© © N O O A W N =

22
23
24
25
26
27
28
29

30
31
32
33
34
35
36

VeriCoder: Enhancing LLM-Based RTL Code
Generation through Functional Correctness Validation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent advances in Large Language Models (LLMs) have sparked growing inter-
est in applying them to Electronic Design Automation (EDA) tasks, particularly
Register Transfer Level (RTL) code generation. While several RTL datasets have
been introduced, most focus on syntactic validity rather than functional validation
with tests, leading to training examples that compile but may not implement the
intended behavior. We present VERICODER, a model for RTL code generation
fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset
is constructed using a novel methodology that combines unit test generation with
feedback-directed refinement. Given a natural language specification and an initial
RTL design, we prompt a teacher model (GPT-40-mini) to generate unit tests and
iteratively revise the RTL design based on its simulation results using the generated
tests. If necessary, the teacher model also updates the tests to ensure they comply
with the natural language specification. As a result of this process, every example in
our dataset is functionally validated, consisting of a natural language description, an
RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000
examples, VERICODER achieves state-of-the-art metrics in functional correctness
on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4%, respec-
tively. An ablation study further shows that models trained on our functionally
validated dataset outperform those trained on functionally non-validated datasets,
underscoring the importance of high-quality datasets in RTL code generation.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable performance across natural language
processing tasks, spurring growing interest in applying their capabilities to a broad range of Electronic
Design Automation (EDA) problems [1-4]. Recent efforts explore LLMs for code generation [SH12],
architecture design [[13H135]], verification [[16} [17]], tool assistance [[18}[19], and debugging [, 120].
In this work, we focus on generating Register Transfer Level (RTL) code from natural language
specifications. Automating RTL code generation has the potential to significantly boost hardware
design productivity and reduce the manual effort involved in complex design tasks, making it a timely
and impactful area of research.

Developing open-source, lightweight models for RTL code generation is essential for advancing both
research and deployment. Proprietary models such as GPT-40 and Claude 3.7 restrict customization
and lack transparency, making them unsuitable for in-depth analysis and academic exploration. They
also raise privacy and security concerns, especially when handling RTL designs that may contain
sensitive intellectual property. In contrast, lightweight models that can run locally offer a secure,
privacy-preserving alternative—enabling hardware engineers to integrate Al directly into their design
workflows. However, existing open-source models still underperform on RTL tasks, largely due to

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56

57
58
59
60

Syntax Unit

Prior Work Strategy Description Checker | Tests

Prompt LLM with keywords

Keyword-based Generation, | and existing code, followed by
RTLCoder [7] Mutation iterative mutation to get ‘/ x
instruction-code pairs.
Applies LLM-driven
code-to-code pipeline on
OriGen [§] Code-to-Code, Syntax existing RTL code and filters v X
Error Correction .
them by compiler error
feedback.
Large-scale web-collected
Web Scraping & Cleaning, | Verilog, cleaned and filtered to
BetterV [24] Alignment with C enforce coding standards; aligns ‘/ X

C with Verilog.

Mines real-world RTL from
Manually Collect Textbook | GitHub and textbooks, / x
and Open-Source Code manually cleans and organizes
them into a structured dataset.

VeriGen [26]

Converts Verilog ASTs into
natural-language prompts and / x
injects semantic error variants
via EDA-tool feedback.

ChipGPT [27] AST-based Synthesis

Iteratively generate unit tests
with a teacher LLM, check
implementations via compiler V4 V4
and simulator, and refining
designs and tests until each
design passes.

VeriCoder Feedback-Directed
(Our Work) Refinement, Simulation,
Unit Test Generation

Table 1: Comparison of Verilog fine-tuning dataset construction approaches.

the absence of high-quality, functionally validated RTL datasets in their training corpora [21} [22].
While training algorithms are readily available, progress is bottlenecked by the lack of open datasets
with functional correctness validation.

A key challenge in building such datasets lies in constructing large-scale, high-quality training data
that pairs natural language specifications with RTL implementations. Despite efforts to mine RTL
code from open-source repositories [23H26], much of the collected data lacks validation and may
not align with its intended functionality. To address this, recent work has turned to LLMs-either
prompting them to synthesize RTL designs from keyword-based specifications [6) 7] or leveraging
them to rewrite existing RTL code and generate matching specifications [8 24} 26]. In both cases,
syntax checkers are often employed to filter uncompilable code or provide feedback for iterative
refinement, but these techniques still fall short of validating functional correctness.

As far as we know, all these prior work [6H8] 24, 26] have focused solely on ensuring synfactic
correctness, overlooking functional correctness. As a result, many dataset examples compile suc-
cessfully but may not implement the behavior described in their natural language specifications. The
distinction between syntactic correctness and functional correctness has important implications for
model evaluation and real-world deployment. While functionally correct code inherently satisfies
syntax constraints, syntactic correctness alone does not guarantee correct functionality. This gap
is evident in the results reported by the RTLLM benchmark [10], where GPT-40 attains a high
syntax accuracy of 100.0%, yet achieve only 69.0% in terms of functional correctness. Ultimately, in
real-world settings, it is functional correctness rather than syntactic validity that truly matters.

