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Abstract

Optimal transport (OT) provides a powerful framework for comparing and trans-
forming probability distributions, with wide applications in generative modeling,
AI4Science and statistical inference. However, existing estimation theory typically
requires stringent smoothness conditions on the underlying Brenier potentials and
assumes bounded distribution supports, limiting practical applicability. In this pa-
per, we introduce a unified theoretical framework for semi-dual OT map estimation
that relaxes both of these restrictions. Building on sieved convex conjugate, our
framework has two key contributions: (i) a new map stability bounds that holds
without any second-order regularity assumptions on the true Brenier potentials, and
(ii) an oracle inequality that cleanly decomposes the estimation error into statistical
error, sieved bias, and approximation error. Specifically, our approximation error is
measured in the L1 norm rather than Sobolev norm in the existing results, aligning
more naturally with classical approximation theory. Leveraging these tools, we
provide statistical error of semi-dual estimators with mild and verifiable conditions
on the true OT map. Moreover, we establish the first theoretical guarantee for
deep neural network OT map estimator between general distributions, with Tanh
network function class as an example.

1 Introduction

Optimal Transport (OT) provides a powerful framework for transforming one probability measure into
another. Concretely, given two distributions µ and ⌫ on Rd, the OT problem seeks a map T : Rd ! Rd

that transports µ to ⌫ while minimizing a cost function. Beyond its elegant mathematical foundation,
OT has found broad applications in Ai4Science [39, 7, 29], computer vision [3, 23, 43, 12], and
nonparametric statistical inference [10, 26, 24, 18], powering advances in scientific discovery and
machine/deep learning. Despite its broad impact, rigorous theoretical guarantees for OT estimators
under mild and realistic regularity conditions remain limited.

This paper aims to contribute to this direction by focusing on the dual-type OT map estimators,
formally introduced in Section 2, which are based on the characterization of the optimal transport
map as the gradient of a convex function (the so-called Brenier potential). The seminal work of [27]
established minimax optimality for a wavelet-truncated dual-type OT estimator, but under restrictive
conditions: µ is supported on [0, 1]d with a bounded density, ⌫ is compactly supported, and the true
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OT map is both ↵-Hölder smooth and strongly convex. These assumptions exclude many practical
OT applications.

In parallel, Gunsilius [25] introduced an alternative analysis using the Poincaré inequality, a funda-
mental tool in PDEs and functional analysis. While still assuming compact and convex supports,
this approach removed the need for Hölder smoothness or strong convexity of the Brenier potential.
Building on this, [21] extended the theory to sub-exponential µ, under (↵, a)-convexity and (�, a)-
smoothness conditions on the Brenier potential. More recently, [20] relaxed the Poincaré inequality
assumption to accommodate heavy-tailed µ and ⌫, and eliminated the (↵, a)-convexity condition via
a new sieved OT estimator, characterizing how tail thickness of µ and ⌫ influences convergence.

We also note recent advances in plug-in type OT estimators, which directly compute the OT map
between estimated distributions [10, 17, 34, 37, 5]. In parallel with these theoretical advances,
significant efforts have focused on improving the computational efficiency of OT, including entropic
regularization [15, 1, 22, 11, 19] and sum-of-squares formulations [35, 41]. Meanwhile, neural-
network-based OT estimators have advanced rapidly, powering large-scale applications such as image
generation and translation [33, 30, 4, 31, 12].

Despite these advances, a few core regularity assumptions on the true Brenier potential '0 and
distributions still limit the applicability of dual-type estimators. To clarify these limitations, we
decompose the overall estimation error into two components: statistical error and approximation error.
The statistical error measures the discrepancy between the estimator and the best possible function in
F , reflecting the randomness from finite samples. The approximation error captures the gap between
the true Brenier potential and its best approximation within F , since we do not assume that the true
Brenier potential '0 lies in F . Existing analyses of each error component often rely on restrictive
smoothness or convexity assumptions, which we discuss in more below.

First, bounding the statistical error in existing works requires a (�, b)-smoothness condition on '0,
i.e., a polynomial bound on its Hessian. While this condition is verifiable under strong log-concavity
of µ and ⌫ [8, 14, 13, 28], its validity beyond this class remains unclear. Moreover, Proposition
3.12 of [20] shows that this smoothness requirement constrains ⌫ to have tails no much heavier than
those of µ, excluding many practical scenarios, such as multivariate quantile [9, 10, 24], where we
transport from U([0, 1]d) to distributions with unbounded support, or transporting from a Gaussian
(with exponential tails) to a Student’s t-distribution (with polynomial tails).

Second, controlling the approximation error typically relies on (↵, a)-convexity of '0, i.e. a gener-
alization of strong convexity, which similarly imposes constraints on the relative tail behavior of µ
and ⌫ [20]. For instance, OT map from an unbounded µ to a bounded ⌫ fails this condition. This is
especially problematic in generative modeling, where the OT map is learned from Gaussian noise
to image data of bounded values [40, 30, 38, 32]. Moreover, existing approximation error bounds
assume that both µ and ⌫ have bounded support, [27, 21].

