

000 SELF-SUPERVISED DIFFUSION MODEL SAMPLING 001 002 WITH REINFORCEMENT LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Diffusion models have established themselves as the state-of-the-art for generative
011 modeling, dethroning Generative Adversarial Networks (GANs) by generating
012 higher-quality samples while remaining more stable throughout training. How-
013 ever, diffusion models generate samples iteratively and remain slow at inference
014 time. Our work proposes to leverage reinforcement learning (RL) to accelerate
015 inference by building on the recent framing of diffusion’s iterative denoising pro-
016 cess as a sequential decision-making problem. Specifically, our approach learns
017 a scheduler policy that maximizes sample quality while remaining within a fixed
018 budget of denoising steps. Importantly, our method is agnostic to the underlying
019 diffusion model and does not re-train it. Finally, unlike previous RL approaches
020 that rely on supervised pairs of noise and corresponding denoised images, our
021 method is self-supervised and directly maximizes similarity in dataset feature
022 space. Overall, our approach offers a more flexible and efficient framework for
023 improving diffusion model’s inference in terms of speed and quality.
024

025 026 1 INTRODUCTION 027

028 For the past decade, the trend of generative modeling was dominated by Generative Adversarial
029 Networks (GANs) (Goodfellow et al., 2014). While they were considered the state of the art and
030 enjoyed blazing fast inference speeds, they suffered from major training instabilities, namely mode
031 collapse and sensitivity to hyper-parameters (Arjovsky & Bottou, 2017; Wiatrak et al., 2020). These
032 shortcomings have encouraged the search for a more reliable generative modeling paradigm, and
033 has given rise to the emergence of diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon,
034 2020a;b). While both GANs and diffusion models are predicated on transforming random noise
035 (generally a standard Gaussian) to match a data distribution, the generator of GANs attempts to do
036 so in a single network pass, while in diffusion models, this transformation is sequential, allowing
037 to trade off sample quality for inference speed. While there has been work to speed up diffusion
038 models by retraining them with different objective functions (Song et al., 2023; Heek et al., 2024),
039 we propose a simpler approach that does not modify or retrain the underlying diffusion model, but
040 rather learns an optimal sampler through the use of reinforcement learning (RL).
041

042 We frame the diffusion model sampling process as an RL episode, where each inference pass is an
043 episode step. We treat each element in a batch of data as its own RL agent, allowing for a paralellized
044 environment, where batches of trajectories can be collected from a single diffusion sampling pass.
045 This lends itself perfectly for online reinforcement learning algorithms such as Proximal Policy
046 Optimization (PPO) (Schulman et al., 2017), allowing for an extremely fast flow of data into the RL
047 learner.
048

049 2 BACKGROUND 050

051 In this section, we provide a background on the topics at hand, namely RL and Markov decision
052 processes (MDPs), diffusion models, and learned denoise schedulers.
053

054 2.1 RL & MDPs
055

056 An MDP is a framework to formalize sequential decision-making problems. It is defined by a state
057 space \mathcal{S} , which is the set of possible states, the action space \mathcal{A} , which is the set of possible actions,
058 the transition probabilities P , where $P : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$ is the probability of transitioning from
059 a given state s_k to a new state s_{k+1} when taking action a_k , formally given by $P(s_{k+1}|s_k, a_k)$, and
060 finally the reward function R , where $R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is the immediate reward r_{k+1} observed when
061 taking action a_k at state s_k , formally given by $R(s_k, a_k)$. Together, the MDP is defined by the tuple
062 $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, P, R\}$. (Sutton & Barto, 2018; Kaelbling et al., 1996)

063 Given a trajectory of state and actions $\tau = (s_0, a_0, s_1, a_1, \dots, s_K, a_K)$, the goal of an RL agent is to
064 maximize the expected cumulative reward over the entire trajectory. This expectation is with respect
065 to its policy $\pi(a|s)$, which is a function that returns a probability distribution over all actions, given
066 a state s : $\mathbb{E}_\pi[\sum_{k=0}^K R(s_k, a_k)]$. To the more seasoned RL researcher, the timestep of the MDP is
067 usually denoted by t rather than k . However, we reserve that notation to diffusion models, as they
068 also express their framework in the time domain, both continuous and discrete.

070 2.2 DIFFUSION MODELS
071

072 Diffusion models are a type of generative model known for their ability to generate high-quality sam-
073 ples from a given dataset. While various different formulations of diffusion models have emerged
074 over the last few years (Song et al., 2022; Ho et al., 2020; Song et al., 2021; Heitz et al., 2023), all
075 proposed methods tackle the same problem of sampling from a complex distribution via a learned
076 transformation from a simpler distribution, usually Gaussian.