In this work, we introduce VeriCoder, a model for RTL code generation fine-tuned on a high-quality
dataset consisting of 125,777 examples that has been validated for functional correctness. To construct
this dataset, we develop a novel pipeline that combines unit test generation with feedback-directed
refinement guided by a teacher LLM (GPT-40-mini). Given a natural language specification and an

61
62
63
64
65
66

67
68
69
70

71
72
73
74

75

76
77
78
79

80
81
82
83

84
85
86

87

88
89
90
91

92
93
94
95
96

97
98
99
100

module div (...); timescale 1ns / 1ns
module tb;

begin i (k1= o)
cnt <= cnt + 1; $fatal("..."); | ——p
end
$finish;
.

endnodule endnodule
Task Spec C

1
T . — 1
RTL S E} Generated design and test Simulator \/
— LTVl
Your Task Task Spec
Generate a test as AN
RTL Design
Original dataset D LLM soc & Validated dataset D’
{spec, design} Test Generation 1+ U3 Simulation failed: {spec, design, test}
Prompt \———- ErrorMessage’ —-— FATAL: ./test.sv:128:

expected 10, got @

Your Task
Debug

Refinement Prompt Error Message

Figure 1: LLM-guided dataset augmentation overview.

initial RTL implementation, the teacher model first generates a unit test. If the RTL code fails the
simulation, the model iteratively revises the design based on the observed error messages. When
needed, the unit test is also updated to better reflect the intended functionality described by the
specification. This process continues until the design passes simulation or a retry limit is reached. The
resulting fine-tuning dataset consists of over 125k validated triples: a natural language specification,
a correct RTL design, and a self-checking unit test.

We fine-tune VeriCoder from Qwen2.5-14B-Instruct using our curated dataset and evaluate it on two
established RTL code generation benchmarks: VerilogEval [9] and RTLLM [10]. VeriCoder achieves
new state-of-the-art performance, achieving up to 71.7% and 27.4% relative gains in the pass@k
metric over the previous best fine-tuned model OriGen [8].

We conduct an ablation study demonstrating that models trained on our functionally validated dataset
outperform those trained on non-validated data, under the same base model and training setup.
These results highlight the importance of high-quality, functionally validated datasets for RTL code
generation.

Our contributions are as follows:

* We introduce VeriCoder, an RTL code generation model fine-tuned on a dataset validated for
functional correctness. On the VerilogEval and RTLLM benchmarks, VeriCoder achieves
state-of-the-art performance among open-source fine-tuned models, yielding relative pass @k
gains of up to 71.7% and 27.4% over the prior best.

* We develop a dataset augmentation pipeline that combines unit test generation with feedback-
directed refinement guided by a teacher LLM. This yields, to the best of our knowledge,
the largest fine-tuning dataset to date with functional validation, consisting of over 125k
validated triples of natural language specifications, RTL designs, and passing tests.

* We conduct an ablation study showing that functional validation during dataset construction
improves model performance, underscoring the importance of using high-quality functionally
validated datasets for RTL code generation.

2 Background and Related Work

Progress on open-source RTL code generation is limited by the absence of large-scale, high-quality
datasets. To mitigate this, recent efforts have focused on automated data mining and augmentation
techniques to enrich existing corpora of RTL examples. Table[I] presents the comparison of different
strategies for constructing fine-tuning datasets.

Mining open-source RTL designs is a common strategy for dataset construction. VeriGen [26]
compiles Verilog modules from GitHub and textbooks into a structured corpus using automated
syntax checks. BetterV [24]] collects Verilog modules from the internet and then filters designs based
on coding style and syntactic validity. Other works [8| 28} 29] adopt similar methodologies for
sourcing and preprocessing RTL code.

Another line of work leverages a commercial LLM for synthetic data generation. RTLCoder [6]]
prompts GPT-3.5 with domain keywords to generate both task descriptions and corresponding RTL,
discarding any outputs that fail to compile. OriGen [8]] further employs Claude 3.5 in a two-stage
code-to-code pipeline: first turning mined RTL code into natural language specifications, then

101
102
103

104
105
106
107

108
109
110
111
112

113

114

115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131

(.
Natural Language Specifica- | module and3(| module and3(
tion 2 input wire a, 2 input wire a,
3 input wire b, 3 input wire b,
Create a Verilog module and3 with three 4 input wire c, | input wire c,
one-bit inputs a, b, ¢, and a one-bit output 5 output reg y 5 output reg y
y. The output should perform a bitwise 6); 6);
AND across all three inputs using a pro- 7 7
cedural block. The truth table: 8 always @x begin 8
9 y <= a; 9 always @x begin
10 y <=y & c; 10 y =a &b &c;
a b ¢ y 11 y <=y & b; 11 end
0 x x 0 12 end 12
x 0 x 0 13 13 endmodule
x x 0 0 14 endmodule
1 1 1 1 .
) (c) Correct design fixed by the
(b) Buggy design taken from the teacher model that passes the
)) Origen [8]] dataset. It times out generated test in FigureE}
(a) Natural language specification on the generated test shown in
taken from the Origen [8] dataset. Figure

Figure 2: Natural language specification (left) and the corresponding buggy and corrected Verilog
designs (middle and right). The specification and buggy design are from the original dataset [§]],
which lacks tests, while the test (Figure[3) and corrected design are generated by a teacher model
(GPT-40-mini) and included in our validated dataset.

regenerating code from these specifications under compiler guidance, combining the strengths of
real-world examples and synthetic generation. ChipGPT [27] transforms Verilog ASTs into natural
language specifications.

While most of the existing work listed in Table [T] ensures syntax validity, none of them has any
evidence of functional correctness. Without comprehensive unit tests or simulation-based feedback
during dataset construction, models fine-tuned on these corpora may produce code that compiles but
still fails to meet the intended natural language specification.

A recent work, OpenLLM-RTL [30], explores the idea of using LLMs to generate assertions, pro-
ducing a functionally verified dataset of 7k examples. While sharing the same goal of improving
functional correctness in fine-tuning datasets, our work takes a different approach by generating unit
tests for validation. Our final dataset contains over 125k examples, by far the largest functionally
validated RTL dataset.

3 Methodology

3.1 Overview

We aim to improve the quality of fine-tuning datasets consisting of natural language specifications
paired with syntactically correct Verilog designs, as seen in prior work [658} 24} 26]. These datasets,
including Origen [8]], contain Verilog designs that pass syntax checks but are not validated against unit
tests to ensure functional correctness. To address this limitation, we introduce an automated dataset
augmentation pipeline that leverages a teacher language model, e.g., GPT-40-mini, to validate each
example through iterative refinement. As illustrated in Figure[l} given a natural language specification
and an initial RTL design, the teacher model first generates a unit test. If the RTL design fails the
simulation, the model iteratively revises the design based on the error message. When needed, it also
updates the unit test to better align with the natural language specification. Although our experiments
focus on augmenting the Origen dataset due to its size and quality, the proposed methodology is
broadly applicable to any dataset lacking test validation.

