanced datasets in healthcare.

Keywords— CVD, depression, metabolomics, synthetic data
augmentation, Al

I. INTRODUCTION

Cardiovascular disease (CVD) and depression are among the
leading causes of global morbidity and mortality, frequently co-
occurring in patients and jointly contributing to worse clinical
outcomes. Artificial intelligence (Al)-based models have been
increasingly adopted in this context, demonstrating promising
results in early diagnosis and risk stratification. For example,
gradient boosting and deep learning architectures have been
used to predict major adverse cardiovascular events by
incorporating both physiological and psychosocial data [1].
Explainable ML models tailored for comorbid conditions—such
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as coronary heart disease combined with depressive
symptoms—have also been shown to support personalized care
by highlighting actionable clinical features [2]. Furthermore,
large-scale predictive modeling for depressive disorders using
structured EHR data and unstructured clinical notes has
demonstrated the utility of ML in improving diagnostic
precision across mental health applications [3].

Despite these advancements, a persistent challenge in Al is
the presence of imbalanced datasets. The clinical data often
exhibit skewed distributions, particularly when modeling
comorbidities, which can lead to biased classifiers with reduced
sensitivity for underrepresented classes. To mitigate this, recent
studies have explored synthetic data generation as a strategy to
improve model training [4]. Traditional oversampling
techniques, such as SMOTE or random duplication as well as
random downsampling ones often fail to capture the complex,
multimodal relationships present in high-dimensional tabular
data. Emerging methods, including generative adversarial
networks (GANSs), variational autoencoders (VAEs), and
diffusion-based generative models which have shown success in
producing realistic synthetic health records that preserve
statistical fidelity [5]. In addition to addressing class imbalance,
synthetic data have been highlighted as a privacy-preserving
alternative for data sharing and external validation [6].

In this study, we present an Al-driven pipeline for the joint
diagnosis of CVD and depression using integrated clinical and
NMR-based metabolomics data. The core technical contribution
lies in systematically addressing class imbalance, a common
limitation in comorbidity modeling. To evaluate the fidelity of
synthetic data generation process, we conducted a comparative
analysis to assess the ability of multiple synthetic data
generators to replicate real data distributions including the
conditional tabular generative adversarial network (CTGAN),
the tabular variational autoencoder (TVAE), and a lightweight
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implementation of the Tabular Denoising Diffusion
Probabilistic Model (TabDDPM). Then we compared the
conventional majority class downsampling strategy with
synthetic data augmentation of the minority class using the
synthetic data with the highest fidelity from the generators to
enable targeted oversampling of the minority class while
preserving the underlying data distribution. Both strategies are
evaluated using multiple classification metrics across two
predictive tasks. Our results delineate the conditions under
which synthetic data augmentation outperforms conventional
resampling methods (e.g., downsampling), particularly in Al
modeling scenarios with limited minority class representation.
The current work provides practical insights into the design and
development of robust and generalizable Al-based models for
diagnosis across imbalanced, multimodal medical data.

II. MATERIALS AND METHODS

A. The proposed workflow

Fig. 1 depicts the workflow of the end-to-end Al-driven
approach which consists of four stages, namely: (i) the data
engineering stage, (ii) the class imbalance handling stage, (iii)
the Al modeling stage, and (iv) the Al model performance
evaluation stage. More specifically, the data engineering stage
involves: (i) the identification and removal of constant-value
features that provide little to no discriminative power to
eliminate noise, (ii) a stratified split of the noise-free dataset
into training and testing subsets to preserve class distribution
for fair evaluation, (iii) an optimized feature selection process
using mutual information, where the selection is refined by
detecting the optimal number of features via a knee/elbow point
strategy.

The class imbalance handling stage aims to address class
imbalance by utilizing generative-based synthetic data
generators (e.g. the Conditional Tabular Generative
Adversarial Network (CTGAN)) to enhance the representation
of the minority class without duplication for better AI model
generalization. In the AI modeling stage, the XGBoost
algorithm is trained on both the resampled and the
downsampled data. Finally, the AI model's performance is
evaluated on the test set by calculating the accuracy, sensitivity,
specificity, AUC, and F1 score. The output of the proposed
workflow also includes ROC curves and feature importance
plots from XGBoost's internal gain-based evaluation to provide
deeper insights into the contribution of the selected features.

Data engineering stage
Input dataset

(clinical and
metabelomics)

Class imbalance handling stage
(synthetic oversampling of the minerity class
compared to conventional down sampling of

the majerity class)

Sbv

Al modeling stage
(using gradient boosting ensembles, e.g.
XGBoost)

Al model performance evaluation stage
(performance metrics and feature importance plots)

Fig. 1. The proposed workflow.