077 While this idea isn't new (Rezende & Mohamed, 2016; Kingma & Welling, 2022; Goodfellow et al.,
078 2014), none of the previous methods were able to achieve a quality of samples comparable to dif-
079 fusion models, which is mainly attributed to their iterative inference architecture. To transform
080 sampled Gaussian noise into a sample that attempts to match the dataset distribution, multiple se-
081 quential denoising steps must be applied. This paradigm differentiates diffusion models from its
082 predecesors, where the learned transformation was a single function evaluation.

083 Given samples from a data distribution $\mathbf{x}_0 \sim q(\mathbf{x}_0)$, diffusion models are tasked to learn $p_\theta(\mathbf{x}_0)$
084 which approximates $q(\mathbf{x}_0)$: $p_\theta(\mathbf{x}_0) = \int p_\theta(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$. Here, the joint distribution $p_\theta(\mathbf{x}_{0:T})$ is
085 referred to as the reverse process. It is a series of learned transformations, with an initial fixed
086 starting point of $p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; 0, \mathbf{I})$. Intuitively, these are a Markov Chain of denoising op-
087 erators on an initial purely Gaussian noise, which is trivial to generate samples from, by modeling
088 $p_\theta(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$. The choice of operator varies from different diffusion model
089 formulations. The most common (Ho et al., 2020) transitions are learned isotropic Gaussians, with
090 $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_\theta(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$, where $\mu_\theta(\mathbf{x}_t, t)$ is the learned mean of the reverse trans-
091 sition. In order to have ground truth information to train our reverse process, the forward process
092 $q(\mathbf{x}_{1:T}|\mathbf{x}_0)$ is a Markov Chain of fixed Gaussian noise which gradually adds noise to the data, with
093 $q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$. Each transition in the forward process is fixed, and follows a
094 variance schedule β_1, \dots, β_T , formally defined as $q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$. In this
095 formulation, $\beta_t = \sigma_t^2$.

096 Once the diffusion is trained to approximate the target distribution, we can then start generating data
097 from random noise. The quality of the final sample is influenced by two key factors: the numbers of
098 steps T the model takes to denoise the sample, and the noise schedule across those T steps, which
099 controls how the denoising process is distributed. While it may seem that there is a monotonic
100 relationship between the number of inference steps T and the quality of samples, this is not always
101 the case. In fact, it will depend on the training dynamics of the diffusion model. Likewise, the choice
102 of optimal noise schedule is not trivial, and will vary from different diffusion models.

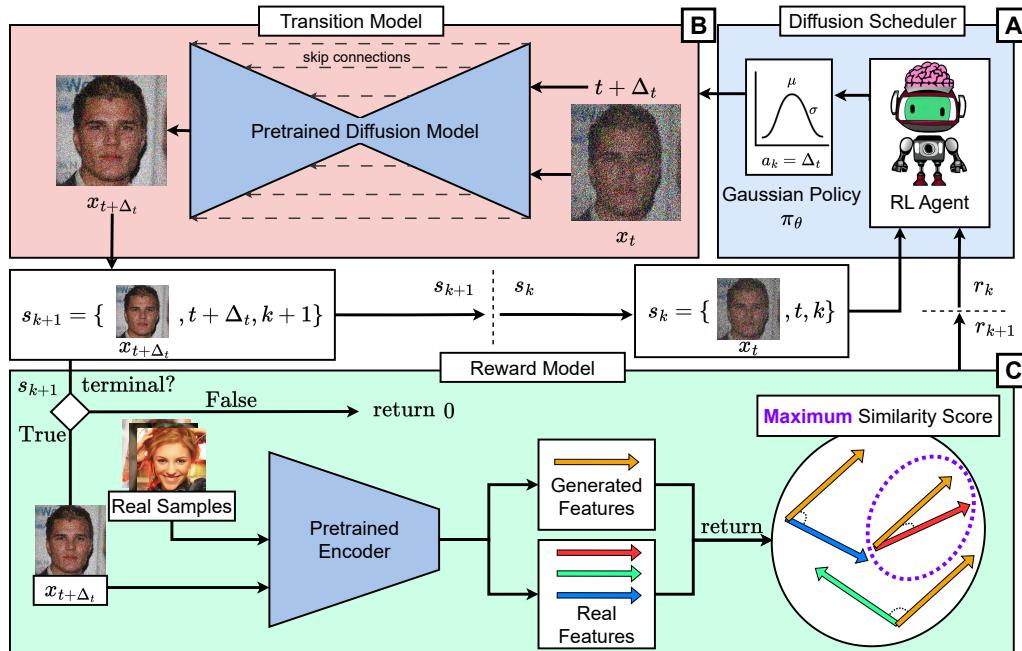
103
104 3 RELATED WORK
105

106 107 The sensitivity of sample quality to the denoising schedule has given rise to extensive research efforts
108 aimed at identifying and developing optimal scheduling strategies.