The pipeline begins with the original dataset D = {(specification, design)}, where each RTL design
is intended to implement a corresponding natural language specification. However, because no tests
are provided, there is no evidence that the designs exhibit the intended functional behavior. For each
pair, we prompt the teacher model, GPT-40-mini, to generate a unit test for the design. The test is
compiled and simulated with the design to check for correctness, where correctness means the design
passes the simulation test.

132
133
134
135
136

137
138
139

140

141
142
143
144
145
146

147
148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164

166
167
168
169
170
171
172

173
174
175
176
177
178

179
180
181
182
183
184
185

If the simulation fails, we extract the resulting error message and re-invoke the teacher model using a
refinement prompt. This prompt includes the specification, the current design and test, and the error
message. The model attempts to resolve the failure by making minimal modifications to the design,
the test, or both. This refinement process repeats iteratively: each candidate is re-simulated, and the
cycle continues until the design passes the test or a maximum number of attempts is reached.

The final output is a validated dataset D’ = {(specification, design, test) }, where each triplet contains
a natural language specification, a Verilog design, and unit tests. A concrete motivating example is
shown in Section[3.2] and the details of the algorithm and prompts are provided in Section[3.3]

3.2 Motivating Example

Figure [2] presents a motivating example taken directly from the Origen dataset [8], highlighting
a key limitation of datasets that rely only on syntax checks for validation. Prior work in RTL
generation typically assumes that syntactic correctness is sufficient for fine-tuning, without verifying
functionality through unit tests. This example demonstrates that a design can compile without errors
yet fail to implement the intended behavior. It also illustrates how our method can automatically
detect and correct such issues through test generation and iterative refinement.

This example includes a natural language spec-
ification (Figure[2a)), a buggy RTL design from

. . “ti le Tns/1
the original dataset (Figure [2b), and a corrected e e P
design produced by our pipeline (Figure [2c). 3 reg a=0,b=20,c=0;
The specification describes a simple combina- & U g
. . . J
t19nal mOdUIe’ and3’ Wthh computes the bit- 6 // Instantiate the DUT (Design Under
wise AND of three one-bit inputs: a, b, and c. Test)
7 and3 uut (.a(a), .b(b), .c(c), .y(y)
The original design, though syntactically valid, D3
is functionally incorrect due to several semantic oo .
. 9 initial begin
issues. First, it misuses non-blocking assign- 10 // Wait for signals to settle
ments (<=) inside a combinational always @x 11 #1;
i . .. 12
bloqk, which can lead to counterintuitive syn- || // set all inputs to 1: expected y
thesis results. Second, if instead used inside a =1
sequential block, the sequence of non-blocking 4 i 2 b, ¢} = 3'b117;

1
assignments in the design—y <= a, theny <= 1(
y & ¢, and finally y <= y & b—does not 1
correctly compute and store in y the bitwise

7 // Check output, report error if
incorrect

. . 18 if == 1’b1
AND of a, b, and c. In particular, non-blocking 19 $§ﬁtal a, np/)m_; y=%b (expected
assignments defer updates until the end of the 0" ¥
. . . 20
current timestep, meaning that all assignments - $display ("PASS");
operate on the same initial value of y, and only 2 $finish;

the final assignment takes effect. Finally, if the 23 end
non-blocking assignments were replaced with 2 CHELICERC
blocking ones, the code would introduce a com-

binational feedback loop, which cannot stabi- Figure 3: Unit test for the and3 module. The buggy
lize. design (Figure times out on this test, while the
corrected design (Figure passes successfully.
The test is generated by the teacher model GPT-4o-
mini using the prompt in Figure [ATa] and is used
to validate and augment the original dataset, which
contains no tests.

These types of errors occur because the RTL
code in prior datasets, including Origen [8], is
synthetically generated by teacher LLMs such
as Claude 3.5 and filtered only through syntax
checks. Without simulation or test-based valida-
tion, semantic bugs that affect functional correctness remain undetected.

We provide the natural language specification and the buggy RTL design to the teacher model GPT-
40-mini, prompting it to generate a unit test using the template shown in Figure [ATa] (further detailed
in Section[3.3)). The resulting test is shown in Figure [3] which sets all three inputs to 1 and checks
whether the output y evaluates to 1 as expected. When the buggy design (Figure [2b) is simulated
with this test, it hangs and ultimately times out. The bug exemplifies a combinational loop. The
always @* block is meant for combinational logic and its evaluation is triggered upon changes to
any of the variables read inside the block. In this case, an evaluation of the block is triggered when

186
187
188
189

190
191
192

193
194
195
196

197

199
200
201
202
203

204
205
206
207

208
209
210
211

212
213
214

Algorithm 1 Dataset Augmentation with a Teacher LLM

Input: Original dataset D = {(s;,d;)} Y,
> s;: NL specification; d;: RTL design
Maximum attempts T’
Define: GenTestTpl <— prompt template for test generation
RefineTpl < prompt template for iterative refinement
Output: Augmented dataset D' = {(s;,d;, t;) M,
> t;: Generated unit test

1: D+ @

2: for each (s,d) € D do

3: attempt < 0, success < false

4: while attempt < T A —success do

5: attempt < attempt + 1

6: if attempt == 1 then

7: d,t < LLMInvoke(GenTestTpl, s, d)
8: else

9: d,t + LLMInvoke(RefineTpl, s,d, t, err)
10 success, err < RunVerilogTest(d, t)

11: if success then

12: D'« D U{(s,d,t)}

13: return D’

either y, a, b, or ¢ changes. However, y is both read (on the RHS) and written (on the LHS) in the
same block. Upon evaluating the block, it schedules an update to y, which causes a change to y. This
change retriggers the block, leading to another scheduled update to y, and so on. This loop continues
indefinitely, preventing the simulation from converging.

