
VeriCoder: Enhancing LLM-Based RTL Code
Generation through Functional Correctness Validation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent advances in Large Language Models (LLMs) have sparked growing inter-1

est in applying them to Electronic Design Automation (EDA) tasks, particularly2

Register Transfer Level (RTL) code generation. While several RTL datasets have3

been introduced, most focus on syntactic validity rather than functional validation4

with tests, leading to training examples that compile but may not implement the5

intended behavior. We present VERICODER, a model for RTL code generation6

fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset7

is constructed using a novel methodology that combines unit test generation with8

feedback-directed refinement. Given a natural language specification and an initial9

RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and10

iteratively revise the RTL design based on its simulation results using the generated11

tests. If necessary, the teacher model also updates the tests to ensure they comply12

with the natural language specification. As a result of this process, every example in13

our dataset is functionally validated, consisting of a natural language description, an14

RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,00015

examples, VERICODER achieves state-of-the-art metrics in functional correctness16

on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4%, respec-17

tively. An ablation study further shows that models trained on our functionally18

validated dataset outperform those trained on functionally non-validated datasets,19

underscoring the importance of high-quality datasets in RTL code generation.20

1 Introduction21

Large Language Models (LLMs) have demonstrated remarkable performance across natural language22

processing tasks, spurring growing interest in applying their capabilities to a broad range of Electronic23

Design Automation (EDA) problems [1–4]. Recent efforts explore LLMs for code generation [5–12],24

architecture design [13–15], verification [16, 17], tool assistance [18, 19], and debugging [1, 20].25

In this work, we focus on generating Register Transfer Level (RTL) code from natural language26

specifications. Automating RTL code generation has the potential to significantly boost hardware27

design productivity and reduce the manual effort involved in complex design tasks, making it a timely28

and impactful area of research.29

Developing open-source, lightweight models for RTL code generation is essential for advancing both30

research and deployment. Proprietary models such as GPT-4o and Claude 3.7 restrict customization31

and lack transparency, making them unsuitable for in-depth analysis and academic exploration. They32

also raise privacy and security concerns, especially when handling RTL designs that may contain33

sensitive intellectual property. In contrast, lightweight models that can run locally offer a secure,34

privacy-preserving alternative—enabling hardware engineers to integrate AI directly into their design35

workflows. However, existing open-source models still underperform on RTL tasks, largely due to36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Prior Work Strategy Description Syntax
Checker

Unit
Tests

RTLCoder [7] Keyword-based Generation,
Mutation

Prompt LLM with keywords
and existing code, followed by
iterative mutation to get
instruction-code pairs.

✓ ✗

OriGen [8] Code-to-Code, Syntax
Error Correction

Applies LLM-driven
code-to-code pipeline on
existing RTL code and filters
them by compiler error
feedback.

✓ ✗

BetterV [24] Web Scraping & Cleaning,
Alignment with C

Large-scale web-collected
Verilog, cleaned and filtered to
enforce coding standards; aligns
C with Verilog.

✓ ✗

VeriGen [26] Manually Collect Textbook
and Open-Source Code

Mines real-world RTL from
GitHub and textbooks,
manually cleans and organizes
them into a structured dataset.

✓ ✗

ChipGPT [27] AST-based Synthesis

Converts Verilog ASTs into
natural-language prompts and
injects semantic error variants
via EDA-tool feedback.

✓ ✗

VeriCoder
(Our Work)

Feedback-Directed
Refinement, Simulation,
Unit Test Generation

Iteratively generate unit tests
with a teacher LLM, check
implementations via compiler
and simulator, and refining
designs and tests until each
design passes.

✓ ✓

Table 1: Comparison of Verilog fine-tuning dataset construction approaches.

the absence of high-quality, functionally validated RTL datasets in their training corpora [21, 22].37

While training algorithms are readily available, progress is bottlenecked by the lack of open datasets38

with functional correctness validation.39

A key challenge in building such datasets lies in constructing large-scale, high-quality training data40

that pairs natural language specifications with RTL implementations. Despite efforts to mine RTL41

code from open-source repositories [23–26], much of the collected data lacks validation and may42

not align with its intended functionality. To address this, recent work has turned to LLMs-either43

prompting them to synthesize RTL designs from keyword-based specifications [6, 7] or leveraging44

them to rewrite existing RTL code and generate matching specifications [8, 24, 26]. In both cases,45

syntax checkers are often employed to filter uncompilable code or provide feedback for iterative46

refinement, but these techniques still fall short of validating functional correctness.47

As far as we know, all these prior work [6–8, 24, 26] have focused solely on ensuring syntactic48

correctness, overlooking functional correctness. As a result, many dataset examples compile suc-49

cessfully but may not implement the behavior described in their natural language specifications. The50

distinction between syntactic correctness and functional correctness has important implications for51

model evaluation and real-world deployment. While functionally correct code inherently satisfies52

syntax constraints, syntactic correctness alone does not guarantee correct functionality. This gap53

is evident in the results reported by the RTLLM benchmark [10], where GPT-4o attains a high54

syntax accuracy of 100.0%, yet achieve only 69.0% in terms of functional correctness. Ultimately, in55

real-world settings, it is functional correctness rather than syntactic validity that truly matters.56

In this work, we introduce VeriCoder, a model for RTL code generation fine-tuned on a high-quality57

dataset consisting of 125,777 examples that has been validated for functional correctness. To construct58

this dataset, we develop a novel pipeline that combines unit test generation with feedback-directed59

refinement guided by a teacher LLM (GPT-4o-mini). Given a natural language specification and an60

2

Task Spec
...
RTL Design
...
Test
...
Error Message
...
Your Task
Debug

Refinement Prompt

Test Generation
Prompt

Original dataset D
{spec, design}

Task Spec
...
RTL Design
...
Your Task
Generate a test

Validated dataset D’
{spec, design, test}

Compiler &
Simulator

LLM

Error Message

Generated design and test

module div (...);
 ...
 always @...
 begin
 cnt <= cnt + 1;
 end
 ...
endmodule

`timescale 1ns / 1ns
module tb;
 ...
 if (clk !== 0)
 $fatal("...");
 ...
 $finish;
endmodule

