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Abstract— The cardiovascular disease (CVD) and depression 

comorbidity remains diagnostically challenging due to complex 

phenotypes and severe class imbalance in real-world health data. 

However, conventional resampling methods often fail to preserve 

the multimodal structure of high-dimensional clinical and 

metabolomics features. This study presents an AI-based pipeline 

applied to clinical and NMR-based metabolomics data from the 

UK Biobank to compare random downsampling against synthetic 

data augmentation using generative models like the conditional 

tabular generative adversarial network (CTGAN), the tabular 

variational autoencoder (TVAE), and the Tabular Denoising 

Diffusion Probabilistic Model (TabDDPM). The synthetic data 

produced by the CTGAN achieved the highest fidelity (Jensen-

Shannon divergence 0.06 and average correlation difference 0.11 

for the CVD diagnosis outcome). The AI models trained on 

synthetic data achieved superior performance across both 

classification tasks. For CVD diagnosis, the XGBoost reached 0.91 

accuracy and 0.96 AUC, while for comorbid CVD and depression, 

0.87 accuracy and 0.92 AUC. These results support synthetic 

augmentation as a robust solution to improve diagnostic 

performance across imbalanced datasets in healthcare. 

Keywords— CVD, depression, metabolomics, synthetic data 

augmentation, AI. 

I. INTRODUCTION  

Cardiovascular disease (CVD) and depression are among the 
leading causes of global morbidity and mortality, frequently co-
occurring in patients and jointly contributing to worse clinical 
outcomes. Artificial intelligence (AI)-based models have been 
increasingly adopted in this context, demonstrating promising 
results in early diagnosis and risk stratification. For example, 
gradient boosting and deep learning architectures have been 
used to predict major adverse cardiovascular events by 
incorporating both physiological and psychosocial data [1]. 
Explainable ML models tailored for comorbid conditions—such 

as coronary heart disease combined with depressive 
symptoms—have also been shown to support personalized care 
by highlighting actionable clinical features [2]. Furthermore, 
large-scale predictive modeling for depressive disorders using 
structured EHR data and unstructured clinical notes has 
demonstrated the utility of ML in improving diagnostic 
precision across mental health applications [3]. 

Despite these advancements, a persistent challenge in AI is 
the presence of imbalanced datasets. The clinical data often 
exhibit skewed distributions, particularly when modeling 
comorbidities, which can lead to biased classifiers with reduced 
sensitivity for underrepresented classes. To mitigate this, recent 
studies have explored synthetic data generation as a strategy to 
improve model training [4]. Traditional oversampling 
techniques, such as SMOTE or random duplication as well as 
random downsampling ones often fail to capture the complex, 
multimodal relationships present in high-dimensional tabular 
data. Emerging methods, including generative adversarial 
networks (GANs), variational autoencoders (VAEs), and 
diffusion-based generative models which have shown success in 
producing realistic synthetic health records that preserve 
statistical fidelity [5]. In addition to addressing class imbalance, 
synthetic data have been highlighted as a privacy-preserving 
alternative for data sharing and external validation [6]. 

In this study, we present an AI-driven pipeline for the joint 
diagnosis of CVD and depression using integrated clinical and 
NMR-based metabolomics data. The core technical contribution 
lies in systematically addressing class imbalance, a common 
limitation in comorbidity modeling. To evaluate the fidelity of 
synthetic data generation process, we conducted a comparative 
analysis to assess the ability of multiple synthetic data 
generators to replicate real data distributions including the 
conditional tabular generative adversarial network (CTGAN), 
the tabular variational autoencoder (TVAE), and a lightweight 
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implementation of the Tabular Denoising Diffusion 
Probabilistic Model (TabDDPM). Then we compared the 
conventional majority class downsampling strategy with 
synthetic data augmentation of the minority class using the 
synthetic data with the highest fidelity from the generators to 
enable targeted oversampling of the minority class while 
preserving the underlying data distribution. Both strategies are 
evaluated using multiple classification metrics across two 
predictive tasks. Our results delineate the conditions under 
which synthetic data augmentation outperforms conventional 
resampling methods (e.g., downsampling), particularly in AI 
modeling scenarios with limited minority class representation. 
The current work provides practical insights into the design and 
development of robust and generalizable AI-based models for 
diagnosis across imbalanced, multimodal medical data. 

