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ABSTRACT

Out-of-distribution (OOD) robustness is a desired property of computer vision
models. Improving model robustness requires high-quality signals from robust-
ness benchmarks to quantify progress. While various benchmark datasets such
as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption
types are no longer OOD relative to today’s large datasets scraped from the web,
which already contain common corruptions such as blur or JPEG compression
artifacts. Consequently, these standard benchmarks are no longer well-suited for
evaluating OOD robustness in the era of web-scale datasets. Indeed, recent mod-
els show saturating scores on ImageNet-era OOD benchmarks, indicating that it
is unclear whether models trained on web-scale datasets truly become better at
OOD generalization or whether they have simply been exposed to the test distor-
tions during training. To address this, we here introduce LAION-C as a bench-
mark alternative for ImageNet-C. LAION-C consists of six novel distortion types
across five severity levels designed to be OOD, even for web-scale datasets such
as LAION. In a comprehensive evaluation of state-of-the-art models, we find that
the LAION-C dataset poses significant challenges to contemporary models. We
additionally conducted a psychophysical experiment to evaluate the difficulty of
our proposed corruptions for human observers, enabling a comparison of models
to lab-quality human robustness data. We observe a paradigm shift in OOD gener-
alization: from humans outperforming models, to the best models now matching
or outperforming the best human observers.

1 INTRODUCTION

Vision models have been a cornerstone of modern machine learning, driving breakthroughs in di-
verse applications. In recent years, large-scale vision models such as vision transformers (Doso-
vitskiy et al., 2021) and ConvNeXt (Liu et al., 2022), trained on expansive web-scale datasets like
LAION (Schuhmann et al., 2022), have pushed the boundaries of performance on standard bench-
marks. However, the continued advancement and reliable evaluation of these models depends on the
availability of datasets that effectively challenge model robustness and generalization capabilities.

ImageNet-C (Hendrycks & Dietterich, 2019) has long stood as the de facto standard for OOD eval-
uation, particularly for models trained on ImageNet (Russakovsky et al., 2015). It contains images
that are systematically different from those in ImageNet, meaning that models trained on ImageNet
must robustly generalize to perform well on ImageNet-C. Previous work (e.g., Hendrycks & Diet-
terich, 2019) found that OOD generalization is not trivial to achieve: Many vision models do indeed
struggle with OOD datasets like ImageNet-C even if they perform well on ImageNet. Hence, these
types of unfamiliar inputs are crucial for evaluating the robustness of machine learning models since
they are indicative of performance on unexpected input; a challenge that many deployed models
face. Modern models trained on much larger web-scale datasets, e.g., CLIP (Radford et al., 2021),
exhibit much better performance on classic OOD datasets than IN-trained models, potentially sug-
gesting that they have learned robust representations which better generalize to unseen data.

However, as modern training datasets are scaled well beyond ImageNet, existing OOD bench-
marks might not be truly OOD with respect to web-scale datasets anymore. OOD datasets such
as ImageNet-C were explicitly created to be OOD with respect to the most popular dataset at that
time: ImageNet. ImageNet-C contains images with corruptions potentially relevant for practical ap-
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Figure 1: ImageNet-C corruptions are not out-of-distribution (OOD) for web-scale datasets
like LAION-400M. Exemplary corrupted images from ImageNet-C (left) are similar to LAION-
400M samples (right). Each row shows example corruptions and dataset images for one ImageNet-C
corruption category (Noise, Blur, Weather, Digital). The presence of these distortions in web-scale
datasets indicates the need for an OOD benchmark in the era of web-scale vision models.

plications but (by design) not contained in ImageNet and, thus, OOD. However, with the change of
the reference dataset from ImageNet to web-scale datasets such as LAION, these corruptions might
no longer be OOD. For example, many images in LAION are blurry—not by deliberate design, but
because LAION images were not sampled from a few websites with (implicit) quality standards,
like ImageNet images were, but from almost any publicly accessible website online. Simply put,
models trained on LAION might have seen the types of corruption on which they are tested with
ImageNet-C. For another type of OOD benchmark, namely distribution shifts defined by the style of
an image, recent work empirically shows that such datasets are not OOD but overlap with LAION-
400M (Mayilvahanan et al., 2023; 2024). This raises a central question: Are modern vision models
genuinely improving in terms of OOD generalization, or are they simply trained on datasets that
already contain the corruptions, essentially testing in-distribution rather than OOD generalization?
This distinction is crucial because if these modern models were not truly more robust than standard
models, they might also not perform better on the real OOD test data one might face in practice.

Given the importance of OOD generalization in practice, there is a pressing need for a new bench-
mark that more effectively evaluates the OOD robustness of state-of-the-art foundation models: an
OOD dataset for the era of web-scale vision models. Our contributions are as follows:

1. Given that existing OOD datasets are often no longer OOD for models trained on web-scale
datasets, we introduce LAION-C, a novel benchmark dataset with six manually designed cor-
ruption types and 16 superclasses to evaluate the robustness of web-scale vision models.

2. We conduct a comprehensive performance analysis of various models on LAION-C and report a
robust human OOD generalization baseline obtained through psychophysical experiments with
19 participants, collecting 11,400 trials in a highly controlled laboratory environment.

3. The resulting data serves as an OOD benchmark for current and future models, enabling not
only an assessment of their generalization ability on truly OOD data but also providing insights
into the discrepancies between human and machine perception, observing a paradigm shift in
OOD generalization: from humans outperforming models to the best models now matching or
outperforming the best human observers.

A detailed related work section can be found in Appx. A.1.
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Figure 2: LAION-C distortions, intended to be OOD even for web-scale datasets. This figure
illustrates the six LAION-C distortions at five intensity levels. Best viewed on screen.

2 METHODS

2.1 CONSTRUCTING NEW OOD DISTORTIONS

As described in the introduction and depicted in Fig. 1, ImageNet-C is not OOD for models trained
on large-scale datasets. Given the limitations of existing benchmarks like ImageNet-C, we develop
a novel dataset specifically designed to challenge these foundation models more rigorously. Our
dataset introduces six carefully designed, fully synthetic distortions that models have not encoun-
tered during training. These distortions are designed to be OOD even for web-scale datasets (as
supported by quantitative evidence presented later). Hence, models truly need to generalize beyond
their training distributions to perform well on this benchmark which we term LAION-C.

Distortions The core idea behind our distortions is to intentionally disrupt visual consistency and
perceptual cues that models rely on for image classification, such as texture (Geirhos et al., 2019).
Following ImageNet-C, each distortion consists of five different intensity levels. The distortions
capture a range of visual challenges ranging from disruptions of local image information to more
global structural alterations, as described below and illustrated in Fig. 2.

• Mosaic: The original image is broken down into smaller tiles, each replaced by a chromatically
similar picture. This patchwork creates a mosaic effect that disrupts edges and textures while
introducing contextually irrelevant information.

• Glitched: The original image undergoes an artistic digital corruption with horizontal lines over-
laying shifted image segments and color channel shifts. This dislocates the global contextual
structure of the image. While the concept of such glitchy images has been explored in earlier
work (Kaufmann et al., 2019), our transformation introduces a more intense corruption.
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• Vertical Lines: The original image is deconstructed into bent vertical line segments. This distor-
tion retains the original colors but strips away local information, disrupting the contours and edges
of the image and introducing visual discontinuity.

• Geometric Shapes: The original image is overlaid with overlapping geometric figures such as
squares, circles, and stars. This visual clutter introduces local noise that obscures the main object,
like the Kaleidoscope corruption from Kaufmann et al. (2019).

• Stickers: The original image is augmented with assorted image patches. This addition of visual
elements masks features of the primary object.

• Luminance Checkerboard: The original image is divided into a grid, with the luminance of
each cell altered in a checkerboard pattern. The stark luminance contrast between adjacent tiles
and artificial grid boundaries makes this distortion challenging.

We intend to build a challenging dataset that has the potential to guide the future development of
vision models. Our dataset incorporates these tougher and less common distortions to simulate the
difficulty of OOD scenarios that models might encounter in real-world applications. We tune the
intensity levels of each distortion such that either humans or a contemporary vision model (ViT-B)
achieve chance performance on the highest intensity level, i.e. no model is expected to perform well
on the hardest levels. The other intensity levels are chosen so that we can observe a gradual decline
in accuracy, ensuring that the distortions are sufficiently challenging.

These distortions are then applied to a carefully curated subset of images from the ImageNet vali-
dation dataset. To contextualize model performance, we later want to compare it to human perfor-
mance. As human evaluations on datasets with hundreds of classes cannot be scaled to sufficiently
many participants, we follow previous work (Geirhos et al., 2018) and simplify the task to a 16-class
classification problem. We extract 285 ImageNet-classes to form 16 superclasses, namely ball, bird,
boat, bottle, butterfly, car & truck, cat, chair, dog, fish, fruit, instrument, primate, snake, timekeep-
ing, and tool. For robust statistical analysis, our dataset comprises 273 images for each superclass.
This data size selection allows us to ensure that a 3% difference in the performance between mod-
els is statistically significant. Our dataset serves as a proxy for the unforeseen OOD environments
future models must handle, advancing the state of robustness evaluation. Additionally, we manually
filter the dataset to ensure that none of the images in one superclass contain objects from another
class or require specific cultural knowledge for classification. This process helps to avoid ambiguous
ground-truth labels.