Simulation failed:
FATAL: ./test.sv:128:
expected 10, got 0

Figure 1: LLM-guided dataset augmentation overview.
initial RTL implementation, the teacher model first generates a unit test. If the RTL code fails the61

simulation, the model iteratively revises the design based on the observed error messages. When62

needed, the unit test is also updated to better reflect the intended functionality described by the63

specification. This process continues until the design passes simulation or a retry limit is reached. The64

resulting fine-tuning dataset consists of over 125k validated triples: a natural language specification,65

a correct RTL design, and a self-checking unit test.66

We fine-tune VeriCoder from Qwen2.5-14B-Instruct using our curated dataset and evaluate it on two67

established RTL code generation benchmarks: VerilogEval [9] and RTLLM [10]. VeriCoder achieves68

new state-of-the-art performance, achieving up to 71.7% and 27.4% relative gains in the pass@k69

metric over the previous best fine-tuned model OriGen [8].70

We conduct an ablation study demonstrating that models trained on our functionally validated dataset71

outperform those trained on non-validated data, under the same base model and training setup.72

These results highlight the importance of high-quality, functionally validated datasets for RTL code73

generation.74

Our contributions are as follows:75

• We introduce VeriCoder, an RTL code generation model fine-tuned on a dataset validated for76

functional correctness. On the VerilogEval and RTLLM benchmarks, VeriCoder achieves77

state-of-the-art performance among open-source fine-tuned models, yielding relative pass@k78

gains of up to 71.7% and 27.4% over the prior best.79

• We develop a dataset augmentation pipeline that combines unit test generation with feedback-80

directed refinement guided by a teacher LLM. This yields, to the best of our knowledge,81

the largest fine-tuning dataset to date with functional validation, consisting of over 125k82

validated triples of natural language specifications, RTL designs, and passing tests.83

• We conduct an ablation study showing that functional validation during dataset construction84

improves model performance, underscoring the importance of using high-quality functionally85

validated datasets for RTL code generation.86

2 Background and Related Work87

Progress on open-source RTL code generation is limited by the absence of large-scale, high-quality88

datasets. To mitigate this, recent efforts have focused on automated data mining and augmentation89

techniques to enrich existing corpora of RTL examples. Table 1 presents the comparison of different90

strategies for constructing fine-tuning datasets.91

Mining open-source RTL designs is a common strategy for dataset construction. VeriGen [26]92

compiles Verilog modules from GitHub and textbooks into a structured corpus using automated93

syntax checks. BetterV [24] collects Verilog modules from the internet and then filters designs based94

on coding style and syntactic validity. Other works [8, 28, 29] adopt similar methodologies for95

sourcing and preprocessing RTL code.96

Another line of work leverages a commercial LLM for synthetic data generation. RTLCoder [6]97

prompts GPT-3.5 with domain keywords to generate both task descriptions and corresponding RTL,98

discarding any outputs that fail to compile. OriGen [8] further employs Claude 3.5 in a two-stage99

code-to-code pipeline: first turning mined RTL code into natural language specifications, then100

3

Natural Language Specifica-
tion
Create a Verilog module and3 with three
one-bit inputs a, b, c, and a one-bit output
y. The output should perform a bitwise
AND across all three inputs using a pro-
cedural block. The truth table:

a b c y

0 x x 0
x 0 x 0
x x 0 0
1 1 1 1

(a) Natural language specification
taken from the Origen [8] dataset.

1 module and3(
2 input wire a,
3 input wire b,
4 input wire c,
5 output reg y
6);
7
8 always @* begin
9 y <= a;

10 y <= y & c;
11 y <= y & b;
12 end
13
14 endmodule

(b) Buggy design taken from the
Origen [8] dataset. It times out
on the generated test shown in

Figure 3.

1 module and3(
2 input wire a,
3 input wire b,
4 input wire c,
5 output reg y
6);
7
8
9 always @* begin

10 y = a & b & c;
11 end
12
13 endmodule

(c) Correct design fixed by the
teacher model that passes the

generated test in Figure 3.

Figure 2: Natural language specification (left) and the corresponding buggy and corrected Verilog
designs (middle and right). The specification and buggy design are from the original dataset [8],
which lacks tests, while the test (Figure 3) and corrected design are generated by a teacher model
(GPT-4o-mini) and included in our validated dataset.

regenerating code from these specifications under compiler guidance, combining the strengths of101

real-world examples and synthetic generation. ChipGPT [27] transforms Verilog ASTs into natural102

language specifications.103

While most of the existing work listed in Table 1 ensures syntax validity, none of them has any104

evidence of functional correctness. Without comprehensive unit tests or simulation-based feedback105

during dataset construction, models fine-tuned on these corpora may produce code that compiles but106

still fails to meet the intended natural language specification.107

A recent work, OpenLLM-RTL [30], explores the idea of using LLMs to generate assertions, pro-108

ducing a functionally verified dataset of 7k examples. While sharing the same goal of improving109

functional correctness in fine-tuning datasets, our work takes a different approach by generating unit110

tests for validation. Our final dataset contains over 125k examples, by far the largest functionally111

validated RTL dataset.112

3 Methodology113

3.1 Overview114

We aim to improve the quality of fine-tuning datasets consisting of natural language specifications115

paired with syntactically correct Verilog designs, as seen in prior work [6–8, 24, 26]. These datasets,116

including Origen [8], contain Verilog designs that pass syntax checks but are not validated against unit117

tests to ensure functional correctness. To address this limitation, we introduce an automated dataset118

augmentation pipeline that leverages a teacher language model, e.g., GPT-4o-mini, to validate each119

example through iterative refinement. As illustrated in Figure 1, given a natural language specification120