B. Input dataset

The dataset used in this study integrates clinical information
and nuclear magnetic resonance (NMR)-based metabolomics
profiles, comprising 502,319 patient records and 318 features.
In this study, we utilize data from the UK Biobank, a large-scale
prospective cohort comprising over 500,000 participants, with
extensive phenotypic, clinical, and omics data linked to
longitudinal health outcomes [7]. The dataset provides a unique
opportunity for integrative modeling of complex conditions
such as cardiovascular disease and depression. For the current
analysis, we curated a subset of participants with complete
information across several domains: clinical biomarkers (e.g.,
blood pressure, lipid profiles), established CVD risk factors
(e.g., BMI, smoking status, diabetes), biochemical assays (e.g.,
liver and renal function markers), social and behavioral
variables (e.g., physical activity, alcohol consumption,
socioeconomic status), and high-throughput metabolomics data
obtained via nuclear magnetic resonance (NMR) spectroscopy
[8]. This multi-modal dataset allows for the examination of both
physiological and psychosocial determinants of health to enable
the development of Al models which are sensitive to the multi-
factorial nature of the CVD and depression comorbidity.

C. Data engineering stage

Constant-value features were initially removed, including
those that exhibit near-zero variance across all samples and can
introduce redundancy and noise. This step was conducted to
ensure that the input feature space retains only potentially
informative variables. Stratified train/test split was then
performed to partition the noise-free dataset while preserving
the original distribution of the target classes across both subsets.
In addition, this stratified process mitigates biases during the Al
model evaluation since it ensures that minority and majority
classes are proportionally represented in both the training and
test sets. Feature selection was applied exclusively on the
training subset to prevent data leakage. Mutual information
(MI) was explored as a non-linear measure of dependency
between features and the target variable and was further
computed for all candidate features [9]. The knee/elbow point
detection algorithm was finally used to identify the optimal
number of features to retain.

D. Class imbalance handling stage

Class imbalance is a well-documented issue in medical data
which can severely impair the performance of supervised
learning algorithms, particularly in identifying minority class
instances. To address the inherent, skewed distribution of class
labels, we explored a synthetic data-driven strategy for the
generation of minority class samples using generative-based
models like the Conditional Tabular Generative Adversarial
Network (CTGAN). Specifically, the CTGAN from the
synthetic data vault (SDV) library [10, 11] was utilized
considering its ability to learn conditional distributions of
features given class labels. In brief, CTGAN employs a mode-
specific normalization strategy and training-by-sampling
techniques to ensure stability and fidelity in the generated
samples. It learns the conditional distribution P(x|y) of
features x € R4 given class label y € {0,1}, through an
adversarial network:
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where G is the generator, D is the discriminator, z is the latent
input, P, is the joint probability distribution of the real data
points (x,y), ¥ = G(z,y) refer to the fake samples which are
generated by the generator G, Eyy,.p_,,[f(-)] is the expected

value of the function f(.) when the pair (x,y) is drawn from
Preqr and E;_;,,[f ()] is the expected value of the function
f(.) when the synthetic sample X is drawn from G.

To further evaluate the impact of different generative
approaches on data fidelity, we explored two additional
generators: (i) the Tabular Variational Autoencoder (TVAE)
[10, 11], and (ii) the Tabular Diffusion Probabilistic Model
(TabDDPM) [12]. The TVAE was implemented using the SDV
library [10, 11] and it was used to model the latent distribution
of tabular data using a multivariate Gaussian prior and
reconstruct synthetic samples via decoder networks. A
lightweight version of the TabDDPM [12] was implemented. In
brief, the TabDDPM progressively corrupts the input data
through a forward noise process and learns to reverse this
corruption using a denoising network trained over multiple
diffusion steps. To better examine the value of synthetic data
and to avoid data leakage effects, the CTGAN, TVAE, and
TabDDPM were trained on the real train set to produce the
minority samples needed to reach a 1:1 ratio in the target class.

To assess how well synthetic samples match the real data
samples, we computed the Kullback-Leibler divergence (KLD)
over feature marginals:

KL COIPoynesc ) = D Preaa ) Log 5 r2 0
X Psynthetic (xl)
where Pyoq(x;) and Psyyeperic(x;) denote the empirical (real)
and synthetic probability distribution of a feature x; € x (from
the input dataset). Low KL values across features indicate good
fidelity in reproducing the statistical structure of the original
data. In addition to the KLD, we computed: (i) the Jensen-
Shannon Divergence (JSD) to measure the similarity between
the probability distributions, (ii) the Kolmogorov-Smirnov
Distance (KSD) to quantify the maximum difference between
the cumulative distribution functions of the real and synthetic
data, and (iii) the Average Correlation Difference (ACD) to
capture the extent to which feature-to-feature relationships
(correlation structure) are preserved in the synthetic data.