2.2 MEASURING MODEL PERFORMANCE

We use the generated datasets to evaluate the performance of a suite of 58 vision models. Our se-
lection includes models trained on large-scale web datasets and fine-tuned on ImageNet-1k, such as
Vision Transformers (ViT) (Dosovitskiy et al., 2021), ConvNeXt (Liu et al., 2022), and EVA (Fang
et al., 2023; 2024). For comparison, we also evaluate the performance of smaller-scale model fami-
lies such as ResNet (He et al., 2016) and MobileNet (Howard, 2017) and large-scale models trained
only on ImageNet-1k. Additionally, we also evaluate GPT-4o (OpenAI, 2024) and Gemini 1.5 Pro
(Team et al., 2024) on a representative subset of LAION images. See Tab. 6 for a complete list of
all models we evaluate. To address the imbalance caused by distinct numbers of subclasses within
each superclass, we compute the average probability values across subclasses for each superclass, a
method first suggested by Geirhos et al. (2018). This adjustment mitigates biases introduced by the
varying subclass distributions, ensuring a more accurate model performance evaluation.

2.3 COLLECTING HUMAN PERFORMANCE VIA LAB EXPERIMENTS

To explore the discrepancies between human and machine perception, we design a psychophysical
experiment to gather human classification data on the augmented images. This experiment builds
on previous paradigms (Geirhos et al., 2018; 2021) to ensure consistency and comparability. In the
experiment, 19 human subjects are briefly presented with a distorted image and are asked to classify
it into one of 16 classes, reminiscent of how a DNN might be evaluated on a classification task (in
contrast to e.g. open response paradigms, where participants could give arbitrary textual responses).
Participants were recruited from the university student body, and screened for normal or corrected-
to-normal vision and absence of color blindness. The experiment was conducted in a controlled
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dark environment using a 22” VIEWPixx 3D light LCD monitor, with stimuli presented centrally
at a fixed viewing distance to ensure foveal presentation. The classification task was divided into
two warm-up blocks and ten main experiment blocks, with each block containing images from 16
superclasses. Participants were given 2.5 s to view each image, followed by a 2 s response window
to classify the image by clicking on a set of icons. To motivate high performance, a monetary bonus
was awarded for surpassing fixed, pre-determined performance thresholds for each block. Further
methodological details are provided in Appx. A.2.

2.4 QUANTIFYING HUMAN-MACHINE ALIGNMENT VIA ERROR CONSISTENCY.

To quantify the alignment between human and machine visual perception, we adopt the error consis-
tency metric proposed in Geirhos et al. (2020b). Error consistency, denoted as κ ∈ [−1, 1], measures
the degree of agreement between the classification mistakes of two observers. In brief, κ takes on
a value of 1.0 if two observers are perfectly consistent, i.e. if they make classification mistakes on
exactly the same images. Two independent binomial observers that agree no more than expected by
chance will result in a κ of 0, while two maximally inconsistent observers will have a κ of -1. See
Appx. A.3 or Geirhos et al. (2020b) for a detailed explanation of the metric.

3 RESULTS

3.1 HOW OOD IS LAION-C?
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Figure 3: Performance Divergence of Mod-
els on LAION-C and ImageNet-C 16
class. Evaluating models on the 16-class
versions of ImageNet-C and LAION-C pro-
duces a plateaued performance on ImageNet-
C, while LAION-C still yields a high vari-
ance across models.

Now that we have outlined the construction of our
LAION-C dataset, we empirically evaluate whether
it is indeed OOD relative to the large-scale image
datasets used to train modern vision models. Rigor-
ously quantifying how OOD a test dataset is with re-
spect to some training dataset requires a precise defi-
nition of the test and training domain (Mayilvahanan
et al., 2024). As the distribution shifts introduced
by the distortions of our proposed LAION-C and
ImageNet-C are fuzzy in nature, we use three tools
to compare the OOD-ness of our proposed dataset to
the OOD-ness of ImageNet-C. First, we use a quali-
tative assessment. By searching for the name and re-
lated concepts of ImageNet-C corruptions, we easily
find LAION samples with visual distortions akin to
those of ImageNet-C samples (see Fig. 1).

Second, we use the difficulty of a test dataset (mea-
sured by the performance that models trained on a
reference dataset yield on the test dataset) as a proxy
for how much the test dataset differs from the refer-
ence dataset. Here, the reasoning is that if a test dataset can be solved almost perfectly by a model,
it means that either the model has great generalization skills or the test dataset is not strictly OOD.
If, at the same time, another dataset has much greater difficulty according to the same models, the
second dataset is likely more OOD than the first. For the sake of comparability, we here use a ver-
sion of ImageNet-C restricted to the same 16 superclasses that were used for LAION-C, where we
implemented the ImageNet-C augmentations through the code by Michaelis et al. (2019). Indeed, a
comparison of the performance achieved by our suite of models (see Fig. 3) suggests that LAION-C
is more OOD to LAION than ImageNet-C is.

Third, we use the FID (Heusel et al., 2017; Kynkäänniemi et al., 2022) to quantify the difference
between LAION and ImageNet-C and LAION-C, respectively. Specifically, we employ a CLIP-
trained ViT-B as feature encoder and use the implementation by Parmar et al. (2022) to calculate
FID-scores. In line with the previous evidence, we find a FID of ≈ 70 between LAION and LAION-
C, which is substantially higher than that between LAION and ImageNet-C (≈ 40). This means that
features of LAION are closer to those of ImageNet-C than those of LAION-C, again highlighting the
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Figure 4: LAION-C poses a greater challenge to model robustness than ImageNet-C. We plot
distortion intensity against each model’s average accuracy. Visual foundation models evaluated on
ImageNet-C maintain high accuracy, with minimal drop across increasing intensity levels. On our
LAION-C dataset, the models exhibit a sharper decline in accuracy, highlighting the benchmark’s
effectiveness in measuring model robustness.

greater OOD-ness of LAION-C. In summary, we have presented three different kinds of evidence
suggesting that LAION-C is more OOD than ImageNet-C to LAION.

3.2 MACHINE PERFORMANCE

In Fig. 4, we compare model performance on ImageNet-C against performance on LAION-C. Evi-
dently, the average model performance on ImageNet-C stays above or close to 60%, indicating that
current models are increasingly adept at handling the distortions in ImageNet-C. This observation
reinforces our hypothesis that the challenge presented by ImageNet-C may no longer be sufficiently
difficult to rigorously test the robustness of modern models.

In contrast, models achieve much lower accuracy on LAION-C on average and exhibit more inter-
model variability. This showcases our dataset’s ability to uncover nuances that remain hidden on
more saturated benchmarks. These performance differences are particularly obvious at higher inten-
sity levels, illustrating LAION-C’s potential to serve as a more challenging and insightful benchmark
for evaluating robustness.

We also provide a detailed breakdown of non-averaged, dataset-specific results in Fig. 10. We ob-
serve significant variability in the performance of different vision models across various datasets and
distortion levels, highlighting the diversity in model robustness. These results further highlight the
effectiveness of our datasets in eliciting different responses from models of different architectures,
parameter scales, and training data sizes. This diversity is particularly valuable for understanding
which model designs are more robust to specific types of distortions, offering insights that are ben-
eficial for advancing the state-of-the-art model robustness.

In Tab. 1, we present a comprehensive evaluation of our suite of models on LAION-C. We report
each model’s top-1 accuracy on the (undistorted) ImageNet validation set as a baseline (Clean Ac-
curacy) and the average top-1 accuracy on LAION-C averaged across distortion types and intensity
levels (LAION-C). We then break the latter down into the six distortion types. This enables a thor-
ough comparison of model performance, highlighting which architectures generalize best.

3.3 IS LAION-C A PROXY FOR MORE REALISTIC DISTRIBUTION SHIFTS?

To demonstrate that model performance on LAION-C is indicative of real-world performance de-
spite the highly synthetic nature of our corruptions, we analyze the correlations between model

6
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Table 1: LAION-C benchmark results. Numbers show the top-1 accuracy in percent. ImageNet
refers to model accuracy on the (uncorrupted) ImageNet validation set, with values sourced from the
timm leaderboard (Wightman, 2024). For each corruption, we report the mean top-1 accuracy across
all intensity levels, with LAION-C as the overall benchmark metric (averaged across corruption
types). GPT-4o and Gemini 1.5 Pro were evaluated on 48,000 images, 100 for each class. For full
model names and descriptions, see Tab. 6 in the Appendix.

