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Co-clustering for Federated Recommender System

ABSTRACT
In an era where data privacy and security are attracting increasing
attention, Federated Recommender System (FRS) offers a solution
that strikes a balance between providing high-quality recommen-
dations and preserving user privacy. However, the presence of
statistical heterogeneity in FRS, commonly observed due to person-
alized decision-making patterns, can pose challenges. To address
this issue and maximize the benefit of collaborative filtering (CF)
in FRS, it is intuitive to consider clustering clients (users) as well
as items into different groups and learning group-specific models.
Existing methods either resort to client clustering via user repre-
sentations—risking privacy leakage—or employ classical clustering
strategies on item embeddings or gradients, which we found are
plagued by the curse of dimensionality. In this paper, we delve into
the inefficiencies of the K-Meansmethod in client grouping, attribut-
ing failures due to the high dimensionality as well as data sparsity
occurring in FRS, and propose CoFedRec, a novel Co-clustering
Federated Recommendation mechanism, to address clients hetero-
geneity and enhance the collaborative filtering within the federated
framework. Specifically, the server initially formulates an item
membership from the client-provided item network. Subsequently,
clients are grouped according to a specific item category picked
from the item membership during each communication round, re-
sulting in an intelligently aggregated group model. Meanwhile,
to comprehensively capture the global inter-relationships among
items, we incorporate an additional supervised contrastive learning
term based on server-side generated item memberships into the
local training phase for each client. Extensive experiments on four
datasets with different sizes are provided. The results verify that
CoFedRec outperforms state-of-the-art baselines.
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1 INTRODUCTION
With the rapid development of e-commerce and digital services, peo-
ple have become increasingly digital-centric [35]. They now spend a
significant amount of time online, exploring products, content, and
services tailored to their interests. Traditional recommender sys-
tems (RS) [1, 47] have proven to be indispensable for e-commerce
giants and various digital service providers. However, these systems
usually operate by consolidating vast amounts of user data cen-
trally, leading to potential privacy concerns. Federated learning (FL)
[4, 25, 41] is a method where multiple clients collaboratively train
a deep learning model using their local data. This decentralized
approach promotes efficient data exchange and ensures that each
participant’s data remains private, without being exposed to a cen-
tral authority or other participants. The Federated Recommender
System (FRS) [56, 61] is built on this idea.

FRS is a specialized implementation of FL for recommendation
tasks. Instead of directly sending user interaction data to a central
server, FRS processes the data locally on users’ devices and only
the essential model updates are sent back to the central server for
global aggregation. Unlike other applications of FL [46, 63], where
there are fewer clients and each client possesses a large amount
of data from multiple individuals (known as cross-silo FL [21]), in
FRS, each user acts as a client constituting only one single user’s
profile (also known as cross-device FL [22]).

There is an increasing number of works [2, 29, 58] exploring solu-
tions for FRS or the adaptation of cross-silo Federated Learning (FL)
algorithms for cross-device contexts. A typical approach involves
the utilization of FedAvg [41] to generate a global model and then
fine-tune the model on the individual client-side [65]. However,
this single global aggregation is inherently designed for IID data. In
practical scenarios, the data available on each device is generated
or produced by the user which is usually non-IID [14], reflecting
different preferences or decision habits across users. To model the
heterogeneity across the clients (users), there are works [10, 36, 64]
that assume the whole population could be partitioned into dis-
tinct clusters or groups, characterized by analogous preferences.
On the other hand, collaborative filtering (CF) [18, 42] has proven
successful in recommender systems whose power is confined in the
federated setting where the whole dataset is not available. There-
fore, we can also expect an increase in accuracy by finding out the
neighbors of users through clustering and then gathering collabora-
tive insights. In this light, learning a group-level model customized
for each group can boost the algorithm’s adaptability to hetero-
geneous clients’ data and the ability to transfer useful knowledge
among clients by factoring in collaborative insights. In this paper,
however, we observe that the widely deployed clustering method
which groups the clients using a distance function applied to the
updates uploaded by clients [34, 44, 49] in general FL is inefficient
in the FRS setting since querying neighbors of high quality is nearly
impossible when the feature space is sparse.

To address the aforementioned challenges, we propose a co-
clustering mechanism CoFedRec for FRS to effectively group clients
without accessing their individual profiles. The core insights come
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from (i) the heterogeneity across clients in FR as well as (ii) the
understanding of CF whose key idea is to predict the target user’s
unrated item scores using neighborhood ratings. Specifically, we
turn to the experiment results to analyze the inherent limitations
of the classical clustering strategies and introduce the co-clustering
mechanism. In each communication round, the global aggregation is
performed as a preliminary step to gather the global item correlated
relationship and yield an item membership via the K-Means clus-
tering technique upon the global item representation. The server
algorithm then implements the co-clustering by computing simi-
larity scores among clients regarding a concerning item category,
which allows a specific item category to cluster users into two dis-
tinct groups, the similar group, and the dissimilar group. Within
the similar group, users tend to react similarly towards that type of
item. Intriguingly, all the clients in the similar group will update
their item embedding network with the aggregated group model
while those in the dissimilar group will retain their local model
waiting for the subsequent communication round. In addition to
the group model, the item membership will be distributed to all the
clients. Inspired by the theory of Supervised Contrastive Learning
(SCL) [23], a local supervised contrastive term is integrated during
the local training phase to include the global item correlated rela-
tionship to ensure the locally learned item representation contains
the global item insights.

Our contributions are summarized as follows:
• We analyze the failure of classical clustering technique K-
Means in the federated recommendation setting and propose
a novel co-clustering federated recommendation mechanism
CoFedRec which groups users based on a specific item cat-
egory within each communication round and generates an
intelligent group model containing the collaborative infor-
mation from the user’s neighbors. Our proposed paradigm
is applicable to different backbones.
• We introduce a supervised contrastive term into the local
training phase to include the global item relationship across
all users. This ensures that our proposed co-clustering mech-
anism not only tackles data heterogeneity and user collabo-
rative information but also includes globally diverse insights
in local training.
• We conduct extensive experiments on four real-world datasets
demonstrating our CoFedRec outperforms state-of-the-art
baselines in terms of various ranking metrics.

2 PRELIMINARY
2.1 Problem Statement
We consider a federated recommender system consisting of a central
server and multiple distributed clients where each client represents
an individual user. We use 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢 |𝑈 | } to represent all
users and 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖 |𝐼 | } to represent all items where |𝑈 | and
|𝐼 | denote the total number of users and items respectively. Each
client corresponds to a user, and each client has its own rating
vector [𝑟𝑢𝑖 ]𝑚𝑖=1 which is given by a user 𝑢 to an item 𝑖 and𝑚 is the
number of items that the user 𝑢 has interacted with. To protect user
privacy, only recommendation models, instead of user data, can
be exchanged between the server and the user devices. Thus, the
goal of federated recommender systems is to collaboratively train a

model for each user to predict the rating of this user for each item
𝑖 without sharing their individual interaction records.

