Under review as a conference paper at ICLR 2026

SELF-SUPERVISED DIFFUSION MODEL SAMPLING
WITH REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have established themselves as the state-of-the-art for generative
modeling, dethroning Generative Adversarial Networks (GANs) by generating
higher-quality samples while remaining more stable throughout training. How-
ever, diffusion models generate samples iteratively and remain slow at inference
time. Our work proposes to leverage reinforcement learning (RL) to accelerate
inference by building on the recent framing of diffusion’s iterative denoising pro-
cess as a sequential decision-making problem. Specifically, our approach learns
a scheduler policy that maximizes sample quality while remaining within a fixed
budget of denoising steps. Importantly, our method is agnostic to the underlying
diffusion model and does not re-train it. Finally, unlike previous RL approaches
that rely on supervised pairs of noise and corresponding denoised images, our
method is self-supervised and directly maximizes similarity in dataset feature
space. Overall, our approach offers a more flexible and efficient framework for
improving diffusion model’s inference in terms of speed and quality.

1 INTRODUCTION

For the past decade, the trend of generative modeling was dominated by Generative Adversarial
Networks (GANs) (Goodfellow et al., [2014). While they were considered the state of the art and
enjoyed blazing fast inference speeds, they suffered from major training instabilities, namely mode
collapse and sensitivity to hyper-parameters (Arjovsky & Bottoul [2017; Wiatrak et al.l 2020). These
shortcomings have encouraged the search for a more reliable generative modeling paradigm, and
has given rise to to the emergence of diffusion models (Sohl-Dickstein et al., [2015}|Song & Ermon)
2020aib). While both GANs and diffusion models are predicated on transforming random noise
(generally a standard Gaussian) to match a data distribution, the generator of GANs attempts to do
so in a single network pass, while in diffusion models, this transformation is sequential, allowing
to trade off sample quality for inference speed. While there has been work to speed up diffusion
models by retraining them with different objective functions (Song et al., |2023; |Heek et al., |2024),
we propose a simpler approach that does not modify or retrain the underlying diffusion model, but
rather learns an optimal sampler through the use of reinforcement learning (RL).

We frame the diffusion model sampling process as an RL episode, where each inference pass is an
episode step. We treat each element in a batch of data as its own RL agent, allowing for a paralellized
environment, where batches of trajectories can be collected from a single diffusion sampling pass.
This lends itself perfectly for online reinforcement learning algorithms such as Proximal Policy
Optimization (PPO) (Schulman et al.,|2017), allowing for an extremely fast flow of data into the RL
learner.

2 BACKGROUND

In this section, we provide a background on the topics at hand, namely RL and Markov decision
processes (MDPs), diffusion models, and learned denoise schedulers.
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2.1 RL & MDPs

An MDP is a framework to formalize sequential decision-making problems. It is defined by a state
space S, which is the set of possible states, the action space A, which is the set of possible actions,
the transition probabilities P, where P : S x A x S — [0, 1] is the probabilty of transitioning from
a given state sy to a new state sx; when taking action ay, formally given by P(sk1]|sk, ax), and
finally the reward function R, where R : S x A — R is the immediate reward 1 observed when
taking action ay, at state sy, formally given by R(sg, ay). Together, the MDP is defined by the tuple
M ={S, A, P,R}. (Sutton & Bartol [2018; Kaelbling et al., 1996)

Given a trajectory of state and actions 7 = (s, ao, S1, a1, ..., Sk, ax ), the goal of an RL agent is to
maximize the expected cumulative reward over the entire trajectory. This expectation is with respect
to its policy 7(a|s), which is a function that returns a probability distribution over all actions, given

a state s: E,T[ZkK:O R(sk, ar)]. To the more seasoned RL researcher, the timestep of the MDP is
usually denoted by ¢ rather than k. However, we reserve that notation to diffusion models, as they
also express their framework in the time domain, both continuous and discrete.

2.2 DIFFUSION MODELS

Diffusion models are a type of generative model known for their ability to generate high-quality sam-
ples from a given dataset. While various different formulations of diffusion models have emerged
over the last few years (Song et al.| 2022} |Ho et al., 2020} [Song et al.| 2021} |Heitz et al., 2023)), all
proposed methods tackle the same problem of sampling from a complex distribution via a learned
transformation from a simpler distribution, usually Gaussian.