Model ImageNet LAION-C Mosaic Vertical Glitched Luminance Geometric Stickers

EVA-G-P14-560-M30M-IN22K 89.8 67.5 48.8 53.6 70.8 97.2 81.0 53.4
EVA02-L-P14-448-MIM-M38M-IN22K 90.1 66.8 53.6 58.2 78.2 93.6 76.4 40.6

ViT-H-P14-336-CLIP-LAION-IN12K 88.6 57.3 45.2 51.2 69.8 88.2 64.4 24.6
ViT-L-P14-224-CLIP-OpenAI-IN12K 88.3 57.8 52.6 49.8 68.2 98.6 55.4 22.4
ViT-B-P32-384-CLIP-LAION-IN12K 85.4 36.4 36.8 35.2 35.8 54.0 37.6 19.2
ViT-B-P16-224-AugReg-IN21K 85.5 47.1 46.4 42.8 62.0 71.4 42.4 17.6

BEiT-v2-L-P16-224-IN1K 87.4 47.7 52.4 44.8 63.2 70.2 11.8 43.8
BEiT-v2-B-P16-224-IN1K 85.6 42.2 46.2 40.4 52.6 68.2 11.4 34.6

ConvNeXt-XXL-CLIP-LAION-IN1K 88.6 54.8 53.0 53.4 71.8 77.4 52.2 20.8
ConvNeXt-B-CLIP-LAION-AugReg-IN12K 87.6 42.3 37.6 43.8 44.4 54.2 50.4 23.2

WRN101-2-TV-IN1K 78.8 21.4 30.4 28.4 22.0 22.8 18.2 6.8
WRN50-2-RACM-IN1K 81.5 24.0 26.8 21.4 17.0 45.0 24.6 9.4

RN50-A1-IN1K 81.2 19.9 28.0 18.8 20.8 23.4 21.2 7.0
EFF-B3-RA2-IN1K 82.3 33.2 32.4 31.8 40.2 45.2 37.6 12.2
DN201-TV-IN1K 77.3 19.2 28.6 26.2 13.2 23.2 16.8 7.2
DN161-TV-IN1K 77.3 20.0 31.0 26.8 15.2 25.2 15.4 6.6

GPT-4o - 54.1 42.8 45.4 65.1 80.1 54.2 36.5
Gemini 1.5 Pro - 50.2 34.9 37.0 46.2 84.4 60.9 38.1

Best human observer - 55.2 58.0 55.3 78.7 63.4 40.4 35.7
Average human observer - 47.0 50.8 43.6 71.0 53.1 34.3 29.1

Table 2: LAION-C is challenging but can be solved by fine-tuning on the exact distortions. We
compare the performance of ViT-H-P14-336-CLIP-LAION-IN12K before and after fine-tuning it on
ImageNet-1k training images with LAION-C corruptions. As the performance after fine-tuning is
high, this means that LAION-C, although challenging, remains solvable as it retains enough signal
when applying distortions.

Accuracy [%] Mosaic Vertical Lines Glitched Luminance Geometric Stickers

Before 45.2 51.2 69.8 88.2 64.4 24.6
After 79.0 93.5 95.8 97.7 90.2 61.0

accuracy on LAION-C and on several well-established OOD benchmark datasets such as ImageNet-
R, ImageNet-A and ImageNet-Sketch in Tab. 5. Clearly, models that achieve high accuracy on
LAION-C are also robust to other distribution shifts. However, our main goal is not to measure real-
world performance, but to measure a model’s ability to generalize beyond its training data, which
requires a truly OOD test set - a requirement that might even be incompatible with the requirements
of a real-world distribution shift.

3.4 CAN LAION-C BE SOLVED?

Given the low performance of current state-of-the-art models on LAION-C, one might wonder
whether LAION-C is simply impossible to solve because the distortions destroy all information
necessary for correct classification of the images. To disprove this hypothesis and highlight the
validity of LAION-C as a benchmark for evaluating model robustness, we conduct a fine-tuning
experiment to assess whether the challenges posed by LAION-C are solvable at all. Specifically,
we fine-tune a ViT-Huge model, which was originally pretrained with a CLIP-objective on LAION-
2B and then fine-tuned on ImageNet-22k and ImageNet-1k. For this experiment, we use a custom
dataset sub-sampled from the ImageNet-1K training set and augmented with the distortions intro-
duced in LAION-C. This dataset consists of over 336,000 images uniformly sampled across the 16
superclasses defined for LAION-C.
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Figure 5: Human vs. machine accuracy on all distortions. For each LAION-C distortion, we
plot the distortion intensity against the accuracy of the best human and the best model in this condi-
tion. The shaded regions indicate the 95% confidence intervals around the means. On the Mosaic,
Glitched and Vertical Lines distortions, humans and machines perform similarly, whereas the best
model vastly outperforms the best human observer on the Stickers, Geometric Shapes, and Lumi-
nance Checkerboard distortions.

As shown in Tab. 2, fine-tuning the model results in substantial accuracy gains, which define an up-
per bound on LAION-C accuracy that no normal model can be expected to achieve. Notably, these
accuracy gains are particularly pronounced on higher-intensity distortions, as detailed in Tab. 4,
where accuracy is broken down by distortion intensity. The fine-tuned model likely achieves such
good performance by employing un-human-like (or “spurious”) features, but the purpose of this ex-
periment is not to suggest that fine-tuning on LAION is a sensible approach to improve OOD robust-
ness, but to quantify how much learnable signal is left. LAION-C provides meaningful robustness
tests without being intractable, making it a valuable tool for a more comprehensive evaluation of
model performance under difficult conditions.

3.5 HUMAN AND MACHINE VISION DISCREPANCY

Accuracy Differences. In Fig. 5, we summarize how our suite of models performs in terms of
classification accuracy, compared to the human participants in our psychophysical experiment. We
report the best performances, since averages would be unfairly influenced by some older models we
included as points of comparison. In Fig. 10, we provide a more detailed breakdown of performance
by model. While human observers still outperform most vision models on images with Mosaic
or Glitched distortions, the best models match (or even slightly surpass) human performance. For
distortions involving occlusion and luminance manipulations, the vision models typically achieve
higher accuracy than humans. Overall, current state-of-the-art vision models now match or even
outperform human observers in OOD scenarios, including on our synthetic distortions, which they
likely have never encountered during training—a stark contrast to just a few years ago, when humans
were still vastly outperforming models (Geirhos et al., 2018; Dodge & Karam, 2019; Taori et al.,
2020; Jang & Tong, 2024).

Occlusion and Luminance Manipulations. For distortions involving occlusions, such as Stick-
ers and Geometric Shapes, models usually match or exceed human performance (see second row
of Fig. 5). One possible hypothesis is that this can be attributed to the robustness that models develop
after e.g., masked image modeling (MIM) (Fang et al., 2023; 2024). The fact that models perform
so much better than humans on partially occluded images implies that models use different features
than humans. For example, for the Stickers distortion, certain ViT models outperform humans, likely
due to their ability to focus on those parts of the image background that remain visible despite the
occlusions. As shown in Fig. 1, the stickers occlude nearly the entire image on higher intensity lev-
els, and little to no meaningful object information is retained. Nevertheless, certain models are still
able to correctly classify the image based on subtle background cues. This indicates that while mod-
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Figure 6: Humans and models make different mistakes. We analyze the agreement of error
patterns between different families of vision models (see Tab. 6 for a complete list) and human
observers. The error consistency (κ) could theoretically achieve a maximum value of 1, but in line
with earlier work (Geirhos et al., 2021), the EC values range between 0 and 0.4, indicating that
behavioral differences between humans and machines are still quite large. Marker colors encode
model families.

els are performing well, they may be doing so by leveraging unintended shortcuts (Geirhos et al.,
2020a), such as exploiting background information, when faced with severely occluded images. For
the Luminance Checkerboard distortion, we observe that models from the ViT and EVA families
outperform humans by a large margin. This advantage could potentially stem from their architec-
tural features, such as self-attention mechanisms and patch-based processing (Fang et al., 2023;
Dosovitskiy et al., 2021), which enable them to extract meaningful information from both light and
dark regions independently, as well as handle subtle luminance variations. These capabilities give
them a clear edge over humans and older models.

Performance on Complex Distortions. When analyzing more complex distortions such as Mo-
saic, Vertical Lines, and Glitched images (first row of Fig. 5), we observe that human performance
is generally on par with the best-performing models. Especially at greater intensity levels, humans
perform competitively, e.g., outperforming all models for the strongest Vertical Lines distortions.
As we show in Fig. 10, the gap between humans and older models like the ResNet variants is partic-
ularly large on these complex distortions. However, modern model classes demonstrate substantial
progress, approaching human-level performance even at higher intensity levels. While some mar-
gin for improvement remains, the narrowing gap suggests that achieving human-level robustness on
classification tasks is no longer the primary challenge for state-of-the-art architectures.

Human-Machine Error Consistency on LAION-C. For a more fine-grained analysis of the be-
havioral agreement between models and human observers, we calculate error consistency as de-
scribed in Sec. 2. As illustrated in Fig. 6, there is a high degree of variability in error consistency
between human observers and different vision models ranging from 0 to 0.4. This indicates that
while model families such as ViT and EVA rival or surpass human performance, they are approach-
ing the task utilizing different strategies than humans, demonstrating less human-like behaviors. The
observed value range matches the one found in previous work for older models and different image
data (Geirhos et al., 2021). This again suggests that while recent developments have boosted model
performance, these models have not become more human-like, as they follow alternative strategies.