2.2 Failure in User Clustering
The prevailing federated recommender systems draw inspiration
from FedAvg [41], i.e., sharing the client’s individual recommenda-
tion model by a global aggregation, and then the individual clients
perform the local fine-tuning [9]. However, due to the diverse pref-
erences among different users, data distribution across clients can
be uneven, leading to potential imbalances. The global aggregation
without taking into account the discrepancy of these user prefer-
ences might introduce undesirable noise in the recommendation
results. Additionally, Collaborative Filtering (CF) has proven ef-
fective in recommendation systems by leveraging the ratings or
interactions of neighbor users who have exhibited similar prefer-
ences or behaviors to the target user in the past. Thus, it is intuitive
to introduce the clustering to group clients and items before the
server-side aggregation, potentially bringing out underlying pat-
terns or similarities among them. The typical clustering methods
like the K-Means approach [33, 37], works by computing distances
between points, which have proven effective in centralized recom-
mendation scenarios [3, 52, 66] while posing challenges in federated
recommendation scenarios.

In the realm of federated recommendation, to protect privacy, di-
rect access to user embeddings on the server side becomes restricted.
Instead, wemust rely on updates provided by each participant client
to execute user clustering. If traditional clustering algorithms are
used to solve the above problem, matrix-object data need to be trans-
formed. One of the most significant issues encountered is the curse
of dimensionality [20, 26], a problem that arises when we attempt
to flatten item embedding matrices resulting in high dimensionality.
In high-dimensional spaces, the data points become increasingly
sparse, making traditional data processing techniques less effective,
as the distance between data points grows larger. This sparsity can
make clustering algorithms, like K-Means, less effective as points
in high-dimensional spaces tend to be almost equidistant to each
other, reducing the algorithm’s ability to discern distinct clusters.

To illustrate the challenges further, we analyze the results of
applying the K-Means method with 𝑘 = 2 and 𝑘 = 10 on the
MovieLens-100k dataset for client clustering. The result of 𝑘 = 2
reveals a highly imbalanced clustering outcome, with user counts
drastically skewed: one cluster contains only a single user, and the
other contains 942 users. On the other hand, when 𝑘 = 10, the
situation does not improve significantly. 8 out of the 10 clusters
contain just a single user, the figures are attached in Appendix E.2.
This phenomenon verifies the conclusion before, K-Means tends
to cluster all the points into one single cluster as the distances
between data points become more uniform, which underscores the
difficulties of applying traditional clustering techniques to high-
dimensional data in federated recommendation scenarios.

Therefore, we can conclude that the use of the traditional clus-
tering method does not necessarily lead to good performance on
client grouping under the federated recommendation settings.

3 PROPOSED METHOD
In this section, we present our proposed CoFedRec , a novel Co-
clustering Federated Recommendation mechanism which groups
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Figure 1: The overall framework of CoFedRec . The pink
dots represent the individual models uploaded by partic-
ipant clients and the green dots are the item embedding
vectors of the global aggregation results. Two key parts in
CoFedRec are (i) Co-clustering mechanism to cluster partic-
ipant clients into similar group and dissimilar group and
an intelligent group model is generated within the similar
group; (ii) Supervised contrastive term upon the global item
membership is integrated into the loss function of the local
training phase to include the global item insights.

the client upon the item categories on the server side and introduces
a supervised contrastive term in the local training phase.

3.1 Co-clustering for User Partitioning
We’ve discussed the importance of user clustering, particularly
considering the heterogeneity across clients and the collaborative
insights it brings out in Section 2.2. In this section, to address the
challenge of user clustering mentioned in the federated recom-
mendation scenario, we propose to generate a group model by
aggregating the updates within a potentially similar user group to
prevent the transfer of low-quality knowledge.

In light of the observation that it is improbable for users to pos-
sess identical interests across all items but rather shared preferences
for specific types of items, it becomes natural to classify users based
on their affinities for different item categories. Specifically, during
each communication round, we focus on a single item category
and divide users into two distinct groups based on their likeness or
dislikeness for that particular category. To integrate collaborative
effects into the learning processes, aggregation is conducted within
the user group displaying similar preferences since when users
demonstrate shared tastes for a particular category of items, it’s
probable that they will also have some other common preferences.
As such, this aggregation method facilitates the transmission of
beneficial insights, incorporating collaborative steps while safe-
guarding user privacy. Notably, this approach obviates the need
to discern whether a congruous group exhibits a predilection or
antipathy towards a particular item type.

At each round 𝑡 , the server is required to serve the core client
𝑐 ∈ 𝑈 by presenting an item category 𝑘 , specifically, we find the
neighbors of the client 𝑢 w.r.t item category 𝑘 . To achieve this, the
server first performs a global aggregation over all the item network
uploads by the participant clients and then generates an item mem-
bership 𝑀 detailing which items fall under which categories. By
specifying the item category 𝑘 , we could have all the items belong-
ing to category 𝑘 , denoted as 𝑀𝑘 = {𝑖 |𝑖 ∈ 𝐼 , 𝑀 [𝑖] = 𝑘}. Then we
compute the similarity among the core client and all other partici-
pants on the selected part of their individual item network. Here
we adopt the cosine similarity:

𝑠𝑢 =
∑︁
𝑖∈𝑀𝑘

𝑉𝑐,𝑖 ·𝑉𝑢,𝑖
|𝑉𝑐,𝑖 | · |𝑉𝑢,𝑖 |

, 𝑢 ∈ 𝑃 (1)

where 𝑉𝑐,𝑖 and 𝑉𝑢,𝑖 represent the vectors of one item under cate-
gory 𝑘 of the core client 𝑐 and participant 𝑢, respectively. 𝑠𝑢 is the
similarity score of the the core client 𝑐 and participant 𝑢 w.r.t the
items category 𝑘 . 𝑃 is the participant client set. With this equation,
we could obtain the similarity score list 𝑆 = {𝑠1, 𝑠2, ...𝑠 |𝑃 | }.

Upon computing the cosine similarity scores for all participants,
to identify the similar group 𝐷𝑠 and dissimilar group 𝐷𝑑𝑖𝑠 , we
propose to use the first elbow point of the similarity scores to
divide the participant clients into 𝐷𝑠 and 𝐷𝑑𝑖𝑠 , which is essentially
the point at which the curve starts to level off.

To find the split, we first sort similarity scores as {𝑠1′ , 𝑠2′ , . . . , 𝑠 |𝑃 |′ }
(here 𝑠1′ is no longer corresponding to the similarity score of the
user 1 but the user with the largest similarity score.) and construct
a line that links the first and last points of the similarity scores.

L(𝑥) = 𝑠1′ + 𝑥 (𝑠 |𝑃 |′ − 𝑠1′ ) (2)

where 𝑥 is a scalar parameter that determines a point’s position
along the line L(𝑥).