While this idea isn’t new (Rezende & Mohamed, [2016; [Kingma & Welling}, 2022;|Goodfellow et al.|
2014])), none of the previous methods were able to achieve a quality of samples comparable to dif-
fusion models, which is mainly attributed to their iterative inference architecture. To transform
sampled Gaussian noise into a sample that attempts to match the dataset distribution, multiple se-
quential denoising steps must be applied. This paradigm differentiates diffusion models from its
predecesors, where the learned transformation was a single function evaluation.

Given samples from a data distribution x¢ ~ ¢(xg), diffusion models are tasked to learn py(xo)
which approximates ¢(x¢): pg(xo) = [ po(xo.r)dx1.7. Here, the joint distribution pg(xo.7) is
referred to as the reverse process. It is a series of learned transformations, with an initial fixed
starting point of p(xr) = N (xt;0,I). Intuitively, these are a Markov Chain of denoising oper-
ators on an initial purely Gaussian noise, which is trivial to generate samples from, by modeling
po(X0.17) = p(xT) Hz;l po(X¢—1|%¢) . The choice of operator varies from different diffusion model
formulations. The most common (Ho et al.| 2020) transitions are learned isotropic Gaussians, with
po(xi—1|x¢) = N(x¢—1; po(xs,t),071), where pg(xy,t) is the learned mean of the reverse tran-
sition. In order to have ground truth information to train our reverse process, the forward process
q(x1.7|%0) is a Markov Chain of fixed Gaussian noise which gradually adds noise to the data, with

q(x1.7|%0) = Hthl q(x¢|x¢—1). Each transition in the forward process is fixed, and follows a

variance schedule 31, ..., 87, formally defined as q(x;|x;—1) = N (x¢;+v/1 — Bix¢—1, 5¢I). In this
formulation, 8; = Jf.

Once the diffusion is trained to approximate the target distribution, we can then start generating data
from random noise. The quality of the final sample is influenced by two key factors: the numbers of
steps T the model takes to denoise the sample, and the noise schedule across those T steps, which
controls how the denoising process is distributed. While it may seem that there is a monotonic
relationship between the number of inference steps T and the quality of samples, this is not always
the case. In fact, it will depend on the training dynamics of the diffusion model. Likewise, the choice
of optimal noise schedule is not trivial, and will vary from different diffusion models.

3 RELATED WORK

The sensitivity of sample quality to the denoising schedule has given rise to extensive research efforts
aimed at identifying and developing optimal scheduling strategies.
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Two main school of thoughts have emerged to tackle this problem, the first one are considered
training-free, which are not reliant on any learning based algorithm, but rather analytically solving
for the noise schedule which theoretically guarantees convergence (Lu et al.,|2022;2023), reducing
discretization (Zhang & Chen, 2023; Zheng et al.| [2023c), higher order solvers (Dockhorn et al.,
2022)), treating Diffusion Models as manifolds and applying pseudo-numerical methods (Liu et al.,
2022). While all of these methods can achieve state of the art results with impressive speed ups, they
often rely on hand-crafted heuristics and parameters.

The second school of thought, which are training-based, are further split into two camps: methods
that rely on training entirely new diffusion models, by either learning the optimal transition operator
(Zheng et al.| 2023a)), truncating the diffusion process by learning different initial noise representa-
tions (Zheng et al., 2023b), or approaches akin to knowledge distillation (Song et al., |2023} Heek:
et al.| [2024). Other training-based methods treat the diffusion model as a black box, and either learn
model and dataset specific denoising schedules by minimizing the Kullbcak-Leibler Upper Bound
(KLUB) between the true reverse-time SDE integration and its time discretization (Sabour et al.,
2024), Or use Reinforcement Learning to align the diffusion process of a denoising scheduler with
a larger number of steps to that of a model with fewer steps, ensuring the results remain consistent.
(Wang et al.,|2023). The primary drawback of this approach is that the teacher schedule is expensive
to execute and acts as a ceiling to the quality of the generated samples. Furthermore, determining
the optimal number of steps to achieve high-quality samples for guidance is not trivial, even under
the assumption of unlimited budget, as additional steps don’t always result in better quality.