and an initial RTL design, the teacher model first generates a unit test. If the RTL design fails the121

simulation, the model iteratively revises the design based on the error message. When needed, it also122

updates the unit test to better align with the natural language specification. Although our experiments123

focus on augmenting the Origen dataset due to its size and quality, the proposed methodology is124

broadly applicable to any dataset lacking test validation.125

The pipeline begins with the original dataset D = {(specification, design)}, where each RTL design126

is intended to implement a corresponding natural language specification. However, because no tests127

are provided, there is no evidence that the designs exhibit the intended functional behavior. For each128

pair, we prompt the teacher model, GPT-4o-mini, to generate a unit test for the design. The test is129

compiled and simulated with the design to check for correctness, where correctness means the design130

passes the simulation test.131

4

If the simulation fails, we extract the resulting error message and re-invoke the teacher model using a132

refinement prompt. This prompt includes the specification, the current design and test, and the error133

message. The model attempts to resolve the failure by making minimal modifications to the design,134

the test, or both. This refinement process repeats iteratively: each candidate is re-simulated, and the135

cycle continues until the design passes the test or a maximum number of attempts is reached.136

The final output is a validated dataset D′ = {(specification, design, test)}, where each triplet contains137

a natural language specification, a Verilog design, and unit tests. A concrete motivating example is138

shown in Section 3.2, and the details of the algorithm and prompts are provided in Section 3.3.139

3.2 Motivating Example140

Figure 2 presents a motivating example taken directly from the Origen dataset [8], highlighting141

a key limitation of datasets that rely only on syntax checks for validation. Prior work in RTL142

generation typically assumes that syntactic correctness is sufficient for fine-tuning, without verifying143

functionality through unit tests. This example demonstrates that a design can compile without errors144

yet fail to implement the intended behavior. It also illustrates how our method can automatically145

detect and correct such issues through test generation and iterative refinement.146

1 `timescale 1ns/1ps
2 module tb_and3;
3 reg a = 0, b = 0, c = 0;
4 wire y;
5
6 // Instantiate the DUT (Design Under

Test)
7 and3 uut (.a(a), .b(b), .c(c), .y(y)

);
8
9 initial begin

10 // Wait for signals to settle
11 #1;
12
13 // Set all inputs to 1; expected y

= 1
14 {a, b, c} = 3’b111;
15 #1;
16
17 // Check output , report error if

incorrect
18 if (y !== 1’b1)
19 $fatal(1, "FAIL: y=%b (expected

1)", y);
20
21 $display("PASS");
22 $finish;
23 end
24 endmodule

Figure 3: Unit test for the and3 module. The buggy
design (Figure 2b) times out on this test, while the
corrected design (Figure 2c) passes successfully.
The test is generated by the teacher model GPT-4o-
mini using the prompt in Figure A1a, and is used
to validate and augment the original dataset, which
contains no tests.

This example includes a natural language spec-147

ification (Figure 2a), a buggy RTL design from148

the original dataset (Figure 2b), and a corrected149

design produced by our pipeline (Figure 2c).150

The specification describes a simple combina-151

tional module, and3, which computes the bit-152

wise AND of three one-bit inputs: a, b, and c.153

The original design, though syntactically valid,154

is functionally incorrect due to several semantic155

issues. First, it misuses non-blocking assign-156

ments (<=) inside a combinational always @*157

block, which can lead to counterintuitive syn-158

thesis results. Second, if instead used inside a159

sequential block, the sequence of non-blocking160

assignments in the design—y <= a, then y <=161

y & c, and finally y <= y & b—does not162

correctly compute and store in y the bitwise163

AND of a, b, and c. In particular, non-blocking164

assignments defer updates until the end of the165

current timestep, meaning that all assignments166

operate on the same initial value of y, and only167

the final assignment takes effect. Finally, if the168

non-blocking assignments were replaced with169

blocking ones, the code would introduce a com-170

binational feedback loop, which cannot stabi-171

lize.172

These types of errors occur because the RTL173

code in prior datasets, including Origen [8], is174

synthetically generated by teacher LLMs such175

as Claude 3.5 and filtered only through syntax176

checks. Without simulation or test-based valida-177

tion, semantic bugs that affect functional correctness remain undetected.178

We provide the natural language specification and the buggy RTL design to the teacher model GPT-179

4o-mini, prompting it to generate a unit test using the template shown in Figure A1a (further detailed180

in Section 3.3). The resulting test is shown in Figure 3, which sets all three inputs to 1 and checks181

whether the output y evaluates to 1 as expected. When the buggy design (Figure 2b) is simulated182

with this test, it hangs and ultimately times out. The bug exemplifies a combinational loop. The183

always @* block is meant for combinational logic and its evaluation is triggered upon changes to184

any of the variables read inside the block. In this case, an evaluation of the block is triggered when185

5

Algorithm 1 Dataset Augmentation with a Teacher LLM

Input: Original dataset D = {(si, di)}Ni=1
▷ si: NL specification; di: RTL design

Maximum attempts T
Define: GenTestTpl ← prompt template for test generation

RefineTpl ← prompt template for iterative refinement
Output: Augmented dataset D′ = {(si, di, ti)}Mi=1

▷ ti: Generated unit test
1: D′ ← ∅
2: for each (s, d) ∈ D do
3: attempt← 0, success← false
4: while attempt < T ∧ ¬success do
5: attempt← attempt+ 1
6: if attempt == 1 then
7: d, t← LLMInvoke(GenTestTpl , s, d)
8: else
9: d, t← LLMInvoke(RefineTpl , s, d, t, err)

10: success, err ← RunVerilogTest(d, t)
11: if success then
12: D′ ← D′ ∪ {(s, d, t)}
13: return D′

either y, a, b, or c changes. However, y is both read (on the RHS) and written (on the LHS) in the186

same block. Upon evaluating the block, it schedules an update to y, which causes a change to y. This187

change retriggers the block, leading to another scheduled update to y, and so on. This loop continues188

indefinitely, preventing the simulation from converging.189

The corrected version replaces the non-blocking assignments with a single blocking assignment (=),190

ensuring that y is updated immediately with the result of a & b & c, as required by the specification.191