These limitations raise a fundamental question in broadening the scope of optimal transport:

Can one bound the statistical and approximation errors of dual-type OT estimators for general
distributions without such restrictive assumptions?

In this work, we provide a positive answer to the question posed above. Our two core innovations are
a novel map stability inequality and a refined oracle inequality. Building on these tools, we are the
first to establish statistical and approximation error bounds for dual-type OT estimators under minimal
regularity assumptions. Table 1 provides a side-by-side comparison of the regularity conditions
required by our results versus those in the existing literature.

Table 1: Regularity assumptions on the true Brenier potential '0 and µ required to establish statistical
and approximation error bounds (Estat and Eapp) in prior work and in our results.

Assumption on '0 Distributional Assumption
(�, b)-smooth (for Estat) (↵, a)-convex (for Eapp) Tail thickness of µ Poincaré inequality on µ

[27] b = 0 a = 0 Compact Implicitly Used
[25] Not Required Not Required Compact Required
[21] Required Required Sub-exponential Required
[20] Required Required General Poincaré-type inequality
Ours Not Required Not Required General Not Required
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Specifically, we summarize our main contributions as follows:

1. A new map stability inequality without (�, b)-smoothness. Stability inequalities are key to
linking OT estimation error to the semi-dual objective. Existing results rely on (�, b)-smoothness of
'0. In Proposition 3.3, we derive a new inequality that removes this requirement, assuming only a
well-behaved OT map (Assumption 3.2), which holds unconditionally when ⌫ is bounded and under
mild conditions for unbounded distributions.

2. A novel oracle inequality without (↵, a)-convexity. Proposition 3.4 provides an oracle inequality
that avoids the (↵, a)-convexity assumption on '0 and decomposes the estimation error into statistical
error, sieved bias, and approximation error. Unlike prior works [21, 20], which involve harder-
to-analyze gradient terms like inf'2F kr' � r'0kL2(µ), our bound relies on a more tractable
supremum error over a compact region B: inf'2F k' � '0kL1(B), making it more suitable for
analysis using classical approximation theory.

3. First non-asymptotic bounds under minimal smoothness. With our new map stability inequality,
Theorem 3.6 establishes the first non-asymptotic statistical error bound for dual-type OT estimators
requiring only a first-order condition on '0, without second-order smoothness assumptions.

4. First theoretical guarantee for neural OT estimators. With our new tools, we derive the first
convergence guarantee for neural OT estimators using smooth networks. For tanh neural networks
(TNNs), Theorem 3.7 shows that if '0 2 C

↵(Rd) for ↵ � 2, then the neural OT estimator r'̂n

between unbounded distributions satisfies:
Ekr'̂n �r'0k2L2(µ) .logn n

�
↵

d+2↵ . (1)
Notably, this rate matches that of [25], but under significantly weaker assumptions: we do not require
compact support for µ and ⌫, nor a Poincaré inequality on µ.

Notations and Terminologies Throughout this paper, we use the following notations. For ↵ 2 R,
b↵c = {x 2 Z : x < ↵}. For v 2 Rd, we write kvk2 for its `2 norm and kvk1 for its `1 norm. For
a matrix A 2 Rd1⇥d2 , let kAk1 := maxi,j |Ai,j |. If A is symmetric, kAkop denotes its operator
norm, �min (A) denotes its smallest eigenvalue. For a function f : Rd ! Rm and a measure µ, we
write µf , Eµf(X), or

R
f dµ for its integral, and kfkL2(µ) := (

R
kfk22 dµ)1/2 for the L

2 norm. For
f : Rd ! R and a set B ⇢ Rd, we denote kfkL1(B) := supx2B |f(x)|.
We write a . b to mean a  Cb for some constant C > 0 independent of a and b, and a .logn b

to omit polylogarithmic factors in n. We write a ⇣ b if a . b and b . a. We use a _ b and a ^ b

to denote the maximum and minimum of a and b, respectively. For sequences an and bn, we write
bn = O(an) if there exists a constant c > 0 such that |bn|  c an, and write bn = Olog(an) if there
exists constants c1, c2 > 0 such that |bn|  c1an log(n)c2 . We use I to denote indicator function.

For x 2 Rd, write hxi := 1 + kxk2. When x 2 R, we set hxi := 1 + |x|. We define log+(x) :=
max{log x, 1}. A function ' 2 C

2 is called (�,b)-smooth if kr2
'(x)kop  �hxib for all x, and

(↵,a)-convex if �min(r2
'(x)) � ↵hxia.

A probability measure µ is (�,K)-sub-Weibull if for X ⇠ µ, P(kXk2 � t) . exp(�(t/K)�) for
all t > 0. We refer to such a distribution as �-sub-Weibull, or simply sub-Weibull.