4 METHODOLOGY
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Figure 1: RL Environment. The reinforcement learning agent observes the current diffusion sample
and noise schedule, from which it decides how to conduct the noise schedule update through its
action. It receives a reward based on the maximum pairwise similarity score on extracted features
between the generated sample and positive samples drawn form the target dataset.

The main objective of our method is to accelerate the sampling process of a pretrained diffusion
model, using reinforcement learning. The goal is to have a lightweight module that would learn
to maximize sample quality, by optimizing the noise scheduling, for a given number of maximum
inference steps T. Unlike traditional schedulers, our method is allowed to terminate before reaching
its budget.
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Figure 2: Comparing Noise Schedules. We compare the RL schedule to linear and cosine sched-
ules, on a batch of 64 samples for. For both CIFAR-10 and CelebA-HQ, we showcase the RL DDIM
model, RL TADB model, and RL IADB second order model. The RL schedule is designed to indi-
vidually control and adapt the noise schedule of each sample of the batch individually.

Importantly, our agents are self-supervised, meaning we do not rely on teacher schedules or paired
data, allowing for fast and unbouded sample quality. In the sections below, we break down the
formulation of the RL environment into its Markov Decision Process (MDP) components, that is:
the state-space, action-space, transition dynamics, and reward function.

4.1 REINFORCEMENT LEARNING ENVIRONMENT

We formulate the diffusion sampling process as a reinforcement learning episode. The state sy,
that the RL agent receives from the environment is the current diffused data sample x;, along with
the noise schedule: the current diffusion step ¢, and the RL time-step: the current episode step k.
Initially, at si—g, the diffused data sample is a pure Gaussian noise, along with the initial noise
schedule T of the diffusion model, and timestep 0. s = [z : N(0,1),¢: T,k : 0]

The action ay, that the agent can take to act on the environment is the amount of noise update it
would like to apply on the current diffusion sample. We rescale all diffusion models to be consistent
in terms of noise schedule, and the associated action space is R € [0,1]. While some diffusion
model’s formulation is such that a fully noisy sample is at timestep T, and a fully diffused sample is
at timestep O (Song et al.| 2022} Ho et al., 2020)), other models represent the noise schedule in the
reverse order, with a fully noisy sample being at timestep 0, and an increase in time representing a
diffusion (Heitz et al., [2023)). In either formulation, the noise schedule can be normalized to be from
0to 1.

While we do not make the direction of the flow of time consistent between models, this can be
easily made consistent post-training. This means, while some diffusion models will have their noise
schedule start at 1 and terminate at 0, some will be inverted. A visualization of the noise schedule
for a budget of 7' = 10 is shown in figure 2]

Once the action is picked, the environment transition dynamics are simply the underlying diffusion
model inference pass, where a single diffusion step is performed, with the requested noise update,
and responds to the RL agent with the updated diffusion sample, along with its associated new noise
level and an incremented timestep, as well as a reward (s, ai,), which is the similarity score of the
current diffusion sample, more on this in section @

The episode is considered terminated when the updated noise level is equal to, or exceeds the
maximum amount permitted, which is 1 for forward flowing models (Heitz et al., 2023)), or O for
backwards flowing models (Song et al.,|2022; Ho et al., [2020). We also set a maximum number of
allowed diffusion steps in the environment, which the RL agent is made aware of in its state via the
timestep to keep the environment Markovian, and terminate the episode if that number is exceeded.
This is analogous to giving the agent a certain budget that it cannot exceeded in order to terminate
its sampling process.
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Figure 3: CelebA-HQ Denoising. We show the effect of different first order noise schedules for
identical initial conditions, for both IADB and DDIM models. The RL scheduler is able to produce
higher quality samples with lower inference passes.

— CIFAR-10 IADB Second Order 10 N Denoisi
T A e, Al

T o

ot - 020NN — 0.00

-
(= 000 %

= 0.0

Figure 4: CIFAR-10 Denoising. We show the effect of different second order noise schedules for
identical initial conditions, for IADB. Despite not producing as high of an FID, the RL scheduler is
able to generate sharper images with less class ambiguity.

