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ABSTRACT

Proteins move and deform to ensure their biological functions. Despite signif-
icant progress in protein structure prediction, approximating conformational en-
sembles at physiological conditions remains a fundamental open problem. This
paper presents a novel perspective on the problem by directly targeting continu-
ous compact representations of protein motions inferred from sparse experimental
observations. We develop a task-specific loss function enforcing data symmetries,
including scaling and permutation operations. Our method PETIMOT (Protein
sEquence and sTructure-based Inference of MOTions) leverages transfer learn-
ing from pre-trained protein language models through an SE(3)-equivariant graph
neural network. When trained and evaluated on the Protein Data Bank, PETI-
MOT shows superior performance in time and accuracy, capturing protein dynam-
ics, particularly large/slow conformational changes, compared to state-of-the-art
flow-matching approaches and traditional physics-based models.

1 INTRODUCTION

Proteins orchestrate biological processes in living organisms by interacting with their environment
and adapting their three-dimensional (3D) structures to engage with cellular partners, including other
proteins, nucleic acids, small-molecule ligands, and co-factors. In recent years, spectacular advances
in high-throughput deep learning (DL) technologies have provided access to reliable predictions of
protein 3D structures at the scale of entire proteomes (Varadi et al., [2024). These breakthroughs
have also highlighted the complexities of protein conformational heterogeneity. State-of-the-art pre-
dictors struggle to model alternative conformations, fold switches, large-amplitude conformational
changes, and solution ensembles (Chakravarty et al., 2025).

The success of AlphaFold2 (Jumper et al., [2021) has stimulated machine-learning approaches fo-
cused on inference-time interventions in the model to generate structural diversity. They include
enabling or increasing dropout (Brysbaert et al.| [2024; Wallner, 2023)), or manipulating the evolu-
tionary information given as input to the model (Kalakoti & Wallner;, [2024; [Wayment-Steele et al.,
2023} |Del Alamo et al.| 2022} [Stein & Mchaourab, 2022). Despite promising results on specific
families, several studies have emphasised the difficulties in rationalising the effectiveness of these
modifications and interpreting them (Porter et al., [2024; Bryant & Noé, [2024). Moreover, these
cannot be transferred to protein language model-based predictors that do not rely on multiple se-
quence alignments. Researchers have also actively engaged in the development of deep-learning
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frameworks based on diffusion, or the more general flow matching, to generate conformational en-
sembles (Wang et al.| [2025). While family-specific models proved useful in exploring native-like
conformational landscapes, models trained across protein families still fail to approximate solution
ensembles (Abramson et al., [2024).

This work presents a new glance at the protein conformational diversity problem. Instead of learning
and sampling from multi-dimensional empirical distributions, we propose to learn eigenspaces (the
structure) of the positional covariance matrices in collections of experimental 3D structures and
generalize these over different homology levels. Our motivation is that the diversity present within
different 3D structures of the same protein or close homologs is a good proxy for the conformational
heterogeneity of proteins in solution (Best et al.| | 2000) and can generally be (almost fully) explained
by a small set of linear vectors, also referred to as modes (Lombard et al.,2024a;|Yang et al., 2009).
Although linear spaces may not be well-suited for capturing highly complex non-linear motions,
such as loop deformations, they offer multiple advantages. These include faster learning due to the
reduced complexity of the model, improved explainability as the components directly correspond to
interpretable data dimensions, faster inference, and the straightforward combination or integration
of multiple data dimensions.

To summarize, our main contributions are:

* We provide a novel formulation of the protein conformational diversity problem.

* We present a novel benchmark representative of the Protein Data Bank (PDB) structural
diversity and compiled with a robust pipeline (Lombard et al.,[2024al), along with data- and
task-specific metrics.

* We develop a SE(3)-equivariant Graph Neural Network architecture equipped with a novel
symmetry-aware loss function for comparing linear subspaces, with invariance to permu-
tation and scaling. Our model, PETIMOT, leverages embeddings from pre-trained protein
language models (pLMs), building on prior proof-of-concept work demonstrating that they
encode information about functional protein motions (Lombard et al.| [2024b)).

* PETIMOT is trained on sparse experimental data without any use of simulation data, in
contrast with Timewarp for instance (Klein et al., |2024). Moreover, our model does not
require physics-based guidance or feedback, unlike (Wang et al.| |2025) for instance.

* Our results demonstrate the capability of PETIMOT to generalise across protein families
(contrary to variational autoencoder-based approaches) and to compare favorably in run-
ning time and accuracy to AlphaFlow, ESMFlow, and the Normal Mode Analysis.

2 RELATED WORKS

Protein structure prediction. AlphaFold2 was the first end-to-end deep neural network to achieve
near-experimental accuracy in predicting protein 3D structures, even for challenging cases with low
sequence similarity to proteins with resolved structures (Jumper et al.,2021)). It extracts information
from an input multiple sequence alignment (MSA) and outputs all-atom 3D coordinates. Later works
have shown that substituting the input alignment by embeddings from a protein language model can
yield comparable performance (Lin et al., [2023; Hayes et al., [2024; Weissenow et al., 2022} |Wu
et al.l [2022).