This version passes the test generated by the teacher model and behaves correctly under simulation.192

This example underscores the importance of functional validation in RTL datasets. Syntax checks193

alone cannot catch subtle but critical semantic errors. Our methodology, through teacher-driven test194

generation and iterative refinement, ensures that each design in the augmented dataset is not only195

syntactically valid but also functionally validated with unit tests.196

3.3 Algorithm and Prompts197

Algorithm 1 presents our automated pipeline for transforming an unvalidated RTL dataset into a198

functionally validated one. Starting from a dataset D = {(si, di)}Ni=1, where each example consists199

of a natural language specification si and a corresponding RTL design di (e.g., from Origen [8]), the200

goal is to generate a unit test ti that validates the functional correctness of the design. If the design201

fails to pass the test, we invoke an iterative refinement loop that updates the design and test until it202

passes or a maximum number of attempts T is reached. We set T = 5 in our experiments.203

The procedure is powered by a teacher model, GPT-4o-mini, which corresponds to the LLMInvoke204

calls in Algorithm 1. While stronger models such as GPT-4o or o3-mini may yield better performance,205

we use GPT-4o-mini in practice because of the large size of the dataset (217,462 examples in Origen)206

and the high cost associated with repeated API queries to OpenAI models.207

The process begins by prompting the teacher model with the test generation template (Figure A1a),208

together with a natural language specification and its initial RTL design (e.g., Figure 2a and Figure 2b).209

The model then produces a candidate unit test (e.g., Figure 3) designed to check whether the design210

satisfies the intended functionality under simulation.211

The design and test are compiled and simulated using standard Verilog tooling. If the test fails,212

for example due to a timeout, incorrect output, or another runtime error, we construct a refinement213

prompt (Figure A1b) that includes the specification, the failing design and test, and the simulation214

6

Model Type Evaluated Model

VerilogEval V1.0 [9] RTLLM V1.1 [10]
(using pass@k metric) (using pass@5 metric)

Eval-Machine (%) Eval-Human (%) Syntax-VCS
(%)

Functional
(%)k=1 k=5 k=10 k=1 k=5 k=10

Base Models

o4-mini-2025-04-16 61.9 67.8 68.6 64.3 66.4 67.1 86.2 72.4
GPT-4o-2024-11-20 63.7 66.5 67.1 54.3 60.4 62.2 100.0 69.0
GPT-4o-mini-2024-07-18 55.7 62.4 64.3 44.7 51.6 55.1 89.7 65.5
DeepSeek-R1 65.7 70.9 72.0 62.8 69.1 69.9 79.3 58.6
o3-mini-2025-01-31 66.4 71.6 72.0 62.0 68.9 69.9 69.0 55.2
Qwen2.5-14B-Instruct 47.8 54.2 55.2 35.3 40.0 42.3 69.0 41.4
Gemini-2.0-flash-001 60.3 62.6 63.6 52.1 57.6 59.0 65.5 34.5
DeepSeek-R1-Distill-Qwen-14B 46.2 64.1 68.5 36.7 51.7 55.1 62.1 34.5
DeepSeek-Coder-7B-v1.5 44.4 58.9 62.9 25.8 40.2 44.9 48.3 24.1
LLaMA-2-7B 7.0 15.6 18.9 0.4 2.1 3.8 3.4 0.0

Fine-Tuned Models
(Prior Work)

OriGen [8] 35.9 65.1 68.5 22.3 47.5 51.9 51.7 37.9
RTLCoder-DeepSeek [6] 22.0 51.4 57.3 14.7 35.2 42.3 17.2 10.3
RTLCoder-Mistral [6] 17.6 46.4 56.6 12.4 31.5 36.5 3.4 0.0
ChipGPT-LLaMA3.1-8B-SFT [27] 17.6 46.4 56.6 12.4 31.5 36.5 13.8 0.0
ChipGPT-LLaMA2-SFT-7B [27] 0.9 4.2 7.7 0.6 2.2 3.8 6.9 0.0

Our Work VeriCoder 55.7 62.9 64.3 38.3 49.2 51.9 79.3 48.3

Table 2: RTL code generation performance across models. To ensure a fair comparison, we use
the same input prompts and apply identical post-processing scripts, running inference with model
weights released by prior work.
error message (corresponding to the err variable in Algorithm 1). This prompt is then passed to the215

teacher model, which attempts to fix the issue by making edits to the design, the test, or both.216

The refinement process repeats until the updated design passes simulation or the maximum number217

of attempts T is reached. Once a design successfully passes its test, the validated triple (si, di, ti) is218

added to the output dataset D′.219

This strategy enables systematic detection and correction of subtle RTL bugs that cannot be identified220

through syntax checks alone. By integrating LLM-based test generation and iterative refinement into221

the dataset construction pipeline, we produce a dataset that is not only syntactically valid but also222

functionally validated through simulation.223

While we cannot guarantee that every design in the augmented dataset is functionally correct under all224

possible inputs, the inclusion of unit tests makes it substantially more robust than prior approaches that225

rely solely on syntactic checking. We consider this a practical and scalable step toward constructing226

higher-quality fine-tuning datasets for RTL generation.227

4 Experimental Setup228

4.1 Dataset229

Following the methodology described in Section 3, we construct a fine-tuning dataset comprising230

125,777 examples. Each example includes a natural language specification, a corresponding RTL231

design, and associated unit tests. Table A1 summarizes key statistics: the specifications contain232

an average of 247 words (ranging from 116 to 549), RTL implementations average 35 lines of233

code (ranging from 5 to 225), and unit tests average 55 lines (ranging from 6 to 197). We use the234

specification–solution pairs from this dataset to train our model, VeriCoder. Other details on the235

experimental setup are discussed in Appendix A.3, Appendix A.4, and Appendix A.5.236