108 Two main school of thoughts have emerged to tackle this problem, the first one are considered
 109 **training-free**, which are not reliant on any learning based algorithm, but rather analytically solving
 110 for the noise schedule which theoretically guarantees convergence (Lu et al., 2022; 2023), reducing
 111 discretization (Zhang & Chen, 2023; Zheng et al., 2023c), higher order solvers (Dockhorn et al.,
 112 2022), treating Diffusion Models as manifolds and applying pseudo-numerical methods (Liu et al.,
 113 2022). While all of these methods can achieve state of the art results with impressive speed ups, they
 114 often rely on hand-crafted heuristics and parameters.

115 The second school of thought, which are **training-based**, are further split into two camps: methods
 116 that rely on training entirely new diffusion models, by either learning the optimal transition operator
 117 (Zheng et al., 2023a), truncating the diffusion process by learning different initial noise representa-
 118 tions (Zheng et al., 2023b), or approaches akin to knowledge distillation (Song et al., 2023; Heek
 119 et al., 2024). Other training-based methods treat the diffusion model as a black box, and either learn
 120 model and dataset specific denoising schedules by minimizing the Kullback-Leibler Upper Bound
 121 (KLUB) between the true reverse-time SDE integration and its time discretization (Sabour et al.,
 122 2024), Or use Reinforcement Learning to align the diffusion process of a denoising scheduler with
 123 a larger number of steps to that of a model with fewer steps, ensuring the results remain consistent.
 124 (Wang et al., 2023). The primary drawback of this approach is that the teacher schedule is expensive
 125 to execute and acts as a ceiling to the quality of the generated samples. Furthermore, determining
 126 the optimal number of steps to achieve high-quality samples for guidance is not trivial, even under
 127 the assumption of unlimited budget, as additional steps don't always result in better quality.

4 METHODOLOGY



153 **Figure 1: RL Environment.** The reinforcement learning agent observes the current diffusion sample
 154 and noise schedule, from which it decides how to conduct the noise schedule update through its
 155 action. It receives a reward based on the maximum pairwise similarity score on extracted features
 156 between the generated sample and positive samples drawn from the target dataset.

157 The main objective of our method is to accelerate the sampling process of a pretrained diffusion
 158 model, using reinforcement learning. The goal is to have a lightweight module that would learn
 159 to maximize sample quality, by optimizing the noise scheduling, for a given number of maximum
 160 inference steps T . Unlike traditional schedulers, our method is allowed to terminate before reaching
 161 its budget.

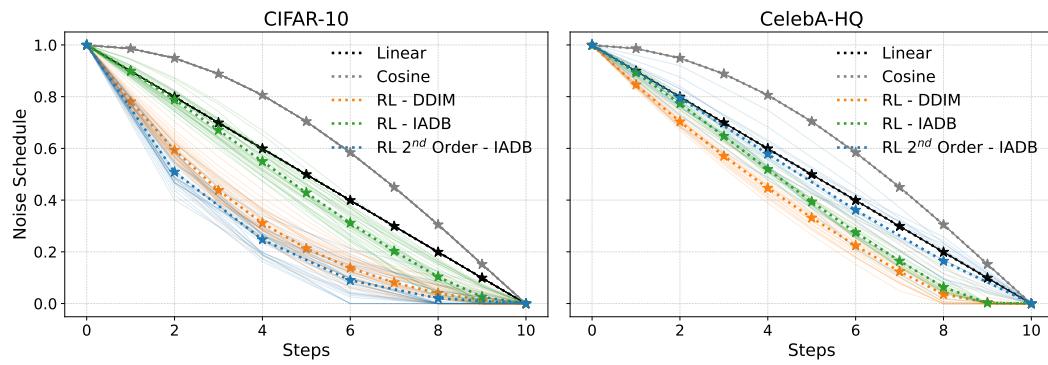


Figure 2: **Comparing Noise Schedules.** We compare the RL schedule to linear and cosine schedules, on a batch of 64 samples for. For both CIFAR-10 and CelebA-HQ, we showcase the RL DDIM model, RL IADB model, and RL IADB second order model. The RL schedule is designed to individually control and adapt the noise schedule of each sample of the batch individually.

Importantly, our agents are **self-supervised**, meaning we do not rely on teacher schedules or paired data, allowing for fast and unbouded sample quality. In the sections below, we break down the formulation of the RL environment into its Markov Decision Process (MDP) components, that is: the state-space, action-space, transition dynamics, and reward function.