Generating conformational ensembles. Beyond the single-structure frontier, several studies have
underscored the limitations and potential of protein structure predictors (PSP) for generating alter-
native conformations (Saldafno et al., [2022} |Lanel 2023; Bryant & Noé| 2024; |(Chakravarty et al.,
2025)). Approaches focused on re-purposing AlphaFold2 include dropout-based massive sampling
(Brysbaert et al.| [2024; |Wallner] 2023)), guiding the predictions with state-annotated templates (Fae-
zov & Dunbrack Jr,2023;|Heo & Feig,[2022), and inputting shallow, masked, corrupted, subsampled
or clustered alignments (Kalakoti & Wallner| [2024; Wayment-Steele et al., 2023} |Del Alamo et al.,
2022; |Stein & Mchaourabl |[2022)). Despite promising results, these approaches remain computation-
ally expensive and their generalisability, interpretability, and controllability remain unclear (Bryant
& Noé| [2024; (Chakravarty et al., 2025). More recent works have aimed at overcoming these limi-
tations by directly optimising PSP learnt embeddings under low-dimensional ensemble constraints
(Yu et al.| 2025).



Published at LMRL Workshop at ICLR 2025

Another line of research has consisted in fine-tuning or re-training AlphaFold2 and other single-state
PSP under diffusion or flow matching frameworks (Jing et al.,|2024;|Abramson et al.,|2024; [Krishna
et al.||2024). For instance, the AlphaFlow/ESMFlow method progressively denoises samples drawn
from a harmonic prior under flow field controlled by AlphaFold or ESMFold (Jing et al., [2024).
It compares favourably with MSA subsampling or clustering baselines, with a substantially supe-
rior precision-diversity Pareto frontier. More generally, diffusion- and flow matching-based models
allow for efficiently generating diverse conformations conditioned on the presence of ligands or cel-
lular partners (Jing et al., [2023} [Ingraham et al., [2023; |Wang et al., [2025; Liu et al., [2024} [ Zheng
et al.| 2024)). Despite their strengths, these techniques are prone to hallucination.

Parallel related works have sought to directly learn generative models of equilibrium Boltzmann
distributions using normalising flows (Noé et al., [2019; [Klein et al., [2024)), or machine-learning
force fields based on equivariant graph neural network (GNN) representations (Wang et al.| 2024a)),
to enhance or replace molecular dynamics (MD) simulations.

Protein conformational heterogeneity manifold learning. Unsupervised, physics-based Normal
Mode Analysis (NMA) has long been effective for inferring functional modes of deformation by
leveraging the topology of a single protein 3D structure (Grudinin et al., 2020; |Hoffmann & Gru-
dinin, |2017; [Hayward & Go, |[1995). While appealing for its computational efficiency, the accuracy
of NMA strongly depends on the initial topology (Laine & Grudininl [2021)), limiting its ability to
model extensive secondary structure rearrangements. Recent efforts have sought to address these
limitations by directly learning continuous, compact representations of protein motions from sparse
experimental 3D structures. These approaches employ dimensionality reduction techniques, from
classical manifold learning methods (Lombard et al., 2024a) to neural network architectures like
variational auto-encoders (Ramaswamy et al.l 2021). By projecting motions onto a learned low-
dimensional manifold, these methods enable reconstruction of accurate, physico-chemically realis-
tic conformations, both within the interpolation regime and near the convex hull of the training data
(Lombard et al.|[20244). Additionally, they assist in identifying collective variables from molecular
dynamics (MD) simulations, supporting importance-sampling strategies (Chen et al.| 2023} Belka-
cemi et al.,|2021;Bonati et al.,2021;|Wang et al., 2020; Ribeiro et al.,[2018])). Despite these advances,
such approaches are currently constrained to family-specific models.

E(3)-equivariant graph neural networks. Graph Neural Networks (GNN) have been extensively
used to represent protein 3D structures. They are robust to transformations of the Euclidean group,
namely rotations, reflections, and translations, as well as to permutations. In their simplest formula-
tion, each node represents an atom and any pair of atoms are connected by an edge if their distance
is smaller than a cutoff or among the smallest k interatomic distances. Many works have proposed
to enrich this graph representation with SE(3)-equivariant features informing the model about inter-
atomic directions and orientations (Ingraham et al., 2019; Jing et al.| [2020; Dauparas et al., 2022}
Krapp et al.l [2023; |Ingraham et al., 2023} Wang et al.l [2024b)). For instance, VisNet captures the
full local geometric information, including bonds, angles, as well as dihedral torsion and improper
angles with node-wise high-order geometric tensors (Wang et al., [2024b). Moreover, to go beyond
local 3D neighbourhoods while maintaining sub-quadratic complexity, Chroma adds in randomly
sampled long-range connections (Ingraham et al., 2023)).

3 METHODS

3.1 DATA REPRESENTATION

To generate training data, we exploit experimental protein single chain structures available in the
Protein Data Bank. We first clustered these chains based on their sequence similarity. Then, within
each cluster, we aligned the protein sequences and used the resulting mapping for superimposing the
3D coordinates (Lombard et al.,2024a)). It may happen that some residues in the multiple sequence
alignment do not have resolved 3D coordinates in all conformations. To account for this uncertainty,
we assigned a confidence score w; to each residue ¢ computed as the proportion of conformations
including this residue. The 3D superimposition puts the conformations’ centers of mass to zero
and then aims at determining the optimal least-squares rotation minimizing the Root Mean Square
Deviation (RMSD) between any conformation and a reference conformation, while accounting for
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the confidence scores (Kabschl 1976} |[Kearsley, [1989),
1 R o
S wn Zi:wi(rij — 70)?, (D

where 75; € R3 is the ith centred coordinate of the jth conformation and 7, € R3 is the ith centred
coordinate of the reference conformation. Next, we defined our ground-truth targets as eigenspaces
of the coverage-weighted Ca-atom positional covariance matrix,
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where R is the 3N X m positional matrix with NV the number of residues and m is the number of
conformations, R° contains the coordinates of the reference conformation, and W is the 3N x 3N
diagonal coverage matrix. The covariance matrix is a 3N x 3N square matrix, symmetric and real.
We decompose C as C = YDY7T, where Y is a 3N x 3N matrix with each column defining a
coverage-weighted eigenvector or a principal component that we interpret as a linear motion. D is a
diagonal matrix containing the eigenvalues. The latter highly depend on the sampling biases in the
PDB and thus we do not aim at predicting them.