5 Results237

5.1 Main Evaluation Results238

Table 2 shows the results. Our major findings are as follows:239

Comparison with prior work VeriCoder achieves state-of-the-art results across two RTL code240

generation benchmarks, outperforming all previously released open-source fine-tuned models. On241

VerilogEval-Machine, VeriCoder attains a pass@1 accuracy of 55.7%, representing a 19.8 percentage242

point improvement over the best prior model, OriGen. On VerilogEval-Human, it reaches 38.3%,243

exceeding OriGen by 16.0 percentage points. Across all evaluated k-shot settings (k=1, 5, 10),244

7

VeriCoder consistently maintains its lead on the Human split. On the RTLLM benchmark, VeriCoder245

achieves 79.3% syntax correctness and 48.3% functional correctness, surpassing OriGen’s 51.7%246

and 37.9%, respectively. In conclusion, VeriCoder delivers relative improvements of up to 71.7%247

on VerilogEval and 27.4% on RTLLM in pass@k accuracy, surpassing the previous state-of-the-art248

model on both benchmarks.249

To better understand the relatively low performance of ChipGPT [27], we examined its outputs in250

detail. We observed that its generated RTL designs often include module headers that deviate from251

the given specifications, revealing difficulty in precise instruction following. Moreover, its base252

model, LLaMA2-7B, performs even worse, suggesting that limitations in the instruction-following253

capabilities of the underlying pretrained model constrain the effectiveness of the fine-tuned variant.254

For a fair comparison, we do not apply any of the model-specific customized post-processing scripts255

that attempt to fix syntax or header issues. Instead, we use a standardized evaluation script for all256

models, extracting Verilog code as-is to ensure consistency.257

Effectiveness of our fine-tuning Starting from Qwen-2.5-14B-Instruct as our base model, Veri-258

Coder delivers substantial gains across VerilogEval. On the VerilogEval-Machine split, pass@1259

jumps up by 7.6%, pass@5 by 4.0%, and pass@10 by 2.1%, and VerilogEval-Human reflects the260

same trend. On RTLLM, functional pass@5 is 7% higher than its base model. Specifically, VeriCoder261

even marginally outperforms one of the commercial models, Google’s Gemini-2.0-flash, on pass@5262

and pass@10 metrics of Eval-Machine as well as on RTLLM. Together, these results demonstrate that263

our fine-tuning process and our validated dataset significantly boost pass@k metrics and semantic264

correctness in RTL generation.265

Model gap remains Despite the observed improvements, a substantial performance gap persists266

between VeriCoder and the strongest large models. For instance, o3-mini attains 66.4% on VerilogEval267

Pass@1 compared to VeriCoder’s 55.7%. DeepSeek-R1 achieves 69.1% on human-graded Pass@5,268

versus VeriCoder’s 49.2%. Commercial LLMs such as GPT-4o reach perfect 100.0% Syntax-VCS269

validity and 69.0% functional correctness, while VeriCoder records 79.3% and 48.3%, respectively.270

Despite the performance gap, open-source lightweight models offer compelling advantages. They271

provide transparency, allow for local deployment, and ensure intellectual property protection, i.e.,272

capabilities that are particularly important for RTL design workflows where security, customizability,273

and integration into existing toolchains are critical.274

5.2 Ablation Study of Dataset275

Model
VerilogEval [9]

(Pass@5)

RTLLM [10]
(Pass@5)

Syntax Func

Qwen2.5-14B-Instruct (base) 46.8 69.0 41.4
Qwen w/ unvalidated data 53.5 75.9 44.8
Qwen w/ validated data 55.8 79.3 48.3

Table 3: We performed fine-tuning on the same
base model using a functionally validated dataset
and the functionally unvalidated dataset [8]. We
report Pass@5 metrics for all models on two
benchmarks.

To assess the impact of dataset quality on RTL276

code generation, we conduct an ablation study us-277

ing the same base model, Qwen2.5-14B-Instruct,278

fine-tuned on two datasets: (1) the unvalidated Ori-279

Gen dataset from prior work [8], and (2) our newly280

curated, functionally validated dataset. All factors,281

including dataset size, fine-tuning hyperparame-282

ters, training procedures, and evaluation settings,283

are held constant to ensure a fair comparison.284

Across all metrics, we observe a consistent im-285

provement as dataset quality increases. On the286

VerilogEval benchmark, the base model achieves 46.8% Pass@5. Fine-tuning on the unvalidated287

dataset raises performance to 53.5%, while our validated dataset further improves it to 55.8%. For288

RTLLM syntax correctness, the trend is similar: 69.0% for the base model, 75.9% for the unvalidated289

version, and 79.3% when trained on validated data. Functional correctness sees even more significant290

improvement, rising from 41.4% (base) to 44.8% (unvalidated) and ultimately to 48.3% (validated).291

These results demonstrate that functionally validated data provides more effective supervision than292

existing unvalidated data. This also underscores the importance of dataset quality in fine-tuning293

LLMs for RTL code generation.294

5.3 Test Passing Rates of Non-Validated Datasets295

8

Prior Datasets # Sampled Examples Test Passing (%)

RTLCoder [6] 1000 24.4
OriGen [8] 1000 53.5

Table 4: Test passing rates (%) of datasets
released by prior work on a randomly sampled
set of 1000 examples.