For comparison purposes, the random downsampling with
replacement strategy was also applied. To this end, we refer to
the random downsampling with replacement CIH strategy as
CIH1 and to the synthetic data generation-based class
imbalance handling (CIH) strategy as CIH2.
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E. Al modeling stage

Two classification tasks were defined, namely: (i) CT1:
diagnosis of cardiovascular disease (CVD), and (ii)) CT2:
comorbid diagnosis of CVD and depression. The Extreme
Gradient Boosting (XGBoost) algorithm [13] as a high-
performance ensemble method known for its efficiency and
predictive accuracy in structured data problems. XGBoost is
based on the gradient boosting framework, where an ensemble
of weak learners—typically decision trees—is trained
sequentially, with each new model focusing on correcting the

errors made by its predecessors. For comparison purposes, the
Random Forest bagging algorithm was also deployed. Both the
XGBoost and the Random Forest (RF) classifiers were trained
on the CTGAN-augmented training set and on the randomly
downsampled training set (including the optimized subset of
features identified through mutual information ranking and
elbow-point selection). Hyperparameters were finally tuned
using default heuristics to maintain computational efficiency
and achieve competitive performance. While downsampling
(CIHI strategy) aimed to reduce the class skew at the data level,
we also applied XGBoost’s “scale_pos_weight” parameter [12]
during training to account for any residual imbalance and
reinforce sensitivity to the minority class.

F. Al model performance evaluation stage

The performance of the trained models was evaluated on the
independent test set to provide an unbiased assessment of its
generalization capability. Multiple standard classification
metrics were computed to capture different aspects of model
performance, including accuracy (ACC), sensitivity (SENS),
specificity (SPEC), and the area under the receiver operating
characteristic curve (AUC). Furthermore, feature importance
analysis was conducted using XGBoost’s and RF’s built-in
gain-based importance scores. These scores quantify the
contribution of each feature to the model’s decision trees by
evaluating the improvement in purity (information gain)
associated with the splits. These plots highlight key clinical and
metabolomic variables that drive the model's predictions.

III. RESULTS

A. Class imbalance handling

According to Fig. 2, the generated synthetic data exhibit a
strong ability to replicate the empirical distribution of the real
data (Outcome CVD: KSD 0.17, JSD: 0.16, ACD: 0.06;
Outcome Depression and CVD: KSD 0.28, JSD: 0.04, ACD:
0.1). In variables such as the number of times heard an un-real
voice and number of times seen an un-real vision, the synthetic
distributions closely follow the multimodal peaks of the real
data, preserving both skewness and kurtosis. These features are
highly sparse and right-skewed, which suggest that the CTGAN
effectively learned rare-event structures which is a crucial
attribute for modeling psychiatric comorbidity.
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Fig. 2. Kernel density estimation plots between synthetic and real data for four
randomly selected features.



According to Table I, the CTGAN and TVAE produced
synthetic data with lower distributional shifts, as indicated by
lower KLD, KSD and JSD, and better preservation of inter-
feature relationships, as shown by lower ACD, especially in the
case of the CVD outcome. The KLD values remain
comparatively low for CTGAN (0.21) and TVAE (0.19),
whereas TabDDPM shows a higher KLD (0.28), suggesting
less similarity in the marginal distributions of real and synthetic
features. For the Depression and CVD combined outcome, a
similar pattern is observed: CTGAN maintains moderate
fidelity (KLD = 0.24, KSD = 0.15, JSD = 0.23, ACD = 0.23),
while TVAE performs well in distributional alignment (JSD =
0.14) but shows a slightly higher KLD (0.32) and ACD (0.28).
TabDDPM consistently yielded higher divergence (e.g., KLD
=0.39, KSD = 0.54) and less correlation preservation (ACD =
0.30), indicating that further improvements are needed for it to
match the fidelity levels achieved by CTGAN and TVAE.

TABLE L. SYNTHETIC DATA FIDELITY ASSESSMENT RESULTS PER
SYNTHETIC DATA GENERATOR AND PER OUTCOME.