II. MATERIALS AND METHODS 

A. The proposed workflow 

Fig. 1 depicts the workflow of the end-to-end AI-driven 

approach which consists of four stages, namely: (i) the data 

engineering stage, (ii) the class imbalance handling stage, (iii) 

the AI modeling stage, and (iv) the AI model performance 

evaluation stage. More specifically, the data engineering stage 

involves: (i) the identification and removal of constant-value 

features that provide little to no discriminative power to 

eliminate noise, (ii) a stratified split of the noise-free dataset 

into training and testing subsets to preserve class distribution 

for fair evaluation, (iii) an optimized feature selection process 

using mutual information, where the selection is refined by 

detecting the optimal number of features via a knee/elbow point 

strategy.  

The class imbalance handling stage aims to address class 

imbalance by utilizing generative-based synthetic data 

generators (e.g. the Conditional Tabular Generative 

Adversarial Network (CTGAN)) to enhance the representation 

of the minority class without duplication for better AI model 

generalization. In the AI modeling stage, the XGBoost 

algorithm is trained on both the resampled and the 

downsampled data. Finally, the AI model's performance is 

evaluated on the test set by calculating the accuracy, sensitivity, 

specificity, AUC, and F1 score. The output of the proposed 

workflow also includes ROC curves and feature importance 

plots from XGBoost's internal gain-based evaluation to provide 

deeper insights into the contribution of the selected features. 

 

Fig. 1. The proposed workflow. 

B. Input dataset 

The dataset used in this study integrates clinical information 
and nuclear magnetic resonance (NMR)-based metabolomics 
profiles, comprising 502,319 patient records and 318 features. 
In this study, we utilize data from the UK Biobank, a large-scale 
prospective cohort comprising over 500,000 participants, with 
extensive phenotypic, clinical, and omics data linked to 
longitudinal health outcomes [7]. The dataset provides a unique 
opportunity for integrative modeling of complex conditions 
such as cardiovascular disease and depression. For the current 
analysis, we curated a subset of participants with complete 
information across several domains: clinical biomarkers (e.g., 
blood pressure, lipid profiles), established CVD risk factors 
(e.g., BMI, smoking status, diabetes), biochemical assays (e.g., 
liver and renal function markers), social and behavioral 
variables (e.g., physical activity, alcohol consumption, 
socioeconomic status), and high-throughput metabolomics data 
obtained via nuclear magnetic resonance (NMR) spectroscopy 
[8]. This multi-modal dataset allows for the examination of both 
physiological and psychosocial determinants of health to enable 
the development of AI models which are sensitive to the multi-
factorial nature of the CVD and depression comorbidity. 

C. Data engineering stage 

Constant-value features were initially removed, including 
those that exhibit near-zero variance across all samples and can 
introduce redundancy and noise. This step was conducted to 
ensure that the input feature space retains only potentially 
informative variables. Stratified train/test split was then 
performed to partition the noise-free dataset while preserving 
the original distribution of the target classes across both subsets. 
In addition, this stratified process mitigates biases during the AI 
model evaluation since it ensures that minority and majority 
classes are proportionally represented in both the training and 
test sets. Feature selection was applied exclusively on the 
training subset to prevent data leakage. Mutual information 
(MI) was explored as a non-linear measure of dependency 
between features and the target variable and was further 
computed for all candidate features [9]. The knee/elbow point 
detection algorithm was finally used to identify the optimal 
number of features to retain. 

D. Class imbalance handling stage 

Class imbalance is a well-documented issue in medical data 

which can severely impair the performance of supervised 

learning algorithms, particularly in identifying minority class 

instances. To address the inherent, skewed distribution of class 

labels, we explored a synthetic data-driven strategy for the 

generation of minority class samples using generative-based 

models like the Conditional Tabular Generative Adversarial 

Network (CTGAN). Specifically, the CTGAN from the 

synthetic data vault (SDV) library [10, 11] was utilized 

considering its ability to learn conditional distributions of 

features given class labels. In brief, CTGAN employs a mode-

specific normalization strategy and training-by-sampling 

techniques to ensure stability and fidelity in the generated 

samples. It learns the conditional distribution 𝑃(𝒙|𝑦)  of 

features 𝒙 ∈ 𝑅𝑑  given class label 𝑦 ∈ {0,1} , through an 

adversarial network: 



𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐸𝑥,𝑦~𝑃𝑟𝑒𝑎𝑙
[𝑙𝑜𝑔𝐷(𝒙, 𝑦)] + 𝐸𝑥̃~𝐺(𝑧,𝑦)[𝑙𝑜 𝑔(1 − 𝐷(𝒙̃, 𝑦))], (1) 

where 𝐺 is the generator, 𝐷 is the discriminator, 𝑧 is the latent 

input, 𝑃𝑟𝑒𝑎𝑙 is the joint probability distribution of the real data 

points (𝒙, 𝑦), 𝒙̃ = 𝐺(𝑧, 𝑦) refer to the fake samples which are 

generated by the generator 𝐺, 𝐸𝑥,𝑦~𝑃𝑟𝑒𝑎𝑙
[𝑓(. )] is the expected 

value of the function 𝑓(. ) when the pair (𝑥, 𝑦) is drawn from 

𝑃𝑟𝑒𝑎𝑙  and 𝐸𝑥̃~𝐺(𝑧,𝑦)[𝑓(. )] is the expected value of the function 

𝑓(. ) when the synthetic sample 𝒙̃ is drawn from 𝐺. 

To further evaluate the impact of different generative 

approaches on data fidelity, we explored two additional 

generators: (i) the Tabular Variational Autoencoder (TVAE) 

[10, 11], and (ii) the Tabular Diffusion Probabilistic Model 

(TabDDPM) [12]. The TVAE was implemented using the SDV 

library [10, 11] and it was used to model the latent distribution 

of tabular data using a multivariate Gaussian prior and 

reconstruct synthetic samples via decoder networks. A 

lightweight version of the TabDDPM [12] was implemented. In 

brief, the TabDDPM progressively corrupts the input data 

through a forward noise process and learns to reverse this 

corruption using a denoising network trained over multiple 

diffusion steps. To better examine the value of synthetic data 

and to avoid data leakage effects, the CTGAN, TVAE, and 

TabDDPM were trained on the real train set to produce the 

minority samples needed to reach a 1:1 ratio in the target class. 

To assess how well synthetic samples match the real data 

samples, we computed the Kullback-Leibler divergence (KLD) 

over feature marginals: 

𝐾𝐿(𝑃𝑟𝑒𝑎𝑙(𝑥𝑖)||𝑃𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑥𝑖)) = ∑ 𝑃𝑟𝑒𝑎𝑙(𝑥𝑖)

𝑥𝑖

𝑙𝑜𝑔
𝑃𝑟𝑒𝑎𝑙(𝑥𝑖)

𝑃𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑥𝑖)
,  (2) 

where 𝑃𝑟𝑒𝑎𝑙(𝑥𝑖) and 𝑃𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑥𝑖) denote the empirical (real) 

and synthetic probability distribution of a feature 𝑥𝑖 ∈ 𝒙 (from 

the input dataset). Low KL values across features indicate good 

fidelity in reproducing the statistical structure of the original 

data. In addition to the KLD, we computed: (i) the Jensen-

Shannon Divergence (JSD) to measure the similarity between 

the probability distributions, (ii) the Kolmogorov-Smirnov 

Distance (KSD) to quantify the maximum difference between 

the cumulative distribution functions of the real and synthetic 

data, and (iii) the Average Correlation Difference (ACD) to 

capture the extent to which feature-to-feature relationships 

(correlation structure) are preserved in the synthetic data. 

For comparison purposes, the random downsampling with 

replacement strategy was also applied. To this end, we refer to 

the random downsampling with replacement CIH strategy as 

CIH1 and to the synthetic data generation-based class 

imbalance handling (CIH) strategy as CIH2. 

E. AI modeling stage 

Two classification tasks were defined, namely: (i) CT1: 

diagnosis of cardiovascular disease (CVD), and (ii) CT2: 

comorbid diagnosis of CVD and depression. The Extreme 

Gradient Boosting (XGBoost) algorithm [13] as a high-

performance ensemble method known for its efficiency and 

predictive accuracy in structured data problems. XGBoost is 

based on the gradient boosting framework, where an ensemble 

of weak learners—typically decision trees—is trained 

sequentially, with each new model focusing on correcting the 

errors made by its predecessors. For comparison purposes, the 

Random Forest bagging algorithm was also deployed. Both the 

XGBoost and the Random Forest (RF) classifiers were trained 

on the CTGAN-augmented training set and on the randomly 

downsampled training set (including the optimized subset of 

features identified through mutual information ranking and 

elbow-point selection). Hyperparameters were finally tuned 

using default heuristics to maintain computational efficiency 

and achieve competitive performance. While downsampling 

(CIH1 strategy) aimed to reduce the class skew at the data level, 

we also applied XGBoost’s “scale_pos_weight” parameter [12] 

during training to account for any residual imbalance and 

reinforce sensitivity to the minority class. 