The corrected version replaces the non-blocking assignments with a single blocking assignment (=),
ensuring that y is updated immediately with the result of a & b & c, as required by the specification.
This version passes the test generated by the teacher model and behaves correctly under simulation.

This example underscores the importance of functional validation in RTL datasets. Syntax checks
alone cannot catch subtle but critical semantic errors. Our methodology, through teacher-driven test
generation and iterative refinement, ensures that each design in the augmented dataset is not only
syntactically valid but also functionally validated with unit tests.

3.3 Algorithm and Prompts

Algorithm || presents our automated pipeline for transforming an unvalidated RTL dataset into a
functionally validated one. Starting from a dataset D = {(s;, d;)}Y,, where each example consists
of a natural language specification s; and a corresponding RTL design d; (e.g., from Origen [8]]), the
goal is to generate a unit test ¢; that validates the functional correctness of the design. If the design
fails to pass the test, we invoke an iterative refinement loop that updates the design and test until it
passes or a maximum number of attempts 7' is reached. We set 7' = 5 in our experiments.

The procedure is powered by a teacher model, GPT-40-mini, which corresponds to the LLMInvoke
calls in Algorithm[I] While stronger models such as GPT-40 or 03-mini may yield better performance,
we use GPT-40-mini in practice because of the large size of the dataset (217,462 examples in Origen)
and the high cost associated with repeated API queries to OpenAl models.

The process begins by prompting the teacher model with the test generation template (Figure [ATa)),
together with a natural language specification and its initial RTL design (e.g., Figure[2a|and Figure[2b).
The model then produces a candidate unit test (e.g., Figure[3) designed to check whether the design
satisfies the intended functionality under simulation.

The design and test are compiled and simulated using standard Verilog tooling. If the test fails,
for example due to a timeout, incorrect output, or another runtime error, we construct a refinement
prompt (Figure|[A1b) that includes the specification, the failing design and test, and the simulation

215
216

217
218
219

220
221
222
223

224
225
226
227

228

229

231
232
233
234
235
236

237

238

239

240
241
242
243
244

VerilogEval V1.0 [9] RTLLM V1.1 [10]
(using pass @k metric) (using pass@5 metric)

Model Type Evaluated Model
Eval-Machine (%) Eval-Human (%) Syntax-VCS Functional

k=1 k=5 k=10 k=1 k=5 k=10 (%) (%)
04-mini-2025-04-16 619 678 68.6 643 664 67.1 86.2 72.4
GPT-40-2024-11-20 63.7 665 67.1 543 604 62.2 100.0 69.0
GPT-40-mini-2024-07-18 557 624 64.3 447 516 55.1 89.7 65.5
DeepSeek-R1 657 709 72.0 62.8 69.1 69.9 79.3 58.6
Base Models 03-mini-2025-01-31 664 71.6 72.0 62.0 689 69.9 69.0 55.2
Qwen2.5-14B-Instruct 478 542 55.2 353 400 42.3 69.0 41.4
Gemini-2.0-flash-001 603 626 63.6 521 576 59.0 65.5 345
DeepSeek-R1-Distill-Qwen-14B 462 64.1 68.5 36.7 517 55.1 62.1 345
DeepSeek-Coder-7B-v1.5 444 589 62.9 258 402 449 48.3 24.1
LLaMA-2-7B 7.0 15.6 18.9 0.4 2.1 3.8 34 0.0
OriGen [8 359 65.1 68.5 223 475 51.9 51.7 37.9
Fine-Tuned Models RTLCoder-DeepSeek [6 220 514 57.3 147 352 42.3 17.2 10.3
(Prior Work) RTLCoder-Mistral [6 17.6 464 56.6 124 315 36.5 34 0.0
ChipGPT-LLaMA3.1-8B-SFT [27] 17.6 464 56.6 124 315 36.5 13.8 0.0
ChipGPT-LLaMA2-SFT-7B [27] 0.9 42 7.7 0.6 2.2 3.8 6.9 0.0
Our Work VeriCoder | 557 629 643 | 383 492 519 | 79.3 \ 48.3

Table 2: RTL code generation performance across models. To ensure a fair comparison, we use
the same input prompts and apply identical post-processing scripts, running inference with model
weights released by prior work.

error message (corresponding to the err variable in Algorithm [I)). This prompt is then passed to the
teacher model, which attempts to fix the issue by making edits to the design, the test, or both.

The refinement process repeats until the updated design passes simulation or the maximum number
of attempts T is reached. Once a design successfully passes its test, the validated triple (s;, d;, t;) is
added to the output dataset D’.

This strategy enables systematic detection and correction of subtle RTL bugs that cannot be identified
through syntax checks alone. By integrating LLM-based test generation and iterative refinement into
the dataset construction pipeline, we produce a dataset that is not only syntactically valid but also
functionally validated through simulation.

While we cannot guarantee that every design in the augmented dataset is functionally correct under all
possible inputs, the inclusion of unit tests makes it substantially more robust than prior approaches that
rely solely on syntactic checking. We consider this a practical and scalable step toward constructing
higher-quality fine-tuning datasets for RTL generation.