4.1 REINFORCEMENT LEARNING ENVIRONMENT

We formulate the diffusion sampling process as a reinforcement learning episode. The *state* s_k that the RL agent receives from the environment is the *current diffused data sample* x_t , along with the *noise schedule*: the current diffusion step t , and the *RL time-step*: the current episode step k . Initially, at $s_{k=0}$, the diffused data sample is a pure Gaussian noise, along with the initial noise schedule T of the diffusion model, and timestep 0. $s_k = [x_t : \mathcal{N}(0, \mathbf{I}), t : T, k : 0]$

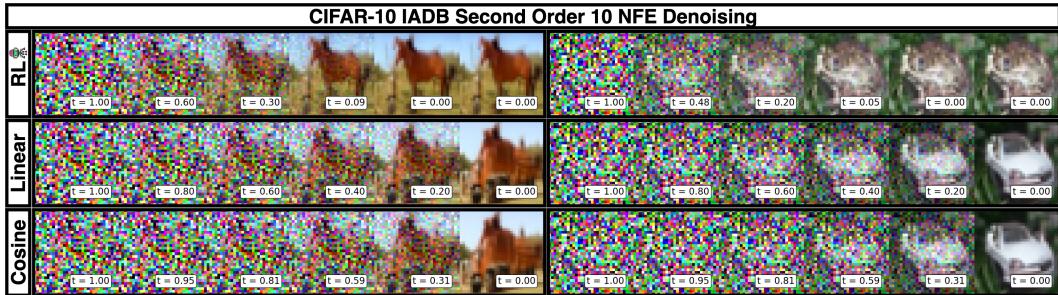
The *action* a_k that the agent can take to act on the environment is the amount of noise update it would like to apply on the current diffusion sample. We rescale all diffusion models to be consistent in terms of noise schedule, and the associated *action space* is $\mathbb{R} \in [0, 1]$. While some diffusion model's formulation is such that a fully noisy sample is at timestep T , and a fully diffused sample is at timestep 0 (Song et al., 2022; Ho et al., 2020), other models represent the noise schedule in the reverse order, with a fully noisy sample being at timestep 0, and an increase in time representing a diffusion (Heitz et al., 2023). In either formulation, the noise schedule can be normalized to be from 0 to 1.

While we do not make the direction of the flow of time consistent between models, this can be easily made consistent post-training. This means, while some diffusion models will have their noise schedule start at 1 and terminate at 0, some will be inverted. A visualization of the noise schedule for a budget of $T = 10$ is shown in figure 2.

Once the action is picked, the environment transition dynamics are simply the underlying diffusion model inference pass, where a single diffusion step is performed, with the requested noise update, and responds to the RL agent with the updated diffusion sample, along with its associated new noise level and an incremented timestep, as well as a *reward* $r(s_k, a_k)$, which is the *similarity score* of the current diffusion sample, more on this in section 4.2.

The episode is considered *terminated* when the updated noise level is equal to, or exceeds the maximum amount permitted, which is 1 for forward flowing models (Heitz et al., 2023), or 0 for backwards flowing models (Song et al., 2022; Ho et al., 2020). We also set a maximum number of allowed diffusion steps in the environment, which the RL agent is made aware of in its state via the timestep to keep the environment Markovian, and terminate the episode if that number is exceeded. This is analogous to giving the agent a certain *budget* that it cannot exceed in order to terminate its sampling process.

237 **CelebA-HQ Denoising.** We show the effect of different first order noise schedules for
238 identical initial conditions, for both IADB and DDIM models. The RL scheduler is able to produce
239 higher quality samples with lower inference passes.



251 **CIFAR-10 Denoising.** We show the effect of different second order noise schedules for
252 identical initial conditions, for IADB. Despite not producing as high of an FID, the RL scheduler is
253 able to generate sharper images with less class ambiguity.

254

255 While traditional reinforcement learning environments are CPU intensive and require explicit parallelization to generate the data required to train, such as OpenAI gym’s classical control environments
256 or MuJoCo (Brockman et al., 2016; Todorov et al., 2012), our environment can run entirely on the
257 GPU, as all the dynamics are simulated using a neural network. We can therefore leverage the power
258 of batched computing to parallelize as many environments as our hardware would allow us to. Once
259 we process an entire diffusion pass, where the whole batch is terminated, we then offload this data to
260 the RL learner, keeping each batch element contiguous to preserve the trajectories of our individual
261 agents, where our PPO learner can then proceed with its update.

262

263

264 4.2 REWARD PAIRING

265

266 At the beginning of each episode, alongside our batch of diffusion trajectories, we sample a batch
267 of ground truth data D , which will be used as samples for our reward signal. The reward that
268 the agents observe is sparse, being 0 everywhere, except the final step, when they produce their
269 final diffusion sample. We extract the features of the final samples using a pre-trained Inception-v3
network (Szegedy et al., 2015) from the Pytorch-Lightning library (Paszke et al., 2019; Falcon &

270 The PyTorch Lightning team, 2019), which is the same model used to compute the Fréchet inception
 271 distance (FID) (Heusel et al., 2018). Alongside the diffused sample Inception features, we also
 272 extract the features of the samples D . We then compute a pairwise similarity matrix between each
 273 diffused sample and each example $d_i \in D$.

274 It is important to emphasize here that we do not have any pre-determined pairing between our generated
 275 samples and our ground truth data. Therefor, in order to associate a meaningful reward singal,
 276 we extract the maximum similarity value for each diffused sample, which will serve as our final
 277 episodic reward. Taking the maximum similarity helps the diffusion model align its sample as best
 278 as it can with the highest likelihood data point in the batch. For some datasets with both high *inter*
 279 and *intra* class variability (e.g. CIFAR-10) it is a pseudo class-guidance without explicitely giving
 280 the labels to our policy.

