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Figure 1: Our dataset provides over one million multi-resolution high-fidelity cloth drape geometries parame-
terized with wide variation, over six key differentiating features in cloth simulation: 1) shapes; 2) materials;
3) initial drape configurations (rotations); 4) cloth physical sizes and thicknesses; 5) collider geometries; and
6) collider sizes. We display here a representative subset of our dataset’s geometries along these varying axes.
For each simulated drape we provide a set of self-consistent increasing resolution simulation meshes with
high-quality, artifact-free and intersection-free modeling of simulated cloth physics across all resolutions. Both
consistency across resolutions and quality at the finest levels of resolution are not possible in prior SOTA cloth
simulators (both industrial and academic), making it uniquely suited for advancing research and analysis in the
development of physics-based upsampling methods.

ABSTRACT

The high-fidelity simulation of draped cloth is a crucial tool across a wide range of
applications that span the gamut from immersive virtual experiences to accurate
digital modeling. However, capturing the finely detailed folds, creases, contacts and
wrinkles of a cloth at equilibrium requires expensive, high-resolution simulation.
To side-step these intensive computation requirements, data-driven methods have
long attempted to directly upsample cheap-to-generate, low-resolution, coarse-
cloth drapes with rich, physically realistic cloth-drape details. However, progress in
these “physics upsampling” methods is significantly stymied by the lack of suitable
data to capture both the intricate details of cloth physics and, just as important, to
provide consistent, artifact-free, multi-resolution models of draping to learn the
changes and correspondences across resolutions. Existing cloth simulators (both
industrial and academic) generally fail to capture accurate draping behavior of
real-world materials, lack the resolution and fidelity required for producing fine-
scale cloth wrinkles, struggle with accurately resolving detailed cloth self-collision,
and, do not provide consistent draping geometries for simulations as we vary
input model resolution. At the same time, consistent and meaningful quantitative
metrics for evaluating the success of physics-based upsampling methods have
also been missing. To address these gaps, we introduce a large-scale dataset
specifically designed for cloth-drape upsampling, built with the recently developed
“Progressive Cloth Simulation” (PCS) method and a new set of carefully constructed
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benchmark evaluation metrics. PCS enables us to generate a dataset of multi-
resolution tuples of corresponding cloth drapes, with drape consistency across
resolution levels, over a diverse range of real-world cloth material parameters.
Geometries at all resolutions are robustly interpenetration-free (a critical and
necessary feature for high-quality cloth modeling), with increasingly finer details
ending in the highest-resolution models corresponding to high-fidelity, completely
unconstrained and fully converged cloth simulation output. Our dataset spans
a wide range of diverse cloth configurations by collating over one million total
simulated meshes constructed via careful parameterization across important input
drape configuration variations. We provide geometric analyses of our dataset
and benchmark five existing upsampling methods for cloth upsampling under
various settings. To quantify performance, we introduce a new set of geometric
and physical evaluation metrics. Here, as we show in our analyses, the high-
fidelity cloth draping, introduced in this dataset, immediately exposes severe
limitations in existing methods which are challenged by both the complex contact
behaviors and the real-world cloth material properties demonstrated. Recognizing
these gaps in existing methods regarding collision objects and material properties,
we further develop and benchmark a new, learning-based baseline method for
comparison. Extensive experimental results demonstrate the effectiveness, as well
as the important added real-world complexity of our dataset. Its self-consistent
models and the intricate high-resolution cloth details provide an important yet
challenging benchmark, calling on future research in specialized model designs for
data-driven cloth upsampling and simulation. A subset of our dataset is available
at https://cloth-drape-dataset.github.io/.1

1 INTRODUCTION

Low-res drape High-res drape

Upsampling

Simulating high-fidelity cloth drapes is an important problem in
computer graphics. However, modeling the nonlinear wrinkling,
folding and self-contact behaviors of draped cloth requires expen-
sive simulation on high-resolution meshes. Data-driven “physics upsampling” methods offer the
tantalizing promise of replacing such expensive high-resolution computations with forward evalua-
tions of neural nets trained to predict high-resolution cloth details from low-resolution input meshes.
While such a cloth upsampling method would prove immediately useful in wide-ranging applications
(e.g., film (Han et al., 2021), gaming (Kavan et al., 2011), virtual reality experiences (Keckeisen et al.,
2003) and virtual prototyping (Fontana et al., 2004)), existing methods do not yet achieve compelling
details nor high-fidelity results. One major missing ingredient is high-quality data.