4 Experimental Setup

4.1 Dataset

Following the methodology described in Section 3] we construct a fine-tuning dataset comprising
125,777 examples. Each example includes a natural language specification, a corresponding RTL
design, and associated unit tests. Table summarizes key statistics: the specifications contain
an average of 247 words (ranging from 116 to 549), RTL implementations average 35 lines of
code (ranging from 5 to 225), and unit tests average 55 lines (ranging from 6 to 197). We use the
specification—solution pairs from this dataset to train our model, VeriCoder. Other details on the
experimental setup are discussed in Appendix[A.3] Appendix[A.4] and Appendix[A.5]

5 Results

5.1 Main Evaluation Results

Table 2] shows the results. Our major findings are as follows:

Comparison with prior work VeriCoder achieves state-of-the-art results across two RTL code
generation benchmarks, outperforming all previously released open-source fine-tuned models. On
VerilogEval-Machine, VeriCoder attains a pass@ 1 accuracy of 55.7%, representing a 19.8 percentage
point improvement over the best prior model, OriGen. On VerilogEval-Human, it reaches 38.3%,
exceeding OriGen by 16.0 percentage points. Across all evaluated k-shot settings (k=1, 5, 10),

245
246
247
248
249

250
251
252

254
255
256
257

258
259
260
261
262
263
264
265

266
267

269
270
271
272
273
274

275

276
277
278
279
280
281
282
283
284

285
286
287

289
290
291

292
293
294

295

VeriCoder consistently maintains its lead on the Human split. On the RTLLM benchmark, VeriCoder
achieves 79.3% syntax correctness and 48.3% functional correctness, surpassing OriGen’s 51.7%
and 37.9%, respectively. In conclusion, VeriCoder delivers relative improvements of up to 71.7%
on VerilogEval and 27.4% on RTLLM in pass @k accuracy, surpassing the previous state-of-the-art
model on both benchmarks.

To better understand the relatively low performance of ChipGPT [27], we examined its outputs in
detail. We observed that its generated RTL designs often include module headers that deviate from
the given specifications, revealing difficulty in precise instruction following. Moreover, its base
model, LLaMA2-7B, performs even worse, suggesting that limitations in the instruction-following
capabilities of the underlying pretrained model constrain the effectiveness of the fine-tuned variant.
For a fair comparison, we do not apply any of the model-specific customized post-processing scripts
that attempt to fix syntax or header issues. Instead, we use a standardized evaluation script for all
models, extracting Verilog code as-is to ensure consistency.

Effectiveness of our fine-tuning Starting from Qwen-2.5-14B-Instruct as our base model, Veri-
Coder delivers substantial gains across VerilogEval. On the VerilogEval-Machine split, pass@1
jumps up by 7.6%, pass@5 by 4.0%, and pass@10 by 2.1%, and VerilogEval-Human reflects the
same trend. On RTLLM, functional pass@5 is 7% higher than its base model. Specifically, VeriCoder
even marginally outperforms one of the commercial models, Google’s Gemini-2.0-flash, on pass@5
and pass@ 10 metrics of Eval-Machine as well as on RTLLM. Together, these results demonstrate that
our fine-tuning process and our validated dataset significantly boost pass @k metrics and semantic
correctness in RTL generation.

Model gap remains Despite the observed improvements, a substantial performance gap persists
between VeriCoder and the strongest large models. For instance, 03-mini attains 66.4% on VerilogEval
Pass@1 compared to VeriCoder’s 55.7%. DeepSeek-R1 achieves 69.1% on human-graded Pass@5,
versus VeriCoder’s 49.2%. Commercial LLMs such as GPT-40 reach perfect 100.0% Syntax-VCS
validity and 69.0% functional correctness, while VeriCoder records 79.3% and 48.3%, respectively.
Despite the performance gap, open-source lightweight models offer compelling advantages. They
provide transparency, allow for local deployment, and ensure intellectual property protection, i.e.,
capabilities that are particularly important for RTL design workflows where security, customizability,
and integration into existing toolchains are critical.

5.2 Ablation Study of Dataset

. . RTLLM [0

To assess thf: impact of dataset qua.hty on RTL odel VerilogEval] (Puss@g)]

code generation, we conduct an ablation study us- ode (Pass@5) oo
ing the same base model, Qwen2.5-14B-Instruct, i

_ . : s Qwen?2.5-14B-Instruct (base) 46.8 69.0 414

fine-tuned on two datasets: (1) the unvalidated Ori Qwen v/ unvalidated data s 759 aas

Gen dataset from prior work [8]], and (2) our newly Qwen w/ validated data 558 793 483
curated, functionally validated dataset. All factors,
including dataset size, fine-tuning hyperparame- Table 3: We performed fine-tuning on the same
ters, training procedures, and evaluation settings, base model using a functionally validated dataset
are held constant to ensure a fair comparison. and the functionally unvalidated dataset [8]. We
report Pass@5 metrics for all models on two
benchmarks.

Across all metrics, we observe a consistent im-
provement as dataset quality increases. On the
VerilogEval benchmark, the base model achieves 46.8% Pass@5. Fine-tuning on the unvalidated
dataset raises performance to 53.5%, while our validated dataset further improves it to 55.8%. For
RTLLM syntax correctness, the trend is similar: 69.0% for the base model, 75.9% for the unvalidated
version, and 79.3% when trained on validated data. Functional correctness sees even more significant
improvement, rising from 41.4% (base) to 44.8% (unvalidated) and ultimately to 48.3% (validated).

These results demonstrate that functionally validated data provides more effective supervision than
existing unvalidated data. This also underscores the importance of dataset quality in fine-tuning
LLMs for RTL code generation.

5.3 Test Passing Rates of Non-Validated Datasets

296
297
298
299
300
301
302
303
304
305

306
307
308
309

310

311
312
313
314
315
316
317

318
319
320
321
322
323
324

325
326
327
328
329
330
331

332

333
334
335
336

338
339
340
341
342
343
344
345
346

Prior Datasets # Sampled Examples Test Passing (%)

We examine the quality of fine-tuning datasets re- RTLCoder [6] 1000 24.4
leased by prior work by evaluating their passing _2nioen 8l 1000 235
rates against our synthetic unit tests generated by
the teacher model GPT-40-mini. For each corpus,
we randomly sample 1,000 Verilog implementations
and apply the test generation and refinement pipeline
described in Section[3] We then run corresponding unit tests against the original design and measure
the proportion of the original designs that successfully pass the generated tests. As shown in Table 4]
only 24.4% examples of the RTLCoder dataset [6] pass our functional tests, while OriGen [8]] reaches
53.5%.