F. AI model performance evaluation stage 

The performance of the trained models was evaluated on the 

independent test set to provide an unbiased assessment of its 

generalization capability. Multiple standard classification 

metrics were computed to capture different aspects of model 

performance, including accuracy (ACC), sensitivity (SENS), 

specificity (SPEC), and the area under the receiver operating 

characteristic curve (AUC). Furthermore, feature importance 

analysis was conducted using XGBoost’s and RF’s built-in 

gain-based importance scores. These scores quantify the 

contribution of each feature to the model’s decision trees by 

evaluating the improvement in purity (information gain) 

associated with the splits. These plots highlight key clinical and 

metabolomic variables that drive the model's predictions. 

III. RESULTS 

A. Class imbalance handling 

According to Fig. 2, the generated synthetic data exhibit a 
strong ability to replicate the empirical distribution of the real 
data (Outcome CVD: KSD 0.17, JSD: 0.16, ACD: 0.06; 
Outcome Depression and CVD: KSD 0.28, JSD: 0.04, ACD: 
0.1). In variables such as the number of times heard an un-real 
voice and number of times seen an un-real vision, the synthetic 
distributions closely follow the multimodal peaks of the real 
data, preserving both skewness and kurtosis. These features are 
highly sparse and right-skewed, which suggest that the CTGAN 
effectively learned rare-event structures which is a crucial 
attribute for modeling psychiatric comorbidity. 

 
Fig. 2. Kernel density estimation plots between synthetic and real data for four 

randomly selected features. 



 According to Table I, the CTGAN and TVAE produced 

synthetic data with lower distributional shifts, as indicated by 

lower KLD, KSD and JSD, and better preservation of inter-

feature relationships, as shown by lower ACD, especially in the 

case of the CVD outcome. The KLD values remain 

comparatively low for CTGAN (0.21) and TVAE (0.19), 

whereas TabDDPM shows a higher KLD (0.28), suggesting 

less similarity in the marginal distributions of real and synthetic 

features. For the Depression and CVD combined outcome, a 

similar pattern is observed: CTGAN maintains moderate 

fidelity (KLD = 0.24, KSD = 0.15, JSD = 0.23, ACD = 0.23), 

while TVAE performs well in distributional alignment (JSD = 

0.14) but shows a slightly higher KLD (0.32) and ACD (0.28). 

TabDDPM consistently yielded higher divergence (e.g., KLD 

= 0.39, KSD = 0.54) and less correlation preservation (ACD = 

0.30), indicating that further improvements are needed for it to 

match the fidelity levels achieved by CTGAN and TVAE. 

TABLE I.  SYNTHETIC DATA FIDELITY ASSESSMENT RESULTS PER 

SYNTHETIC DATA GENERATOR AND PER OUTCOME. 

Metric CTGAN TVAE TabDDPM 

Outcome: CVD 

KLD 0,21 0,19 0,28 

KSD 0,18 0,22 0,35 

JSD 0,06 0,06 0,11 

ACD 0,11 0,13 0,21 

Outcome: Depression and CVD 

KLD 0,24 0,32 0,39 

KSD 0,15 0,25 0,54 

JSD 0,23 0,14 0,23 

ACD 0,23 0,28 0,30 

B. AI modeling performance 

Table II summarizes the classification results across: (i) the 
classification tasks CT1 (Outcome: CVD) and CT2 (Outcome: 
CVD and depression), (ii) the class imbalance handling 
strategies CIH1 (random downsampling with replacement) and 
CIH2 (synthetic data generation), and (iii) the two classifiers 
XGBoost (XGB) and Random Forest (RF). Synthetic data 
augmentation was applied using the synthetic data of the 
CTGAN since it yielded synthetic data with the highest overall 
fidelity (Table I). For CT1, the AI models trained on the 
synthetically augmented data consistently outperformed those 
trained on the downsampled data. Specifically, the XGBoost 
model trained on the synthetic augmented data achieved the 
highest overall accuracy (0.91), specificity (0.94), and AUC 
(0.96), indicating enhanced discriminative ability while 
preserving sensitivity (0.85). While downsampling yielded 
strong sensitivity (0.89) in the XGBoost model, it yielded lower 
specificity (0.90) and slightly reduced AUC (0.96). The RF 
models followed a similar trend, where synthetic data 
augmentation achieved better specificity and AUC compared to 
the downsampling strategy. 