281 Having experimented with many different similarity metrics S_ϕ , we empirically observed that the
 282 maximum Pearson Correlation was performing the best. As such, our reward function $R(s_k, a_k)$
 283 can be expressed as:

$$285 \quad 286 \quad 287 \quad R(s_k, a_k) = \begin{cases} \max_{d_i \in D} S_\phi(x_{t+\Delta_t}, d_i) & \text{if } s_{k+1} \text{ is terminal} \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

288 where $S_\phi(x, y)$ is defined as:

$$291 \quad 292 \quad 293 \quad S_\phi(x, y) = \frac{(f_\phi(x) - \overline{f_\phi(x)}) \cdot (f_\phi(y) - \overline{f_\phi(y)})}{\|f_\phi(x) - \overline{f_\phi(x)}\| \|f_\phi(y) - \overline{f_\phi(y)}\|}, \quad \overline{f_\phi(x)} = \frac{1}{K} \sum_{k=1}^K f_\phi(x)_k \quad (2)$$

294 where f_ϕ is our pretrained feature extractor, and $\overline{f_\phi(x)}$ denotes the mean of the features across the
 295 feature dimension K for a given input vector x . In our environment, we use the full 2048 features
 296 of the Inception-v3 model.

297 This reward function encourages the agent to produce samples that maximize similarity with the
 298 samples D , which are sampled from the original dataset. A full depiction of the our method is
 299 shown in figure 1. Since we are interested in the absolute highest quality achievable within our
 300 budget, we set the discount factor $\gamma = 1.0$. This means, our policy will always aim to maximize the
 301 quality of the samples, so long as it stays within budget . In an ideal world with infinite compute
 302 power, we would set D to be equal to the entire dataset, and not a sub-sample of it. We show
 303 empirically however, that our approach is sound, as well as provide a theoretical grounding to our
 304 approach in Appendix A.

306 4.3 POLICY NETWORK ARCHITECTURE

307 Since our state s_k is a combination of 3-D image data x_t along with floats t and k , finding a suitable
 308 representation is a challenge. We first extract a latent representation of our image data x_t using a
 309 convolution block, a latent representation of our floats t and k using a linear block, and a fused
 310 latent representation using a bilinear layer. Finally, the resulting feature vector which is simply
 311 the concatenation of all extracted latents, is passed through linear blocks to output parameters to a
 312 Gaussian policy $\pi_\theta \sim \mathcal{N}(\mu_\theta, \sigma)$, shown in figure 5. Rather than learning the exploration parameter
 313 σ , which was leading to unstable training dynamics, we opted for a fixed variance schedule, that
 314 exponentially decays over the duration of the training.

315

316 5 EXPERIMENTS

317 We train our method on two different diffusion models, with varying datasets and sampler orders.
 318 The first model is a discrete time diffusion model, which is the Denoising Diffusion Implicit Model
 319 (DDIM) (Song et al., 2022). It discritizes the noise schedule t from a number T to 0, where $t = T$
 320 represents the pure noise, and $t = 0$ represents the final denoised sample. We use a pretrain weights
 321 available on Hugging Face for the CIFAR-10 dataset (Krizhevsky, 2009) as well as the CelebA-HQ
 322 dataset (Liu et al., 2015), with $T = 1000$ for both datasets.