3.2 PROBLEM FORMULATION

For a protein of length N, let Y be 3N x K orthogonal ground-truth deformations,
YTY = Ig. (3)

Our goal is to find coverage-weighted vectors X € R3V*L whose components [ approximate some
components k of the ground truth Y:

Wig, ~ yp. (4)

Below, we provide three alternative formulations for this problem.

3.3 GEOMETRIC LoOSS

The least-square formulation. PETIMOT’s loss function serves two key purposes: it enables
effective training of the network to predict subspaces representing multiple distinct modes of defor-
mations — i.e., with low overlap between the subspace’s individual linear vectors, while preventing
convergence to a single dominant mode. For each protein of length /N with a coverage W, we
compare ground-truth directions Y with predicted motion directions X by computing a weighted
pairwise least-square difference Ly for each pair of a k direction in the ground truth and an [ direc-
tion in the prediction,
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where we scaled the ground-truth tensors such that Y7Y = NIy and we used the fact that the
optimal scaling coefficients c; between the k-th ground truth vector and the [-th prediction are
given by

N 3 1
Zi:1 w/? yiq;cxil ylj;W 2X]
k= Ty i (6)
Dim1 WiX; Xl X WX

This invariance to global scaling is motivated by the fact that we aim at capturing the relative mag-
nitudes and directions of the motion patterns rather than their sign or absolute amplitudes.

Linear assignment problem. We then formulate an optimal linear assignment problem to find
the minimum-cost matching between the ground-truth and the predicted directions. Specifically, we
aim to solve the following assignment problem for the least-square (LS) costs,

min(K,L)

LS Loss = mi Lir
0ss = min ; ko (k)

)

subject to:
m:{l,...,min(K,L)} = {1,..., L}, w(k) # m(k') fork # K,
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where K and L are the number of ground-truth and predicted directions respectively, and 7 (k)
represents the index of the predicted direction assigned to the k-th ground truth direction. This for-
mulation ensures an optimal one-to-one matching, while accommodating cases where the number of
predicted and ground-truth directions differs. We backpropagate the loss only through the optimally
matched pairs, using scipy linear_sum_assignment. We have also tested a smooth version of the loss
above with continuous gradients, but it did not improve the performance.

The subspace coverage formulation. We propose another formulation of the problem in terms
of the subspace coverage metrics (Amadei et al.} [1999; [Leo-Macias et al, 2003} [David & Jacobs),
[201T). Specifically, we sum up squared sinus (SS) dissimilarities between ground-truth and pre-
dicted directions (formally computed as one minus squared cosine similarity),

K K
1 1
SS Loss = 1— — ;—1 l§_1(y,{szli)2, (8)

where the subspace {x;"} is obtained by orthogonalising the coverage-weighted predicted linear

subspace {W%xl}, where xlTle = 1, using the Gram—Schmidt process. This operation ensures
that the loss ranges from zero for mutually orthogonalising subspaces to one for identical subspaces
and avoids artificially inflating the SS loss due to redundancy in the predicted motions. The order
in which the predicted vectors are orthogonalised does not influence the loss, guaranteeing stable
training. Appendix [A] proves this statement.

Independent Subspace (IS) Loss. We can substitute the orthogonalisation procedure by using
an auxiliary loss component for maximising the rank of the predicted subspace. For this purpose,
we chose the squared cosine similarity computed between pairs of predicted vectors. The final
expression for the independent subspace (IS) loss is

| KK | KK )
IS Loss = EZZ(Xfolf - EZZ(nyfxl)z, 9)

k=1 l=1 k=11=1

where the predictions {x;} are normalised prior to the loss computation such that x] Wx; = 1 and
the scaling factor K2 ensures that the loss ranges between 0 and 1. Appendix@analyses the stability
of this formulation.

3.4 ARCHITECTURE

15 blocks

Layer
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Figure 1: PETIMOT’s architecture overview. The model processes both sequence embeddings
(s) and motion vectors (Z) through 15 message-passing blocks. Each block updates both represen-
tations by aggregating information from neighboring residues. Neighbor features are computed in
the reference frame of the central residue ¢, ensuring SE(3) equivariance. The geometric features
encoded in the edges capture the relative spatial relationships between residue pairs. Three types of
losses (LS, SS, and IS) are computed, with prior normalization of the predictions for the IS and SS
losses, and an additional orthogonalisation of the predictions for the SS loss.
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Dual-Track Representation. PETIMOT processes protein sequences through a message-passing
neural network that simultaneously handles residue embeddings and motion vectors in local coordi-
nate frames (Fig. . For each residue 7, we define and update a node embedding s; € R? initialized
from protein language model features and a set of K motion vectors {Z;x }2_; € R3*¥ initialized
randomly. The message passing procedure is detailed in Algorithm [B.I]of Appendix

Graph Construction. The protein is represented as a graph where nodes correspond to the
residues, and edges capture spatial relationships. For each residue ¢, we connect to its k£ nearest
neighbors based on Ca distances and [ randomly selected residues. This hybrid connectivity scheme
ensures both local geometric consistency and global information flow, while maintaining sparsity for
computational efficiency. Indeed, our model scales linearly with the length NV of a protein. In our
base model we set £ = 5 and | = 10.