2 Background on Optimal Transport

Let µ and ⌫ be two probability measures on Rd. A measurable map T : Rd ! Rd is called a
push-forward from µ to ⌫, if for any measurable set A ⇢ Rd

, µ(T�1(A)) = ⌫(A). We denote this
by ⌫ = T#µ. In Monge’s problem, the optimal transport map is defined as the push-forward that
minimizes the transport cost from µ to ⌫:

min
T :Rd!Rd

Z

Rd

kx� T (x)k22 µ(dx), s.t. T#µ = ⌫, (2)

However, Monge’s problem may not admit a solution, for example, when µ is discrete and ⌫

is continuous. A natural relaxation is the Kantorovich formulation, which considers couplings
⇡ 2 ⇧(µ, ⌫) with marginals µ and ⌫:

min
⇡

ZZ
kx� yk22 ⇡(dx, dy), s.t. ⇡ 2 ⇧(µ, ⌫). (3)
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Kantorovich formulation is always feasible [42]. As a linear program, its semi-dual form reads:

min
'2L1(µ)

⇢Z
' dµ+

Z
'
⇤ d⌫

�
= min

'2L1(µ)
µ'+ ⌫'

⇤
. (4)

where '
⇤ is the convex conjugate (a.k.a. Legendre-Fenchel conjugate) of ':

'
⇤(y) = sup

x2Rd

{hx, yi � '(x)}, for all y 2 Rd
. (5)

The equivalence between Monge’s problem (2), Kantorovich’s formulation (3), and its semi-dual
form (4) was established in the seminal work of Brenier [6]:
Theorem 2.1 (Brenier’s Theorem). Let µ and ⌫ be probability measures on Rd, both with finite
second moments, and assume that µ does not assign mass to small sets. Then there exists a convex
function '0 that uniquely (up to constants) solves (4). Moreover, r'0 solves Monge’s problem (2),
and (Id ⇥r'0)#µ solves the Kantorovich formulation (3).

Brenier’s Theorem reveals that the OT map is the gradient of a convex function '0, called the Brenier
potential. Furthermore, since '0 is the minimizer of (4), we can estimate it using empirical measures
µn and ⌫m of µ and ⌫, respectively. For a chosen function class F , we define the Brenier potential
estimator and the associated dual-type OT estimator as:

'̂n,m = argmin
'2F

µn'+ ⌫m'
⇤
, with OT map estimator r'̂n,m. (6)

However, the supremum over the entire space Rd in the convex conjugate '
⇤ makes the optimization

procedure unstable and sensitive. It also introduces theoretical challenges when analyzing the
convergence of dual-type OT estimator '̂n,m. To address this issue, [20] proposed the concept of a
sieved convex conjugate, which restricts the supremum to a bounded region. Specifically, for some
sieve radius R̃ > 0, define:

'
⇤

R̃
(y) := sup

x:kxk2R̃

hx, yi � '(x), for all y 2 Rd
. (7)

Note that '⇤(r'(x)) = hx,r'(x)i � '(x). By restricting x to B(0, R̃), we equivalently restrict
the domain of '⇤

R̃
(y) to the compact set r'(B(0, R̃)). This compactness facilitates us to analyze

the estimation error of sieved OT estimator.

Given a sieve radius R̃, the corresponding sieved estimator is defined as

'̃n,m := argmin
'2F

µn'+ ⌫m'
⇤

R̃
, with sieved estimator r'̃n,m. (8)

Note that when R̃ = 1, we recover the original dual-type estimator in Equation (6). In the following,
we may abbreviate it to '̃n when n = m.

3 Main Results

In Sections 3.1 and 3.2, we develop two core analytical tools: a new stability inequality for the sieved
estimator (Proposition 3.3), and a refined oracle inequality that cleanly decomposes the estimation
error (Proposition 3.4). Building on these results, Section 3.3 establishes non-asymptotic statistical
error rates for general function classes (Theorem 3.6). Finally, in Section 3.4, we show how the
overall estimation error of neural OT estimators between general distributions can be controlled,
using tanh-activated neural networks a concrete example (Theorem 3.7).

3.1 A New Map Stability Inequality

From a statistical learning perspective, map stability inequalities are essential for linking the semi-
dual objective to estimation error. For the original dual-type estimator, denote its objective is
Sµ,⌫(') := µ'+ ⌫'

⇤. Existing results [27, 21, 20] typically show that for all ' 2 F ,

kr'�r'0k2L2(µ) . Sµ,⌫(')� Sµ,⌫('0). (9)

4



where r'0 is the true OT map to be estimated.

However, these results apply only to the original estimator (6), not the sieved version in (8), which
often performs better in practice. Moreover, while neither side of the inequality involves second-order
derivatives, prior analyses still require (�, b)-smoothness of '0, limiting their generality.