We examine the quality of fine-tuning datasets re-296

leased by prior work by evaluating their passing297

rates against our synthetic unit tests generated by298

the teacher model GPT-4o-mini. For each corpus,299

we randomly sample 1,000 Verilog implementations300

and apply the test generation and refinement pipeline301

described in Section 3. We then run corresponding unit tests against the original design and measure302

the proportion of the original designs that successfully pass the generated tests. As shown in Table 4,303

only 24.4% examples of the RTLCoder dataset [6] pass our functional tests, while OriGen [8] reaches304

53.5%.305

OriGen’s higher pass rate aligns with its stronger code generation results in Table 2, hinting at a306

positive link between dataset validity and downstream performance. These findings highlight the307

potential value of incorporating functional correctness validation into fine-tuning dataset curation for308

better RTL code generation.309

6 Discussion and Future Work310

While VeriCoder, combining unit test generation with feedback-driven refinement, improves the311

functional correctness of generated RTL code, it does not fully guarantee correctness. Synthetic312

test cases may fail to capture all possible edge cases. To address this challenge, future work should313

explore integrating formal verification techniques into the dataset construction pipeline to rigorously314

ensure the correctness of the generated code. Recent advancements have demonstrated promising315

results in translating natural language instructions into formal specifications [31, 16], as well as316

enforcing formal constraints during LLM-based code generation [32].317

Moreover, most existing approaches, including VeriCoder, focus on small-scale RTL generation.318

However, practical hardware development often involves large, repository-level codebases with319

intricate cross-file dependencies and requirements for long-range context [33–35]. Recent work320

has begun to address these challenges through techniques such as combining fine-tuning with321

retrieval-augmented RTL code generation [36, 37]. Extending VeriCoder’s unit test generation and322

feedback-directed refinement components to the repository scale will enable LLMs to handle more323

real-world RTL tasks.324

Furthermore, reinforcement learning (RL) offers a powerful framework for further optimizing large325

language models’ performance beyond what is achievable through supervised fine-tuning alone.326

Recent studies have demonstrated the effectiveness of RL in enhancing LLM-based code generation327

by incorporating diverse forms of feedback, such as test case outcomes, compiler diagnostics, and328

formal verification results [38, 39, 30]. Building on this progress, future work could investigate329

applying RL techniques to the VeriCoder dataset, using the accompanying test cases as a feedback330

signal to iteratively improve RTL code generation quality.331

7 Conclusion332

Recent advances in Large Language Models (LLMs) have opened new possibilities for Electronic333

Design Automation (EDA), particularly in RTL code generation. However, most existing datasets334

emphasize syntactic validity while overlooking functional correctness, which limits the effectiveness335

of fine-tuned models. We introduce VERICODER, a model fine-tuned on a dataset with 125,000336

examples that is validated for functional correctness. This dataset is constructed using a feedback-337

directed refinement pipeline guided by a teacher LLM, which generates and iteratively updates both338

RTL designs and unit tests until the design passes simulation. The resulting dataset consists of339

functionally validated triples comprising a natural language specification, an RTL implementation,340

and a passing test. Fine-tuned on this dataset, VERICODER achieves state-of-the-art results on341

two established RTL benchmarks, yielding relative improvements of up to 71.7% on VerilogEval342

and 27.4% on RTLLM. An ablation study confirms the impact of functional validation on model343

performance, underscoring the importance of high-quality training data. Looking ahead, future344

work may incorporate formal verification and reinforcement learning to further improve models’345

performance in AI-assisted hardware design.346

9

References347

[1] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben, H. Anand, S. Banerjee,348

I. Bayraktaroglu et al., “Chipnemo: Domain-adapted llms for chip design,” arXiv preprint349

arXiv:2311.00176, 2023.350

[2] L. Chen, Y. Chen, Z. Chu, W. Fang, T.-Y. Ho, R. Huang, Y. Huang, S. Khan, M. Li, X. Li351

et al., “The dawn of ai-native eda: Opportunities and challenges of large circuit models,” arXiv352

preprint arXiv:2403.07257, 2024.353

[3] R. Zhong, X. Du, S. Kai, Z. Tang, S. Xu, H.-L. Zhen, J. Hao, Q. Xu, M. Yuan, and J. Yan,354

“Llm4eda: Emerging progress in large language models for electronic design automation,” arXiv355

preprint arXiv:2401.12224, 2023.356

[4] Z. He and B. Yu, “Large language models for eda: Future or mirage?” in Proceedings of the357

2024 International Symposium on Physical Design, 2024, pp. 65–66.358

[5] X. Yao, Y. Wang, X. Li, Y. Lian, R. Chen, L. Chen, M. Yuan, H. Xu, and B. Yu, “Rtlrewriter:359

Methodologies for large models aided rtl code optimization,” in Proceedings of the 43rd360

IEEE/ACM International Conference on Computer-Aided Design, 2024, pp. 1–7.361

[6] S. Liu, W. Fang, Y. Lu, J. Wang, Q. Zhang, H. Zhang, and Z. Xie, “Rtlcoder: Fully open-source362

and efficient llm-assisted rtl code generation technique,” IEEE Transactions on Computer-Aided363

Design of Integrated Circuits and Systems, 2024.364

[7] S. Liu, W. Fang, Y. Lu, Q. Zhang, H. Zhang, and Z. Xie, “Rtlcoder: Outperforming gpt-3.5365

in design rtl generation with our open-source dataset and lightweight solution,” in 2024 IEEE366

LLM Aided Design Workshop (LAD). IEEE, 2024, pp. 1–5.367

[8] F. Cui, C. Yin, K. Zhou, Y. Xiao, G. Sun, Q. Xu, Q. Guo, D. Song, D. Lin, X. Zhang et al.,368

“Origen: Enhancing rtl code generation with code-to-code augmentation and self-reflection,”369

arXiv preprint arXiv:2407.16237, 2024.370

[9] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating large language models371

for verilog code generation,” in 2023 IEEE/ACM International Conference on Computer Aided372

Design (ICCAD). IEEE, 2023, pp. 1–8.373

[10] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark for design rtl generation374

with large language model,” in 2024 29th Asia and South Pacific Design Automation Conference375

(ASP-DAC). IEEE, 2024, pp. 722–727.376

[11] Y. Tsai, M. Liu, and H. Ren, “Rtlfixer: Automatically fixing rtl syntax errors with large language377

model,” in Proceedings of the 61st ACM/IEEE Design Automation Conference, 2024, pp. 1–6.378