4 DISCUSSION

Summary. Given that existing OOD benchmarks are often no longer OOD for models trained on
web-scale datasets like LAION since distortions like blur and digital corruptions are commonplace

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

on the web, we here introduce LAION-C. LAION-C is a benchmark designed to evaluate the ro-
bustness and generalization capabilities of modern vision models trained on web-scale datasets. Our
empirical results demonstrate that LAION-C is more challenging for a representative suite of vision
models than the existing ImageNet-C benchmark, particularly at higher distortion intensity levels.
Our thorough human evaluation in a highly controlled psychophysical laboratory totaling 11,400
trials shows that the best models often outperform even the best human observers. While they do not
always follow similar strategies (as indicated by error consistency analysis), this reassuring finding
indicates that the best models have indeed substantially progressed in their ability to handle unex-
pected input and are not just getting better on in-distribution distortions. Given that the LAION-C
benchmark dataset, by virtue of its construction, serves as a better proxy for a model’s ability to
recognize objects despite an unexpected distortion, we recommend it as an OOD benchmark for
current and future web-scale vision models.

Limitations. While we have shown that LAION-C can effectively reveal shortcomings in model
robustness, we have not yet fully explored why certain models underperform on specific distortions.
Although our empirical results provide valuable insights, further investigation is required to clarify
which visual cues the models rely on under different conditions. Such an analysis could inform the
development of new inductive biases or architectural improvements, since a better understanding of
these mechanisms could lead to improvements in both model interpretability and robustness. Given
our current focus on introducing the dataset, this was not fully addressed here, but could be an area
for future exploration. Furthermore, it is an open question what the performance limit on LAION-C
looks like. Since fine-tuning models on LAION-C results in significant performance gains, particu-
larly at higher distortion levels, there clearly is potential for optimization through advanced training
techniques. However, how to further improve generalization across OOD scenarios, especially to
enhance the models’ ability to handle the novel distortions presented by LAION-C, remains an open
question that warrants further exploration. To retain its value as an OOD benchmark, LAION-C
should not be used as a training or fine-tuning dataset (except for analysis purposes).

Conclusion and outlook. Just a few years ago, early investigations into generalization abilities of
deep neural networks showed humans vastly outperforming the best models (Geirhos et al., 2018;
Dodge & Karam, 2019). Fast-forwarding to today, LAION-C shows that the best models either
match or outperform human performance on challenging OOD distortions. This finding is reassuring
in the light of growing concerns about the quality of existing evaluation datasets, including the
concern that OOD datasets like ImageNet-C may no longer serve their original purpose in the era
of web-scale training datasets. Our findings indicate that the often super-human performance of
modern models is achieved through super-human strategies: Models use a variety of image cues—
including, in all likelihood, background pixels to perform well on some of our challenging datasets.
Given their high performance across the board, they no longer rely on a single strategy that fails
when faced with a test case that distorts a particular image cue. This marks a paradigm shift in OOD
generalization: From humans outperforming models to models outperforming humans, from relying
on a single strategy to a diverse set of multiple robust strategies, and from OOD benchmarking
measuring progress towards human-like object recognition to better performance now indicating
super-human (in other words, less human-like) vision models.

CODE AND DATASET AVAILABILITY

We will publicly release the dataset and the code to generate distortions and evaluate models af-
ter acceptance of the paper. During the anonymous review period, the code is available from the
supplementary material.

ETHICS STATEMENT

We confirm that all experimental procedures involving human subjects in our study had IRB ap-
proval. In addition, we ensured that all participants gave informed consent prior to their inclusion in
the study. Detailed information was provided to each participant beforehand, outlining the study’s
purpose, procedures and benefits, ensuring they were fully informed before agreeing to participate.
Participants were also informed that they could abort the study at any time, without incurring any
negative consequences. Experimental data and contact information for the participants was stored
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in accordance with GDPR.Participants were compensated with an hourly base rate of 12 EUR and
received bonus payments based on classification performance, as is customary in psychophysical
experiments, so that the final reimbursements exceeded the local minimum wage.
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A APPENDIX

A.1 RELATED WORK

OOD generalization ability of vision models. As deep learning has advanced to the point where
models can reliably generalize to data that matches their training distribution or even exceed the
quality of the original labels (Beyer et al., 2020), OOD-robustness, as measured by specifically
designed OOD test sets, has moved to the center stage of computer vision research. In partic-
ular, ImageNet-C (Hendrycks & Dietterich, 2019), a dataset containing images from the test-set
of ImageNet to which various fairly natural corruptions such as blurring and pixelation were ap-
plied, has long been the gold standard for assessing OOD-performance, to the point where data
augmentations proposed to increase OOD robustness were found to only work well because they are
similar to the ImageNet-C corruptions (Mintun et al., 2021). In contrast, ImageNet-R (Hendrycks
et al., 2021a) instead provides a more complex distribution shift by collecting different renditions
of the target classes such as sculptures and paintings, instead of photos. A more subtle distribu-
tion shift which still caused considerable drops in model performance for ImageNet-trained models,
was proposed by Recht et al. (2019). They collected ImageNetV2, a new test set for ImageNet
that should theoretically not differ from the ImageNet test set at all, because it was collected with a
very similar methodology, but revealed that models do perform slightly worse on ImageNetV2 than
on the original test set. Hendrycks et al. (2021b) proposed two other OOD-test sets which do not
rely on synthetic image manipulations but instead consist of natural images that are in some sense
OOD relative to ImageNet, either by virtue of displaying object classes not present in ImageNet
(ImageNet-O) or by showing an object of an ImageNet-class in a scene that is weird enough to fool
most models (ImageNet-A). What all of these datasets have in common is that, by design, they pro-
vide distribution shifts relative to ImageNet. But with the rapid evolution of deep learning, these
traditional benchmarks have become less challenging for state-of-the-art vision models trained on
expansive web-scale datasets (Radford et al., 2021). While it is to some degree possible to predict a
model’s OOD generalization from its training set performance (Taori et al., 2020), the only reliable
measurements of this capability stem from empirical evaluations of models on OOD datasets. Our
work addresses this need by introducing LAION-C, a dataset that incorporates novel and complex
synthetic distortions tailored to challenge even advanced vision systems.

Advancement in visual foundation models The rise of visual foundation models such as Vi-
sion Transformers (ViT) (Dosovitskiy et al., 2021), ConvNeXt (Liu et al., 2022) and BeiT (Bao
et al., 2022) has redefined what constitutes standard performance across many visual tasks. These
improvements in performance partially stem from architectural innovations and parameter optimiza-
tion, but were mostly powered by the effective leveraging of unprecedented dataset sizes (Zhai et al.,
2022). However, because visual foundation models were trained on web-scale datasets, the extent
of their generalization capability remains underexplored.

Comparing human vs. machine perception. Deep Neural Networks were originally conceived
as models of human vision (Fukushima, 1975) and were found to be the best available models for
neuronal activity in the primate visual cortex (Yamins et al., 2014), even if not trained for this task.
Today, there is a growing body of research dedicated to evaluating the adequacy of neural networks
as behavioral models of human core object recognition (Doerig et al., 2023; Schrimpf et al., 2018;
Wichmann & Geirhos, 2023; Muttenthaler et al., 2023). Building upon the findings of Geirhos
et al. (2021), who illustrate the narrowing of the behavioral gap between humans and machines
in terms of their error consistency, our study further explores this dynamic utilizing LAION-C. We
conducted a systematic analysis of differences in perception between human and machine observers,
and assessed if the behavioral gap is closing further, as well as highlighting the persistent cognitive
differences between humans and machines.

A.2 EXPERIMENT PROCEDURE AND PARTICIPANT INCENTIVES

Participant recruitment and setup. We recruited 20 participants (10 female) from the university
student body via mailing lists. All participants were screened to ensure normal or corrected vision
and no color blindness, and gave informed consent to participate. One participant was excluded
post-hoc due to reporting extreme tiredness. Our experiments were conducted in a darkened cabin,
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Figure 7: Interface presented to participants. This figure illustrates the icon layout as displayed
to participants during the study. The grid is adapted from (Geirhos et al., 2018), while most of the
categories and therefore symbols are different.

using a 22” VIEWPixx 3D light LCD monitor (VPixx Technologies, Saint-Bruno, Canada) at a
refresh rate of 120 Hz (scanning backlight mode on). The screen measures 484 × 302 mm, at a
resolution of 1920 × 1200 pixels. Stimuli were presented foveally in the center of the screen, with
a viewing distance of 65 cm, resulting in 5 ◦ of visual angle. In line with earlier experiments, the
background was set to a grey value of 0.454 in the [0, 1] range. A chin rest was used to maintain
a fixed viewing distance and angle. The experiment was implemented using the Psychophysics
Toolbox (Kleiner et al., 2007, version 3.0.12) in MATLAB (Release 2016a, The MathWorks, Inc.,
Natick, Massachusetts, United States) using a 12-core desktop computer (AMD HD7970 graphics
card “Tahiti” by AMD, Sunnyvale, California, United States) running Kubuntu 14.04 LTS.