Cloth simulation as a forward process has advanced to a mature field. This should mean that
generating massive amounts of cloth drape data is as easy as running an accurate cloth simulator
across parameters of interest. However, data generation for physics learning tasks often quickly
becomes a significant bottleneck, as cloth simulation methods able to produce high-fidelity drape
results, generally remain slow and memory intensive, which, in turn, limits the size of existing
cloth datasets. Moreover, prior SOTA cloth simulators (both industrial and academic) generally lack
the ability to simulate the accurate draping behavior of real-world materials (largely just resolving
“stretchy” materials), and generally do not include the resolution and fidelity required to capture fine
cloth wrinkling in drapes (a key feature targeted by cloth upsampling) and are unable to accurately
resolve detailed cloth self-collision, a key feature for detailed cloth drape folds and wrinkle formation.
At the same time, all prior existing simulators are unable to provide consistent draping geometries for
simulations as we vary input model resolution – a critical element for training upsampling.

In this paper, we present a large-scale dataset of cloth drapes specifically designed for cloth upsam-
pling. To construct our dataset, we identify the recently developed “Progressive Cloth Simulation”
(PCS) method (Zhang et al., 2022) as an ideal technique to generate a multi-resolution tuple of corre-
sponding cloth drapes. Existing cloth simulators, at best, only output high-fidelity, high-resolution
geometry, while the ideal data for cloth upsampling should be supervised pairs of lower-resolution
cloth geometries (e.g., low-res meshes) and corresponding high-resolution, accurate cloth simulation
output meshes with levels of detail. To bridge this gap, the PCS method is uniquely consistent
across levels: avoiding artificial locking artifacts at the coarser levels while producing successively

1The full dataset will be released upon paper acceptance.
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finer-detailed wrinkles that progressively appear with each level of refinement, ending in the highest-
resolution models corresponding to high-fidelity, completely unconstrained and fully converged cloth
simulation outputs while preserving the coarser structures from prior levels. These levels of detail are
then immediately useful to supervised methods which assume pairs of low- and high-resolution data,
and open the door to multi-level learning methods that could leverage this broader range of resolution.
PCS has the added benefits of supporting a full range of real-world cloth material properties (which
we span in our outputs), robust contact handling (ensuring non-(self-)intersecting and so high-quality
geometries in all our data), and superior performance to comparable, high-fidelity cloth simulators.

Cloth behavior depends heavily on parameters across a number of axes (see Figure 1): most notably
the material moduli and thickness of the cloth (e.g., leather is thick and stiff, while silk is thin and soft),
the amount of self-contact (e.g., dropping a table cloth flat on the ground produces no self-folding
with contacting wrinkles versus dropping it on its side), and the arrangement of resting contact with
collider objects in the scene (e.g., draping cloth over the corner of a simple box shape results in vastly
different wrinkles than drapes upon a complex non-convex shape). To span a diverse set of cloth
configurations, we collect over one million total meshes, representing five-level PCS simulations
draping cloths of wide-ranging material parameters over a variety of initial rotations and collider
objects selected from the Thingi10k (Zhou & Jacobson, 2016) and PartNet (Mo et al., 2019) datasets
and provide geometric analyses of the dataset, revealing its unique cloth drape characteristics.

Our dataset serves as a new and effective benchmark that enables the study and construction of cloth
upsampling methods. With its significantly increased complexity, variation and realism in cloth
drape examples, it exposes new and significant challenges for physics-based upsampling to become
a practical and useful framework. At the same time, the high-quality and widely varying multi-
resolution mesh tuples and our newly proposed evaluation metrics also offer opportunities to develop
new, more material and configuration aware learning methods for physics upsampling and cloth
simulation more broadly. To this end, we provide geometric analyses of our dataset and benchmark
five existing methods for cloth upsampling under a range of settings. To evaluate cloth upsampling
quality, we propose a new and detailed set of benchmark evaluation metrics that include both physical
and geometric measures for the cloth upsampling task. Considering that current learning-based
upsampling methods overlook collision objects and material properties in their method design, we
further introduce a learning-based baseline method utilizing our benchmark and compare it with
existing upsampling approaches. Extensive experimental results highlight both the efficacy and the
enhanced complexity in our dataset from intricate cloth wrinkling details, marking it as an important
and challenging benchmark for improving future neural upsampling and simulation methods.