To accommodate sieved estimator and relax their assumptions, we consider the following conditions:
Assumption 3.1 (Envelope for Function Class). Let F ⇢ C

2(Rd) be a function class. We assume
there exists a non-decreasing and pointwise finite function U2 : [0,1) ! [1,1) such that:

sup
'2F

sup
kxkR

kr2
'(x)kop  U2(R), sup

'2F

kr'(0)k2  U2(R).

Assumption 3.1 depends only on F and is independent of '0, µ and ⌫. It is satisfied by many common
function classes, for example,

1. Quadratic function class: When µ and ⌫ are both Gaussian (or from the same elliptical family),
the Brenier potential is quadratic and lies in the following quadratic family:

Fquad = {x 7! x
>
Bx+ hb, xi : B 2 Sd+, kBkop  r1, kbk2  r2}.

2. Smooth Neural Networks: Neural network function classes with all parameters bounded and
activation functions that are C

2-smooth, such as sigmoid, tanh, or softmax.
3. Reproducing Kernel Hilbert Spaces (RKHS): Let K : X ⇥ X ! R be a positive-definite kernel

on its domain X ⇥ X , and let HK be the corresponding RKHS with norm k · kHK . We assume
F is C4 and take F to be the unit ball of HK , i.e., F = {' 2 HK : k'kHK  1}.

Assumption 3.1 and 3.2 together play a role similar to Assumption A.1 in [21], but are strictly weaker.
As a result, the function classes discussed in Section 4 of [21], including parametric family, wavelet
expansions, RKHS, and Barron Spaces, apply directly to our setting. We refer readers to Section 4 of
[21] for a detailed discussion.
Assumption 3.2 (Envelope for OT map). There is a function u 2 L

4(µ), such that for all ' 2 F ,

kr'(x)�r'0(x)k2  u(x), for all x.

Define U1(R) := sup
kxk2R u(x). Additionally, let � 2 L

2(µ) be an envelope function for F[{'0},
i.e.

|'(x)|  �(x), for all x 2 Rd and all ' 2 F [ '0.

A sufficient condition for Assumption 3.2 is that both Proposition A.2 and Assumption 3.1 hold.
Specifically, Proposition A.2 ensures kr'0(x)k2 to be bounded by some function L1(x). Meanwhile,
Assumption 3.1 provides an envelope for kr'(x)k2, denoted as L2(x). Then Assumption 3.2 follows
via the triangle inequality kr'(x) �r'0(x)k2  L1(x) + L2(x). While Assumption 3.1 solely
relies on F , typical distributions for Proposition A.2 to hold include: µ can be normal or Student-t,
and ⌫ can be any measure with certain tail decay. We refer to Appendix A for further details and an
explicit example verifying Assumption 3.2.

We are now ready to present our new stability inequality for the sieved estimator:
Proposition 3.3 (Map Stability Inequality). Suppose Assumptions 3.1 and 3.2 hold. For any " > 0,
define R" and sieve radius R̃" such that

µ(kXk2 > R")  ", R̃" � sup
kxk2R"

n
kxk2 +

u(x)

U2(kxk2 + u(x))

o
(10)

For any ' 2 F , define the truncated excess risk:

r"(') :=

Z

B(0,R")
'(x) + '

⇤

R̃"
(r'0(x))µ(dx)�

Z

B(0,R")
'0(x) + '

⇤

0(r'0(x))µ(dx). (11)

Then the following inequality holds: for any ' 2 F ,

kr'�r'0k2L2(µ) 2U2

�
R" + U1(R")

�
· r"(') + kuk2L4(µ) · "

1
2 , (12)
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We first clarify the roles of R" and R̃", which enable a more tractable approximation error in the
next section. Specifically, the hyper-balls B(0, R") and r'0(B(0, R")) serve as bounded pseudo-
supports for µ and ⌫, respectively, over which the behavior of ' and its convex conjugate can be
effectively controlled. Meanwhile, the sieve radius R̃" is introduced to handle any mismatch between
r'

�
B(0, R")

�
and the pseudo-support of ⌫, by better regulating the range of the sieved conjugate.

In practice, if r' closely approximates r'0 in L
1 norm (so that u ⇡ 0), the mismatch is negligible

and one can take R̃" ⇡ R". In that case, it suffices to compute the convex conjugate over the
pseudo-support of µ alone.

For simplicity, a sufficient choice for R̃" is R̃" = R" + U1(R"). In particular, if µ is supported on
B(0, R), one may take R" = R.

Equation (12) decomposes the estimation error into two components. The first arises from the
truncated excess risk over the high-probability region B(0, R"), which can be well-controlled (see
Proposition 3.4). Its coefficient U2(R" + U1(R")) originates from a second-order Taylor expansion
of ', capturing the “uniform curvature” of F on the ball B(0, R" +U1(R")). The second component
accounts for the residual risk outside this region. As a result, " must be carefully selected to balance
the trade-off: a smaller " reduces the residual risk but increases the truncated excess risk.