While traditional reinforcement learning environments are CPU intensive and require explicit paral-
lelization to generate the data required to train, such as OpenAl gym’s classical control environments
or MuJoCo (Brockman et all, 2016}, [Todorov et al., 2012)), our environment can run entirely on the
GPU, as all the dynamics are simulated using a neural network. We can therefor leverage the power
of batched computing to parallelize as many environments as our hardware would allow us to. Once
we process an entire diffusion pass, where the whole batch is terminated, we then offload this data to
the RL learner, keeping each batch element contiguous to preserve the trajectories of our individual
agents, where our PPO learner can then proceed with its update.

4.2 REWARD PAIRING

At the beginning of each episode, alongside our batch of diffusion trajectories, we sample a batch
of ground truth data D, which will be used as samples for our reward signal. The reward that
the agents observe is sparse, being O everywhere, except the final step, when they produce their
final diffusion sample. We extract the features of the final samples using a pre-trained Inception-v3

network (Szegedy et al, 2015) from the Pytorch-Lightning library (Paszke et al., 2019; [Falcon &
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The PyTorch Lightning team, |2019), which is the same model used to compute the Fréchet inception
distance (FID) (Heusel et al.l |2018). Alongside the diffused sample Inception features, we also
extract the features of the samples D. We then compute a pairwise similarity matrix between each
diffused sample and each example d; € D.

It is important to emphasize here that we do not have any pre-determined pairing between our gener-
ated samples and our ground truth data. Therefor, in order to associate a meaningful reward singal,
we extract the maximum similarity value for each diffused sample, which will serve as our final
episodic reward. Taking the maximum similarity helps the diffusion model align its sample as best
as it can with the highest likelihood data point in the batch. For some datasets with both high inter
and intra class variability (e.g. CIFAR-10) it is a pseudo class-guidance without explicitely giving
the labels to our policy.

Having experimented with many different similarity metrics Sy, we empirically observed that the
maximum Pearson Correlation was performing the best. As such, our reward function R(s, a)
can be expressed as:

max S¢(Tisn,,d;) if sp4q is terminal

R(sk,ak) = {gle (])

otherwise

where Sg(z, y) is defined as:

(Fol@) = Fo@) - (Fs(v) — To®)) &
Fo@) = Fa@)| o) = Tl o () KkZ:lJ%( )k @)

So(,y) = ‘

where fy is our pretrained feature extractor, and f, () denotes the mean of the features across the
feature dimension K for a given input vector z. In our environment, we use the full 2048 features
of the Inception-v3 model.

This reward function encourages the agent to produce samples that maximize similarity with the
samples D, which are sampled from the original dataset. A full depiction of the our method is
shown in figure [T} Since we are interested in the absolute highest quality achievable within our
budget, we set the discount factor v = 1.0. This means, our policy will always aim to maximize the
quality of the samples, so long as it stays within budget . In an ideal world with infinite compute
power, we would set D to be equal to the entire dataset, and not a sub-sample of it. We show
empirically however, that our approach is sound, as well as provide a theoretical grounding to our
approach in Appendix

4.3 PoLiCY NETWORK ARCHITECTURE

Since our state sy, is a combination of 3-D image data x; along with floats ¢ and &, finding a suitable
representation is a challenge. We first extract a latent representation of our image data x; using a
convolution block, a latent representation of our floats ¢ and & using a linear block, and a fused
latent representation using a bilinear layer. Finally, the resulting feature vector which is simply
the concatenation of all extracted latents, is passed through linear blocks to output parameters to a
Gaussian policy mg ~ N (g, o), shown in ﬁgure Rather than learning the exploration parameter
o, which was leading to unstable training dynamics, we opted for a fixed variance schedule, that
exponentially decays over the duration of the training.

5 EXPERIMENTS

We train our method on two different diffusion models, with varying datasets and sampler orders.
The first model is a discrete time diffusion model, which is the Denoising Diffusion Implicit Model
(DDIM) (Song et al., 2022). It discritizes the noise schedule ¢ from a number 7' to 0, where t = T’
represents the pure noise, and ¢t = 0 represents the final denoised sample. We use a pretrain weights
available on Hugging Face for the CIFAR-10 dataset (Krizhevsky}, [2009) as well as the CelebA-HQ
dataset (Liu et al.,[2015)), with T = 1000 for both datasets.
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Figure 5: Policy Network Architecture. The policy network generates three feature vectors from
the inputs. The first is a float latent vector from the timestep k£ and noise schedule ¢. The second is
an image latent vector from the image data x;. The third is a fusion latent vector from the image
latent vector and the raw floats, through a bilinear layer. The latents then get concatenated and used
as input to a Gaussian policy 7y which outputs the parameters i and o to sample an action ay, which
would represent the noise schedule update A;.