Node features. We chose ProstT5 as our default protein language model for initialising node em-
beddings (Heinzinger et al., |2023). This structure-aware pLM offers an excellent balance between
model size — including the number of parameters and embedding dimensionality — and performance
(Lombard et al., [2024b)).

Local Reference Frames. Each residue’s backbone atoms (N, CA, C) define a local reference
frame through a rigid transformation T; € SE(3). For each residue pair (7, j), we compute their
relative transformation 7T;; = T;l o T; from which we extract the rotation R;; € SO(3) and trans-
lation t_;j € R3. Under global rotations and translations of the protein, these relative transformations
remain invariant.

Edge Features. Edge features e;; provide an SE(3)-invariant encoding of the protein structure
through relative orientations, translational offsets, protein chain distance, and a complete description
of peptide plane positioning captured by pairwise backbone atom distances. See Appendix [B.3]for
more details. The training procedure is detailed in Appendix

4 RESULTS

Training and evaluation. We trained PETIMOT against linear motions extracted from all
~750,000 protein chains from the PDB (as of June 2023) clustered at 80% sequence identity and
coverage. We augmented the data by computing the motions with respect to 5 reference conforma-
tions per collection. The full training set comprises 25,595 samples. We set the numbers of predicted
and ground-truth motions, K’ = L = 4. See Appendix [B.T|for more details.

To evaluate PETIMOT’s ability to capture protein continuous conformational heterogeneity, we
tested it on 824 proteins, each one associated with a conformational collection held out during train-
ing and validation. At inference, we consider w; = 1, V¢ = 1..N. We rely on four main evaluation
metrics aimed at addressing the following questions:

» Is PETIMOT able to approximate at least one of the main linear motions of a given protein?
For this, we rely on the minimum LS error over all possible pairs of predicted and ground-
truth vectors.

* To what extent does PETIMOT capture the main motion linear subspace of a given protein?
For this, we use the global SS error.

* Is PETIMOT able to identify the residues that move the most? Here, we rely on the mag-
. N /)~ -
nitude error, 3 >-,;, ([|Fik]1> — i)
* How fast is PETIMOT at inference?

Comparison with other methods. PETIMOT showed a better capacity to approximate individ-
ual motions and to globally capture motion subspaces than the flow matching-based frameworks
AlphaFlow and ESMFlow, and also the unsupervised physics-based Normal Mode Analysis (Fig.
[Zh-b). It approximated at least one motion with reasonable accuracy (LS error below 0.6) for 43.57%
of the test proteins, while the success rate was only 31.80%, 26.82%, and 24.88% for AlphaFlow,
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Figure 2: Cumulative error curves computed on the test proteins. a-b. Comparison between
PETIMOT base model and three other methods. ¢-d. Comparison between different losses imple-
mented in PETIMOT. The loss of the base model is LS + SS. a,c. Minimum LS error corresponding
to the best matching pair of predicted and ground-truth motions. b,d. SS error computed between
the entire predicted and ground-truth subspaces.

ESMFlow, and the NMA, respectively. PETIMOT’s best predicted vector better matched a ground-
truth vector than any other methods in 43.57% of the cases (Fig. [3p). PETIMOT was also better
at identifying which residues contribute the most to the motions (Table [C.T). PETIMOT was also
significantly faster at inference - it took about 16s for the whole test set, followed by NOLB (44s),
ESMFlow (11h) and AlphaFlow (38h), see Table[C.T] See Appendix[B.3|for more evaluation details.

Comparison of problem formulations. Our base model combining the LS and SS loses with
equal weights outperforms all three individual losses, LS, SS, and LS (Fig. [2-d). It strikes an ex-
cellent balance between approximating individual motions with high accuracy (Fig. [2c) and globally
covering the motion subspaces (Fig. [2d). By comparison, the SS and IS losses tend to underper-
form on individual motions while the LS loss tends to provide lower coverage of the ground-truth
subspaces. See Appendix [C|for additional results.

Contribution of sequence and structure features. We performed an ablation study to assess
the contribution of sequence and structure information to our architecture. Our results show that
ProstT5 slightly outperforms the more recent and larger pPLM, ESM-Cambrian 600M (ESM Team,
2024) (Fig. [B.2). Geometrical information about protein structure provides the most significant con-
tribution, as replacing ProstTS embeddings with random numbers has only a small impact on net-
work performance. Conversely, the network’s performance without structural information strongly
depends on the chosen pLM. While the structure-aware embeddings from ProstT5 partially com-
pensate for missing 3D structure information, relying solely on ESM-C embeddings results in poor
performance (Fig. [B.Z). Moreover, connecting each residue to its 15 nearest neighbours (sorted
according to Ca-Ca distances) in the protein graph results in lower performance compared to intro-
ducing randomly chosen edges or even fully relying on random connectivity (Fig. [B.4).

Generalisation capability. Because our conformational collections are defined based on 80% se-
quence identity and coverage thresholds, some test proteins may be homologs of the training pro-
teins. Yet, the sequence identity and structural similarity (TM-score) of the test proteins with respect
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Figure 3: Individual predictions. a. The per-protein minimum LS errors, computed for the best-
matching pairs between predicted and ground-truth vectors, are reported for PETIMOT (black), the
NMA (red), AlphaFlow (blue) and ESMFlow (green). The values are in ascending order of the errors
computed for PETIMOT, from best to worse. b-c. Trajectories generated by deforming a protein
structure along PETIMOT best predicted motion. Five trajectory snapshots are shown colored from
yellow to orange. b. Bacillus subtilis xylanase A (PDB id: 3EXU, chain A). ¢. Murine Fab fragment
(PDB id: 7SD2, chain A).

to the training set do not determine the quality of PETIMOT predictions (Fig. [C.3). PETIMOT pro-
vides high-quality predictions for a number of test proteins that do not share any detectable similarity
and only weak structural similarity (TM-score below 0.5) to the training set.