The entire classification task, including both the warm-up and main experiment phases, was orga-
nized into 12 blocks. In each block, participants were shown images from the 16 superclasses for
2.5 seconds—a duration empirically determined to balance efficient overall experiment length with
sufficient exposure time allowing for viewing and consideration time. After each image, the 16 cor-
responding class icons were displayed on screen, allowing participants 2 seconds to classify each
image into one of these categories. The icons were organized in a layout that roughly grouped them
by size and general category (e.g., animals and objects), as illustrated in image Fig. 7. To encourage
responses rather than leaving selections blank, a message was displayed at the top of the screen 0.75
second before icon display time ended, prompting participants to make a choice. At the end of each
block, if a participant surpassed the 90% accuracy threshold calibrated using internal baseline per-
formance data, they received an encouraging on-screen message (“Congratulations! You just earned
some extra money!”) along with a $0.50 bonus per block to incentivize higher performance.

Warm-up session and main experiment. The experiment began with a 10-minute warm-up ses-
sion, allowing participants to familiarize themselves with the icon layouts and the classification task
procedure through two practice blocks. Each practice block contained 45 images, with one block
consisting of clean images and the other of augmented images. To avoid test-time adaptation, the
augmentations used during the warm-up phase differed from those in the actual trials. The images
used for the practice trials were also a subsample of the ImageNet validation dataset, but did not
overlap with those used in the main experiment.

Following the warm-up, the main experiment proceeded consisting of 10 blocks, each block com-
prising 60 images. Each set of 5 blocks was augmented using a consistent method, with a balanced
distribution across different intensity levels and superclasses. To avoid fatigue, participants were
allowed an unlimited amount of time to rest between blocks and encouraged to rest their eyes or
accomodate elsewhere.
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A.3 ERROR CONSISTENCY

Here, we provide a more detailed explanation of error consistency (EC), summarizing Geirhos et al.
(2020b). The EC between two observers which both classified a sequence of samples is obtained
by first using the necessary ground-truth labels to assess which images each observer classified cor-
rectly. A trial increases the agreement if both observers solved it correctly, or if they both failed
(and decreases it if only one of them got the trial correct while the other one failed). One then calcu-
lates how much more agreement was observed between the two observers relative to the agreement
expected by chance. This is done by calculating Cohen’s Kappa (Cohen, 1960), which is defined
as κ = po−pe

1−pe
, where po is the (empirically measured) proportion of agreement-trials and pe is the

(theoretical) expected agreement when modeling both observers as independent binomial observers.
κ takes on values between −1 and 1, with a higher κ signifying higher levels of agreement, and a
κ of 0 indicating that a pair of observers does not agree more frequently than one would expect by
chance, given their marginal correctness probabilities.

In this work, we calculate the error consistency between model responses and human classification
data. To do this, we first collect all human responses. Since each human participant saw a fresh set
of stimuli, we thus obtain exactly one human response per image. We then calculate each model’s
EC to this list of human responses.

A.4 AUGMENTATION DESIGNS

• Mosaic: The image is divided into an n× n grid, where each tile is replaced by a patch from the
ImageNet validation set whose average color best matches that of the tile. The values of n per
intensity level are:

– Level 1: n = 4

– Level 2: n = 6

– Level 3: n = 8

– Level 4: n = 16

– Level 5: n = 28

• Glitched: Alternating rows are replaced with black pixels to create a scan line effect. Pixel shifts
and color channel offsets are applied to random regions as follows:

– Level 1: Shift up to 8% of image width in 4 regions, ±4 pixel channel offset.
– Level 2: Shift up to 32% of image width in 8 regions, ±8 pixel channel offset.
– Level 3: Shift up to 50% of image width in 10 regions, ±10 pixel channel offset.
– Level 4: Shift up to 128% of image width in 16 regions, ±16 pixel channel offset.
– Level 5: Shift up to 200% of image width in 20 regions, ±20 pixel channel offset.

The implementation is inspired by T (2020)
• Vertical Lines: The image is divided into vertical sections, each of which is further subdivided

into smaller sections along the y-axis (called y-steps). A vertical line is drawn within each y-step
with a slight x-offset based on the intensity level. The line color is determined by the average
color of that section. The parameters for each intensity level are:

– Level 1: 224 vertical sections, with 1-pixel steps along the y-axis.
– Level 2: 178 vertical sections, with 2-pixel steps along the y-axis.
– Level 3: 112 vertical sections, with 4-pixel steps along the y-axis.
– Level 4: 84 vertical sections, with 6-pixel steps along the y-axis.
– Level 5: 60 vertical sections, with 8-pixel steps along the y-axis.

• Luminance Checkerboard: The image is divided into a 14× 14 grid, and the luminance of each
tile is altered in a checkerboard pattern. The luminance variation per intensity level is:

– Level 1: ±50.
– Level 2: ±50–100.
– Level 3: ±100–125.
– Level 4: ±125–150.
– Level 5: ±150–255.
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Table 3: Occlusion ratio of objects in Stickers and Geometric Shapes distortions. We calculated
the object occlusion ratio for the Stickers and Geometric Shapes corruptions as an additional quan-
titative measurement of the distortion strength.

Intensity Level Geometric Shapes (%) Stickers (%)

1 61.88 65.83
2 72.51 76.52
3 85.35 86.19
4 90.16 89.54
5 93.21 91.63
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Figure 8: LAION-C can be solved. For every distortion, we plot the accuracy of our reference
model (ViT-H-P14-336-CLIP-LAION-IN12K) before and after fine-tuning, in comparison to the
best human participant for reference. Most distortions can be learned perfectly, only the Stickers and
Mosaic distortions might have been too difficult at the highest intensity levels. Further performance
gains might be possible with more careful fine-tuning.

• Stickers: 16×16 pixel image patches from the ImageNet validation set are randomly placed with
uniform probability across the image. The number of patches per intensity level is:

– Level 1: 100 patches.
– Level 2: 200 patches.
– Level 3: 400 patches.
– Level 4: 600 patches.
– Level 5: 1200 patches.

For an estimate of the occlusion ration of the objects per intensity level, see Tab. 3.

• Geometric Shapes: Random geometric shapes (triangle, square, star, circle) of varied colors and
sizes are introduced. The number of shapes per intensity level is:

– Level 1: 150 shapes.
– Level 2: 300 shapes.
– Level 3: 600 shapes.
– Level 4: 800 shapes.
– Level 5: 1000 shapes.

For an estimate of the occlusion ration of the objects per intensity level, see Tab. 3.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Model (ViT) Accuracy Before and After Fine-Tuning on LAION-C. The high accuracies
after fine-tuning indicate that even though the dataset is challenging, there is, in principle, enough
signal left to perform well on LAION-C.

Intensity Level Accuracy Before (%) Accuracy After (%)

Mosaic

1 89.0 96.3
2 71.9 93.0
3 35.8 88.7
4 14.3 69.6
5 14.7 47.7

Vertical Lines

1 79.9 95.9
2 70.1 94.9
3 50.8 94.1
4 36.1 92.4
5 19.4 90.0

Glitched

1 95.9 98.6
2 86.2 97.5
3 63.6 95.4
4 55.6 94.2
5 47.1 93.4

Luminance Checkerboard

1 99.7 99.6
2 98.4 99.2
3 95.1 98.8
4 90.7 98.5
5 56.6 92.5

Geometric Shapes

1 30.9 99.4
2 11.2 98.6
3 6.7 93.6
4 6.6 85.9
5 6.3 73.7

Sticker

1 97.3 98.8
2 77.8 96.5
3 28.7 63.7
4 14.9 31.8
5 8.1 14.3

A.5 ACCURACY

To demonstrate the value of LAION-C as a benchmark for evaluating model robustness, we analyze
how model performance on LAION-C correlates with that on ImageNet-C. Grounding our compari-
son in models that have demonstrated a baseline level of robustness on well-established benchmarks,
we apply a threshold to include 40 models that achieved at least 60% accuracy on ImageNet-C.
As shown in Fig. 9, the majority of data points lie above the identity line representing performance
alignment on LAION-C and ImageNet-C. The gradual slope of the data points, combined with their
positioning, indicates that models generally perform better on ImageNet-C, while their performance
on LAION-C is more dispersed and often substantially lower.
This broader distribution of performance highlights that LAION-C introduces more challenging dis-
tortions, prompting models to exhibit greater variability in robustness. The moderate Kendall’s tau
coefficient (τ = 0.66) between the models’ performances on LAION-C and ImageNet-C further un-
derscores this, indicating notable pairwise differences in how models rank across these two bench-
marks, unearthing vulnerabilities that are less pronounced on ImageNet-C. These results demon-
strate the necessity of LAION-C as a complementary benchmark for a more comprehensive evalua-
tion of model robustness.

A.6 BREAKDOWN OF MODEL PERFORMANCE

Evaluating VLMs To evaluate GPT-4o (OpenAI, 2024) and Gemini 1.5 Pro (Team et al., 2024)
on LAION-C, we decided to test a random subsample of the full dataset, consisting of 100 images
per category, which were then tested on all corruptions and intensity levels, resulting in a total of
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48,000 images. For ImageNet-C, we limited ourselves to only 10 images per class, to get an initial
ballpark estimate of performance.