The second model is a continuous time diffusion model, which is the Iterative a-(de)Blending
(IADB) (Heitz et al.l [2023). It represents the noise schedule as a continuous number o from 0
to 1, where o« = 0 represents the pure noise, and o = 1 represents the final denoised sample. We
train our own diffusion model for CIFAR10 as it is not available, and use a pre-trained model for the
CelebAHQ256 dataset, also available on Hugging Face.

As a comparative baseline, we generate FID scores for our DDIM discrete models on traditional
first order uniform samplers, as well as the state of the art DPM++ solver (Zheng et al., 2023c; [Lu
et al., 2022} |2023)), striaght out of the box from Hugging Face. For our IADB continuous models,
we generate FID scores using a uniform and cosine schedule first order solver, as well as a uniform
and cosine schedule second order solver. For the implementation of the second order solver, we
opt for the Runge-Kutta (RK) midpoint method, as described in |Heitz et al.| (2023). For each of
these baselines, we evaluate them on a varying budget of T' € [10, 20, 30, 50, 100], for a total of 30
different baselines.

Similarly, we train our RL agent to produce a timestep schedule for varying combinations. For
DDIM, we train our RL agent on a first order sampler. For IADB, we train our RL agent on both first
order and second order samplers. For the second order sampler, the RL agent will still implement a
midpoint second order sampler, to ensure fairness with the baselines.

6 RESULTS

In this section, we denote our previously mentionned budget 7" as Neural Function Evaluations
(NFE), since some samplers perform multiple diffusion model passes per step. We therefor compare
against equal number of diffusion model passes, and not total timesteps. We note that the DPM++
solver was unable to produce meaningful FID scores (> 400), as such, we do not report the per-
formance of the DPM++ in our results tables. All results are reported in tables [l While
we compare samplers with equivalent NFEs, our RL cannot be directly matched with traditional
samplers. While it is trained with a specified NFE budget, it is not forced to use all of it, generating
dynamic and adaptive sampling rollouts.
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Table 1: FID scores across various datasets, diffusion models, and samplers, for 10 NFE budgets.

FID () on 50k Samples with 10 NFE budget

Dataset Model Uniform Steps  Cosine Steps  RL Steps (Ours)

First Order Sampler

TADB 9.74 10.35 8.61

CIFAR-10 DDIM 15.70 64.20 11.29

TADB 72.28 47.41 37.96

CelebA-HQ 5pm 38.98 97.79 32.11

Second Order Sampler
CIFAR-10 IADB 3.95 4.57 14.32
CelebA-HQ | IADB 32.24 25.06 24.23

Table 2: FID scores across various datasets, diffusion models, and samplers, for 20 NFE budgets.

FID ({) on 50k Samples with 20 NFE budget

Dataset Model Uniform Steps  Cosine Steps  RL Steps (Ours)

First Order Sampler
IADB 4.22 4.74 3.96
CIFAR-I0 '5pmv- g2 67.55 4.39
IADB 32.01 21.68 19.25
CelebA-HQ i 2375 87.13 21.12
Second Order Sampler
CIFAR-10 | TIADB 2.16 2.55 9.17
CelebA-HQ | TADB 10.43 7.61 6.52

Table 3: FID scores across various datasets, diffusion models, and samplers, for 30 NFE budgets.

FID ({) on 50k Samples with 30 NFE budget

Dataset Model Uniform Steps  Cosine Steps  RL Steps (Ours)

First Order Sampler
TADB 3.15 3.30 2.95
CIFAR-10 -5 6.16 70.37 3.28
TADB 16.86 12.24 9.41
CelebA-HQ —Hpmv 17.67 83.75 13.44
Second Order Sampler
CIFAR-10 | IADB 2.05 2.06 8.19
CelebA-HQ | TADB 5.65 3.96 325

Table 4: FID scores across various datasets, diffusion models, and samplers, for 50 NFE budgets.