Conformation generation. PETIMOT allows straightforwardly generating conformational en-
sembles or trajectories by deforming an initial protein 3D structure along one or a combination
of predicted motions. We showcase this functionality on two example proteins, the xylanase A
from Bacillus subtilis and the periplasmic domain of Gliding motility protein GldM from Capno-
cytophaga canimorsus (Fig. Bb-c). We used PETIMOT predictions to generate physically realistic
conformations representing either the open-to-closed transition of xylanase A thumb (Fig. [3b) or
the flexibility of the heavy chain antibody IgE/Fab anti-profilin Hev b 8 (Fig. Bk). Figures and
[C:5] compare predicted motions for these proteins with the ground truth.

5 CONCLUSION

In this work, we have proposed a new perspective on the problem of capturing protein continuous
conformational heterogeneity. Compared to state-of-the-art methods, our approach goes beyond
generating alternative protein conformations by directly inferring compact and continuous repre-
sentations of protein motions. Our comprehensive analysis of PETIMOT’s predictive capabilities
demonstrates its performance and utility for understanding how proteins deform to perform their
functions. Our work opens ways to future developments in protein motion manifold learning, with
exciting potential applications in protein engineering and drug development.

Code and Data. The code and the data are available at https://github.com/
PhyloSofS-Team/PETIMOT.
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MEANINGFULNESS STATEMENT

Understanding protein motions is essential for grasping the dynamic nature of life at the molecular
level, as these movements enable biological function. A meaningful representation of life must thus
capture continuous, complex, and functional dynamics of proteins beyond static structural snapshots.
Our work contributes a novel problem formulation for predicting protein conformational heterogene-
ity by inferring compact, data-driven representations of protein motions from sparse experimental
data. Our approach, PETIMOT, provides a robust framework integrating data symmetries reflecting
protein physical and geometric properties alongside evolutionary semantics from protein language
models, revealing how proteins move and deform to fulfill their functions.
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APPENDICES

A INVARIANCE OF THE PROPOSED LOSSES

Theorem A.1. SS Loss is invariant under unitary transformations of X and'Y subspaces.

Proof. Without loss of generality, let us assume that we apply a unitary transformation U € RE*K
to a subspace X1 e R3VXK guch that the result X/ = X+ U, with X/ € R3NXK, spans the same
subspace as X L, as it is a linear combination of the original basis vectors from X L. Then, let us
rewrite the SS loss as

K K
1 1 1
SS Loss =1 — — ;—1: l§_1j yEWax)?=1-— ?||YTW2XH|2F. (A1)

As the Frobenius matrix norm is invariant under orthogonal, or more generally, unitary, transforma-
tions, ||[YTW2 XLU||2 = ||YTW 2 X *||2, which completes the proof. O

Corollary A.1.1. The SS loss is invariant to the direction permutations in the Gram-Schmidt or-
thogonalization process.

Proof. Let us consider two linear subspaces Xi- and X3" resulting from the Gram-Schmidt orthog-
onalization of X, where we arbitrarily choose the order of the orthogonalization vectors. Both Xi-
and X3~ will span the same subspace as X, and since both Xj- and X are also orthogonal, one is
a unitary transformation of the other, X5~ = Xi-U, which completes the proof. O

Theorem A.2. IS Loss is invariant under unitary transformations of X and'Y subspaces.

Proof. Following the previous proof, without loss of generality, let us assume that we apply an
orthogonal (unitary) transformation U € RE*X to a subspace X € R3N*K  such that the result
X' = XU, with X’ € R3VXK spans the same subspace as X. Then, let us rewrite the IS loss as

K K

1 1 1

1 Loss = 22 > S0P 2y 30 S (EWEn)? = o lIX WX [V T X
(A.2)

As the Frobenius matrix norm is invariant under orthogonal transformations, ||Y7W 2z XU|% =

IYTW2 X[, and [ UTXTW XU||% = || XTW X||%, which completes the proof. O

B METHODS DETAILS

B.1 TRAINING DATA

Conformational collections. To generate the training data, we utilized DANCE (Lombard et al.,
2024a)) to construct a non-redundant set of conformational collections representing the entire PDB
as of June 2023. Wherever possible, we enhanced the data quality by replacing raw PDB coordi-
nates with their updated and optimized counterparts from PDB-REDO (Joosten et al., 2014). Each
conformational collection was designed to include only closely related homologs, ensuring that any
two protein chains within the same collection shared at least 80% sequence identity and coverage.
Collections with insufficient data points were excluded as we require at least 5 conformations. To
simplify the data, we retained only Ca atoms (option —c) and accounted for coordinate uncertainty
by applying weights (option —w).

Handling missing data. The conformations in a collection may have different lengths reflected by
the introduction of gaps when aligning the amino acid sequences. We fill these gaps with the coordi-
nates of the conformation used to center the data. In doing so, we avoid introducing biases through
reconstruction of the missing coordinates. Moreover, to explicitly account for data uncertainty, we
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assign confidence scores to the residues and include them in the structural alignment step and the
eigen decomposition. The confidence score of a position ¢ reflects its coverage in the alignment,

1
i=— sy, B.1
w sz: af;ﬁX ( )

where X" is the symbol used for gaps and m is the number of conformations. The structural
alignment of the jth conformation onto the reference conformation amounts to determining the
optimal rotation that minimises the following function (Kabsch, |1976; Kearsley, |1989),

1
E = ST > wirg — i), (B.2)
ity

where 77, is the ith centred coordinate of the jth conformation and rf, is the ith centred coordinate of
the reference conformation. The resulting aligned coordinates are then multiplied by the confidence

scores prior to the PCA, as we explain below.