We employed the following system prompt, in line with our human experiments, during which
participants were also shown examples:

System Prompt:
You are an image-recognition API.
You are always asked to classify the main object of images into one of 16 mutually exclusive
categories.
In some images, the distortion may be so strong that you might not recognize anything.
If you’re unsure, provide your best guess - you always have to pick exactly one of the 16
categories.
The 16 categories are: primate, dog, cat, bird, fish, snake, butterfly, fruit, boat, vehicle,
chair, ball, bottle, instrument, timekeeper, tool.
Here is a list of characterizations of every such category:
primate: a primate, like e.g. monkeys, chimpanzees, Orang-Utans etc.
dog: a dog, like e.g. german shepherd, labrador, golden retriever etc.
cat: a cat, like e.g. domestic cat, lion, cheetah etc.
bird: a bird, like e.g. songbird, eagle, chicken etc.
fish: a fish, like e.g. trout, shark, whale etc.
snake: a snake, like e.g. viper, cobra, seasnake etc.
butterfly: a butterfly, like e.g. monarch, cabbage butterfly, ringlet etc.
fruit: a fruit, like e.g. apple, orange, pineapple etc.
boat: a boat, like e.g. ship, gondola, fireboat etc.
vehicle: a vehicle, like e.g. truck, van, sports car etc.
chair: a chair, like e.g. bench, throne, couch etc.
ball: a ball (or a person playing with a ball), like e.g. soccer ball, football, tennis ball etc.
bottle: a bottle, like e.g. water bottle, jug, pill bottle etc.
instrument: a musical instrument (or a person playing an instrument), like e.g. sax, flute,
harp etc.
timekeeper: a timekeeper, like e.g. clock, watch, sundial etc.
tool: a tool (or a person using a tool), like e.g. hammer, power drill, chainsaw etc.
Since you are an API, you always respond with minimal messages that contain exactly one
word, which is the category name.

User Prompt:
What is the main object in this image? Categories are: primate, dog, cat, bird, fish, snake,
butterfly, fruit, boat, vehicle, chair, ball, bottle, instrument, timekeeper, tool.

Table 5: Model performance on LAION-C correlates with other OOD benchmarks. We eval-
uated a suite of 18 models (ViT and ConvNeXt variants trained on either LAION-2B or ImageNet)
on IN-C, IN-A, IN-R, IN-Sketch and IN-Val. Evidently, the correlations between all of these OOD
benchmarks are high, indicating that they measure related quantities.

IN-C LAION-C IN-A IN-R IN-Sketch IN-val

IN-C 1.00 0.86 0.88 0.91 0.86 0.90
LAION-C 0.86 1.00 0.69 0.70 0.81 0.72
IN-A 0.88 0.69 1.00 0.99 0.94 1.00
IN-R 0.91 0.70 0.99 1.00 0.93 0.99
IN-Sketch 0.86 0.81 0.94 0.93 1.00 0.95
IN-val 0.90 0.72 1.00 0.99 0.95 1.00
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Figure 9: Performance Divergence of Models on LAION-C and ImageNet-C (1k classes). The
figure illustrates the scattered performance of models across the ImageNet-C and LAION-C dataset,
where a Kendall’s tau coefficient (τ ) of 0.66 and the shallow slope indicate a dispersed performance
on LAION-C. To provide a clearer trend and to better visualize the dispersion, we supplement the
suite of models with additional top-performing models sourced from the timm leaderboard (Wight-
man, 2024), bringing the total number of models to 40 (see Tab. 6 for a complete list).
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Figure 10: Model performance on LAION-C. Analogous to Fig. 5, we relate distortion intensity
level to classification accuracy for the different distortions, showing the different models individ-
ually. The shaded region around human performance corresponds to the 95% confidence interval,
which we omit for the models for better visibility.
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A.7 MODELS

Table 6: Model overview. For each model used in our evaluation, we show the full model names, as
used in timm, an abbreviated name used in the main text and a description of the model. While the
first 16 models were used in all analyses and figures, the rest was only used for selective analyses
such as Fig. 6.

Abbreviation Full Model Name Description
EVA-G-P14-560-M30M-IN22K eva giant patch14 560.m30m ft in22k in1k EVA giant model, patch size 14, pre-trained with masked image model-

ing (MIM) on a Merged-30M dataset, fine-tuned on ImageNet-22k and
ImageNet-1k (Fang et al., 2023).

EVA02-L-P14-448-MIM-M38M-IN22K eva02 large patch14 448.mim m38m ft in22k in1k EVA02 large model, patch size 14, pre-trained with masked image mod-
eling (MIM) on a Merged-38M dataset, fine-tuned on ImageNet-22k
and ImageNet-1k (Fang et al., 2024).

VIT-H-P14-336-CLIP-LAION-IN12K vit huge patch14 clip 336.laion2b ft in12k in1k Vision Transformer (VIT) huge model, patch size 14, pre-trained on
LAION-2B dataset using OpenCLIP, fine-tuned on ImageNet-12k and
ImageNet-1k (Dosovitskiy et al., 2021).

VIT-L-P14-224-CLIP-OPENAI-IN12K vit large patch14 clip 224.openai ft in12k in1k Vision Transformer large model, patch size 14, pre-trained on WIT-
400M using CLIP, fine-tuned on ImageNet-12k and ImageNet-1k
(Dosovitskiy et al., 2021).

VIT-B-P32-384-CLIP-LAION-IN12K vit base patch32 clip 384.laion2b ft in12k in1k Vision Transformer base model, patch size 32, pretrained on LAION-
2B using OpenCLIP,fine-tuned on ImageNet-12k and ImageNet-1k
(Dosovitskiy et al., 2021).

VIT-B-P16-224-AUGREG-IN21K vit base patch16 224.augreg2 in21k ft in1k Vision Transformer base model, patch size 16, trained on ImageNet-21k
and fine tuned on ImageNet-1k (Dosovitskiy et al., 2021).

BEITV2-L-P16-224-IN1K beitv2 large patch16 224.in1k ft in1k BEiTv2 large model, patch size 16, trained on ImageNet-1k, fine-tuned
on ImageNet-22k and ImageNet-1k (Bao et al., 2022; Peng et al., 2022).

BEITV2-B-P16-224-IN1K beitv2 base patch16 224.in1k ft in1k BEiTv2 base model, patch size 16, trained on ImageNet-1k, fine-tuned
on ImageNet-22k and ImageNet-1k (Bao et al., 2022; Peng et al., 2022).

CONV-XXL-CLIP-LAION-IN1K convnext xxlarge.clip laion2b soup ft in1k ConvNeXt xxlarge model, pre-trained using OpenCLIP on LAION-2B,
fine-tuned on ImageNet-1k (Liu et al., 2022).

CONV-B-CLIP-LAION-AUGREG-IN12K convnext base.clip laion2b augreg ft in12k in1k 384 ConvNeXt base model,pre-trained using OpenCLIP on LAION-2B,
fine-tuned on ImageNet-12k and ImageNet-1k (Liu et al., 2022).

WRN101-2-TV-IN1K wide resnet101 2.tv in1k Wide ResNet-101 model, trained on ImageNet-1k, with original
torchvision model weight (He et al., 2016; Zagoruyko & Komodakis,
2016).

WRN50-2-RACM-IN1K wide resnet50 2.racm in1k Wide ResNet-50 model, trained with RandAugment RACM recipe on
ImageNet-1k (He et al., 2016; Zagoruyko & Komodakis, 2016).

RN50-A1-IN1K resnet50.a1 in1k ResNet-50 model trained on ImageNet-1k (He et al., 2016; Wightman
et al., 2021).

EFF-B3-RA2-IN1K efficientnet b3.ra2 in1k EfficientNet-B3 model, trained with RandAugment RA2 recipe on
ImageNet-1k (Tan & Le, 2019).

DN201-TV-IN1K densenet201.tv in1k DenseNet-201, DenseNet pre-trained on ImageNet-1k (Huang et al.,
2017).

DN161-TV-IN1K densenet161.tv in1k DenseNet-161, DenseNet model pre-trained on ImageNet-1k (Huang
et al., 2017).

GPT-4o gpt-4o-2024-08-06 At the time of writing, the most recent snapshot of OpenAI’s flagship
model (OpenAI, 2024). Only evaluated on 48,000 LAION-C samples
and 12,000 ImageNet-C samples.