Metric | CTGAN | TVAE | TabDDPM
Outcome: CVD
KLD 0,21 0,19 0,28
KSD 0,18 0,22 0,35
JSD 0,06 0,06 0,11
ACD 0,11 0,13 0,21
QOutcome: Depression and CVD
KLD 0,24 0,32 0,39
KSD 0,15 0,25 0,54
JSD 0,23 0,14 0,23
ACD 0,23 0,28 0,30

B. Al modeling performance

Table II summarizes the classification results across: (i) the
classification tasks CT1 (Outcome: CVD) and CT2 (Outcome:
CVD and depression), (ii) the class imbalance handling
strategies CIH1 (random downsampling with replacement) and
CIH2 (synthetic data generation), and (iii) the two classifiers
XGBoost (XGB) and Random Forest (RF). Synthetic data
augmentation was applied using the synthetic data of the
CTGAN since it yielded synthetic data with the highest overall
fidelity (Table I). For CT1, the Al models trained on the
synthetically augmented data consistently outperformed those
trained on the downsampled data. Specifically, the XGBoost
model trained on the synthetic augmented data achieved the
highest overall accuracy (0.91), specificity (0.94), and AUC
(0.96), indicating enhanced discriminative ability while
preserving sensitivity (0.85). While downsampling yielded
strong sensitivity (0.89) in the XGBoost model, it yielded lower
specificity (0.90) and slightly reduced AUC (0.96). The RF
models followed a similar trend, where synthetic data
augmentation achieved better specificity and AUC compared to
the downsampling strategy.

TABLE II. Al MODELING PERFORMANCE ANALYSIS RESULTS.
Task | .S | nMoger | THIM | scc | sENS | SPEC | AUC
Strategy Size

il |_XGB_| 79664 | 0.90 [ 089 | 090 | 096

o1 RF | 79664 | 085 | 0.84 | 087 | 093
cia |_XGB_| 139674 | 0.91 | 085 | 0.94 | 0.9

RF | 139674 | 0.86 | 0.82 | 0.89 | 0.93

CT2 | CIHl | XGB | 4522 | 077 | 086 | 0.76 | 089

RF 4522 | 068 | 091 [ 0.65 | 0.86
XGB 47590 0.87 0.76 0.88 0.92
RF 47590 | 0.81 | 071 [ 0.82 | 0.84
The comorbid classification task (CT2) posed a greater
challenge due to its smaller training set size and heterogeneous
phenotype patterns. Downsampling (CIH1) led to the highest
sensitivity (0.91) in the RF model but with reduced specificity
(0.65) and lower accuracy (0.68). In contrast, synthetic data
augmentation (CIH2) yielded more balanced results across
metrics. The XGBoost model trained on synthetic data achieved
the highest accuracy (0.87) and specificity (0.88) (Fig. 3).
Notably, this model also reached the highest AUC (0.92).

CIH2

True Positive Rate

o
by

0.2

—— Downsampling (AUC=0.90)
—— Synthetic (AUC=0.92)

0.0

0.0 0.2z 0.4 0.6 08 1.0
False Positive Rate

Fig. 3. Comparison of the ROC curves (XGBoost) between the class
imbalance handling strategies CIH1 (blue: downsampling) and CIH2 (green:
synthetic augmentation) for the classification task CT2 (CVD and depression).

IV. DISCUSSION

In this study, we developed an Al-driven pipeline that
integrates clinical and NMR-based metabolomics data from the
UK Biobank to support the diagnosis of cardiovascular disease
(CVD) and its comorbidity with depression. A key focus was the
systematic comparison between two class imbalance handling
strategies: random downsampling with replacement (CIH1) and
synthetic data augmentation using CTGAN (CIH2). The
findings of the current study consistently demonstrate the
superiority of synthetic augmentation in achieving balanced
model performance, particularly for complex comorbid
classification tasks.

As shown in Table II, for the primary task of diagnosing
CVD (CT1), the XGBoost model trained on synthetically
augmented data (CIH2) achieved the highest accuracy (0.91),
specificity (0.94), and AUC (0.96), while maintaining a
sensitivity of 0.85. In contrast, the downsampling approach
(CIH1) led to slightly lower specificity (0.90) and accuracy
(0.90), despite yielding a higher sensitivity (0.89). These results
suggest that while downsampling may enhance sensitivity, it
may compromise specificity and overall model generalization
which is an important trade-off in clinical applications where
false positives can lead to unnecessary interventions. The
comorbid classification task (CT2) presented more significant
challenges due to a smaller training size (4,522 for CIH1 against
47,590 for CIH2) and more heterogeneous phenotype
distributions. While CIH1 achieved sensitivity 0.91 in the RF
model, its specificity dropped to 0.65, and accuracy to 0.68. On
the other hand, the XGBoost model trained on synthetic data
attained a higher accuracy (0.87), specificity (0.88), and



sensitivity (0.76), resulting in the highest AUC (0.91) across all
models (Table II). These outcomes support the utility of
CTGAN in capturing complex multimodal dependencies and
enhancing classifier robustness under data imbalance.