We defer the proof of Proposition 3.3 to Appendix B.

Comparison with existing map stability results. The most closely related results are Proposition
10 of [27], Proposition 1 of [21], and Lemma 3.15 of [20], all of which require (�, b)-smoothness
assumptions on the true Brenier potential '0 and the candidate class F . In contrast, our Proposition 3.3
substantially relaxes these requirements by assuming only an upper bound on the true OT map r'0

via function u(x).

Another key distinction is the introduction of the sieved convex conjugate '⇤

R̃"
, essential for providing

a more accessible approximation error in the next section. This sieving remains necessary even when
µ has bounded support, unless additional regularity conditions are imposed on µ and ⌫.

Compared to map stability results for plug-in type estimators, our bound also holds under milder
assumptions. For instance, Theorem 2.1 of [17] requires r'0 to be Lipschitz, while Theorem 3 of
[5] assumes that the Brenier potential is strongly convex.

3.2 A New Oracle Inequality

Now, we present our second contribution of a new oracle inequality that helps cleanly decompose the
estimation error into statistical error, sieved bias, and approximation error.
Proposition 3.4 (Oracle Inequality). Under Assumptions 3.1 and 3.2, and let R", R̃" be as defined
in Equation (10). For the sieved OT estimator '̃n,m from Equation (8), its truncated excess risk
r̃n,m," := r"('̃n,m), defined in Equation (11), admits the decomposition:

r̃n,m," := r"('̃n,m)  Estat + Esieve + Eapp, (13)
where

Estat := sup
f2F̄

Z

B(0,R")
f d(µn � µ) + sup

g2Ḡ

Z

B(0,R")
g d(⌫m � ⌫), (14a)

Esieve :=2EX⇠µn [�(X) · I(kXk2 > R")] + 2EY⇠⌫m [G(Y ) · I(k(r'0)
�1(Y )k2 > R")], (14b)

Eapp :=2 inf
'2F

k'� '0kL1(B(0,R̃"))
. (14c)

Here, F̄ := {'1 � '2 : '1,'2 2 F}, Ḡ := {'⇤

1,R̃"
� '

⇤

2,R̃"
: '1,'2 2 F} and G(y) :=

R̃"kyk2 + supx2B(0,R̃")
�(x).

Thus, with a careful choice of " and R" (which can be selected in a distribution-free manner, as
discussed in Section 3.3), Propositions 3.3 and 3.4 together provide a complete characterization of
how the sample sizes, function class F , and the sieved convex conjugate collectively influence the
estimation error of the sieved dual-type estimators.

Specifically, this result decomposes the truncated excess risk into three components. The first term,
Estat, reflects the statistical error from replacing the underlying distributions µ and ⌫ with their
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estimates µn and ⌫m. Importantly, these estimates need not be empirical measures, allowing for
smoothed or bootstrap-based alternatives. The second term, Esieve, accounts for the bias introduced
by replacing the original convex conjugate (Equation (7)) with its sieved version. This bias vanishes
when R" = 1, where the sieved and original convex conjugates coincide.

The third term, Eapp, captures the approximation error of the function class F in representing the
true potential '0 over the compact domain B(0, R̃"). As usual, enlarging F reduces Eapp at the cost
of increasing Estat. Notably, we express the approximation error in the L

1 norm on a compact set,
aligning naturally with classical approximation theory. In contrast, prior works [27, 21, 20] typically
rely on gradient-based errors like inf'2F kr'�r'0kL2(µ), which remain challenging to analyze
for rich function classes such as deep neural networks.

Proof ideas of Propositions 3.4 The sieve technique allows us to treat B(0, R") and
r'0

�
B(0, R̃")

�
as bounded pseudo-supports of µ and ⌫, or equivalently, as bounded pseudo-domains

for '0 and '
⇤

0. This reduction localizes the approximation problem to compact sets, where classical
approximation theory applies. Another key benefit of this sieving approach is that it eliminates the
need for the (↵, a)-convexity assumption required to control the approximation error in prior works.

The sieve bias is then controlled via tail probability bounds, while the statistical error is handled using
standard tools from empirical process theory. The full proof is deferred to Appendix C.

3.3 Non-Asymptotic Bounds of Statistical Error and Sieved Bias

In this section, we derive bounds for the statistical error Estat and the sieved bias Esieve in Proposition
3.4, under minimal assumptions on the source distribution µ. Notably, our results do not require
smoothness of the true OT map r'0, improving upon existing analyses.