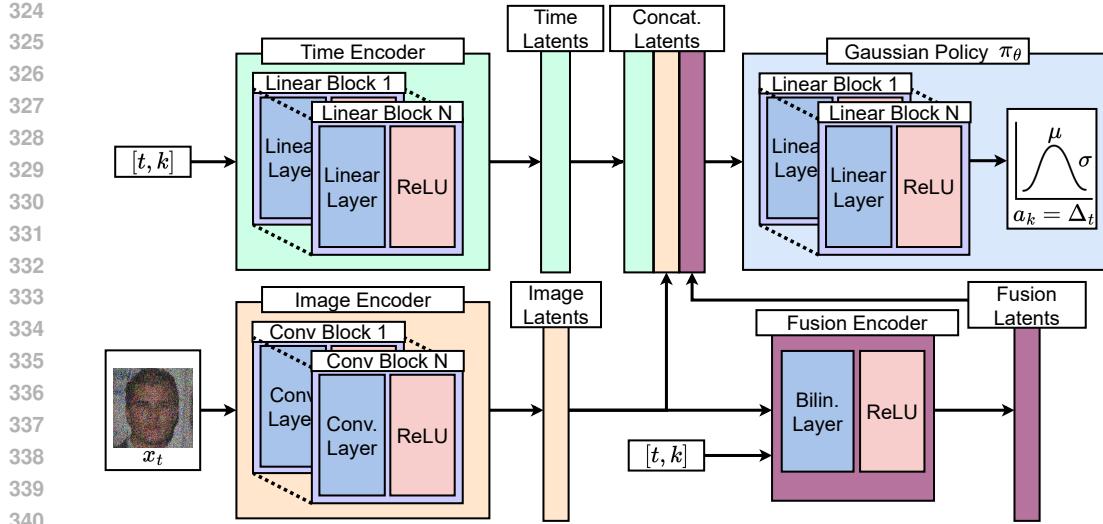


Figure 5: **Policy Network Architecture.** The policy network generates three feature vectors from the inputs. The first is a float latent vector from the timestep k and noise schedule t . The second is an image latent vector from the image data x_t . The third is a fusion latent vector from the image latent vector and the raw floats, through a bilinear layer. The latents then get concatenated and used as input to a Gaussian policy π_θ which outputs the parameters μ and σ to sample an action a_k , which would represent the noise schedule update Δ_t .

The second model is a continuous time diffusion model, which is the Iterative α -(de)Blending (IADB) (Heitz et al., 2023). It represents the noise schedule as a continuous number α from 0 to 1, where $\alpha = 0$ represents the pure noise, and $\alpha = 1$ represents the final denoised sample. We train our own diffusion model for CIFAR10 as it is not available, and use a pre-trained model for the CelebAHQ256 dataset, also available on Hugging Face.

As a comparative baseline, we generate FID scores for our DDIM discrete models on traditional first order uniform samplers, as well as the state of the art DPM++ solver (Zheng et al., 2023c; Lu et al., 2022; 2023), straight out of the box from Hugging Face. For our IADB continuous models, we generate FID scores using a uniform and cosine schedule first order solver, as well as a uniform and cosine schedule second order solver. For the implementation of the second order solver, we opt for the Runge-Kutta (RK) midpoint method, as described in Heitz et al. (2023). For each of these baselines, we evaluate them on a varying budget of $T \in [10, 20, 30, 50, 100]$, for a total of 30 different baselines.

Similarly, we train our RL agent to produce a timestep schedule for varying combinations. For DDIM, we train our RL agent on a first order sampler. For IADB, we train our RL agent on both first order and second order samplers. For the second order sampler, the RL agent will still implement a midpoint second order sampler, to ensure fairness with the baselines.

6 RESULTS

In this section, we denote our previously mentioned budget T as Neural Function Evaluations (NFE), since some samplers perform multiple diffusion model passes per step. We therefore compare against equal number of diffusion model passes, and not total timesteps. We note that the DPM++ solver was unable to produce meaningful FID scores (≥ 400), as such, we do not report the performance of the DPM++ in our results tables. All results are reported in tables 1, 2, 3, 4, 5. While we compare samplers with equivalent NFEs, our RL cannot be directly matched with traditional samplers. While it is trained with a specified NFE budget, it is not forced to use all of it, generating dynamic and adaptive sampling rollouts.

378 Table 1: FID scores across various datasets, diffusion models, and samplers, for 10 NFE budgets.
379

380 Dataset	381 Model	382 FID (\downarrow) on 50k Samples with 10 NFE budget		
		383 Uniform Steps	384 Cosine Steps	385 RL Steps (Ours)
First Order Sampler				
383 CIFAR-10	IADB	9.74	10.35	8.61
	DDIM	15.70	64.20	11.29
385 CelebA-HQ	IADB	72.28	47.41	37.96
	DDIM	38.98	97.79	32.11
Second Order Sampler				
CIFAR-10	IADB	3.95	4.57	14.32
CelebA-HQ	IADB	32.24	25.06	24.23

390 Table 2: FID scores across various datasets, diffusion models, and samplers, for 20 NFE budgets.
391

392 Dataset	393 Model	394 FID (\downarrow) on 50k Samples with 20 NFE budget		
		395 Uniform Steps	396 Cosine Steps	397 RL Steps (Ours)
First Order Sampler				
395 CIFAR-10	IADB	4.22	4.74	3.96
	DDIM	8.42	67.55	4.39
397 CelebA-HQ	IADB	32.01	21.68	19.25
	DDIM	23.75	87.13	21.12
Second Order Sampler				
CIFAR-10	IADB	2.16	2.55	9.17
CelebA-HQ	IADB	10.43	7.61	6.52

402 Table 3: FID scores across various datasets, diffusion models, and samplers, for 30 NFE budgets.
403

404 Dataset	405 Model	406 FID (\downarrow) on 50k Samples with 30 NFE budget		
		407 Uniform Steps	408 Cosine Steps	409 RL Steps (Ours)
First Order Sampler				
407 CIFAR-10	IADB	3.15	3.30	2.95
	DDIM	6.16	70.37	3.28
409 CelebA-HQ	IADB	16.86	12.24	9.41
	DDIM	17.67	83.75	13.44
Second Order Sampler				
CIFAR-10	IADB	2.05	2.06	8.19
CelebA-HQ	IADB	5.65	3.96	3.25