Gemini-1.5-Pro gemini-1.5-pro-002 At the time of writing, the most recent stable version of Google’s Gem-
ini model (Team et al., 2024). Only evaluated on 48,000 LAION-C
samples and 12,000 ImageNet-C samples.

convnextv2 pico.fcmae ft in1k
convnextv2 tiny.fcmae ft in22k in1k
convnext base.fb in22k ft in1k
convnext large mlp.clip laion2b augreg ft in1k 384
convnext large mlp.clip laion2b soup ft in12k in1k 384
convnext tiny.in12k ft in1k
convnext small.fb in22k ft in1k 384
convnext xlarge.fb in22k ft in1k
convnext small.in12k ft in1k 384
convnextv2 large.fcmae ft in22k in1k 384
vit betwixt patch16 reg4 gap 256.sbb2 e200 in12k ft in1k
vit mediumd patch16 rope reg1 gap 256.sbb in1k
vit wee patch16 reg1 gap 256.sbb in1k
vit mediumd patch16 reg4 gap 256.sbb2 e200 in12k ft in1k
vit mediumd patch16 reg4 gap 256.sbb in12k
vit pwee patch16 reg1 gap 256.sbb in1k
vit betwixt patch16 rope reg4 gap 256.sbb in1k
vit betwixt patch16 reg4 gap 256.sbb in12k ft in1k
maxxvitv2 rmlp base rw 384.sw in12k ft in1k
vgg19 bn.tv in1k
regnety 1280.swag lc in1k
regnety 1280.swag ft in1k
regnety 320.swag ft in1k
inception v3.tf adv in1k
beit base patch16 224.in22k ft in22k in1k
beit large patch16 512.in22k ft in22k in1k
deit3 large patch16 384.fb in22k ft in1k
deit base distilled patch16 224.fb in1k
swin base patch4 window7 224.ms in22k ft in1k
swinv2 base window12to24 192to384.ms in22k ft in1k
swinv2 large window12to24 192to384.ms in22k ft in1k
eva large patch14 336.in22k ft in1k
convformer b36.sail in22k ft in1k 384
caformer b36.sail in22k ft in1k 384
efficientformerv2 s2.snap dist in1k

A.8 DATASHEET FOR LAION-C

As proposed by one of our anonymous reviewers, we here include a Datasheet for LAION-C fol-
lowing the template proposed by Gebru et al. (2021).
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Motivation

For what purpose was the dataset cre-
ated? Was there a specific task in mind?
Was there a specific gap that needed to be
filled? Please provide a description.

The LAION-C dataset was created to serve
as a benchmark for evaluating the robustness
and Out-of-Distribution (OOD) generalization of
large-scale vision models. It can also be used to
study the difference between human and model
perception.

Who created this dataset (e.g., which
team, research group) and on behalf of
which entity (e.g., company, institution,
organization)?

Information will be provided upon publication.

Who funded the creation of the dataset?
If there is an associated grant, please pro-
vide the name of the grantor and the grant
name and number.

Information will be provided upon publication.

Any other comments?

None.

Composition

What do the instances that comprise the
dataset represent (e.g., documents, pho-
tos, people, countries)? Are there multi-
ple types of instances (e.g., movies, users,
and ratings; people and interactions be-
tween them; nodes and edges)? Please
provide a description.

The instances in the LAION-C dataset repre-
sent images grouped into 16 superclasses with
various synthetic distortions applied to them at 5
severity levels. Each superclass contains 273 im-
ages, and the distortions include mosaic effects,
glitched images, vertical lines, geometric shapes,
stickers, and luminance checkerboard patterns.

How many instances are there in total (of
each type, if appropriate)?

In total, LAION-C consists of 131.040 images.
(16 classes × 273 images × 6 corruptions × 5
severity levels.)

Does the dataset contain all possible in-
stances or is it a sample (not necessarily
random) of instances from a larger set?
If the dataset is a sample, then what is the
larger set? Is the sample representative of
the larger set (e.g., geographic coverage)?
If so, please describe how this representa-
tiveness was validated / verified. If it is not
representative of the larger set, please de-
scribe why not (e.g., to cover a more diverse
range of instances, because instances were
withheld or unavailable).

The dataset is a sample of the ImageNet vali-
dation set and only contains 4,368 of the 50,000
images. As such, LAION-C is not representative
of ImageNet, because it only consists of coarse
superclasses. This decision was made to facili-
tate measuring human classification performance
on LAION-C, which would not be possible with
the fine-grained classes of ImageNet.

What data does each instance consist
of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please
provide a description.

Each instance consists of an RGB image, as well
as metadata about the ground-truth class, corrup-
tion type, and severity level, which are simply
part of the filename.

Is there a label or target associated with
each instance? If so, please provide a de-
scription.

Each image is labeled with its superclass (one
of 16) and can be traced back to its original Ima-
geNet class label.

Is any information missing from individ-
ual instances? If so, please provide a
description, explaining why this information
is missing (e.g., because it was unavail-
able). This does not include intentionally re-
moved information, but might include, e.g.,
redacted text.

No information is missing from individual in-
stances as each image in the dataset is synthet-
ically altered and labeled with the type of dis-
tortion and its severity, ensuring comprehensive
data for evaluation purposes.

Are relationships between individual in-
stances made explicit (e.g., users’ movie
ratings, social network links)? If so,
please describe how these relationships are
made explicit.
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The dataset does not contain explicit relation-
ships between individual instances such as so-
cial links or ratings since it primarily focuses on
image recognition and distortion type evaluation
without any relational context between the im-
ages.

Are there recommended data splits (e.g.,
training, development / validation, test-
ing)? If so, please provide a description of
these splits, explaining the rationale behind
them.

Since the dataset is primarily used for bench-
marking purposes, splitting specifics are not pro-
vided. Essentially, the entire dataset is a valida-
tion set.

Are there any errors, sources of noise, or
redundancies in the dataset? If so, please
provide a description.

The dataset is designed to introduce controlled
noise through synthetic distortions to test model
robustness. There are no unintentional errors
or redundancies; all modifications serve the pur-
pose of benchmark evaluation.

Is the dataset self-contained, or does
it link to or otherwise rely on external
resources (e.g., websites, tweets, other
datasets)? If it links to or relies on exter-
nal resources, a) are there guarantees that
they will exist, and remain constant, over
time; b) are there official archival versions of
the complete dataset (i.e., including the ex-
ternal resources as they existed at the time
the dataset was created); c) are there any
restrictions (e.g., licenses, fees) associated
with any of the external resources that might
apply to a future user? Please provide de-
scriptions of all external resources and any
restrictions associated with them, as well as
links or other access points, as appropriate.

The dataset is entirely self-contained.

Does the dataset contain data that might
be considered confidential (e.g., data
that is protected by legal privilege or by
doctor-patient confidentiality, data that
includes the content of individuals non-
public communications)? If so, please
provide a description.

The dataset does not contain confidential data as
it is based on publicly available ImageNet data.

Does the dataset contain data that, if
viewed directly, might be offensive, in-

sulting, threatening, or might otherwise
cause anxiety? If so, please describe why.

The dataset does not contain offensive or dis-
turbing content as it focuses on visual distortions
applied to non-sensitive images. Additionally,
the images sourced from ImageNet are manually
filtered to exclude any content that could be con-
sidered disturbing.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.

Yes, the LAION-C dataset relates to people to
some extent as it includes images from Ima-
geNet, some of which feature human faces and
figures. While the primary focus of the dataset is
not on the individuals depicted or on analyzing
human-specific data, the presence of human im-
ages means that the dataset does relate to people
indirectly.

Does the dataset identify any subpop-
ulations (e.g., by age, gender)? If so,
please describe how these subpopulations
are identified and provide a description
of their respective distributions within the
dataset.

The LAION-C dataset itself does not explic-
itly identify subpopulations by age, gender, or
other demographic characteristics as part of its
core design. However, since it includes im-
ages from ImageNet, which may contain human
faces, there is an implicit presence of such de-
mographic data.

Is it possible to identify individuals (i.e.,
one or more natural persons), either di-
rectly or indirectly (i.e., in combination
with other data) from the dataset? If so,
please describe how.

While the primary intention of the LAION-C
dataset is not to facilitate the identification of in-
dividuals, it incorporates images from ImageNet,
which may include human faces.

Does the dataset contain data that might
be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins,
sexual orientations, religious beliefs, po-
litical opinions or union memberships, or
locations; financial or health data; bio-
metric or genetic data; forms of govern-
ment identification, such as social secu-
rity numbers; criminal history)? If so,
please provide a description.
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While the LAION-C dataset primarily features
synthetic distortions applied to images for tech-
nical analysis, it includes images sourced from
ImageNet that may contain human faces. These
images can indirectly reveal racial or ethnic ori-
gins due to the diversity of individuals depicted.
However, there is no explicit focus on collecting
or analyzing data related to sexual orientations,
religious beliefs, political opinions, union mem-
berships, specific locations, financial or health
data, biometric or genetic data, government iden-
tification numbers, or criminal history. The in-
clusion of human images is incidental and not
intended for any analysis related to these sensi-
tive aspects.

Any other comments?

None.

Collection Process

How was the data associated with each
instance acquired? Was the data di-
rectly observable (e.g., raw text, movie rat-
ings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred / derived from
other data (e.g., part-of-speech tags, model-
based guesses for age or language)? If
data was reported by subjects or indirectly
inferred / derived from other data, was the
data validated / verified? If so, please de-
scribe how.

The data for each instance in the LAION-C
dataset is derived from ImageNet, where images
are directly observable and not reported by sub-
jects or inferred.

What mechanisms or procedures were
used to collect the data (e.g., hardware
apparatus or sensor, manual human cu-
ration, software program, software API)?
How were these mechanisms or procedures
validated?