In summary, we provide new, unique and valuable contributions to the learning community for
learning cloth draping by offering:
1. a new, high-fidelity cloth drape dataset with significantly improved resolution, physical and

geometric accuracy, and example diversity in comparison to prior cloth datasets.
2. the first multi-resolution cloth dataset with self-consistent level-of-detail geometries per drape.
3. the first large-scale (well over one million total meshes) cloth drape dataset with a wide range of

cloth mesh resolutions, materials, shapes and complex and diverse collision geometries.
4. the first comprehensive benchmark suite with carefully constructed evaluation measures that

consider both physical and geometric accuracy.
and additionally providing
1. a detailed geometric analysis of the collected dataset.
2. a learning-based baseline method for cloth upsampling that is collision-shape- and material-aware.
3. extensive evaluations and analyses under various settings.

2 RELATED WORK

Physics-based upsampling. Early approaches to cloth upsampling could produce fine-scale details
to some extent but struggled with scalability and accurately representing contact-driven behaviors (Ka-
van et al., 2011; Zurdo et al., 2012). Deep neural nets have emerged as a promising tool to enhance the
potential of physics-based upsampling. These methods have been particularly successful in Eulerian
fluid simulation which can leverage the regularity of the fixed background grid (Chu & Thuerey,
2017; Xie et al., 2018). For cloth animation, Chen et al. (2021a) develop a deformation representation
to learn a mapping from low-res garment meshes to high-res ones. In cloth simulation, recent efforts
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apply hierarchical deep nets (Oh et al., 2018; Lee et al., 2019) to upsample the coarse simulation out-
put to a fine-resolution one for cloth geometry enhancement. We include two representative methods
(i.e., Kavan et al. (2011) and Lee et al. (2019)) in our benchmark for evaluation. Additionally, the
tension field theory can be employed to enhance coarse geometry by introducing the amplitude and
phase of intricate fine-scale wrinkling (Chen et al., 2021b). We also include the method by Chen et al.
(2021b) in the benchmark evaluation.

Geometric upsampling. Mesh subdivision is a technique for coarse mesh refinement, where subdi-
vision surfaces are defined by deterministic, recursive upsampling of a discrete surface mesh (Loop,
1987; Catmull & Clark, 1978; Zorin et al., 1996). In the context of cloth upsampling, these methods
can be viewed as applying a predetermined smoothness prior, unaware of external collision geometries
or physical properties that might be derived or inferred from prior knowledge or training data specific
to an application domain. Deep neural nets have been used to enhance the range of geometric details
producible using a subdivision framework (Liu et al., 2020; 2023), which also spans the broader
domain of mesh generation, compression and synthesis (Hanocka et al., 2020; Chen et al., 2023;
Hertz et al., 2020). Although not explicitly designed for cloth, we evaluate the capability of two
geometric methods (i.e., Loop (1987) and Neural Subdivision (Liu et al., 2020)) to capture the distinct
details inherent to cloth-drape geometries.

Vellum MD Ours

Artifacts Explosion

Cloth datasets. Deep learning-based techniques have exten-
sively investigated alternatives to mimic, emulate and even
forward-step physically-based simulation results. Many exist-
ing approaches for neural garment deformations rely on super-
vised learning (Bertiche et al., 2021; Gundogdu et al., 2019; Patel et al., 2020; Tiwari et al., 2020;
Wang et al., 2019; Zhang et al., 2021; Shao et al., 2023), for which it is necessary to run and collect
large samples of offline physics-based simulations to gather the data required for training. In the
absence of a shared, large-scale high-quality cloth draping dataset, researchers end up repeatedly
generating data using accessible cloth simulators like PhysBAM (Wu et al., 2020) and Marvelous
Designer (Designer, 2023), leading to datasets of limited size and quality. Concretely, corresponding
high-resolution cloth simulations generated in such existing cloth simulators/software, e.g., Houdini
Vellum (SideFX, 2022), Marvelous Designer (Designer, 2023), CLO (CLO, 2023), ArcSim (Narain
et al., 2014), and PhysBAM (Wu et al., 2020), generate numerous errors and inaccuracies including
self-intersections, sharp edge-creasing, numerical material softening, jitters, and instabilities. At
the same time, these methods are unable to generate consistent geometries by simulation across
varying resolutions like PCS (Zhang et al., 2022), thus prohibiting the generation of effective training
sets. While a dataset of real-world captured cloth drapes would be another interesting and poten-
tially impactful dataset, it is not able to scale nor would such a dataset be directly suitable for the
cloth upsampling task, due to the noise in reconstructing meshes with different levels of detail and
establishing correspondences across different resolutions while ensuring mesh quality and wrinkle
consistency.