We begin with the following assumption on the covering entropy of the function class F :
Assumption 3.5 (Covering Entropy of F). For some ⌘ � 0, � 2 [0, 2), �0 � 1 and DF > 1, the
covering entropy of F satisfies: for any h � 0,

logN (h,F , L
1([�R,R]d)  DF · h�� · log+(1/h)�

0
·R⌘

. (15)

We focus on the Donsker regime (� 2 [0, 2)) for theoretical simplicity, which already captures a wide
range of function classes, such as parametric families, wavelets, reproducing kernel Hilbert space
(RKHS), and both shallow and deep neural networks. Here, DF represents the “effective dimension”
of F , and n/DF can be viewed as the effective sample size from the statistical learning theory
perspective. Because most covering entropy results are stated for the L1([0, 1]d) norm, we introduce
an additional R⌘ factor to translate them to our unbounded setting in L

1([�R,R]d). Specifically, the
exponent ⌘ measures how the envelope of F grows (e.g. ⌘ = 2 if the envelope scales like x 7! x

2).
Theorem 3.6 (Statistical Error with Empirical Measures). Under assumptions of Proposition 3.4,
and Assumption 3.5, the sieved estimator '̃n,m from Equation (8), computed with empirical measures
µn and ⌫m, satisfies:

E
h
Estat

i
.

r
DF

n

⇣
R

⌘
2
" + sup

x2B(0,R")
�(x)

1
2

⌘
log(n)

�0
2 +

r
DF

m

⇣
R̃

⌘
2
" +M

1
2

⌘
log(m)

�0
2 , (16)

and
E
h
Esieve

i
 2(k�kL2(µ) + kGkL2(⌫)) · "

1
2 , (17)

where M := R̃" supx2B(0,R") kr'0(x)k2 + supx2B(0,R̃")
�(x), and the suppressed constant de-

pends only on �, �
0.

We defer the proof to Appendix D, where we also establish corresponding high-probability guarantees.

In Theorem 3.6, we establish a standard convergence rate for estimation error, E[Estat] =
Olog(

p
DF/n +

p
DF/m), which is common in empirical process theory. Meanwhile, the mul-

tiplicative prefactors in Estat, R
⌘
2
" + supx2B(0,R") �(x)

1
2 and R̃

⌘
2
" + M

1
2 , naturally capture the

“diameter” of F on the pseudo-supports of µ and ⌫.

Moreover, it tells that the sieve bias E is governed by the tail probability " defined in Equation (10).
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Practical choice of R" and R̃". As shown in [20], R" can be selected in a distribution-free manner.
Here, we extend this idea to provide a practical, joint selection strategy for both R" and R̃":

R" = max
1in

kXik2, R̃" = R" + C max
1jm

kYjk2, (18)

where C � 0 is a tuning parameter designed to account for the potential mismatch between the
estimated and true OT maps, specifically the discrepancy kr'̃n,m �r'0kL1(B(0,R")).

The choice of R" can also be justified by our stability and oracle bounds (Propositions 3.3 and 3.4).
In particular, if n = m, µ is sub-Weibull, and both �(·), kr'0(·)k2 grow at most polynomially, then
the estimation error of the sieved estimator reads:

Ekr'̃n �r'0k2L2(µ) = Olog

⇣
(n/DF )

�
1
2 + Eapp + "

1
2

⌘
. (19)

By exchangability of Xi’s, choosing R" := max1in kXik2 yields " ⇣ n
�1, so the sieved bias " 1

2

is dominated by the statistical error term (n/DF )�
1
2 .

While a complete theoretical justification for our choice of R̃" remains an open question, numerical
results in Section 4 provide strong empirical support: our sieved estimator consistently outperforms
the original dual-type estimator of [27, 25, 21] across a range of settings.

3.4 Estimation Error of Neural OT Estimator

In this section, we derive the first non-asymptotic error bounds for dual-type OT map estimators
parameterized by deep neural networks between general distributions.

ReLU networks, despite their popularity, lack the smoothness needed to recover the gradient of
the estimated Brenier potential. Moreover, our analysis (Assumption 3.1) requires F to be C

2.
Consequently, smooth activations are both practically and theoretically preferable.

While input convex neural networks (ICNNs) [2] exploit convexity of Brenier potential and have
been applied at scale [33, 4, 31], their approximation theory remains underdeveloped. This gap limits
rigorous control of approximation error in existing analyses of dual-type estimators [27, 25, 21, 20].
By contrast, our approach removes the convexity assumption on F , allowing us to employ standard
fully connected networks.

Accordingly, we adopt the tanh-activated fully-connected neural network (TNN) as our function class
F , due to its C1 smoothness and non-asymptotic universal approximation guarantees [16]:

f(x) = LL � � � LL�1 � · · · � � � L1(x), (20)

where �(x) = ex�e�x

ex+e�x is applied entrywise, and L`(x) = A`x + b` for ` 2 [L], where Al 2
Rpl+1⇥pl , bl 2 Rpl , with p1 = d, pL+1 = 1.