Eigenspaces of positional covariance matrices. The Cartesian coordinates of each conforma-
tional ensemble can be stored in a matrix R of dimension 3N x m, where N is the number of
residues (or positions in the associated multiple sequence alignment) and n is the number of con-
formations. Each position is represented by a C-o atom. We compute the coverage-weighted (to
account for missing data, as explained above) covariance matrix as in Eq. 2] The covariance matrix
isa 3N x 3N square matrix, symmetric and real.

We decompose C as C = VDVT, where V is a 3N x 3N matrix with each column defining a sqrt-
coverage-weighted eigenvector or a principal component that we interpret as a linear motion. D is a
diagonal matrix containing the eigenvalues. Specifically, the kth principal component was expressed
as a set of 3D (sqrt-coverage-weighted) displacement vectors 2°Tik,i = 1,2, ...L for the L Ca
atoms of the protein residues. To enable cross-protein comparisons, the vectors were normalized
such that 3" i = 1%|7ST|? = L. The sum of the eigenvalues Zi;”l M), amounts to the total positional
variance of the ensemble (measured in A?) and each eigenvalue reflects the amount of variance
explained by the associated eigenvector.

Data augmentation. The reference conformation used to align and center the 3D coordinates
corresponds to the protein chain with the most representative amino acid sequence. To increase
data diversity, four additional reference conformations were defined for each collection. At each
iteration, the new reference conformation was selected as the one with the highest RMSD relative to
the previous reference. This iterative strategy maximizes the variability of the extracted motions by
emphasizing the impact of changing the reference.

B.2 MESSAGE PASSING

The node embeddings and predicted motion vectors are updated iteratively according to the follow-
ing algorithm.
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Algorithm B.1 PETIMOT Message Passing Block
1: function MESSAGEPASSING({s; }, {@;}, {Neigh(i)}, {Rij;, €i; }):

20 # {s;}V, > Node embeddings
3 # {7 N, > Motion vectors in local frames
4: #{Neigh(i)} ¥, > Node neighborhoods
5: #{Rij,ei;} > Relative geometric features
6: fori =1to N do

7: for j € Neigh(i) do

8: 5@"; — R;;%; > Project motion in frame ¢
9: m;j < MessageMLP(s;, s;, T, 75, €i;)
10: end for

11: m; < Mean;(m;;) > Aggregate messages
12: s; < s; + LayerNorm(m;) > Update embedding
13: Z; < &; + Linear([s;, ¥;]) > Update motion
14: end for
15:  return {s;}Y , {7},

16: end function

B.3 SE(3)-EQUIVARIANT FEATURES

We represent protein structures as attributed graphs. The node embeddings are computed with the
pre-trained protein language model ProstT5 (Heinzinger et al.,2023)). It is a fine-tuned version of the
sequence-only model T5 that translates amino acid sequences into sequences of discrete structural
states and reciprocally.

The edge embeddings are computed using SE(3)-invariant features derived from the input back-
bone, similarly to prior works (Ingraham et al.l 2023} |Dauparas et al.,|2022} Ingraham et al.l 2019).
Specifically, the features associated with the edge e;; from node (atom) 7 to node (atom) j are:

* Quaternion representation: A 4-dimensional quaternion encoding the relative rotation
R;; between the local reference frames of residues ¢ and j.

* Relative translation: A 3-dimensional vector representing the translation f;j between the
local reference frames.

* Chain separation: The sequence separation between residues ¢ and j, encoded as log(|i —
gl +1).

» Spatial separation: The logarithm of the Euclidean distance between residues ¢ and 7,
computed as log(||Z;;|| + ¢), where ¢ = 1075,

¢ Backbone atoms distances: Distances between all backbone atoms (N, Ca, C, O) at
residues ¢ and j, encoded through a radial basis expansion. For each pairwise distance
dap, We compute:
(dap — p1)?
dap) = —— ], B.3
fold) = oxp (-] ®3)
where {p1}22 | are centers spaced linearly in [0,20] A and o = 1 A. This creates a 16 x

20 = 320 dimensional feature vector, as we have 16 pairwise distances (4 x 4 atoms) each
expanded in 20 basis functions.

B.4 TRAINING PROCEDURE

The model was optimized using AdamW (Loshchilov & Hutter, |2019) with a learning rate of 5e-4
and weight decay of 0.01. We employed gradient clipping with a maximum norm of 10.0 and mixed
precision training with PyTorch’s Automatic Mixed Precision. The learning rate was adjusted using
torch’s ReduceLROnPlateau scheduler, which monitored the validation loss, reducing the learning
rate by a factor of 0.2 after 10 epochs without improvement. Training was performed with a batch
size of 32 for both training and validation sets. We implemented early stopping with a patience of
50 epochs, monitoring the validation loss. The model achieving the best validation performance was
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selected for final evaluation. We trained the model on a single NVIDIA A100-SXM4-80GB GPU.
One epoch took about 9 minutes of real time.