FID ({) on 50k Samples with 50 NFE budget

Dataset Model Uniform Steps  Cosine Steps RL Steps (Ours)

First Order Sampler
IADB 2.58 2.40 2.28
CIFAR-I0 'ppiM- 412 78.61 2.09
IADB 7.55 5.80 5.03
CelebA-HQ ppmr 1178 81.41 9.58
Second Order Sampler
CIFAR-10 | TADB 2.26 1.97 7.88
CelebA-HQ | IADB 3.79 2.87 2.96

7 CONCLUSION

We propose a novel approach to sample diffusion models using RL, without the need of teacher
examples, or whitebox access to the model, which renders this method both extremely efficient and
simple to use. Our method can theoretically work for any integration problem, and is not limited to
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Table 5: FID scores across various datasets, diffusion models, and samplers, for 100 NFE budgets.

FID (J) on 50k Samples with 100 NFE budget

Dataset Model Uniform Steps  Cosine Steps  RL Steps (Ours)

First Order Sampler
TADB 2.35 2.06 1.95
CIFAR-10 DDIM 2.38 76.83 1.46
TADB 3.79 3.06 2.86
CelebA-HQ 5pm 8.25 81.12 7.32
Second Order Sampler
CIFAR-10 | TADB 2.40 2.21 2.62
CelebA-HQ | IADB 2.98 2.79 2.72

diffusion models, so long as there is a way to evaluate the output of that integration. We solve this
problem for the diffusion model setting using a stochastic proxy of image quality.
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A APPENDIX

A LOWER BOUNDING THE FRECHET INCEPTION DISTANCE DUE TO FINITE
SAMPLING FROM A NORMAL DISTRIBUTION

The Fréchet Inception Distance (FID) is widely used to evaluate the quality of generative models
by measuring the Wasserstein-2 distance between two multivariate normal distributions. However,
when estimating FID using finite samples, there exists an unavoidable error due to finite-sample
noise. Here, we derive a lower bound on the expected FID when comparing a normal distribution to
its empirical estimate from n samples.

Assumption and motivation. Natural images are known to concentrate on a low-dimensional
manifold. Although the Inception-Net feature space has dimension d = 2048, most of the variance
lies in a much smaller number of directions. This motivates a low-rank, bounded-spectrum assump-
tion for the covariance of Inception features. Formally, we assume the covariance & € RX9 of
the embedding distribution has effective rank r» < d, with eigenvalues A\;y > --- > X\, > O on its
support and A\y,ax = A1 bounding the variance per direction.

Setup. Let (11, X) denote the true Gaussian approximation to the embedding distribution, with
mean p and covariance ¥. Given n i.i.d. samples x1, ..., x,, the empirical mean and covariance

are
n

n
A=23"2,  S=1Y (@ -)w-0)"
t=1 t=1
The squared W5 distance (Fréchet Inception Distance) is

FID(N (11, £), N (7, S)) = [l — fil? + TH(E + S — 2(£8)1/2).

Bounding the expectation under low-rank structure. Since (XS)'/2 is positive semidefinite,
the cross-term only reduces the trace. Thus,

FID < | —f|? + Te(2) + Tr(S).
Taking expectations and using E[S] = X and E||p — 11]|? = 2 Tr(X), we obtain

E[FID] < (2 + %) Ti(E).
Now, under the low-rank bounded-spectrum assumption,

TI'(E) = Z Ai S T)\rnaxv
i=1

so the finite-sample expectation bound becomes

E[FID] < 7 Amax (2 + l)

Interpretation. This bound shows that the unavoidable FID error from finite samples scales lin-
early with (i) the effective rank r of the feature covariance and (ii) the largest variance A% in the
spectrum, with a modest multiplicative factor (2 + 1/n). If the spectrum decays quickly so that r is
small and Ay, .« is moderate, the finite-sample noise in FID remains small even when d is large. For
example, with n = 256, 7 = 200, and Aj,ax = 0.01, the bound evaluates to

E[FID] < 200 x 0.01 x 2.0039 ~ 4,

consistent with observed FID fluctuations in practice. Note that n = 256 is the number of real image
samples we draw in our optimization. The values » = 200 and A,.x = 0.01 are justifiable from
basic PCA analysis of the datasets (most of the dataset variance can be controlled by 200 principal
components in CIFAR-10 and the other datasets).
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