For each point 𝑠𝑢 in similarity scores, we calculate its orthogonal
distance to the line L(𝑥), which is achieved by projecting 𝑠𝑢 onto
L(𝑥) and computing the Euclidean distance between 𝑠𝑢 and its
projection. Let ℎ𝑢 = 𝑠𝑢 − 𝑠1′ be the vector from the first point 𝑠1′ to
a point 𝑠𝑢 . The scalar projection of ℎ𝑢 onto L(𝑥) is given by:

𝑥𝑢 =
ℎ𝑢 · (𝑠 |𝑃 |′ − 𝑠1′ )
|𝑠 |𝑃 |′ − 𝑠1′ |2

(3)

The orthogonal distance 𝑑𝑢 from point 𝑠𝑢 to L(𝑥) can then be
computed as:

𝑑𝑢 = |ℎ𝑢 − 𝑥𝑢 (𝑠 |𝑃 |′ − 𝑠1′ ) | (4)

the point 𝑒 with the maximum distance 𝑑𝑒 to the line L(𝑥) is
considered the elbow point. This point essentially delineates the
optimal neighbors for the core client, denoted as similar group 𝐷𝑠 ,
otherwise, dissimilar group 𝐷𝑑𝑖𝑠 :{

𝑢 ∈ 𝐷𝑠 , if 𝑑𝑢 ≥ 𝑑𝑒 ,
𝑢 ∈ 𝐷𝑑𝑖𝑠 , if 𝑑𝑢 < 𝑑𝑒 ,

Once groups are formed, a group aggregation is performed to
transfer the collaborative information based on the common pat-
terns:

𝑉𝑠 ←
1
|𝐷𝑠 |

∑︁
𝑢∈𝐷𝑠

𝑉𝑢 (5)
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All the participants in the similar groupwill update their item em-
bedding network with the group model 𝑉𝑠 . With this co-clustering
approach, users in the same group might have similar preferences,
and thus recommendations can be shared among them more confi-
dently. The clients within the dissimilar group will be disregarded
to prevent the transfer of low-quality knowledge among heteroge-
neous data.

3.2 Local Supervised Contrastive Learning
In the previous section, we propose co-clustering to discover com-
mon preferences across clients and then cluster them into the simi-
lar group and the dissimilar group, excluding the latter during the
aggregation phase. However, this could result in ignoring some
diverse information, as this global insight might originate from the
dissimilar clients that were disregarded.

To consider the global inter-relationships among items, we con-
struct an item membership vector on the server side through item
clustering. Recall that at each round, for 𝑁 participant clients, the
server will receive 𝑁 individual item embedding matrices V𝑖 ∈
R |𝐼 |×𝑑 , 𝑖 = {1, 2, ..., 𝑁 } uploaded by the participant clients. The
server first performs the global aggregation over 𝑁 local item em-
bedding matrices:

V𝑔 ←
1
𝑁

𝑁∑︁
𝑖=1

V𝑖 (6)

To categorize items, the global item embedding vectors will be
grouped into 𝐾 clusters. We adopt the K-Means to do the item
clustering. Assuming that there is |𝐼 | items with representation
𝑣 𝑗 ∈ R |𝑢 |×𝑑 , 𝑗 = {1, 2, ..., |𝐼 |} and the number of clusters is 𝐾 . The
K-Means method aims to find 𝐾 centroids 𝐶 = {𝑐1, . . . , 𝑐𝐾 } , 𝑐𝑘 ∈
R𝑑 ,∀𝑘 ∈ [𝐾] that it uses to define clusters by minimizing the
objective:

𝜙𝑐 (𝑣 𝑗 ;C) = ∥𝑣 𝑗 −𝐶 ∥2𝐹 (7)

where ∥·∥𝐹 denotes the Frobenius norm. Then the set of centroids
C∗ =

{
𝑐∗1, . . . , 𝑐

∗
𝐾

}
gives rise to an optimal segmentation, denoted

as
⋃𝐾
𝑘=1 C

∗
𝑘
, where ∀𝑘 ∈ [𝐾], C∗

𝑘
= {𝑣 𝑗 : ∥𝑣 𝑗 − 𝑐∗𝑘 ∥𝐹 ≤ ∥𝑣 𝑗 − 𝑐

∗
𝑚 ∥𝐹 ,

∀𝑗 ∈ [|𝐼 |],𝑚 ∈ [𝐾]}.
Upon obtaining the global item cluster results, the server returns

an item membership vector𝑀 ∈ R1×|𝐼 | to all the participant clients,
where the value𝑀 [ 𝑗] at a specific index 𝑗 indicates the cluster to
which the corresponding item 𝑗 belongs.

Considering that the local client updates the item network based
on the server’s aggregation, which solely contains the information
from its similar neighbor clients after partitioning, it becomes rather
restrictive, lacking a comprehensive view that global information
can provide. In order to harness the intrinsic similarity and diversity
of the items themselves, we incorporate an additional supervised
contrastive learning objective into the local training phase.

Supervised Contrastive Learning (SCL) [23] integrates the strengths
of both supervised learning and contrastive learning. Utilizing label
information, SCL learns representations that bring similar items
closer together and push dissimilar items apart, which hence im-
proves the representational quality. In our case, items categorized
within the same class are considered as positive pairs, while those
from disparate classes are treated as negative pairs. We are able

to bring together the representation among items that share simi-
larities, and concurrently, push apart the representation between
those belonging to distinct classes by minimizing the following
SupContrast term:

𝐿𝑠𝑢𝑝 = −
∑︁
𝑖∈𝐼

log


1
|𝑍 (𝑖) |

∑︁
𝑧∈𝑍 (𝑖 )

(
exp(𝑣𝑖 · 𝑣𝑧/𝜏)∑

𝑎∈𝐼\{𝑖 } exp(𝑣𝑖 · 𝑣𝑎/𝜏)

) (8)

where 𝑍 (𝑖) ≡ {𝑧 ∈ 𝐼\{𝑖} : 𝑦𝑧 = 𝑦𝑖 } is the set of the indices of all
positive in the item set. 𝜏 is the temperature parameter to control
the uniformity of the representation in the embedding space. 𝐵 is
the batch data during the client’s local training.

By leveraging global information to ascertain item membership,
our model enhances its ability to recommend items that closely
alignwith users’ previous interactions. This thus integrates intricate
global inter-relationships present among items within a federated
framework.

3.3 Overall Workflow
We subsequently develop our federated recommendation via the
proposed co-clustering mechanism, detailed in Algorithm 1.

To illustrate the overall workflow of the co-clustering federated
recommendation mechanism, we employ a personalized federated
recommendation algorithm [65] as our foundational model in the
ensuing discussion.

3.3.1 Local training. We first discuss the local training process.
In a typical FRS with implicit feedback, each user 𝑢 has it’s rating
vector [𝑟𝑢𝑖 ] |𝐼 |𝑖=1 where 𝑟𝑢𝑖 = 1 if the user 𝑢 interacted with item
𝑖 , otherwise, 𝑟𝑢𝑖 = 0. The actual ratings provided by the user are
represented by 𝑟𝑢𝑖 , while the predicted ratings are denoted as 𝑟𝑢𝑖 .