Please refer to Appendix B for a comprehensive discussion on multi-resolution simulation and
physics-based enrichment and refinement.

3 BACKGROUND: PROGRESSIVE CLOTH SIMULATION

Throughout our dataset, we offer, per simulated drape, a multi-resolution tuple with a hierarchical
structure of increasingly finer-resolution triangle meshes. The meshes in this hierarchy are organized
in ascending resolution order by subscript l ∈ [0, L], where xl and x̄l ∈ R3nl respectively represent
the nl deformed and resting positions of a draped cloth’s mesh nodes at level l. The coarsest
mesh’s deformed positions are saved in x0, and xL holds the highest-resolution positions of the final,
high-quality simulation output.

The stable equilibria of frictionally contacting cloth drapes are computed by equipping each finest-
level mesh with shell (Ψ), contact barrier (B), friction (D) and, when needed, strain-limiting (S)
potential energies. PCS then forward-steps from each initial, input, non-equilibrium configuration, to
a final stable equilibrium drape. At equilibrium, PCS generates the hierarchy of final, (intersection-
free and strain-limit compliant) consistent meshes xl, with the finest-level mesh accurately satisfying
high-accuracy equilibrium with ∥∇Ψ(xL)+∇B(xL)+∇D(xL)+∇S(xL)∥ ≤ ϵ. See Appendix A
for details on the cloth model we utilize, its parameterization, and the process for PCS simulation.
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Wool+lycra Canvas Co�on Denim Polyester Silk Wool Paper

Figure 2: Material variations. We select eight representative real-world materials with varying material
behaviors where the material parameters can be directly plugged into the PCS solver for generating our
multiresolution results. We showcase the finest level converged results here.

4 CLOTH DRAPE DATASET

Our dataset provides multi-resolution results for a diverse set of cloth-drape simulations parameterized
over a wide range of cloth 1) shapes, 2) materials, 3) initial drape configurations (rotations), and 4)
physical sizes and thicknesses; as well as varying 5) collider geometries and their 6) physical sizes.

Regular Irregular

Cloth shapes and triangulations. To cover both structured and unstruc-
tured triangulations, we select two shapes for the base rest shape of the
cloth: a square and a circle. The square cloth employs a regular structured
triangulation for its base hierarchy, whereas the circle cloth begins with an
unstructured, irregular triangulation. Successive subdivision-based refine-
ment then defines the remaining mesh resolutions for each tuple. See inset
for illustrations and Table 7 for our cloth-mesh statistics.

Cloth materials and thicknesses. Two of the most notable factors influencing cloth draping
behavior are the physical material (moduli) and the thickness of the cloth. To capture a broad
spectrum of cloth behaviors including fine and coarse wrinkling characteristics, we select 8 real-world
cloth materials, i.e., cotton, wool, wool + lycra, polyester, paper, canvas, silk and denim (see Figure 2).
For each such material, we then generate two additional synthetic variations by further modifying the
cloth materials’s thickness. See Appendix C for the complete set of material parameters.

X
Y

Z

Cloth initial rotations. Varying the initial orientation of the cloth before it is
dropped onto its collider can result in various final draping outcomes. We define five
different initial rotations, i.e., by rotating the cloth about the x-axis by 0, 45 and 90
degrees and the z-axis by 0, 45 and 90 degrees (see inset).