OriGen'’s higher pass rate aligns with its stronger code generation results in Table 2] hinting at a
positive link between dataset validity and downstream performance. These findings highlight the
potential value of incorporating functional correctness validation into fine-tuning dataset curation for
better RTL code generation.

Table 4: Test passing rates (%) of datasets
released by prior work on a randomly sampled
set of 1000 examples.

6 Discussion and Future Work

While VeriCoder, combining unit test generation with feedback-driven refinement, improves the
functional correctness of generated RTL code, it does not fully guarantee correctness. Synthetic
test cases may fail to capture all possible edge cases. To address this challenge, future work should
explore integrating formal verification techniques into the dataset construction pipeline to rigorously
ensure the correctness of the generated code. Recent advancements have demonstrated promising
results in translating natural language instructions into formal specifications [31, [16]], as well as
enforcing formal constraints during LLM-based code generation [32]].

Moreover, most existing approaches, including VeriCoder, focus on small-scale RTL generation.
However, practical hardware development often involves large, repository-level codebases with
intricate cross-file dependencies and requirements for long-range context [33H35]. Recent work
has begun to address these challenges through techniques such as combining fine-tuning with
retrieval-augmented RTL code generation [36,37]]. Extending VeriCoder’s unit test generation and
feedback-directed refinement components to the repository scale will enable LLMs to handle more
real-world RTL tasks.

Furthermore, reinforcement learning (RL) offers a powerful framework for further optimizing large
language models’ performance beyond what is achievable through supervised fine-tuning alone.
Recent studies have demonstrated the effectiveness of RL in enhancing LLM-based code generation
by incorporating diverse forms of feedback, such as test case outcomes, compiler diagnostics, and
formal verification results [38, 139} 30]. Building on this progress, future work could investigate
applying RL techniques to the VeriCoder dataset, using the accompanying test cases as a feedback
signal to iteratively improve RTL code generation quality.

7 Conclusion

Recent advances in Large Language Models (LLMs) have opened new possibilities for Electronic
Design Automation (EDA), particularly in RTL code generation. However, most existing datasets
emphasize syntactic validity while overlooking functional correctness, which limits the effectiveness
of fine-tuned models. We introduce VERICODER, a model fine-tuned on a dataset with 125,000
examples that is validated for functional correctness. This dataset is constructed using a feedback-
directed refinement pipeline guided by a teacher LLM, which generates and iteratively updates both
RTL designs and unit tests until the design passes simulation. The resulting dataset consists of
functionally validated triples comprising a natural language specification, an RTL implementation,
and a passing test. Fine-tuned on this dataset, VERICODER achieves state-of-the-art results on
two established RTL benchmarks, yielding relative improvements of up to 71.7% on VerilogEval
and 27.4% on RTLLM. An ablation study confirms the impact of functional validation on model
performance, underscoring the importance of high-quality training data. Looking ahead, future
work may incorporate formal verification and reinforcement learning to further improve models’
performance in Al-assisted hardware design.

347

348
349
350

351
352
353

354
355
356

357
358

359
360
361

362
363
364

365
366
367

368
369
370

371
372
373

374
375
376

377
378

379
380
381

382
383

385
386
387

388
389
390

392
393

References

[1] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben, H. Anand, S. Banerjee,
I. Bayraktaroglu et al., “Chipnemo: Domain-adapted 1lms for chip design,” arXiv preprint
arXiv:2311.00176, 2023.

[2] L. Chen, Y. Chen, Z. Chu, W. Fang, T.-Y. Ho, R. Huang, Y. Huang, S. Khan, M. Li, X. Li
et al., “The dawn of ai-native eda: Opportunities and challenges of large circuit models,” arXiv
preprint arXiv:2403.07257, 2024.

[3] R. Zhong, X. Du, S. Kai, Z. Tang, S. Xu, H.-L. Zhen, J. Hao, Q. Xu, M. Yuan, and J. Yan,
“Llm4eda: Emerging progress in large language models for electronic design automation,” arXiv
preprint arXiv:2401.12224, 2023.

[4] Z. He and B. Yu, “Large language models for eda: Future or mirage?” in Proceedings of the
2024 International Symposium on Physical Design, 2024, pp. 65-66.

[5] X. Yao, Y. Wang, X. Li, Y. Lian, R. Chen, L. Chen, M. Yuan, H. Xu, and B. Yu, “Rtlrewriter:
Methodologies for large models aided rtl code optimization,” in Proceedings of the 43rd
IEEE/ACM International Conference on Computer-Aided Design, 2024, pp. 1-7.

[6] S.Liu, W. Fang, Y. Lu, J. Wang, Q. Zhang, H. Zhang, and Z. Xie, “Rtlcoder: Fully open-source
and efficient llm-assisted rtl code generation technique,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2024.

[7] S. Liu, W. Fang, Y. Lu, Q. Zhang, H. Zhang, and Z. Xie, “Rtlcoder: Outperforming gpt-3.5
in design rtl generation with our open-source dataset and lightweight solution,” in 2024 IEEE
LLM Aided Design Workshop (LAD). 1EEE, 2024, pp. 1-5.

[8] F. Cui, C. Yin, K. Zhou, Y. Xiao, G. Sun, Q. Xu, Q. Guo, D. Song, D. Lin, X. Zhang et al.,
“Origen: Enhancing rtl code generation with code-to-code augmentation and self-reflection,”
arXiv preprint arXiv:2407.16237, 2024.

[9] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating large language models
for verilog code generation,” in 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD). 1IEEE, 2023, pp. 1-8.

[10] Y.Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark for design rtl generation
with large language model,” in 2024 29th Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2024, pp. 722-7217.

[11] Y. Tsai, M. Liu, and H. Ren, “Rtlfixer: Automatically fixing rtl syntax errors with large language
model,” in Proceedings of the 61st ACM/IEEE Design Automation Conference, 2024, pp. 1-6.