First, 16 sensible high-level classes were se-
lected that the authors deemed suitable for hu-
mans to recognize in psychophysical experi-
ments. These classes are: ball, bird, boat, bot-
tle, butterfly, car & truck, cat, chair, dog, fish,
fruit, instrument, primate, snake, timekeeping,
and tool. Then, 200 classes from the original
ImageNet-1k set were selected that can consti-
tute these high-level classes. From the pools
of validation set images, 500 images were ran-
domly selected per superclass. These images
were then manually filtered to include only im-
ages that fall clearly into one of the 16 super-

classes (i.e. an image showing both a ball and a
dog would have been filtered out to ensure clean
class labels).

If the dataset is a sample from a larger
set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific
sampling probabilities)?

See previous question. Candidate images from
the constituent classes were sampled randomly
with uniform probability.

Who was involved in the data collection
process (e.g., students, crowdworkers,
contractors) and how were they compen-
sated (e.g., how much were crowdwork-
ers paid)?

Information will be provided upon publication.

Over what timeframe was the data col-
lected? Does this timeframe match the
creation timeframe of the data associ-
ated with the instances (e.g., recent crawl
of old news articles)? If not, please de-
scribe the timeframe in which the data asso-
ciated with the instances was created.

The source dataset for the creation of LAION-
C was the 2012 ILSVRC validation set (“Ima-
geNet”) which was collected over several years.
The distortions applied in LAION-C were cre-
ated specifically for benchmarking purposes at
the time of dataset development (2023 / 2024),
which do not coincide directly with the original
image collection periods.

Were any ethical review processes con-
ducted (e.g., by an institutional review
board)? If so, please provide a descrip-
tion of these review processes, including the
outcomes, as well as a link or other access
point to any supporting documentation.

The original ImageNet dataset underwent vari-
ous ethical and review processes during its de-
velopment, details are managed by the original
collector for ImageNet.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.

Only indirectly. LAION-C includes images
from ImageNet that feature human faces and fig-
ures.

Did you collect the data from the individ-
uals in question directly, or obtain it via
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third parties or other sources (e.g., web-
sites)?

Not applicable.

Were the individuals in question notified
about the data collection? If so, please
describe (or show with screenshots or other
information) how notice was provided, and
provide a link or other access point to, or oth-
erwise reproduce, the exact language of the
notification itself.

Not applicable.

Did the individuals in question consent
to the collection and use of their data?
If so, please describe (or show with screen-
shots or other information) how consent was
requested and provided, and provide a link
or other access point to, or otherwise repro-
duce, the exact language to which the indi-
viduals consented.

Not applicable.

If consent was obtained, were the
consenting individuals provided with a
mechanism to revoke their consent in the
future or for certain uses? If so, please
provide a description, as well as a link or
other access point to the mechanism (if ap-
propriate).

Not applicable.

Has an analysis of the potential impact
of the dataset and its use on data sub-
jects (e.g., a data protection impact anal-
ysis) been conducted? If so, please pro-
vide a description of this analysis, includ-
ing the outcomes, as well as a link or other
access point to any supporting documenta-
tion.

No specific data protection impact analysis has
been conducted for the LAION-C dataset as
its primary modifications involve applying syn-
thetic distortions like glitches to the images for
technical benchmarking purposes. These alter-
ations do not fundamentally change the nature
of the data regarding privacy or ethical concerns
beyond their original use in ImageNet.

Any other comments?

None.

Preprocessing / cleaning / labeling

Was any preprocessing / cleaning / la-
beling of the data done (e.g., discretiza-
tion or bucketing, tokenization, part-
of-speech tagging, SIFT feature extrac-
tion, removal of instances, processing of
missing values)? If so, please provide a
description. If not, you may skip the remain-
der of the questions in this section.

Images were resized to 256x256 pixels and
center-cropped to 224x224 pixels, as is common
for ImageNet. Images were filtered manually to
ensure clean labels as described above.

Was the “raw” data saved in addition
to the preprocessed / cleaned / labeled
data (e.g., to support unanticipated fu-
ture uses)? If so, please provide a link or
other access point to the “raw” data.

No, LAION-C only consists of the modified im-
ages, but every filename can be uniquely traced
back to the parent image from the ImageNet vali-
dation set, which can be found here: https://
www.image-net.org/download.php

Is the software used to preprocess /
clean / label the instances available? If
so, please provide a link or other access
point.

Yes, the preprocessing, cleaning, and labeling
of the dataset instances were conducted using
Python. The code used for these processes will
be made available upon publication.

Any other comments?

None.

Uses

Has the dataset been used for any tasks
already? If so, please provide a descrip-
tion.

Yes, the LAION-C dataset has been utilized to
evaluate the robustness and out-of-distribution
(OOD) generalization capabilities of large-scale
vision models.

Is there a repository that links to any
or all papers or systems that use the
dataset? If so, please provide a link or other
access point.

Information will be provided upon publication.

What (other) tasks could the dataset be
used for?
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Beyond benchmarking vision model robustness,
LAION-C could be used in studies investigating
the effects of image distortions on human per-
ception.

Is there anything about the composition
of the dataset or the way it was col-
lected and preprocessed / cleaned / la-
beled that might impact future uses? For
example, is there anything that a future user
might need to know to avoid uses that could
result in unfair treatment of individuals or
groups (e.g., stereotyping, quality of service
issues) or other undesirable harms (e.g., fi-
nancial harms, legal risks) If so, please pro-
vide a description. Is there anything a future
user could do to mitigate these undesirable
harms?

Given that the base images in the LAION-C
dataset are sourced from ImageNet, which is al-
ready publicly available, the additional risk for
harm is negligible.

Are there tasks for which the dataset
should not be used? If so, please provide
a description.

We would not recommend using the LAION-C
dataset for fine-tuning machine learning models,
due to dataset size.

Any other comments?

None.

Distribution

Will the dataset be distributed to third
parties outside of the entity (e.g., com-
pany, institution, organization) on behalf
of which the dataset was created? If so,
please provide a description.

The LAION-C dataset will be made publicly
available, allowing for distribution to third par-
ties outside of the originating entity.

How will the dataset will be distributed
(e.g., tarball on website, API, GitHub)
Does the dataset have a digital object iden-
tifier (DOI)?

Upon publication, the dataset will be published
via Zenodo.

When will the dataset be distributed?

The dataset will be distributed upon publication.

Will the dataset be distributed under a
copyright or other intellectual property
(IP) license, and / or under applicable
terms of use (ToU)? If so, please describe
this license and / or ToU, and provide a link
or other access point to, or otherwise repro-
duce, any relevant licensing terms or ToU,
as well as any fees associated with these
restrictions.

LAION-C will be available under a CC BY-
NC 4.0 license, allowing non-commercial use
with proper attribution only, to ensure compli-
ance with the original ImageNet license.

Have any third parties imposed IP-based
or other restrictions on the data associ-
ated with the instances? If so, please de-
scribe these restrictions, and provide a link
or other access point to, or otherwise repro-
duce, any relevant licensing terms, as well
as any fees associated with these restric-
tions.

The original ImageNet data is subject to terms
of access that limit its use to non-commercial re-
search and educational purposes only. The full
terms of access can be found here: https://
www.image-net.org/download.php

Do any export controls or other regula-
tory restrictions apply to the dataset or
to individual instances? If so, please de-
scribe these restrictions, and provide a link
or other access point to, or otherwise repro-
duce, any supporting documentation.

Since the images are modified ImageNet im-
ages, the restrictions of the ImageNet license ap-
ply.

Any other comments?

None

Maintenance

Who will be supporting / hosting / main-
taining the dataset?

Information will be provided upon publication.

How can the owner / curator / manager of
the dataset be contacted (e.g., email ad-
dress)?

Information will be provided upon publication.
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Is there an erratum? If so, please provide
a link or other access point.

There is not an explicit erratum as for now.

Will the dataset be updated (e.g., to cor-
rect labeling errors, add new instances,
delete instances)? If so, please describe
how often, by whom, and how updates will
be communicated to users (e.g., mailing list,
GitHub)?

Information will be provided upon publication.

If the dataset relates to people, are there
applicable limits on the retention of the
data associated with the instances (e.g.,
were individuals in question told that
their data would be retained for a fixed
period of time and then deleted)? If so,
please describe these limits and explain how
they will be enforced.

Not applicable (beyond agreements made for
ImageNet).

Will older versions of the dataset con-
tinue to be supported / hosted / main-

tained? If so, please describe how. If not,
please describe how its obsolescence will
be communicated to users.

Should newer versions of the dataset be created,
older versions will continue to be available via
Zenodo.

If others want to extend / augment / build
on / contribute to the dataset, is there
a mechanism for them to do so? If so,
please provide a description. Will these
contributions be validated / verified? If so,
please describe how. If not, why not? Is
there a process for communicating / dis-
tributing these contributions to other users?
If so, please provide a description.

We encourage other researchers to build on
LAION-C, for example by contributing their
own corruptions. While there is no automatic
mechanism (such as publicly accessible version
control, e.g. via Github) for this, we encourage
interested parties to reach out to the authors.

Any other comments?

None
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