Each client 𝑢 holds its own personalized item network 𝑉𝑢 and
score function 𝜃𝑢 , which is implemented as a one-layer multilayer
perception (MLP) here. The client’s local dataset 𝐷𝑢 is organized as
a set of user-item interactions where each interaction is represented
as a tuple (𝑢, 𝑖, 𝑟𝑢𝑖 ). The client’s individual item embedding module
𝑉𝑢 is updated by the server during each communication round. The
objective of the local training on client 𝑢 is to minimize the binary
cross-entropy loss plus the supervised contrastive learning term:

𝐿𝑢 (𝑉𝑢 , 𝜃𝑢 ) = −
∑︁

(𝑢,𝑖 ) ∈𝐷𝑢

log 𝑟𝑢𝑖 −
∑︁

(𝑢,𝑖′ ) ∈𝐷−𝑢
log(1−𝑟𝑢𝑖′ ) +𝜆𝐿𝑠𝑢𝑝 (9)

where 𝑟𝑢𝑖 here is computed through the score function𝜃𝑢 . The client
first updates its score function 𝜃𝑢 using stochastic gradient descent
(SGD) and then updates individual item embedding network𝑉𝑢 via
SGD as a post-tuning process. 𝜆 is a hyperparameter to control the
linear weight.

3.3.2 Server Update. The server initiates one global model, specifi-
cally an item embedding network, used as initial parameters for all
client models. During each round, the server begins by randomly
selecting a subset of participating clients 𝑃 and acquiring their item
embeddings 𝑉𝑢 , 𝑢 = {1, 2, .., |𝑃 |}. Then, the server algorithm ran-
domly identifies a core user and selects an item category based on
the item membership𝑀 introduced in Section 3.2. Utilizing the user
co-clustering technique presented in Section 3.1, the server, for the
chosen item category, calculates the similarities between the core
user and other participant clients and divides them into the similar

2023-10-13 11:41. Page 4 of 1–13.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Co-clustering for Federated Recommender System Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

group and the dissimilar group. Within the similar group, aggrega-
tion takes place to derive a group-specific model. Subsequently, the
group model is distributed back to the corresponding clients.

Algorithm 1 federated recommendation with CoFedRec

Server Update:
1: Initialize item embedding 𝑉0,item cluster number 𝐾
2: for each round 𝑡 = 1, 2, ... do
3: 𝑃 ← (randomly select participant clients for each round from

all 𝑁 clients)
4: for client 𝑖 ∈ 𝑃 in parallel do
5: 𝑉𝑖 ← ClientUpdate(𝑖,𝑉𝑠 , 𝑀) {𝑉𝑠 = 𝑉0 for all the clients at

round 0}
6: end for
7: /* Item clustering */
8: 𝑉𝑔 ← 1

|𝐼 |
∑ |𝐼 |
𝑖=1𝑉𝑖 {global aggregation}

9: 𝑀 ∈ 𝑅1×|𝐼 | ← 𝐾𝑚𝑒𝑎𝑛𝑠 ({𝑉𝑔,𝑖 } |𝐼 |𝑖=1) {obtaining item member-
ship vector}

10: /* User partitioning */
11: 𝑐 ← (randomly select a core user for this round from all

participant clients 𝑃 )
12: [𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑘 ] ← (randomly select an item category 𝑘 from item

membership and obtain the corresponding indices vector)
13: for client 𝑢 ∈ 𝑃 do
14: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← SimilaritySocre(𝑉𝑢 [𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑘 ],𝑉𝑐 [𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑘 ])
15: end for
16: 𝐷𝑠 , 𝐷𝑑𝑖𝑠 ← (find the elbow point of all the similarities and

split the clients into similar group and dissimilar group)
17: 𝑉𝑠 ← 1

|𝐷𝑠 |
∑
𝑛∈𝐷𝑠

𝑉𝑢 {aggregating within similar group}
18: end for
CLient Update:
1: Download item embedding 𝑉𝑠 and item membership𝑀 from

server if the client is in the similar group; Otherwise, only
download the item membership𝑀

2: Initialize 𝑉𝑢 with the latest update
3: Sample negative instances set 𝐷−𝑢 from I−𝑢
4: B ← (split 𝐷𝑢 ∪ 𝐷−𝑢 into batches of size 𝐵)
5: for local epoch 𝑒 = 1, 2, ... do
6: for batch 𝑏 ∈ B do
7: Compute loss 𝐿𝑢 (𝑉𝑢 , 𝜃𝑢 ) with Eq. 9
8: Model parameters update
9: end for
10: end for
11: Return 𝑉𝑢 to server

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the performance
of our proposed method. Our experiments intend to answer the
following research questions:
• RQ1: How does CoFedRec perform in the federated recommen-
dation task compared with the baseline models?
• RQ2:How do different components in our mechanism contribute
to the performance?
• RQ3:Howgood is the generalizability of our proposed CoFedRec ?

• RQ4: Do all the clients (users) effectively participate in the
cluster-specific aggregation and how good are the clustering
results?

4.1 Datasets
To evaluate our proposed CoFedRec , we conduct experiments on
four datasets with different scales: MovieLens-100K, MovieLens-1M
1 [16], FilmTrust 2 [15], and LastFM-2K 3 [6]. The detailed statistics
of each dataset, the preprocessing procedures, and the construction
of the training, validation and test sets are shown in Appendix A.1.

4.2 Experimental Settings
4.2.1 Evaluation metrics. We evaluate the model performance with
Top-K evaluation metrics, including Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG). The details of the evaluation
metric are presented in Appendix A.2. Following the previous work
setting, we fix 𝐾 as 10 and adopt an efficient sampling strategy
that randomly selects 99 items for each user, performing a ranking
evaluation among these 100 items.

4.2.2 Baselines. We compare our proposed CoFedRec with the
following general and state-of-the-art baselines, which contain
both centralized and federated methods.

Centrailized methods:

• Matrix Factorization (MF) [27]: Upon the user-item rating
matrix, MF maps users and items to a joint latent space, so that
the interactions are modeled as the inner product of user and
item embeddings.
• Neural Collaborative Filtering (NCF) [18]: It proposes to uti-
lize an MLP to model the user-item interaction function.
Federated methods:

• FedMF [8]: It is a framework implemented based on Federated
Collaborative Filtering (FCF) [2] where user embedding is main-
tained locally and item embeddings are aggregated globally.
• FedNCF [45]: It is a federated version of NCF. A generalized MF
(GMF) and an MLP are used to represent user embeddings and
item embeddings respectively.
• FedPerGNN [57]: It assigns GNN models for each client to uti-
lize the superiority of GNN in capturing high-order user-item
information.
• FedRecon [50]: Utilizing a reconstruction-based approach, Fe-
dRecon re-initializes local user embedding every 2 rounds in our
implementation and aggregates item network globally.
• MetaMF [30]: MetaMF introduces a meta-network to generate
private item embedding and rating prediction function so that
user model parameters can be reduced. We modify the final layer
to adapt to federated recommendations with implicit feedback.
• PFedRec [65]: PFedRec proposes a dual personalization mecha-
nism that emphasizes capturing personalized information through
a post-tuning procedure.