Cloth sizes. In contrast to purely geometric tasks, the physical size of an object (scale) significantly
affects simulation results. For the square cloth, we define three sizes: 1 meter × 1 meter, 0.75 meters
× 0.75 meters and 0.5 meters × 0.5 meters. For the circle cloth, we define three sizes: 1-meter
diameter, 0.75-meter diameter and 0.5-meter diameter. See inset below.

Collider objects. To provide a varied collection of collision geometries for draping, we source 48
meshes from the Thingi10K (Zhou & Jacobson, 2016) dataset, which comprises objects with widely
varying shapes and intricate details to introduce different contact and folding behaviors. Additionally,
we collect 52 meshes from PartNet (Mo et al., 2019), which includes common, everyday objects.

1 
m

et
er

1x / 0.75x / 0.5x 0.7x / 0.3x

Collider-object sizes. For every mesh from Thingi10K, we adjust
its size by normalizing the diagonal length of its bounding box to a
random value between 30 cm and 70 cm. For meshes from PartNet,
we resize each mesh to match its actual dimensions listed on the IKEA
website. Additionally, for each collider object, we create two more
variations by resizing them to 50% and 75% of their original size. For
the Thingi10K meshes, we utilize the watertight meshes preprocessed by Hu et al. (2018).

Collider-object preprocessing. Higher mesh resolutions for collider-object geometries generally
result in slower simulation speeds. To enhance data-generation efficiency, we apply QSlim (Garland &
Heckbert, 1997) to simplify our initial collision object meshes, ensuring the preservation of geometric
features with lower-resolution final meshes. Please refer to Appendix D for preprocessing details.

4.1 CLOTH DRAPING SIMULATION

Figure 3 presents our data generation pipeline enabled by PCS (Zhang et al., 2022). Given a feasible
initial setup, e.g., a piece of deformable cloth over a fixed collider object that is intersection-free,
we generate our simulation samples across a combination of different cloth shapes, cloth materials,
cloth initial rotations, cloth sizes, cloth thicknesses, colliders and collider sizes and then run PCS
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Level 0 Level 1 Level 2 Level 3 Level 4

Initial state

Quasistatic steps

Progressive Refinement

...

Figure 3: Cloth simulation. PCS allows us to progressively simulate cloth drapes from low to high resolutions
with consistent results.

to produce cloth drapes at five increasingly higher resolution levels with consistent and progressive
improvement over wrinkle and fold details. Table 9 reports an analysis of average runtime.

Implementation details. We implement our cloth simulation pipeline in C++. We use LIBIGL (Ja-
cobson et al., 2018) for common geometry processing subroutines. We refer readers to PCS (Zhang
et al., 2022) for its own implementation details. We run simulation jobs on a dedicated CPU cluster
with 2.5GHz Intel(R) Xeon(R) processors. We use 25 CPU cores, each with 386GB RAM, to
parallelize the data generation jobs. Generating the entire dataset takes approximately 45 days.

4.2 DATASET ANALYSIS

Table 8 reports the statistics for a variety of geometric characteristics in our dataset. Specifically, we
adopt the correspondence Euclidean distance dcorr, the mean curvature by quadric fitting dfit

H (Panozzo
et al., 2010), the discrete differential geometry curvature using dihedral angles around a vertex
dddg

H (Knöppel et al., 2013), the Gaussian curvature dfit
K and the discrete differential geometry curvature

using angle defect dddg
K (Meyer et al., 2003). Using different metrics, we measure the similarity/con-

sistency between the cloth drape at each coarse level (i.e., levels 0, 1, 2 and 3) and at the finest level
(i.e., level 4). Please refer to Appendix E for the detailed definition of each metric.

4.3 DATA ACCESS AND STORAGE

Our dataset contains over one million cloth drapes with cloth drapes stored in a standard geometric
file format with .obj. The entire dataset occupies over 3.8TB (before zipping).

We develop a website to host our dataset and facilitate the interactive exploring of cloth drapes
(see Figure 6). Our prototype at https://cloth-drape-dataset.github.io/ contains a
user-friendly model viewer and instructions for accessing our dataset (upon paper acceptance).

4.4 LICENSE

We collect our collider objects following the licenses specified in each source dataset: the MIT license
in the PartNet (Mo et al., 2019) dataset and a variety of open-source licenses in the Thingi10K (Zhou
& Jacobson, 2016) dataset (see Figure 12 in Zhou & Jacobson (2016)).