B.5 EVALUATION PROCEDURES

Comparison with AlphaFlow and ESMFlow and ESMFlow. We compared our approach with
the flow-matching based frameworks AlphaFlow and ESMFlow for generating conformational en-
sembles. For this, we downloaded the distilled "PDB” models from https://github.com/
bjing2016/alphaflow. We executed AlphaFlow using the following command,

python predict.py —--noisy_first —--no_diffusion --mode alphafold
——input_csv segs.csv —-msa_dir msa_dir/

—--weights alphaflow_pdb_distilled_202402.pt --samples 50
——outpdb output_pdb/

AlphaFlow relies on OpenFold (Ahdritz et al., 2024)) to retrieve the input multiple sequence align-
ment (MSA). ESMFlow was launched using the same command with an additional —-mode
esmfold flag and its corresponding weights. We used AlphaFlow and ESMFlow to generate 50
conformations for each test protein and then we treated each ensemble as a conformational collec-
tion. We then aligned all members of the created collections to the reference conformations of the
ground-truth collections. We used the identity coverage weights here. Finally, from the aligned
collections, we extracted the principal linear motions. We shall additionally mention that we did not
filter or adapt our test set to the AlphaFlow and ESMFlow methods. In other words, there can be
certain data leakage between AlphaFlow/ESMFlow train data and our test examples.

Comparison with the Normal Mode Analysis. We also compared our approach with the physics-
based unsupervised Normal Mode Analysis (NMA) method (Hayward & Gol [1995). The NMA
takes as input a protein 3D structure and builds an elastic network model where the nodes rep-
resent the atoms and the edges represent springs linking atoms located close to each other in
3D space. The four lowest normal modes are obtained by diagonalizing the mass-weighted
Hessian matrix of the potential energy of this network. We used the highly efficient NOLB
method, version 1.9, downloaded from https://team.inria.fr/nano-d/software/
nolb-normal-modes/ (Hoffmann & Grudinin, |2017)) to extract the first  normal modes from
the test protein 3D conformations. Specifically, we used the following command

NOLB INPUT.pdb -c 10 -x -n 4 —--linear -s 0 ——format 1 —--hetatm

We retained only the Ca atoms and defined the edges in the elastic network using a distance cutoff
of 10 A.

B.6 ABLATION STUDIES

To understand the impact of different components on the performance of our model, we carried out
ablation studies. We list them blow.

Model architecture variations.

* Network depth: We experimented with different numbers of message-passing layers (5 and
10 layers compared to our default value of 15 layers).

» Layer sharing: We tested a variant where all message-passing layers share the same param-
eters, as opposed to our default where each layer has unique parameters.

* Reduced internal embedding dimension: We tested a model with a smaller internal embed-
ding dimension of 128 instead of the default 256.

Figure [B.1] shows the evaluation of these modifications. A shallow 5-layers network underperforms
on all evaluation metrics. The difference between other variants is not very significant.
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Figure B.1: Network depth ablation. We report cumulative curves for LS error (a-b), magnitude
error (c-d), and SS error (e). For each protein, we computed the error either for the best-matching
pair of predicted and ground-truth vectors (a,c) or for the best combination of four pairs of predicted
and ground-truth vectors (b,d). We vary the number of layers in the network and the embedding

dimension.

Structure and sequence information ablation.

¢ Structure ablation: We removed all structural information from the model to assess the
importance of geometric features and the performance with the PLM embeddings only. We
did it by removing the edge attributes of the input of the message passing MLP.
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» Sequence ablation: We ablated sequence information by replacing protein language model
embeddings with random embeddings, testing them both with and without structural infor-

mation.

* Embedding variants: We evaluated a different protein language model (ESMC-600M), both

with and without structural tokens.

The evaluation results are shown in Fig. The results demonstrate that while both ProstT5
and ESM-Cambrian 600M perform similarly when combined with structural information, removing
structural features leads to markedly different outcomes. ProstT5 embeddings partially compensate
for the missing structural information, likely due to their structure-aware training, while relying

solely on ESM-C embeddings results in poor performance.
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Figure B.2: Structure and sequence information ablation study. We report cumulative curves for
LS error (a-b), magnitude error (c-d), and SS error (e). For each protein, we computed the LS and
magnitude errors either for the best-matching pair of predicted and ground-truth vectors (a,c) or for
the best combination of four pairs of predicted and ground-truth vectors (b,d).

Problem formulation ablation.
to our default balanced weights of LS + SS):

 Least Square loss (LS): Using only the LS loss (weight 1.0).
* Squared Sinus loss (SS): Using only the SS loss (weight 1.0).
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* Independent Subspaces (IS): Using only the IS loss (weight 1.0).

Figure [B.3] compares three individual losses with the default option. The IS problem formulation
underperforms on all the metrics. The default LS + SS formulation performs slightly better than
those with individual loss components.
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Figure B.3: Performance comparison of different problem formulations. We report cumulative
curves for magnitude error (a,b) and LS error (c). For each protein, we computed the error either for
the best-matching pair of predicted and ground-truth vectors (a) or for the best combination of four
pairs of predicted and ground-truth vectors (b,c).

Graph connectivity ablation.
graph:

We investigated different approaches to constructing the protein

* Nearest neighbor-only: Using 15 nearest neighbors (sorted according to the corresponding
Ca-Ca distances) without random edges.

* Random connections-only: Using 15 random edges without nearest neighbors. This set is
updated between every layer at each epoch.

* Static connectivity: Using a fixed set of random neighbors between the layers. This set is
updated at each epoch.

Figure[B.4]shows the ablation results. We can see that the nearest neighbor-only setup underperforms
on all the metrics. Among other options, the random connectivity-only option gets lower results at
higher metrics values. The default option performs on par with the static connectivity, showing
slightly better results on the optimal assignment magnitude error metrics.
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Figure B.4: Graph connectivity ablation. We report cumulative curves for LS error (a-b), mag-
nitude error (c-d), and SS error (e). For each protein, we computed the error either for the best-
matching pair of predicted and ground-truth vectors (a,c) or for the best combination of four pairs
of predicted and ground-truth vectors (b,d). Only Random Neighbors: each residue (node) is con-
nected to 15 randomly chosen residues and the connectivity changes after each layer. Only Nearest
Neighbors: each residue (node) is connected to its 15 nearest neighbors in the input 3D structure.
Fixed Random Connectivity: each residue (node) is connected to 15 residues randomly chosen at

the beginning.