1https://grouplens.org/datasets/movielens/
2https://guoguibing.github.io/librec/datasets.html
3https://grouplens.org/datasets/hetrec-2011/
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4.2.3 Experimental settings. Following the methodology in [18],
we sample four negative instances for every positive instance. Test
results are presented based on the optimal validation outcomes.
The reported best-performing baseline models are significant w.r.t.
the second best performing with p-value < 0.05. Given the inherent
variability in our approach, we conducted five runs of our method
on each dataset. To provide a conservative estimate, we consistently
reported the lowest value from these five iterations. Detailed hy-
perparameter settings for each dataset across models can be found
in the Appendix A.3.

4.3 Main Results & Discussion (RQ1)
In this section, we investigate the overall performance of our pro-
posed CoFedRec and the detailed results are shown in Table 1. In
three of the four evaluation datasets, namely MovieLens-100K,
MovieLens-1M, and FilmTrust, our proposed CoFedRec achieves
the best performance even when compared with centralized meth-
ods, and on LastFM-2k, CoFedRec still out perform all the federated
models.

From Table 1, we derive several insightful findings: (i) When
comparing with the strongest baseline method PFedRec, the im-
provements made by our method are substantial. CoFedRec can
obtain a promotion of 1.42% - 9.11% in terms of HR@10 and 2.85%
- 15.40% in terms of NDCG@10. A salient one is its performance
on MovieLens-100k: 71.05→ 77.52 on HR@10 and 43.89→ 50.65
on NDCG@10. It indicates the superiority of our co-clustering
mechanism (including the user co-clustering and local supervised
contrastive learning) in exploring the neighbors of both the users
and items to enlighten the personal recommendations. (ii) In the
experiment, the four datasets we selected are representative, two
relatively large datasets and two on a smaller scale. Our proposed
CoFedRec surpassed all the federated baseline methods on these
four datasets, which proves the robustness of our approach. (iii) If
we take a look at the results of the FedPerGNN which lags be-
hind all other baselines, we could draw the conclusion that it is
indeed difficult to harness the full potential of GNNs in FRS. Thus,
it is compelling to use co-clustering methods to capture collab-
orative insights and neighbor information. (iv) We note that on
some datasets, CoFedRec even outperforms the centralized meth-
ods. In fact, centralized recommendations allow for comprehensive
user-item interactions to be analyzed globally to generate recom-
mendations. In contrast, FRS faces inherent challenges in capturing
nuanced preferences since they often skew the aggregated model
towards more common, shared preferences and miss out on more
nuanced or niche tastes. The results demonstrate that in federated
scenarios, where user-item interactions are processed across scat-
tered local datasets, the co-clusteringmechanism can facilitate more
insightful aggregation and discover deeper user-user and item-item
associations across clients, effectively bridging the gap between
centralized and federated approaches.

4.4 Abalation Study (RQ2)
In this section, we investigate the effectiveness of each component
in our proposed CoFedRec . We denote the state-of-the-art method
PFedRec as the original method (Origin in Table 2), which aggre-
gates users without distinguishing users’ clusters. We note that our

proposed CoFedRec has two main components, server-side client
co-clustering and client-side local supervised contrastive learning
term. We denote these two parts as User_P and Item_SC in Table
2. For comparison, we also consider client-side similarity learning
which is defined as:

𝐿𝑠 = −
1
|𝐷𝑢 |

1
|𝑍 (𝑖) |

∑︁
𝑖∈𝐷𝑢

∑︁
𝑖′∈𝑍 (𝑖 )

(
𝑖𝑇 𝑖′

∥𝑖∥ · ∥𝑖′∥

)
(10)

then the local training loss is replaced with:

𝐿𝑢 (𝑉𝑢 , 𝜃𝑢 ) = −
∑︁

(𝑢,𝑖 ) ∈𝐷𝑢

log 𝑟𝑢𝑖 −
∑︁

(𝑢,𝑖′ ) ∈𝐷−𝑢
log(1 − 𝑟𝑢𝑖′ ) + 𝜆𝐿𝑠 (11)

From Table 2, we can observe that all the components are very
important and designed reasonably. Note that integrating User_P re-
sults in a notable performance boost, which verifies the importance
of distinguishing similar users and the generation of a group-level
model. When we compare the extra local training loss terms, Item_S
and Item_SC, the results show that both of these two components
have a positive effect on the performance while the latter yields
a greater improvement. The primary difference is that the Item_S
considers only the alignment between the positive item pairs while
the Item_SC focuses solely on aligning positive item pairs, while
Item_SC takes into account both alignment and uniformity during
local item representation learning. This outcome emphasizes the
significance of including the global view information as well. In sum,
our co-clustering mechanism, containing the user co-clustering and
the local supervised contrastive learning, facilitates the transfer
of high-quality knowledge by identifying the effective neighbors
while capturing the global item collaborative information.

4.5 Geralization Analysis (RQ3)
4.5.1 Effects on different backbones. To evaluate the generalization
ability of our proposed co-clustering mechanism and local super-
vised contrastive learning, we compare our methods with the origi-
nal on three different baselines. The performance is shown in Table
3. Although users’ local models are distinguishing, a consistent im-
provement can be observed when adding our methods. It indicates
that our proposed CoFedRec is independent of specific users’ local
models, and the potential of CoFedRec can be explored extensively
with more powerful models. The improvement in MovieLens-100K
is more apparent when compared with MovieLens-1M.We attribute
it to its smaller quantity of items which enables more faithful item
clustering, subsequently leading to more strategic user partitioning
and effective aggregation of similarly clustered users.

4.5.2 Privacy protection with virtual rating. The primary goal of
the FRS is to predict the rating of an item 𝑖 for a client 𝑢 without
disclosing their rating behaviors or records. Actually, the task of
federated recommendation with the implicit data naturally protects
user privacy to a certain extent for the reason: (i) it can be seen
from the objective function of local training that when using the
local dataset to train the model, all items that have not generated
actions are treated as negative samples, which indirectly protects
the user’s behavioral privacy; (ii) we adopted dual personalized
proposed by PFedRec as the backbone to preserve the user-specific
personalization, meaning that the score function is always kept
locally, which prevents the server from inferring the user’s behavior
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Table 1: Experimental results on the four real-world datasets through different methods with % omitted. The best results are
highlighted in boldface. Underlined values indicate the second best.