[12] Y. Liao, T. Adegbija, and R. Lysecky, “Are llms any good for high-level synthesis?” in379

Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design, 2024,380

pp. 1–8.381

[13] Y. Fu, Y. Zhang, Z. Yu, S. Li, Z. Ye, C. Li, C. Wan, and Y. C. Lin, “Gpt4aigchip: Towards next-382

generation ai accelerator design automation via large language models,” in 2023 IEEE/ACM383

International Conference on Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–9.384

[14] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “On the viability of using llms for sw/hw co-design: An385

example in designing cim dnn accelerators,” in 2023 IEEE 36th International System-on-Chip386

Conference (SOCC). IEEE, 2023, pp. 1–6.387

[15] Z. Liang, J. Cheng, R. Yang, H. Ren, Z. Song, D. Wu, X. Qian, T. Li, and Y. Shi, “Unleashing388

the potential of llms for quantum computing: A study in quantum architecture design,” arXiv389

preprint arXiv:2307.08191, 2023.390

[16] M. Cosler, C. Hahn, D. Mendoza, F. Schmitt, and C. Trippel, “nl2spec: Interactively translating391

unstructured natural language to temporal logics with large language models,” in International392

Conference on Computer Aided Verification. Springer, 2023, pp. 383–396.393

10

[17] C. Sun, C. Hahn, and C. Trippel, “Towards improving verification productivity with circuit-aware394

translation of natural language to systemverilog assertions,” in First International Workshop on395

Deep Learning-aided Verification, 2023.396

[18] H. Wu, Z. He, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu, “Chateda: A large language397

model powered autonomous agent for eda,” IEEE Transactions on Computer-Aided Design of398

Integrated Circuits and Systems, 2024.399

[19] Z. Xiao, X. He, H. Wu, B. Yu, and Y. Guo, “Eda-copilot: A rag-powered intelligent assistant for400

eda tools,” ACM Transactions on Design Automation of Electronic Systems, 2025.401

[20] K. Xu, J. Sun, Y. Hu, X. Fang, W. Shan, X. Wang, and Z. Jiang, “Meic: Re-thinking rtl debug402

automation using llms,” in Proceedings of the 43rd IEEE/ACM International Conference on403

Computer-Aided Design, 2024, pp. 1–9.404

[21] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li,405

J. Chim et al., “Starcoder: may the source be with you!” arXiv preprint arXiv:2305.06161,406

2023.407

[22] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi, A. Tang, D. Pykhtar,408

J. Liu, Y. Wei et al., “Starcoder 2 and the stack v2: The next generation,” arXiv preprint409

arXiv:2402.19173, 2024.410

[23] E. Dehaerne, B. Dey, S. Halder, and S. De Gendt, “A deep learning framework for verilog411

autocompletion towards design and verification automation,” arXiv preprint arXiv:2304.13840,412

2023.413

[24] Z. Pei, H.-L. Zhen, M. Yuan, Y. Huang, and B. Yu, “Betterv: Controlled verilog generation with414

discriminative guidance,” arXiv preprint arXiv:2402.03375, 2024.415

[25] S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-Gavitt, and S. Garg,416

“Benchmarking large language models for automated verilog rtl code generation,” in 2023417

Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023, pp. 1–6.418

[26] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and S. Garg, “Verigen: A419

large language model for verilog code generation,” ACM Transactions on Design Automation of420

Electronic Systems, vol. 29, no. 3, pp. 1–31, 2024.421

[27] K. Chang, K. Wang, N. Yang, Y. Wang, D. Jin, W. Zhu, Z. Chen, C. Li, H. Yan, Y. Zhou et al.,422

“Data is all you need: Finetuning llms for chip design via an automated design-data augmentation423

framework,” in Proceedings of the 61st ACM/IEEE Design Automation Conference, 2024, pp.424

1–6.425

[28] Y. Zhang, Z. Yu, Y. Fu, C. Wan, and Y. C. Lin, “Mg-verilog: Multi-grained dataset towards426

enhanced llm-assisted verilog generation,” in 2024 IEEE LLM Aided Design Workshop (LAD).427

IEEE, 2024, pp. 1–5.428

[29] E. Goh, M. Xiang, I. Wey, T. H. Teo et al., “From english to asic: Hardware implementation429

with large language model,” arXiv preprint arXiv:2403.07039, 2024.430

[30] S. Liu, Y. Lu, W. Fang, M. Li, and Z. Xie, “Openllm-rtl: Open dataset and benchmark for llm-431

aided design rtl generation,” in Proceedings of the 43rd IEEE/ACM International Conference432

on Computer-Aided Design, 2024, pp. 1–9.433

[31] D. Mendoza, C. Hahn, and C. Trippel, “Translating natural language to temporal logics with434

large language models and model checkers,” in 2024 Formal Methods in Computer-Aided435

Design (FMCAD), 2024, pp. 1–11.436

[32] P. Aggarwal, B. Parno, and S. Welleck, “Alphaverus: Bootstrapping formally verified code gen-437

eration through self-improving translation and treefinement,” arXiv preprint arXiv:2412.06176,438

2024.439

[33] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan, “Swe-bench:440

Can language models resolve real-world github issues?” arXiv preprint arXiv:2310.06770,441

2023.442

11

[34] T. Suresh, R. G. Reddy, Y. Xu, Z. Nussbaum, A. Mulyar, B. Duderstadt, and H. Ji, “Corn-443

stack: High-quality contrastive data for better code retrieval and reranking,” in The Thirteenth444