Finally, in terms of data fidelity, the synthetic data closely
matched the distribution of the original dataset (Fig. 2), where
key features such as the number of times participants reported
hearing voices or experiencing psychotic symptoms show strong
alignment between synthetic and real distributions. CTGAN and
TVAE outperformed TabDDPM in terms of preserving data
fidelity across several statistical measures (Table I).
Specifically, for the CVD outcome, CTGAN achieved the
lowest KLD (0.21), JSD (0.06), and ACD (0.11), indicating
minimal distributional shift and better structural preservation.
TVAE showed similarly competitive performance, with slightly
lower KLD (0.19) but marginally higher ACD (0.13). In
contrast, TabDDPM yielded higher divergence values (KLD =
0.28, JSD = 0.11, ACD = 0.21), suggesting reduced fidelity in
capturing real data patterns. The trend was consistent in the
Depression and CVD case, with TabDDPM again showing the
highest divergence (KLD = 0.39, KSD = 0.54). These findings
underline the importance of selecting an appropriate generator
tailored to the characteristics of tabular biomedical data when
aiming for high-fidelity synthetic augmentation.
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Fig. 4. Feuture importance for the diagnosis of ever having depression and
CVD using synthetic data and the XGBoost classifier.

From the clinical point of view, our work presents a novel
strategy for the diagnosis of depression and CVD comorbidity.
As shown in Fig. 4, the features of the developed model include
several behavioral and social questions, but also some related
to CVD prevalence. The biomarker of phospholipids in very
low density lipoproteins is associated with the presence of CVD
and it is in agreement with the current literature [14]. As feature
work, we plan to investigate the role of all the NMR based
metabolomics biomarkers found in the developed models and
associate them with the prevalence of multimorbidity
conditions in CVD, mental and metabolic disorders. A
limitation of the current study is the reliance on retrospective
data, which may not capture real-time clinical variability or
emerging risk factors. Overall, our findings highlight the value
of synthetic data augmentation to: (i) enhance diagnostic
models, especially in underrepresented clinical scenarios like
CVD and depression comorbidity, (ii) support earlier and more

accurate diagnosis, reducing the burden of missed or
misclassified cases.

In terms of translational insights, several of the top-ranked
NMR biomarkers which have been identified in our XGBoost
feature importance analysis, such as phospholipids in very-low-
density lipoproteins (VLDL), are mechanistically linked to both
cardiovascular risk and depression [15]. For instance, VLDL
particles have been implicated in endothelial dysfunction and
systemic inflammation, which are shared pathophysiological
pathways in CVD and major depressive disorder [16]. Other
selected metabolites (e.g., glycoprotein acetyls, ketone bodies)
are also known to reflect chronic low-grade inflammation,
oxidative stress, and energy metabolism dysregulation, all of
which are relevant in the biopsychosocial model of CVD—
depression comorbidity.

V. CONCLUSIONS

In this work, advanced synthetic augmentation (via
CTGAN) was combined with class-imbalance mitigation to
build robust Al models for the cardiovascular—depression
comorbidity. The proposed hybrid workflow integrates
downsampling, “scale pos weight” adjustments in the
XGBoost, and GAN-driven oversampling to overcome the
limitations of conventional class imbalance handling methods.
The resulting Al model was able to achieve an AUC 0.96 while
preserving complex, multimodal clinical and metabolomic
feature distributions. From a clinical point of view, key NMR
biomarkers were identified, including VLDL phospholipids,
glycoprotein acetyls, and ketone bodies that shed light on
shared inflammatory and metabolic pathways. These findings
can support early patient stratification and personalized
interventions for those at risk of both CVD and major
depressive disorder. The current work promotes the use of
generative modeling in healthcare and highlights its potential to
enhance diagnostic accuracy and improve patient outcomes by
supporting unbiased internal validation and a clear roadmap for
external cohort testing.

As part of our future work, we plan to expand this
mechanistic interpretation in follow-up studies using pathway
enrichment and mediation analysis to better connect the
metabolic signatures with clinical outcomes. In addition, we
aim to apply the proposed workflow to other biobanks or cohort
studies (e.g., TwinsUK [17], Lifelines [18]) that include
comparable omics and clinical variables. Finally, we plan to
investigate the integration of weighted loss functions with
synthetic data augmentation to assess whether such hybrid
approaches could yield additional gains in robustness and
minority class sensitivity.
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