TABLE II.  AI MODELING PERFORMANCE ANALYSIS RESULTS. 

Task 
CIH 

Strategy 
Model 

Train 

Size 
ACC SENS SPEC AUC 

CT1 

CIH1 
XGB 79664 0.90 0.89 0.90 0.96 

RF 79664 0.85 0.84 0.87 0.93 

CIH2 
XGB 139674 0.91 0.85 0.94 0.96 

RF 139674 0.86 0.82 0.89 0.93 

CT2 CIH1 XGB 4522 0.77 0.86 0.76 0.89 

RF 4522 0.68 0.91 0.65 0.86 

CIH2 
XGB 47590 0.87 0.76 0.88 0.92 

RF 47590 0.81 0.71 0.82 0.84 

The comorbid classification task (CT2) posed a greater 
challenge due to its smaller training set size and heterogeneous 
phenotype patterns. Downsampling (CIH1) led to the highest 
sensitivity (0.91) in the RF model but with reduced specificity 
(0.65) and lower accuracy (0.68). In contrast, synthetic data 
augmentation (CIH2) yielded more balanced results across 
metrics. The XGBoost model trained on synthetic data achieved 
the highest accuracy (0.87) and specificity (0.88) (Fig. 3). 
Notably, this model also reached the highest AUC (0.92). 

 
Fig. 3. Comparison of the ROC curves (XGBoost) between the class 

imbalance handling strategies CIH1 (blue: downsampling) and CIH2 (green: 

synthetic augmentation) for the classification task CT2 (CVD and depression). 

IV. DISCUSSION 

In this study, we developed an AI-driven pipeline that 
integrates clinical and NMR-based metabolomics data from the 
UK Biobank to support the diagnosis of cardiovascular disease 
(CVD) and its comorbidity with depression. A key focus was the 
systematic comparison between two class imbalance handling 
strategies: random downsampling with replacement (CIH1) and 
synthetic data augmentation using CTGAN (CIH2). The 
findings of the current study consistently demonstrate the 
superiority of synthetic augmentation in achieving balanced 
model performance, particularly for complex comorbid 
classification tasks. 

As shown in Table II, for the primary task of diagnosing 
CVD (CT1), the XGBoost model trained on synthetically 
augmented data (CIH2) achieved the highest accuracy (0.91), 
specificity (0.94), and AUC (0.96), while maintaining a 
sensitivity of 0.85. In contrast, the downsampling approach 
(CIH1) led to slightly lower specificity (0.90) and accuracy 
(0.90), despite yielding a higher sensitivity (0.89). These results 
suggest that while downsampling may enhance sensitivity, it 
may compromise specificity and overall model generalization 
which is an important trade-off in clinical applications where 
false positives can lead to unnecessary interventions. The 
comorbid classification task (CT2) presented more significant 
challenges due to a smaller training size (4,522 for CIH1 against 
47,590 for CIH2) and more heterogeneous phenotype 
distributions. While CIH1 achieved sensitivity 0.91 in the RF 
model, its specificity dropped to 0.65, and accuracy to 0.68. On 
the other hand, the XGBoost model trained on synthetic data 
attained a higher accuracy (0.87), specificity (0.88), and 



sensitivity (0.76), resulting in the highest AUC (0.91) across all 
models (Table II). These outcomes support the utility of 
CTGAN in capturing complex multimodal dependencies and 
enhancing classifier robustness under data imbalance. 