We define the TNN class F with bounded parameters as:

F(L,W,) := {f of form (20) : kA`k1 _ kb`k1  , pl  W for all ` 2 [L]} , (21)

where  > 0 is a truncation threshold used for technical convenience.
Theorem 3.7 (OT Estimation via Tanh Neural Network). Let n = m, and suppose µ is (�,K)-
sub-Weibull, and the true Brenier potential '0 2 C

↵(Rd) with ↵ � 2 is (�, b)-smooth. By setting
R", R̃" according to Equation (10), there exists a deep TNN function class F := F(L,W,)

where L,W, depend on n, d,↵,�, b and are of order 3  L = O(1), W = O(n
d

d+2↵ ) , =

O(n
d(d+(b↵c+2)2+4)+2

2(d+2↵) ), such that the sieved estimator r'̃n with sieve radius

R̃n = CK,d,↵ · (log n) 1
� , for some constant CK,d,↵ � 4K

2↵

d+ 2↵
+ 2 (22)

satisfies
Ekr'̃n �r'0k2L2(µ) .logn n

�
↵

d+2↵ . (23)

Remark 3.8 (On mild regularity conditions). The sub-Weibull and (�, b)-smoothness assumptions
are used in our work primarily for analytical convenience, not because they are fundamentally

8



required for the methodology. Notably, both conditions are widely used in the OT literature, see
[21, 20, 27, 25, 34] for (�, b)-smoothness and [21, 17, 20] for sub-Weibull condition.

The (�, b)-smoothness of '0 is needed solely to control approximation error through Lemma F.4,
ensuring the error grows polynomially in R̃". Meanwhile, the sub-Weibull µ guarantees that R", R̃"

scale polynomially in log(1/"). Together, these two results ensure that the relevant Sobolev norm is
bounded by a polynomial in log(1/"), and the consequent approximation error has the order of ".

If (�, b)-smoothness were lifted, one could still obtain approximation bounds, but they may degrade
to O("a) for some a < 1. This complicates the statistical error, approximation error, and sieved
estimation bias-variance trade-off by introducing additional convergence exponent. Likewise, relaxing
source distribution to be polynomially tails causes R", R̃" to scale polynomially in 1/". While the
proofs follow similar steps, the resulting convergence rate becomes much more complex (See Equation
3.10 in [20] for an illustration of the added technical complications).
Remark 3.9 (On the choice of activation). While ReLU networks are widely used in practice, our
framework currently focuses on the tanh activation due to theoretical considerations. Specifically,
our estimator is defined via the gradient of a potential function. Although PyTorch can handle ReLU
networks computationally, the ReLU activation is not globally differentiable in mathematics, making
this definition is ill-posed. Moreover, even under a weak derivative framework, ReLU networks lack
second-order weak derivatives, whereas the existing optimal transport theory fundamentally relies on
second-order regularity for statistical analysis.

The rate in Theorem 3.7 matches that of [25], but under substantially milder assumptions. Although
slower than the minimax rate in [27], this is expected: we do not assume (↵, a)-convexity of the
true Brenier potential '0, compact support of µ and ⌫, or a Poincaré inequality on µ. Moreover, the
estimators in [27, 25, 21] are either computationally intensive or NP-hard. In contrast, our deep TNN
estimator is both implementable and scalable in practice.

We focus on the TNN architecture due to the current lack of approximation theory for general smooth
neural networks. The proof of Theorem 3.7 is provided in Appendix E. With minor modifications,
the result also holds with high probability.

4 Numerical Examples

In this section, we present numerical simulations to evaluate the performance of our sieved-TNN
estimator and compare it against the original dual-type estimators from [27, 25, 21]. We consider
four synthetic OT problems that pose challenges for existing theoretical frameworks:

• Non-(�, b)-smooth maps: N (0, 1) ! t6, Uniform(0, 1) ! N (0, 1).
• Non-(↵, a)-convex maps: t6 ! N (0, 1), N (0, 1) ! Uniform(0, 1).

We evaluate performance in dimensions d = 5, 10, 20, using i.i.d. samples Xi ⇠ µ and Yj ⇠ ⌫ with
sample sizes n = m 2 {64, 128, 256, 512, 1024, 2048}. Experiments were conducted on a server
with Intel Xeon Gold 6342 processors, requiring approximately 4,000 CPU core hours in total.

Implementation setup We implement our estimator in PyTorch [36], following algorithms from
[20] with objective function in Equation (8). The candidate class F consists of TNNs with two
hidden layers of width 10 (for d = 5), 20 (for d = 10), and 30 (for d = 20). Training proceeds in two
phases: a warm-up phase of max{b10000/nc, 50} epochs at learning rate 5⇥ 10�3, followed by 300
epochs at 10�3. Mini-batch size is 64 for both µ and ⌫, and the sieved convex conjugate subproblem
is solved using 300 inner iterations (see Algorithm 2 in [20]). In each trial, 10% of the samples are
held out for validation. We defer implementation details to Appendix G.