414 Table 4: FID scores across various datasets, diffusion models, and samplers, for 50 NFE budgets.
415

416 Dataset	417 Model	418 FID (\downarrow) on 50k Samples with 50 NFE budget		
		419 Uniform Steps	420 Cosine Steps	421 RL Steps (Ours)
First Order Sampler				
420 CIFAR-10	IADB	2.58	2.40	2.28
	DDIM	4.12	78.61	2.09
422 CelebA-HQ	IADB	7.55	5.80	5.03
	DDIM	11.78	81.41	9.58
Second Order Sampler				
CIFAR-10	IADB	2.26	1.97	7.88
CelebA-HQ	IADB	3.79	2.87	2.96

427

7 CONCLUSION

428
429 We propose a novel approach to sample diffusion models using RL, without the need of teacher
430 examples, or whitebox access to the model, which renders this method both extremely efficient and
431 simple to use. Our method can theoretically work for any integration problem, and is not limited to

432 Table 5: FID scores across various datasets, diffusion models, and samplers, for 100 NFE budgets.
433

Dataset	Model	FID (\downarrow) on 50k Samples with 100 NFE budget		
		Uniform Steps	Cosine Steps	RL Steps (Ours)
First Order Sampler				
CIFAR-10	IADB	2.35	2.06	1.95
	DDIM	2.38	76.83	1.46
CelebA-HQ	IADB	3.79	3.06	2.86
	DDIM	8.25	81.12	7.32
Second Order Sampler				
CIFAR-10	IADB	2.40	2.21	2.62
CelebA-HQ	IADB	2.98	2.79	2.72

444
445 diffusion models, so long as there is a way to evaluate the output of that integration. We solve this
446 problem for the diffusion model setting using a stochastic proxy of image quality.
447448 REFERENCES
449

450 Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
451 networks, 2017.

452 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
453 Wojciech Zaremba. Openai gym, 2016.

454 Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion solvers,
455 2022. URL <https://arxiv.org/abs/2210.05475>.

456 William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL <https://github.com/Lightning-AI/lightning>.

457 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
458 Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

459 Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models, 2024.

460 Eric Heitz, Laurent Belcour, and Thomas Chambon. Iterative α -(de)blending: a minimalist de-
461 terministic diffusion model. In *Special Interest Group on Computer Graphics and Interac-
462 tive Techniques Conference Conference Proceedings*, SIGGRAPH '23. ACM, July 2023. doi:
463 10.1145/3588432.3591540. URL <http://dx.doi.org/10.1145/3588432.3591540>.

464 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
465 Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL
466 <https://arxiv.org/abs/1706.08500>.

467 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
468 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
469 ral Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc.,
470 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

471 L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey, 1996. URL
472 <https://arxiv.org/abs/cs/9605103>.

473 Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL <https://arxiv.org/abs/1312.6114>.

474 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
475 of Toronto, 2009.

476 Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
477 manifolds, 2022. URL <https://arxiv.org/abs/2202.09778>.

486 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 487 In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.
 488

489 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 490 ode solver for diffusion probabilistic model sampling in around 10 steps, 2022. URL <https://arxiv.org/abs/2206.00927>.
 491

492 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 493 solver for guided sampling of diffusion probabilistic models, 2023. URL <https://arxiv.org/abs/2211.01095>.
 494

495 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 496 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 497 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 498 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 499 learning library, 2019. URL <https://arxiv.org/abs/1912.01703>.
 500

501 Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows, 2016.
 502 URL <https://arxiv.org/abs/1505.05770>.
 503

504 Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
 505 schedules in diffusion models, 2024. URL <https://arxiv.org/abs/2404.14507>.
 506

507 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 508 optimization algorithms, 2017.
 509

510 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 511 learning using nonequilibrium thermodynamics, 2015.
 512

513 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022.
 514

515 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
 516 2020a.
 517

518 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models,
 519 2020b.
 520

521 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 522 Poole. Score-based generative modeling through stochastic differential equations, 2021. URL
 523 <https://arxiv.org/abs/2011.13456>.
 524

525 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023.
 526

527 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. A Bradford
 528 Book, Cambridge, MA, USA, 2018. ISBN 0262039249.
 529

530 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
 531 thinking the inception architecture for computer vision, 2015. URL <https://arxiv.org/abs/1512.00567>.
 532

533 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 534 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 5026–5033.
 535 IEEE, 2012. doi: 10.1109/IROS.2012.6386109.
 536

537 Yunke Wang, Xiyu Wang, Anh-Dung Dinh, Bo Du, and Charles Xu. Learning to schedule in diffu-
 538 sion probabilistic models. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge
 539 Discovery and Data Mining*, KDD '23, pp. 2478–2488, New York, NY, USA, 2023. Association
 540 for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599412. URL
 541 <https://doi.org/10.1145/3580305.3599412>.
 542