5 CASE STUDY APPLICATION: CLOTH DRAPE UPSAMPLING

Our multi-resolution cloth drape dataset serves as a benchmark for evaluating existing cloth upsam-
pling techniques and inspires further research to address the shortcomings of these existing methods.
In this section, we consider cloth drape upsampling as a case-study application.

Problem formulation. The task of cloth drape upsampling is often framed as a mesh subdivision
problem. Given the cloth mesh at resolution level i, i.e., Mi = (Vi, Fi), where Vi represents the
vertices and Fi represents the faces, we first modify the mesh topology based on specific rules (e.g.,
midpoint subdivision as used by Loop (1987)) and then adjust the positions of the mesh vertices.
The primary objective of the cloth upsampling task is to directly enhance cheap-to-generate, low-
resolution, coarse-cloth drapes with rich, physically realistic cloth-drape details when iteratively
upsampling a mesh from resolution level i to level i+ 1 (and ultimately the finest level L).

Evaluation metrics. We propose a new set of geometric and physical measures to evaluate the
quality of different upsampled results. For geometric metrics, we measure similarity by computing
the correspondence Euclidean distance dcorr, the mean curvature by quadric fitting dfit

H (Panozzo et al.,
2010), the Gaussian curvature dfit

K , and the number of intersections #I (both cloth self-intersections
and intersections with colliders). The distance and curvature metrics are computed between the
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Table 1: Experimental results of cloth drape upsampling.

Method dcorr dfit
H dfit

K #I ∥∇W∥ ∥∇W̃∥

×10−3 ×102 ×106 ×101 ×100 ×10−1

Kavan et al. (up to level 2) 13.48 16.10 3.80 60.33 1.31 0.43
TFW 30.68 18.81 4.09 106.00 12.07 19.81
Loop 25.56 15.11 3.48 12.30 6.05 3.21
U-DNN 10.74 15.04 3.52 75.17 4.11 4.07
Neural Subdiv 12.35 15.29 3.54 26.96 4.72 1.93
Ours 7.52 9.62 3.43 11.57 3.02 1.75

predicted upsampled cloth at each resolution level and the ground truth cloth at the highest resolution
level (i.e., level 4). For cloth simulation, geometric measures do not cover physical accuracy. To
capture physical accuracy measurements, we also evaluate how close the resulting upsampled cloth
geometry is to an accurate equilibrium configuration given by force balance as measured by the
upsampled mesh’s gradient norm ∥∇W∥ = ∥∇Ψ(xL) + ∇B(xL) + ∇D(xL) + ∇S(xL)∥. We
also quantify this error from equilibrium, rescaled by computing the scaled Newton decrement norm
∥∇W̃∥ from Li et al. (2021). Please refer to Appendix E for the details of these evaluation metrics.

Baselines. We benchmark two geometric upsampling methods: Loop (1987) and Neural Subdivi-
sion (Liu et al., 2020) and three cloth-physics-inspired upsampling methods: Kavan et al. (2011),
TFW (Chen et al., 2021b) and U-DNN (Lee et al., 2019). See Appendix G for method details.

Our method. Observing that baseline methods overlook both the geometry of collision objects (as
discussed a key source of cloth drape fold and wrinkle variation via contact) and the material moduli,
we introduce a new learning-based baseline method that takes both collider and material variation
into account, and compare it with the above upsampling approaches.

Collision Object

Upsampler

Material
Parameters

f

v

Mesh at
Level i

Encoder

E

U

Mesh at
Level i+1

Latent Vector
Input Vector

In this approach, the cloth material parameters
are given as a vector v, and the collider by a point
cloud P . We aim to train a neural net that learns
to upsample the cloth drape from resolution level
i to i+ 1 by subdividing each triangle into four
faces and then predicting the displacements for
the vertices of the subdivided mesh. Our method
consists of two modules: a point cloud encoder E
and a cloth upsampler U . The point cloud encoder
E encodes the collision object point cloud P to
a latent vector f = E(P ) ∈ Rd, where d is the
dimension of the latent vector f . Given a cloth drape at resolution level i, we first subdivide the
mesh using midpoint upsampling. Then the cloth upsampler U takes as input the subdivided cloth
drape, the cloth material parameter vector v and the latent vector f of the collider, and predicts the
displacements ∆V̂i for the vertices of the subdivided mesh. The predicted vertices of the mesh at the
next resolution level (i.e., level i+ 1) are defined as Ṽi+1 = V̂i +∆V̂i, where Ṽi+1 is the vertices of
mesh Mi+1 and V̂i is the vertices of the midpoint-subdivided mesh of Mi.