[12] Y. Liao, T. Adegbija, and R. Lysecky, “Are llms any good for high-level synthesis?” in
Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design, 2024,

pp- 1-8.

[13] Y. Fu, Y. Zhang, Z. Yu, S. Li, Z. Ye, C. Li, C. Wan, and Y. C. Lin, “Gpt4aigchip: Towards next-
generation ai accelerator design automation via large language models,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). 1EEE, 2023, pp. 1-9.

[14] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “On the viability of using llms for sw/hw co-design: An
example in designing cim dnn accelerators,” in 2023 IEEE 36th International System-on-Chip
Conference (SOCC). 1EEE, 2023, pp. 1-6.

[15] Z. Liang, J. Cheng, R. Yang, H. Ren, Z. Song, D. Wu, X. Qian, T. Li, and Y. Shi, “Unleashing
the potential of llms for quantum computing: A study in quantum architecture design,” arXiv
preprint arXiv:2307.08191, 2023.

[16] M. Cosler, C. Hahn, D. Mendoza, F. Schmitt, and C. Trippel, “nl2spec: Interactively translating
unstructured natural language to temporal logics with large language models,” in International
Conference on Computer Aided Verification. Springer, 2023, pp. 383-396.

10

394
395
396

397
398
399

400
401

402
403
404

405
406
407

408

410

411
412
413

414
415

416
417
418

419
420
421

422
423
424
425

426
427
428

429
430

431
432
433

434
435
436

437
438
439

440
441
442

[17] C. Sun, C. Hahn, and C. Trippel, “Towards improving verification productivity with circuit-aware
translation of natural language to systemverilog assertions,” in First International Workshop on
Deep Learning-aided Verification, 2023.

[18] H. Wu, Z. He, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu, “Chateda: A large language
model powered autonomous agent for eda,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2024,

[19] Z. Xiao, X. He, H. Wu, B. Yu, and Y. Guo, “Eda-copilot: A rag-powered intelligent assistant for
eda tools,” ACM Transactions on Design Automation of Electronic Systems, 2025.

[20] K. Xu,J. Sun, Y. Hu, X. Fang, W. Shan, X. Wang, and Z. Jiang, “Meic: Re-thinking rtl debug
automation using 1lms,” in Proceedings of the 43rd IEEE/ACM International Conference on
Computer-Aided Design, 2024, pp. 1-9.

[21] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li,
J. Chim et al., “Starcoder: may the source be with you!” arXiv preprint arXiv:2305.06161,
2023.

[22] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi, A. Tang, D. Pykhtar,
J. Liu, Y. Wei et al., “Starcoder 2 and the stack v2: The next generation,” arXiv preprint
arXiv:2402.19173, 2024.

[23] E. Dehaerne, B. Dey, S. Halder, and S. De Gendt, “A deep learning framework for verilog
autocompletion towards design and verification automation,” arXiv preprint arXiv:2304.13840,
2023.

[24] Z. Pei, H.-L. Zhen, M. Yuan, Y. Huang, and B. Yu, “Betterv: Controlled verilog generation with
discriminative guidance,” arXiv preprint arXiv:2402.03375, 2024.

[25] S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-Gavitt, and S. Garg,
“Benchmarking large language models for automated verilog rtl code generation,” in 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023, pp. 1-6.

[26] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and S. Garg, “Verigen: A
large language model for verilog code generation,” ACM Transactions on Design Automation of
Electronic Systems, vol. 29, no. 3, pp. 1-31, 2024.

[27] K. Chang, K. Wang, N. Yang, Y. Wang, D. Jin, W. Zhu, Z. Chen, C. Li, H. Yan, Y. Zhou et al.,
“Data is all you need: Finetuning llms for chip design via an automated design-data augmentation
framework,” in Proceedings of the 61st ACM/IEEE Design Automation Conference, 2024, pp.
1-6.

[28] Y. Zhang, Z. Yu, Y. Fu, C. Wan, and Y. C. Lin, “Mg-verilog: Multi-grained dataset towards
enhanced llm-assisted verilog generation,” in 2024 IEEE LLM Aided Design Workshop (LAD).
IEEE, 2024, pp. 1-5.

[29] E. Goh, M. Xiang, I. Wey, T. H. Teo et al., “From english to asic: Hardware implementation
with large language model,” arXiv preprint arXiv:2403.07039, 2024.

[30] S. Liu, Y. Lu, W. Fang, M. Li, and Z. Xie, “Openllm-rtl: Open dataset and benchmark for llm-
aided design rtl generation,” in Proceedings of the 43rd IEEE/ACM International Conference
on Computer-Aided Design, 2024, pp. 1-9.

[31] D. Mendoza, C. Hahn, and C. Trippel, “Translating natural language to temporal logics with
large language models and model checkers,” in 2024 Formal Methods in Computer-Aided
Design (FMCAD), 2024, pp. 1-11.

[32] P. Aggarwal, B. Parno, and S. Welleck, “Alphaverus: Bootstrapping formally verified code gen-
eration through self-improving translation and treefinement,” arXiv preprint arXiv:2412.06176,
2024.

[33] C. E.Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan, “Swe-bench:
Can language models resolve real-world github issues?” arXiv preprint arXiv:2310.06770,
2023.

11

443
444
445

446
447

448
449
450

451
452
453

454
455

456
457
458

[34] T. Suresh, R. G. Reddy, Y. Xu, Z. Nussbaum, A. Mulyar, B. Duderstadt, and H. Ji, “Corn-
stack: High-quality contrastive data for better code retrieval and reranking,” in The Thirteenth
International Conference on Learning Representations, 2025.

[35] N. Jain, M. Shetty, T. Zhang, K. Han, K. Sen, and I. Stoica, “R2e: Turning any github repository
into a programming agent environment,” in /CML, 2024.