International Conference on Learning Representations, 2025.445

[35] N. Jain, M. Shetty, T. Zhang, K. Han, K. Sen, and I. Stoica, “R2e: Turning any github repository446

into a programming agent environment,” in ICML, 2024.447

[36] P. Wu, N. Guo, J. Lv, X. Xiao, and X. Ye, “Rtlrepocoder: Repository-level rtl code com-448

pletion through the combination of fine-tuning and retrieval augmentation,” arXiv preprint449

arXiv:2504.08862, 2025.450

[37] Z. Li, C. Xu, Z. Shi, Z. Peng, Y. Liu, Y. Zhou, L. Zhou, C. Ma, J. Zhong, X. Wang et al.,451

“Deepcircuitx: A comprehensive repository-level dataset for rtl code understanding, generation,452

and ppa analysis,” arXiv preprint arXiv:2502.18297, 2025.453

[38] N. Wang, B. Yao, J. Zhou, X. Wang, Z. Jiang, and N. Guan, “Large language model for verilog454

generation with golden code feedback,” arXiv preprint arXiv:2407.18271, 2024.455

[39] J. Wang, Z. Zhang, Y. He, Y. Song, T. Shi, Y. Li, H. Xu, K. Wu, G. Qian, Q. Chen et al., “Enhanc-456

ing code llms with reinforcement learning in code generation,” arXiv preprint arXiv:2412.20367,457

2024.458

12

A Appendix459

A.1 Prompt Templates460

Prompt templates are shown in Figure A1.461

Prompt Template

System Prompt You are a Verilog design and test-
ing expert. Given a hardware specification de-
scribed in natural language, your job is to generate
both a correct Verilog module and a corresponding
unit test that checks its functionality through simu-
lation.

User Prompt
• Natural Language Specification: {NL Spec}
• Initial Implementation: {design}
• Your task:

1. Provide the unit tests for the given design.
2. Revise the Verilog implementation if the

original design fails to pass your test cases.
3. Follow good coding practices, such as us-

ing meaningful comments to document key
logic and decision points.

4. Use $fatal(1, "msg") to flag incorrect
behavior.

5. Output format: {"design": "...",
"test": "..."}

(a) Prompt for generating a Verilog module’s
corresponding test

Prompt Template

System Prompt You are a Verilog design and
testing expert. Analyze a failing design and
its test, and make minimal yet sufficient edits
to correct the issue while preserving the in-
tended behavior specified in natural language.

User Prompt
• Natural Language Specification: {NL

Spec}
• Previous Design and Test: {design}, {test}
• Simulation Output: {error message}
• Your task:

1. Carefully identify the root cause of
the failure by analyzing the code and
the error message.

2. Make changes to either the design or
the test (or both) to resolve the issue
while maintaining correctness.

3. Output format: {"explanation":
"...", "design": "...",
"test": "..."}

(b) Prompt for refining a failing Verilog design
and test

Figure A1: Prompt templates provided to the teacher model for automated Verilog test generation and
refinement, ensuring that the final design passes the generated test and matches the original natural
language specification.

A.2 Dataset462

Category Count Length

Min Max Avg

NL specification (words)
125,777

116 549 247
Design (lines of RTL) 5 225 35
Unit tests (lines of RTL) 6 197 55

Table A1: Dataset statistics: total number of examples and length distributions for natural language
specifications, RTL implementations, and unit tests in the VeriCoder dataset.

A.3 LoRA Fine-Tuning Setup463

Following standard practices for LLM fine-tuning, we fine-tune the base model of Qwen2.5-14B-464

Instruct using Low-Rank Adaptation (LoRA), with a rank of 16 and a scaling factor of 32 to all linear465

projection layers in the transformer. Training is conducted over 3 epochs with a batch size of 40. We466

adopt a constant learning rate of 1× 10−5, paired with a linear decay scheduler and a warm-up ratio467

of 0.05. The optimizer is used with a weight decay of 1× 10−4, and gradient clipping is applied with468

a maximum norm of 1.469

13

A.4 Benchmarks and Metrics470

Following the evaluation protocol established in prior work [7, 8], we benchmark against Ver-471

ilogEval [9] and RTLLM [10]. For VerilogEval, we report the standard Pass@k metric with472

k ∈ {1, 5, 10}, which estimates the expected probability that at least one of the top-k generated473

programs passes all test cases. The metric is defined as:474

Pass@k = E

[
1−

(
n−c
k

)(
n
k

)]
where n is the total number of generated programs and c is the number of correct ones. All test cases475

are manually created by experts who design the benchmarks. In all evaluations, we set n = 10. For476

RTLLM, we report both syntax correctness and functional correctness using Pass@5. This evaluation477

setup aligns with that used in prior work [8].478

A.5 Models for Evaluation479

We evaluate two groups of models. The first group consists of pretrained-only base models, in-480

cluding OpenAI’s latest releases (o4-mini, o3-mini, GPT-4o, GPT-4o-mini), Google’s Gemini 2.0481

Flash, DeepSeek’s R1 and DeepSeek-Coder-7B-v1.5 (the base model used in prior work [8]), Meta’s482

LLaMA2-7B model, and Alibaba’s Qwen2.5-14B-Instruct (our base model for fine-tuning). The483

second group includes fine-tuned models with released weights from prior work: Origen [8], RTL-484

Coder [6], and ChipGPT [27].485

To ensure a fair comparison, we use identical input prompts and post-processing scripts across all486

models. For models released by prior work, we do not adopt their model-specific prompts [8] or487

inference pipelines [27, 6]. Instead, we apply a uniform evaluation script, with the only variable being488

the model under test. This standardization is critical, as both input formatting and post-processing489

can significantly affect performance. By controlling these factors, we isolate model capability and490

enable a fair comparison.491

14

	Introduction
	Background and Related Work
	Methodology
	Overview
	Motivating Example
	Algorithm and Prompts

	Experimental Setup
	Dataset

	Results
	Main Evaluation Results
	Ablation Study of Dataset
	Test Passing Rates of Non-Validated Datasets

	Discussion and Future Work
	Conclusion
	Appendix
	Prompt Templates
	Dataset
	LoRA Fine‑Tuning Setup
	Benchmarks and Metrics
	Models for Evaluation