Models MovieLens-100K MovieLens-1M FilmTrust LastFM-2K

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Centralized MF 65.43 40.16 68.61 41.33 92.09 81.99 82.88 70.81
NCF 66.17 39.82 68.76 41.90 92.42 82.70 85.06 73.75

Federated

FedMF 65.11 39.13 67.52 38.12 89.49 76.31 68.44 52.97
FedNCF 60.13 34.31 65.78 38.67 92.34 79.87 80.19 70.11
FedPerGNN 35.84 19.15 43.87 24.33 92.01 82.53 72.06 57.51
FedRecon 65.01 38.49 60.43 34.89 91.76 81.94 82.65 67.85
MetaMF 66.06 39.82 45.08 25.07 92.50 82.89 81.81 66.39
PFedRec 71.05 43.89 73.62 44.35 91.44 82.36 82.06 73.14
CoFedRec 77.52 50.65 77.75 48.81 94.05 85.20 82.75 74.10

Table 2: Effectiveness of different components of CoFedRec on
MovieLens-100K and MovieLens-1M.

Models MovieLens-100K MovieLens-1M

HR@10 NDCG@10 HR@10 NDCG@10

Origin 71.05 43.89 73.62 44.35
User_P 75.93 47.23 73.92 45.72
Item_S 72.75 44.26 73.66 44.67
Item_SC 73.91 44.78 74.09 44.45
CoFedRec 77.52 50.65 77.75 48.81

Table 3: Experimental comparisons of CoFedRec on
MovieLens-100K and MovieLens-1M with different back-
bones.

Models MovieLens-100K MovieLens-1M

HR@10 NDCG@10 HR@10 NDCG@10

FedMF 65.11 39.13 67.52 38.12

w/ Ours 77.09 49.90 71.39 45.10
↑ 18.40% ↑ 27.52% ↑ 5.73% ↑ 18.31%

FedNCF 60.13 34.31 65.78 38.67

w/ Ours 71.58 51.29 66.16 41.88
↑ 19.04% ↑ 49.49% ↑ 0.58% ↑ 8.30%

PFedRec 71.05 43.89 73.62 44.35

w/ Ours 77.52 50.65 77.75 48.81
↑ 9.11% ↑ 15.40% ↑ 5.61% ↑ 10.06%

Table 4: Performance onMovieLens-100Kwith varying ratios
of virtual rating added to the individual local datasets.

Models Noise size 𝜆=0 𝜆=0.1 𝜆=0.2 𝜆=0.3 𝜆=0.4

PFedRec HR@10 71.05 72.00 72.96 72.53 70.52
NDCG@10 43.89 44.66 44.26 44.67 43.69

CoFedRec HR@10 77.52 75.50 75.18 75.72 72.43
NDCG@10 50.56 46.33 45.20 45.97 45.31

(a) MovieLens-100k (b) MovieLens-1M

Figure 2: Distribution of Clients’ Participation Rounds on
MovieLens-100k and MovieLens-1M Datasets

through the item network itself. Moreover, FedRec [29] proposes to
use virtual scoring during the local training phase together with the
true interactions to prevent the leakage of user interaction history
when uploading gradients. To rigorously assess the robustness of
CoFedRec , we employed the virtual rating strategy, sampling items
at varying ratios and randomly assigning virtual ratings (either
0 or 1) during local training phases. As shown in Table 4, as the
virtual rating ratio increases from 0 to 0.4, CoFedRec experiences a
slight performance drop and even at a noise ratio of 0.4, our model
consistently outperforms all baseline models.

4.6 A Close Look at CoFedRec (RQ4)
4.6.1 Randomness analysis. In every training round, a user is se-
lected at random to act as the core user. Simultaneously, an item cat-
egory is randomly chosen to categorize the clients. This inherently
introduces randomness into the training process. Consequently, this
section examines the involvement of each client in the aggregation
of the group model. We evaluated the number of times each client
participated in over 100 training rounds on both the MovieLens-
100k and MovieLens-1m datasets. The resulting distributions are
presented in the Figure 2. From the results, all clients have had an
opportunity to contribute to the aggregation of the group model.
Specifically, for the MovieLens-100k dataset, 69.64% of the clients
participated in more than 70 rounds. In contrast, for the MovieLens-
1m dataset, 82.53% of the clients engaged in over 70 rounds. The
results highlight that the introduced randomness by our approach
does not entirely preclude any client from participating in group
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(a) MovieLens-100K (b) FilmTrust

Figure 3: Visulization of the clustering result on items.

aggregation. Instead, it facilitates user selection, allowing them to
partake in an aggregation process that aligns with their preferences.

4.6.2 Visualization of clustering effects . In this section, we analyze
the clustering results with our proposed CoFedRec to provide more
insight. In Figure 3a, we utilize t-SNE [54] to visualize the item em-
bedding of the global model on MovieLens-100k and FilmTrust (For
clear visualization, We randomly select 8 and 10 item categories
from the total 30 clusters for two datasets respectively). We can
observe that with the extra local supervised contrastive learning,
the item embedding is well scattered. Then we consider the quality
of the user clustering. Following what we discussed in Section 2.2,
in very high-dimensional spaces, even arbitrary data can appear
to have structure. While t-SNE is designed to preserve local struc-
tures in the data, there’s a significant risk of misreading patterns
when flattening the individual item embedding matrices into a very
high dimension, especially when the number of samples is much
smaller than the number of dimensions. Therefore, visualizing the
item embedding matrices uploaded by the clients through t-SNE
technique may not yield intuitive results The detailed analysis for
this can be found in Appendix E.2.

5 RELATEDWORK
5.1 Clustered Federated Learning
Federated learning (FL) is a distributed machine learning par-
adigm which allows a bunch of clients to jointly train a global
model without revealing clients’ private data to other participants
[34, 51, 62]. Based on the participating clients, FL can be classified
into cross-device FL [53], involving numerous individual users, and
cross-silo FL, which typically considers organizations as clients [19].
Many research efforts in FL address diverse concerns such as com-
munication efficiency [25], privacy [12], data heterogeneity [11],
and the cold start problem [55]. Clustered Federated Learning
(CFL) [5, 13, 60] addresses FL scenarios with diverging, or non-IID,
data distributions by clustering similar clients for joint training,
mitigating interference from heterogeneous clients. To identify the
cluster partitions, Briggs et al. [5] propose a hierarchical clustering
step that calculates the similarity of client models to the global
model. Sattler et al. [49] introduce a bi-partition method based on
the cosine similarity of the client gradients. Mansour et al. [40]
assign each client a cluster model that has the minimum loss. Ruan
et al. [48] indicate each client can also follow a mixture of multiple
distributions and follow this setting to train both local and cluster

models. However, all the above-mentioned methods focus on the
cross-silo setting. There’s less exploration of the CFL in cross-device
settings due to the large quantities and the sparsity of the clients’
models. In this paper, we focus on cross-device CFL, especially the
problem of federated recommendation (FR), enhancing the FR with
the idea of co-clustering.