[36] P. Wu, N. Guo, J. Lv, X. Xiao, and X. Ye, “Rtlrepocoder: Repository-level rtl code com-
pletion through the combination of fine-tuning and retrieval augmentation,” arXiv preprint
arXiv:2504.08862, 2025.

[37] Z. Li, C. Xu, Z. Shi, Z. Peng, Y. Liu, Y. Zhou, L. Zhou, C. Ma, J. Zhong, X. Wang et al.,
“Deepcircuitx: A comprehensive repository-level dataset for rtl code understanding, generation,
and ppa analysis,” arXiv preprint arXiv:2502.18297, 2025.

[38] N. Wang, B. Yao, J. Zhou, X. Wang, Z. Jiang, and N. Guan, “Large language model for verilog
generation with golden code feedback,” arXiv preprint arXiv:2407.18271, 2024.

[39] J. Wang, Z. Zhang, Y. He, Y. Song, T. Shi, Y. Li, H. Xu, K. Wu, G. Qian, Q. Chen et al., “Enhanc-
ing code llms with reinforcement learning in code generation,” arXiv preprint arXiv:2412.20367,
2024.

12

9 A Appendix
40 A.1 Prompt Templates
461 Prompt templates are shown in Figure
(Prompt Template Prompt Template
System Prompt You are a Verilog design and test- System Prompt You are a Verilog design and
ing expert. Given a hardware specification de- testing expert. Analyze a failing design and
scribed in natural language, your job is to generate its test, and make minimal yet sufficient edits
both a correct Verilog module and a corresponding to correct the issue while preserving the in-
unit test that checks its functionality through simu- tended behavior specified in natural language.
lation.
User Prompt
User Prompt * Natural Language Specification: {NL
* Natural Language Specification: {NL Spec} Spec}
e Initial Implementation: {design} * Previous Design and Test: {design}, {test}
* Your task: o Simulation Output: {error message }
1. Provide the unit tests for the given design. * Your task:
2. Revise the Verilog implementation if the 1. Carefully identify the root cause of
original design fails to pass your test cases. the failure by analyzing the code and
3. Follow good coding practices, such as us- the error message.
ing meaningful comments to document key 2. Make changes to either the design or
logic and decision points. the test (or both) to resolve the issue
4. Use $fatal(1, "msg") to flag incorrect while maintaining correctness.
behavior. 3. Output format: {"explanation”:
5. Output format: {"design”: oo, " " "design"”: oo,
"teSt": H...n} "teSt“: n...n}
-
(a) Prompt for generating a Verilog module’s (b) Prompt for refining a failing Verilog design
corresponding test and test
Figure Al: Prompt templates provided to the teacher model for automated Verilog test generation and
refinement, ensuring that the final design passes the generated test and matches the original natural
language specification.
42 A.2 Dataset
Category Length
Min Max Avg
NL specification (words) 116 549 247
Design (lines of RTL) 5 225 35
Unit tests (lines of RTL) 6 197 55
Table Al: Dataset statistics: total number of examples and length distributions for natural language
specifications, RTL implementations, and unit tests in the VeriCoder dataset.
463 A.3 LoRA Fine-Tuning Setup

464 Following standard practices for LLM fine-tuning, we fine-tune the base model of Qwen2.5-14B-
465 Instruct using Low-Rank Adaptation (LoRA), with a rank of 16 and a scaling factor of 32 to all linear
46 projection layers in the transformer. Training is conducted over 3 epochs with a batch size of 40. We
467 adopt a constant learning rate of 1 x 105, paired with a linear decay scheduler and a warm-up ratio
ae8 of 0.05. The optimizer is used with a weight decay of 1 x 10~*, and gradient clipping is applied with
469 a maximum norm of 1.

13

470

471
472
473
474

475
476
477
478

479

480
481
482
483
484
485

487
488
489
490
491

A.4 Benchmarks and Metrics

Following the evaluation protocol established in prior work [7, 8], we benchmark against Ver-
ilogEval [9] and RTLLM [10]. For VerilogEval, we report the standard Pass@k metric with
k € {1,5,10}, which estimates the expected probability that at least one of the top-k generated
programs passes all test cases. The metric is defined as:

L)]
n
(%)
where n is the total number of generated programs and c is the number of correct ones. All test cases
are manually created by experts who design the benchmarks. In all evaluations, we set n = 10. For

RTLLM, we report both syntax correctness and functional correctness using Pass@5. This evaluation
setup aligns with that used in prior work [8]].

Pass@k = E

A.5 Models for Evaluation

We evaluate two groups of models. The first group consists of pretrained-only base models, in-
cluding OpenAlT’s latest releases (04-mini, 03-mini, GPT-40, GPT-40-mini), Google’s Gemini 2.0
Flash, DeepSeek’s R1 and DeepSeek-Coder-7B-v1.5 (the base model used in prior work [8]), Meta’s
LLaMAZ2-7B model, and Alibaba’s Qwen2.5-14B-Instruct (our base model for fine-tuning). The
second group includes fine-tuned models with released weights from prior work: Origen [8]], RTL-
Coder [6], and ChipGPT [27].

To ensure a fair comparison, we use identical input prompts and post-processing scripts across all
models. For models released by prior work, we do not adopt their model-specific prompts [8] or
inference pipelines [27,16]. Instead, we apply a uniform evaluation script, with the only variable being
the model under test. This standardization is critical, as both input formatting and post-processing
can significantly affect performance. By controlling these factors, we isolate model capability and
enable a fair comparison.

14

	Introduction
	Background and Related Work
	Methodology
	Overview
	Motivating Example
	Algorithm and Prompts

	Experimental Setup
	Dataset

	Results
	Main Evaluation Results
	Ablation Study of Dataset
	Test Passing Rates of Non-Validated Datasets

	Discussion and Future Work
	Conclusion
	Appendix
	Prompt Templates
	Dataset
	LoRA Fine‑Tuning Setup
	Benchmarks and Metrics
	Models for Evaluation