Finally, in terms of data fidelity, the synthetic data closely 
matched the distribution of the original dataset (Fig. 2), where 
key features such as the number of times participants reported 
hearing voices or experiencing psychotic symptoms show strong 
alignment between synthetic and real distributions. CTGAN and 
TVAE outperformed TabDDPM in terms of preserving data 
fidelity across several statistical measures (Table I). 
Specifically, for the CVD outcome, CTGAN achieved the 
lowest KLD (0.21), JSD (0.06), and ACD (0.11), indicating 
minimal distributional shift and better structural preservation. 
TVAE showed similarly competitive performance, with slightly 
lower KLD (0.19) but marginally higher ACD (0.13). In 
contrast, TabDDPM yielded higher divergence values (KLD = 
0.28, JSD = 0.11, ACD = 0.21), suggesting reduced fidelity in 
capturing real data patterns. The trend was consistent in the 
Depression and CVD case, with TabDDPM again showing the 
highest divergence (KLD = 0.39, KSD = 0.54). These findings 
underline the importance of selecting an appropriate generator 
tailored to the characteristics of tabular biomedical data when 
aiming for high-fidelity synthetic augmentation. 

 
Fig. 4. Feuture importance for the diagnosis of ever having depression and 

CVD using synthetic data and the XGBoost classifier. 

From the clinical point of view, our work presents a novel 

strategy for the diagnosis of depression and CVD comorbidity. 

As shown in Fig. 4, the features of the developed model include 

several behavioral and social questions, but also some related 

to CVD prevalence. The biomarker of phospholipids in very 

low density lipoproteins is associated with the presence of CVD 

and it is in agreement with the current literature [14]. As feature 

work, we plan to investigate the role of all the NMR based 

metabolomics biomarkers found in the developed models and 

associate them with the prevalence of multimorbidity 

conditions in CVD, mental and metabolic disorders. A 

limitation of the current study is the reliance on retrospective 

data, which may not capture real-time clinical variability or 

emerging risk factors. Overall, our findings highlight the value 

of synthetic data augmentation to: (i) enhance diagnostic 

models, especially in underrepresented clinical scenarios like 

CVD and depression comorbidity, (ii) support earlier and more 

accurate diagnosis, reducing the burden of missed or 

misclassified cases. 

In terms of translational insights, several of the top-ranked 

NMR biomarkers which have been identified in our XGBoost 

feature importance analysis, such as phospholipids in very-low-

density lipoproteins (VLDL), are mechanistically linked to both 

cardiovascular risk and depression [15]. For instance, VLDL 

particles have been implicated in endothelial dysfunction and 

systemic inflammation, which are shared pathophysiological 

pathways in CVD and major depressive disorder [16]. Other 

selected metabolites (e.g., glycoprotein acetyls, ketone bodies) 

are also known to reflect chronic low-grade inflammation, 

oxidative stress, and energy metabolism dysregulation, all of 

which are relevant in the biopsychosocial model of CVD–

depression comorbidity. 

V. CONCLUSIONS 

In this work, advanced synthetic augmentation (via 

CTGAN) was combined with class-imbalance mitigation to 

build robust AI models for the cardiovascular–depression 

comorbidity. The proposed hybrid workflow integrates 

downsampling, “scale_pos_weight” adjustments in the 

XGBoost, and GAN-driven oversampling to overcome the 

limitations of conventional class imbalance handling methods. 

The resulting AI model was able to achieve an AUC 0.96 while 

preserving complex, multimodal clinical and metabolomic 

feature distributions. From a clinical point of view, key NMR 

biomarkers were identified, including VLDL phospholipids, 

glycoprotein acetyls, and ketone bodies that shed light on 

shared inflammatory and metabolic pathways. These findings 

can support early patient stratification and personalized 

interventions for those at risk of both CVD and major 

depressive disorder. The current work promotes the use of 

generative modeling in healthcare and highlights its potential to 

enhance diagnostic accuracy and improve patient outcomes by 

supporting unbiased internal validation and a clear roadmap for 

external cohort testing. 

As part of our future work, we plan to expand this 

mechanistic interpretation in follow-up studies using pathway 

enrichment and mediation analysis to better connect the 

metabolic signatures with clinical outcomes. In addition, we 

aim to apply the proposed workflow to other biobanks or cohort 

studies (e.g., TwinsUK [17], Lifelines [18]) that include 

comparable omics and clinical variables. Finally, we plan to 

investigate the integration of weighted loss functions with 

synthetic data augmentation to assess whether such hybrid 

approaches could yield additional gains in robustness and 

minority class sensitivity. 
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