5.2 Fenderated Recommendation
Leveraging the strengths of FL, Federated Recommendation Sys-
tem (FRS) offers enhanced recommendations, striking a balance
between privacy and decentralized data processing [38]. FCF [2]
first applies the thought of collaborative filtering to FRS. This is
followed by FedMF [8] and FedNCF [45], which expand upon cen-
tralized techniques [18, 27] in the federated context. FedRec [29]
studied explicit feedback problems in FRS. FedFast [43] samples par-
ticipating users in each training round and accelerates the learning
to convergence. To enhance personalization, PFedRec [65] retains
the score function module locally and integrates a post-tunning pro-
cedure. Other techniques like GNNs [32, 39, 57] and meta-learning
[30] are also explored to improve the performance of the FRS under
various subtopics. Notably, the aforementioned FRS studies produce
a singular global model at the server end, potentially introducing
noise when users’ private data is distributed discrepant. In response
to this challenge, there’s a shift towards creating group-specific
models using clustering techniques, which better cater to diverse
user preferences [10, 67]. PerFedRec [36] clusters similar users by
user embeddings. FPPDM [31] focuses on multi-domain recom-
mendation, aligning users by their attributes. However, they may
risk user profile exposure as user representations are disseminated
during clustering. In our research, we develop a co-clustering mech-
anism that operates on clients’ updates, generating an intelligent
group model each round while integrating the global insights si-
multaneously thereby improving the precision and relevance of
recommendations.

6 CONCLUSION
In this paper, we revisit the significance of clustering in federated
recommendation. We analyze the failure of directly applying classi-
cal clustering method K-Means in FRS and propose a pioneering
Co-clustering Federated Recommendation mechanism (CoFedRec)
for FRS which incorporates two key ideas: (i) To deal with the
heterogeneity across clients and harness user collaborative insights,
we group clients into similar and dissimilar groups concerning
item classifications. This allows for generating a group-specific
model tailored to the similar group during each communication
round. (ii) Local supervised contrastive learning term is further
introduced to include the global correlative information among
items. Extensive experiments on 4 real-world datasets demonstrate
the superior performance of our proposed method, which outper-
forms a bundle of baselines. One direction extension of our work
is to perform nested client partitioning w.r.t more item categories
via our co-clustering mechanism in a single communication round.
Moreover, the adaptability of CoFedRec ensures its easy integration
with existing FRS. In the future, we’d like to test our model with
more advanced backbones.

2023-10-13 11:41. Page 8 of 1–13.
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A EXPERIMENT SETUP
A.1 Dataset Details
In this section, we introduce the details of the datasets used and
how we preprocess the data and construct the training, validation
and test set. The two MovieLens datasets record the users’ interac-
tions with the MovieLens website over the course of years. Only
users who have at least 20 ratings are reserved. FilmTrust is also
collected from a movie-sharing and rating website. But interac-
tions in FilmTrust are somewhat less, and accordingly, its sparsity
is comparatively high. LastFM-2K contains users’ music listening
information from the music streaming service Last.fm, where users’
listening behavior results in corresponding tags. For FilmTrust and
LastFM-2K, we filter out users with less than 5 interactions. The
statistics of the four datasets are detailed in Table 5. Given our
focus on implicit feedback recommendation in this study, we con-
verted the explicit ratings in each dataset into implicit feedback,
specifically, designating a "1" to signify that an item was rated by a
user. According to the time stamp of interactions, we employ each
user’s latest rating record to construct the testing set, the next latest
records to constitute the validation set, while all remaining records
form the training set.

Table 5: Dataset Statistics.

Dataset Interactions Users Items Sparsity

MovieLens-100K 100,000 943 1,682 93.70%
MovieLens-1M 1,000,209 6,040 3,706 95.53%
FilmTrust 34,888 1,227 2,059 98.62%
LastFM-2K 185,650 1,600 12,454 99.07%

A.2 Evaluation Protocols
In this section, we give a detailed definition of the two used evalua-
tion metrics, HR and NDCG. Specifically, they are used in a Top-K
evaluation setting, where they measure the recommended items in
the Top-K list [28, 59]. In the recommended list of length K, if a user-
preferred item appears, it is deemed a hit [17]. HR calculates the
proportion of hit items in the ground-truth item set. Furthermore,
NDCG considers the recommendation ranks and assigns higher
importance to the top results. They can be formulated as:

𝐻𝑅@𝐾 =
1
𝑁

𝑁∑︁
𝑢=1

ℎ𝑖𝑡𝑠 (𝑢) (12)

𝑁𝐷𝐶𝐺@𝐾 =
1
𝑁

𝑁∑︁
𝑢=1

log 2
log(𝑝𝑢 + 1)

(13)

Since we select the latest rating records as the testing set and the
next latest records as the validation set, there is only one ground-
truth item for each user when evaluating. 𝑁 is the number of users,
and it is also the total number of the ground-truth set. ℎ𝑖𝑡𝑠 (𝑢) = 1 if
user 𝑢’s ground-truth item in the Top-K list, otherwise ℎ𝑖𝑡𝑠 (𝑢) = 0.
𝑝𝑢 represents the position of the ground-truth item in the Top-K
recommendation list. If it falls outside of the list, 𝑝𝑢 →∞.
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A.3 Hyperparameter Settings
To ensure a fair comparison across all methods, we maintain a
consistent setting: a batch size of 256, an embedding size of 32, and a
training round capped at 100. The only exceptions are FedMF, whose
convergence needs 300 training rounds, and FedRecon, which does
sowithin 500 rounds.We search for the appropriate learning rate for
each model based on the validation sets and the details are shown
in Table 6. The hyperparameter 𝜆 is fine-tuned within the range of
[0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5] and the hyperparameter
𝜏 for the local supervised contrastive learning in the range [0.1, 0.5]
with the step of 0.1. The specific settings for CoFedRec on four
datasets are shown in Table 7. We optimize the centralized MF,
NCF, and FedNCF with Adam optimizer [24] and SGD [7] for all
the other models.

Table 6: Learning rate of all models across four datasets.

Models ML-100K ML-1M FilmTrust LastFM-2k

MF 0.001 0.001 0.001 0.001
NCF 0.001 0.001 0.001 0.001
FedMF 0.1 0.1 0.1 0.1
FedNCF 0.05 0.05 0.05 0.05
FedPerGNN 0.1 0.1 0.1 0.1
FedRecon 0.1 0.1 0.1 0.1
MetaMF 0.0001 0.0001 0.0005 0.0001
PFedRec 0.1 0.1 0.1 0.05
CoFedRec 0.1 0.1 0.1 0.05

Table 7: Specific settings of our proposed CoFedRec on four
datasets.

Setting ML-100K ML-1M FilmTrust LastFM-2k

𝜆 0.005 0.005 0.05 0.001
𝜏 0.1 0.5 0.5 0.5
# item cluster 30 45 30 500
best round 93 70 78 68

B COMMUNICATION EFFICIENT ANALYSIS
In this section, we systematically evaluate the communication ef-
ficiency of our proposed CoFedRec . Due to the inherent charac-
teristics of federated learning, multiple iterations of parameter ex-
changes are necessary between the server and the clients to finalize
the training procedure. Hence, the efficiency of communication
plays a pivotal role in FRS implementations.