Sieve radius As dicussed in Equation (18), we choose the sieve radius R̃ as

R̃ = max
1in

kXik2 + C · max
1jn

kYjk2, C 2 {0, 1, 2, 3,1}.

Here, C = 0 corresponds to the setting in [20], while C = 1 recovers the original dual-type
estimator studied in [27, 25, 21], enabling direct comparison.
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Evaluation We assess the estimation error using unexplained variance proportion (UVP) [30]:
L
2-UVP(r'̂n) := kr'̂n � r'0k2L2(µ)/Var⌫(kY k2). Lower values indicate better performance.

For each experiment, we approximate the L
2-UVP using an independent set of 106 samples.

(a) N ! t6 (b) Unif ! N

(c) t6 ! N (d) N ! Unif

Figure 1: L2-UVP when d = 5. Each curve shows the mean L
2-UVP over 50 random trials with one

standard deviation.

Due to space constraints, we report only the L2-UVP error versus sample size n for d = 5 in Figure 1
here. The full set of numerical results is available in Appendix G.

Across all settings, our sieved TNN estimator consistently converges and outperforms the original
dual-type estimator (C = 1), particularly in the small-sample regime. As shown in Figure 4a,
sieve-based estimators yield lower L2-UVP errors for small n, while the classical estimator only
catches up as n grows large. This aligns with our theory: larger sieve radii may degrade convergence,
and are only needed when the mismatching kr'̃n,m �r'0kL1 , is large.

These results also offer practical guidance: a modest sieve constant (e.g., C = 0 or 1) suffices, and
performance of our sieved estimator remains stable across a range of C.

5 Conclusion

In this paper, we develop new map stability and oracle inequalities for sieved dual-type OT estimators,
without restrictive smoothness and convexity assumptions on the true Brenier potential '0 in the
literature. Under mild regularity conditions, we establish the first non-asymptotic error bounds for
neural OT estimators, using tanh networks as a concrete example. Numerical experiments further
confirm the strong empirical performance of our sieved approach. Altogether, our unified framework
advances the theoretical foundations of optimal transport and paves the way for future developments
in both methodology and applications.

Acknowledgment: This research was partially supported the U.S. National Science Foundation under
the grants DMS 2514400 and DMS 2210775, and by the U.S. National Institutes of Health under the
grants R01GM163244 and 1R01GM152812.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide exact Theorems/Propositions numbers for our main claims in the
abstract and introduction, which correspond precisely with our four subsections in Section
3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss the limitations of our work. For example, in Section 3.3,
we acknowledge the lack of theoretical justification for the practical choice of the sieve
radius R̃".
Regarding the convergence rate of the sieved TNN estimator in Theorem 3.7, we note that
it is not minimax optimal as in [27], which is expected due to our substantially weaker
assumptions. Furthermore, we explain our restriction to tanh networks and do not consider
input convex neural networks (ICNNs), owing to the limited approximation theory available
for general smooth neural networks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Proof of our results are included in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We ensure full reproducibility by including a description of our sieved-TNN
model and important training hyper-parameters setting in Section 4. Full description of our
algorithm is provided in Appendix G. Meanwhile, as a synthetic simulation study, the data
generating processes are provided in our code for reproducing consideration.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Full implementation code is available in the Supplementary Materials. All
experimental data are synthetic and can be recreated exactly using the data-generation
procedures and fixed random seeds detailed in Appendix G.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 details the sieved-TNN architecture, data-splitting, and all key
hyperparameters (learning rate, batch size, network depth, etc.). Appendix G provides the
complete experimental design, including full algorithm pseudo-code, the process of training,
the synthetic data-generation procedure with fixed random seeds, and the optimizer choice.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Every plotted result includes error bars representing one standard error of the
mean over multiple independent runs. Since no statistical hypothesis tests are involved, the
discussion of statistical significancy is not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We briefly introduce the configuration for our server in Section 4, with full
description available in the Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have all reviewed the NeurIPS Code of Ethics and striven to maintain and
preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

17

https://neurips.cc/public/EthicsGuidelines


• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work studies the theoretical properties of optimal transport and the authors
cannot see any direct or potential societal impacts this work can bring.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As a theoretical study on optimal transport, this work does not involve any
data sets, and does not pose risks to existing optimal transport models for image translation
or generation.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We did not incorporate any third-party code, data, or models. We properly
cited, respected, mentioned the algorithm from [20] and re-implemented it ourselves, so no
external “assets” or licenses are involved.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the full sieved-TNN implementation, including source code,
README, and pseudo-code, as a new asset in the Supplementary Materials (with plans to
publish it on GitHub upon acceptance).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: As a theoretical work, no humen subjects are involved in it.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This theoretical study does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The theoretical and methodology advancements in this work are built on
well-established mathematical tools, and LLM is not utilized for developing them.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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