543 Maciej Wiatrak, Stefano V. Albrecht, and Andrew Nystrom. Stabilizing generative adversarial net-
 544 works: A survey, 2020.
 545

546 Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator,
 547 2023. URL <https://arxiv.org/abs/2204.13902>.
 548

540 Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
541 sampling of diffusion models via operator learning, 2023a. URL <https://arxiv.org/abs/2211.13449>.
542

543 Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion proba-
544 bilistic models and diffusion-based adversarial auto-encoders, 2023b. URL <https://arxiv.org/abs/2202.09671>.
545

546 Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
547 solver with empirical model statistics, 2023c. URL <https://arxiv.org/abs/2310.13268>.
548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A APPENDIX**
595596 **A LOWER BOUNDING THE FRÉCHET INCEPTION DISTANCE DUE TO FINITE
597 SAMPLING FROM A NORMAL DISTRIBUTION**
598599
600 The Fréchet Inception Distance (FID) is widely used to evaluate the quality of generative models
601 by measuring the Wasserstein-2 distance between two multivariate normal distributions. However,
602 when estimating FID using finite samples, there exists an unavoidable error due to finite-sample
603 noise. Here, we derive a lower bound on the expected FID when comparing a normal distribution to
604 its empirical estimate from n samples.
605606 **Assumption and motivation.** Natural images are known to concentrate on a low-dimensional
607 manifold. Although the Inception-Net feature space has dimension $d = 2048$, most of the variance
608 lies in a much smaller number of directions. This motivates a *low-rank, bounded-spectrum assumption*
609 for the covariance of Inception features. Formally, we assume the covariance $\Sigma \in \mathbb{R}^{d \times d}$ of
610 the embedding distribution has effective rank $r \ll d$, with eigenvalues $\lambda_1 \geq \dots \geq \lambda_r > 0$ on its
611 support and $\lambda_{\max} = \lambda_1$ bounding the variance per direction.
612613 **Setup.** Let $\mathcal{N}(\mu, \Sigma)$ denote the true Gaussian approximation to the embedding distribution, with
614 mean μ and covariance Σ . Given n i.i.d. samples x_1, \dots, x_n , the empirical mean and covariance
615 are

616
$$\widehat{\mu} = \frac{1}{n} \sum_{t=1}^n x_t, \quad \mathbf{S} = \frac{1}{n} \sum_{t=1}^n (x_t - \widehat{\mu})(x_t - \widehat{\mu})^\top.$$

617 The squared W_2 distance (Fréchet Inception Distance) is
618

619
$$\text{FID}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \mathbf{S})) = \|\mu - \widehat{\mu}\|^2 + \text{Tr}(\Sigma + \mathbf{S} - 2(\Sigma \mathbf{S})^{1/2}).$$

620

621 **Bounding the expectation under low-rank structure.** Since $(\Sigma \mathbf{S})^{1/2}$ is positive semidefinite,
622 the cross-term only reduces the trace. Thus,

623
$$\text{FID} \leq \|\mu - \widehat{\mu}\|^2 + \text{Tr}(\Sigma) + \text{Tr}(\mathbf{S}).$$

624

625 Taking expectations and using $\mathbb{E}[\mathbf{S}] = \Sigma$ and $\mathbb{E}\|\mu - \widehat{\mu}\|^2 = \frac{1}{n}\text{Tr}(\Sigma)$, we obtain
626

627
$$\mathbb{E}[\text{FID}] \leq \left(2 + \frac{1}{n}\right) \text{Tr}(\Sigma).$$

628

629 Now, under the low-rank bounded-spectrum assumption,

630
$$\text{Tr}(\Sigma) = \sum_{i=1}^r \lambda_i \leq r \lambda_{\max},$$

631
632

633 so the finite-sample expectation bound becomes
634

635
$$\mathbb{E}[\text{FID}] \leq r \lambda_{\max} \left(2 + \frac{1}{n}\right).$$

636

637 **Interpretation.** This bound shows that the unavoidable FID error from finite samples scales lin-
638 early with (i) the effective rank r of the feature covariance and (ii) the largest variance λ_{\max} in the
639 spectrum, with a modest multiplicative factor $(2 + 1/n)$. If the spectrum decays quickly so that r is
640 small and λ_{\max} is moderate, the finite-sample noise in FID remains small even when d is large. For
641 example, with $n = 256$, $r = 200$, and $\lambda_{\max} = 0.01$, the bound evaluates to
642

643
$$\mathbb{E}[\text{FID}] \leq 200 \times 0.01 \times 2.0039 \approx 4,$$

644

645 consistent with observed FID fluctuations in practice. Note that $n = 256$ is the number of real image
646 samples we draw in our optimization. The values $r = 200$ and $\lambda_{\max} = 0.01$ are justifiable from
647 basic PCA analysis of the datasets (most of the dataset variance can be controlled by 200 principal
648 components in CIFAR-10 and the other datasets).
649