To elucidate the superior communication efficiency of our pro-
posed CoFedRec , we’ll dissect it step by step. At each round t, a
subset of participant clients 𝑃𝑡 is chosen to participate. Each client
sends its updated item embedding 𝑉𝑖 to the server. Thus, the com-
munication cost for item embeddings from all the clients would be
proportional to the size of 𝑃𝑡 multiplied by the size of each item
network. During the client update phase, the server sends the item
embedding 𝑉𝑠 to the subset of participant clients identified as the

(a) MovieLens-100K (b) MovieLens-1M

Figure 4: Effect of the number of the item clusters.

"similar group" and the item membership 𝐴 to all the participants.
Depending on the fraction of clients in the similar group, this could
be a varying portion of 𝑃𝑡 . The communication cost here is the sum
of the sizes of 𝑉𝑠 and 𝐴 multiplied by the number of clients in the
similar group where 𝐴 is a vector in the real implementation and is
quite small in size compared with the model 𝑉𝑠 . Hence, when com-
pared with other baseline models, our proposed CoFedRec stands
out as more time-efficient. This efficiency stems from the fact that
we eliminate the need to distribute the aggregated model back to
all the participating clients.

C STUDY OF THE HYPERPARAMETERS
In this section, we study the two main factors of our methods, the
effect of the number of item clusters and the effect of the local
supervised contrastive learning term.

In our co-clustering mechanism, users are grouped based on item
categories. Consequently, the quality of item classification directly
affects user partitioning. Drawing from practical experience, we
consider that after partitioning items, each category should, on
average, contain no fewer than ten items. Depending on the size
of the dataset, we therefore search for the optimal number of item
clusters within the respective range. As illustrated in Figure 4, we
plot the performance variations of our proposed method on the
MovieLens-100K and MovieLens-1M datasets as the number of
item clusters changes. It can be observed that performance declines
when the number of item clusters is either too many or too few,
due to either over-segmentation or overly broad classification.

We adjusted the weight of the local supervised contrastive learn-
ing term from 0.0005 to 0.5 to examine its impact on model perfor-
mance. The outcomes on MovieLens-100K and MovieLens-1M are
presented in Table 8. We found that, when incorporating these extra
learning terms with an appropriate weight, they can enhance local
item representation learning by capturing more global information.

D RESULTS ON FULL RANK EVALUATION
In the main experiment, we adopt an efficient sampling strategy. It
samples 100 items per user for evaluation, which contain a positive
item and 99 randomly selected negative items. In this section, we
discard the sampling strategy and evaluate CoFedRec in the full
ranking list. It is more challenging because the involved items
increase dramatically. We evaluate CoFedRec with baselines on
MovieLens-100K, MovieLens-1M and FilmTrust. LastFM-2K is cast
away here because its item numbers are too large, and accordingly, it
affects the training efficiency. The experimental results are shown in
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Table 8: Performance of varying weights of the local supervised contrastive learning term.

Datasets 𝜆 0.0005 0.001 0.005 0.01 0.05 0.1 0.3 0.5

ML-100K HR@10 71.47 72.85 77.52 75.08 74.87 74.02 66.17 68.93
NDCG@10 45.47 45.43 50.56 48.86 49.01 47.36 41.05 43.36

ML-1M HR@10 73.74 72.93 77.75 74.02 72.25 62.68 56.90 49.90
NDCG@10 46.09 45.60 48.81 45.66 46.15 37.11 33.41 28.77

Table 9: Experimental results on full rank evaluation. The best results are highlighted in boldface. Underlined values indicate
the second best.

Models MovieLens-100K MovieLens-1M FilmTrust

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Centralized MF 16.76 9.26 8.84 4.47 69.44 50.35
NCF 18.98 11.56 9.67 4.89 68.87 49.00

Federated

FedMF 14.10 7.16 6.61 3.14 59.66 37.10
FedNCF 15.91 8.18 7.81 3.91 48.17 35.57

FedPerGNN 5.73 3.15 4.21 2.16 68.95 47.31
FedRecon 16.44 8.40 8.51 4.16 68.87 49.08
MetaMF 16.33 9.52 9.00 6.97 70.09 49.91
PFedRec 19.19 11.02 10.13 5.04 71.37 51.82
CoFedRec 21.63 12.64 13.20 8.90 72.78 52.93

Table 9. It can be seen that our proposed CoFedRec still outperforms
all baselines, which indicates its efficacy.

E VISULIZATION OF THE CLUSTERING ON
MORE DATASETS

E.1 Item Clustering
In this section, we present the outcomes of our item clustering anal-
ysis based onMovieLens-1M. As shown in Figure 5, it is evident that
item representations become distinctly spread out, becoming more
meaningful by identifying different categories. Such noticeable dis-
persion can be attributed to our employment of local supervised
contrastive learning which significantly enhances the quality of
the overall learned item representations.

E.2 User Partitioning
In our endeavor to understand the problem of K-Means clustering
on the MovieLens-100K dataset, as mentioned in Section 2.2, we
applied the K-Means algorithm with two different cluster counts:
𝑘 = 2 and 𝑘 = 10. Figure 6 showcases the extremely imbalanced
clustering outcome. For example, in Figure 6a, green stars denote
cluster 1, while the solitary orange star, representing cluster 2, is
nestled within cluster 1. This observation reaffirms our insights
from Section 2.2 about the inherent challenges of K-Means in
high-dimensional spaces, where data points tend to exhibit near-
equidistant relationships, rendering them challenging to distinguish
effectively.

We next turn our attention to evaluating the quality of user
clustering. As discussed in Section 2.2, traditional data processing
methods often underperform when dealing with high-dimensional

Figure 5: Visulization of the items clustering results on
MovieLens-1M.

data. This issue becomes particularly pronounced in our settings,
where the dimensionality of each sample is considerably larger than
the total number of available samples. High dimensionality with
a relatively small number of data points can lead to noise in the
data and potential overfitting. Specifically, high-dimensional spaces,
due to their inherent vastness, can often be deceptive. Imagine
having only a few points scattered in an immense space. Even if
these points were placed randomly, it might seem like they form
some sort of pattern or structure simply because there are so many
possibilities for them to potentially align in certain ways. This noise,
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(a) Number of Clusters = 2 (b) Number of Clusters = 10

Figure 6: Visulization for clustering results on MovieLens-
100K via K-Means.

(a) MovieLen-100K (b) MovieLen-1M

Figure 7: Visualization of the elbow point corresponding to
the optimal performance round for both MovieLens-100K
and MovieLens-1M datasets.

when interpreted as genuine data structure, can cause models or
techniques, like t-SNE, to overfit.

Examining the ’elbow point’ used to segregate the similar and
dissimilar groups offers further insights. As shown in Figure 7, an
evident turning point exists, facilitating the clear differentiation
between these groups. This observation underscores the efficacy of
our co-clustering mechanism in user partitioning, notably without
necessitating access to individual profiles.
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