C ADDITIONAL RESULTS

Table[C.T]lists additional results. The first line represents the success rates of four methods on the test
set. The success rate is defined as the proportion of test proteins with at least one motion predicted
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Metrics PETIMOT  AlphaFlow = ESMFlow NMA
Success Rate (%) 1 43.57 31.80 26.82 24.88
Running time | 15.82s 38h 07min  10h 41min 43.59s
Min. LS Error | 0.61 +0.22 0.68£0.21 0.70+0.22 0.72+0.20
Min. Magnitude Error |  0.21 £0.12 024 +0.12 0.26 +0.14 0.27 £0.14
OLA LS Error | 0.83+0.10 0.86+0.10 0.87+0.10 0.88+0.10
OLA Magnitude Error |  0.41 +£0.14 043 +0.14 047+0.15 048 £0.15
Global SS Error | 0.73+0.14 0.78 £0.14 0.80+0.14 0.79 +0.14

Table C.1: Success rate and average performance on the test set. Min. stands for the best
matching pair of predicted and ground-truth vectors. OLA refers to the optimal linear assignment
between all predicted and ground-truth vectors. Arrows indicate whether higher (1) or lower ({)
metrics values are better. Best results are shown in bold. All results are averaged over 824 test
proteins from the PDB test set. Running times are recorded on a Intel(R) Xeon(R) W-2245 CPU
@ 3.90GHz equipped with GeForce RTX 3090. PETIMOT (with 4 directions), AlphaFlow (50
models), and ESMFlow (50 models) were executed on a GPU, while NOLB NMA (with 10 lowest
modes) only used CPU.

at a reasonable accuracy, namely an LS error below 0.6. Other lines compare the least-square and
magnitude errors computed for the best matching pair of the ground-truth and predicted directions,
the least-square and magnitude errors using the optimal linear assignment method (comparing full
four-dimensional subspaces), and the squared sinus error for the full subspaces. For all the metrics
PETIMOT performs the best, with a particular striking difference in performance for the success
rate metrics. However, it maybe not very informative to look at a single value averaged over the
whole test set. Thus, we also suggest to analyze more informative plots, e.g. those in Fig. [2]and Fig.

Bh.

Figure [C.T] evaluates PETIMOT against NMA, ESMFlow and AlphaFlow approaches using addi-
tional metrics. These include the minimum magnitude error, the optimal assignment magnitude
error, and the optimal assignment LS error. On all the metrics we see that PETIMOT outperforms
the three other tested approaches.

We also experimented with a different number of predicted components. For these experiments, we
trained additional models with the LS loss only, which are listed below:

* Single component prediction (1 mode).
* Reduced component prediction (2 modes).

» Extended component prediction (8 modes).

We compare these options with our default setting of 4 components. Figure [C.2]shows the results.
Increasing the number of predicted components from 1 to 8 improves the minimum LS errors, as
having more predicted vectors naturally increases the chance of matching at least one ground-truth
motion well. However, when evaluating the optimal linear assignment metrics, which measures
overall subspace alignment, models with 1 or 2 components have an artificial advantage since they
face fewer matching constraints. The 8-components model similarly benefits from having more
candidate vectors to match against the 4 ground-truth components.

Figure compares the accuracy of the predicted test proteins (minimum LS loss) with the struc-
tural (TM-score) and sequence (sequence identity) distances to the training set. We do not see a
clear correlation between the prediction accuracy and the similarity to the training examples. Please
also see Fig. [Bp-c for comparison.

Figures [C.4] and [C.3]| show predicted (blue arrows) and ground-truth (red arrows) motion vectors for
the xylanase A from Bacillus subtilis and the periplasmic domain of Gliding motility protein GldM
from Capnocytophaga canimorsus, respectively.
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Figure C.1: Performance comparison with other methods on the test proteins. We report cumu-
lative curves for magnitude error (a,b) and LS error (c). For each protein, we computed the error
either for the best-matching pair of predicted and ground-truth vectors (a) or for the best combina-
tion of four pairs of predicted and ground-truth vectors (b,c).
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Figure C.2: Impact of the number of predicted components. We report cumulative curves for LS

error (a-b) and magnitude error (c-d). For each protein, we computed the error either for the best-
matching pair of predicted and ground-truth vectors (a,c) or for the best combination of all pairs
of predicted and ground-truth vectors using optimal linear assignment (b,d). We compare models

trained to predict different numbers of components (modes): 1, 2, 4, or 8, using only the LS loss.
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Figure C.3: Relationship between PETIMOT’s prediction accuracy and structural/sequence
similarity with the training set. The minimum LS error is plotted against the maximum TM-score
between each test protein and any protein in the training set. Points are colored by the maximum
sequence identity to the training samples.

Figure C.4: Visualization of predicted (blue arrows) and ground-truth (red arrows) motion
vectors for PDB structure 3EXU (chain A), with LS error of 0.20. The predicted deformation
was used to generate the interpolated conformations shown in Fig. [3p.
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Figure C.5: Visualization of predicted (blue arrows) and ground-truth (red arrows) motion
vectors for PDB structure 7SD2, with LS error of 0.18. The predicted deformation was used to
generate the interpolated conformations shown in Fig. [3t.
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