To train our network, we define the training loss L as:

L =
L∑

i=1

1

|Vi|
∥Vi − Ṽi∥2, (1)

where Vi and Ṽi are the ground truth and predicted vertices at resolution level i, respectively. Please
refer to Appendix F for the details of the network and its implementation.

6 CASE STUDY EVALUATION

6.1 TASK PERFORMANCE

In this evaluation, we aim to analyze how well existing baseline upsampling methods perform,
compared to our proposed material- and collider-aware method on the cloth drape upsampling task.
Specifically, given a coarse cloth drape at level 0, each method upsamples it to subsequent levels, i.e.,
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Input Kavan et al. TFW Loop

Ground truth U-DNN Neural Subdiv Ours
Figure 4: Visual comparison to existing upsampling methods.

Table 2: Generalization to unseen cloth materials.

Method dcorr dfit
H dfit

K #I

×10−3 ×102 ×106 ×101

U-DNN 21.85 14.77 6.03 73.13
Neural Subdiv 22.01 15.47 6.16 67.47
Ours 18.04 11.03 5.42 51.07

Table 3: Generalization to unseen collider objects.

Method dcorr dfit
H dfit

K #I

×10−3 ×102 ×106 ×101

U-DNN 19.45 23.56 10.43 75.11
Neural Subdiv 21.00 23.78 12.40 78.46
Ours 16.89 20.73 9.97 63.31

levels 1 to 4. We observe that the method by Kavan et al. (2011) is only able to produce results in a
reasonable computing time up to level 2 due to the eigendecomposition step which does not scale.
Table 1 lists the quantitative results evaluated at the highest resolution level (i.e., level 2 for Kavan
et al. (2011) and level 4 for the other methods). Table 10 reports the quantitative results evaluated at
all resolution levels. Figure 4 shows a visual comparison and more in Figures 7 and 8.

As shown in Figure 4, geometric upsampling methods (i.e., Loop and Neural Subdivision) and
U-DNN fail to predict wrinkling details. While the method by Kavan et al. (2011) and TFW are both
able to add wrinkles (with TFW being able to add more wrinkling details), their predictions have lots
of cloth-collider intersections. These methods are not aware of the cloth material and the collider
shape the cloth is draped on, suggesting that upsampling with cloth geometry alone is insufficient for
the cloth upsampling task. Our method is collider- and material-aware and is able to predict plausible
upsampled cloth drapes with intricate wrinkling details and fewer intersections (shown in #I).

As for the multi-level results in Table 10, we observe that as the mesh resolution level increases the
results measured by the distance and curvature metrics improve for all methods but at the expense
of introducing more intersections. Our results suggest that specialized designs for resolving the
cloth-collider intersections are required for future cloth upsampling methods.

6.2 GENERALIZATION TO UNSEEN CLOTH MATERIALS AND COLLISION OBJECTS

Unseen cloth materials. To test the generalization to unseen cloth materials, we test on the denim
material and train on the rest materials. For unseen cloth materials, we set the cloth material parameter
vector v to zero for our method. Table 2 reports the quantitative results. While the performance
slightly degrades, our method still performs favorably against existing upsampling methods.

Unseen collision objects. To test the generalization to unseen colliders, we test on 10 randomly
selected colliders and train on the remaining ones. Table 3 lists the quantitative results. With unseen
colliders, the performance degrades for all methods, while our method still achieves the best results.

6.3 ABLATION STUDY ON METHOD DESIGN AND DATASET SIZE

Method design. To evaluate our design choices, we conduct an ablation study by removing one
input condition at a time. Specifically, we compare our method with two variant methods: 1) the
network is not collider-aware (denoted as Ours w/o collider) and 2) the network is not material-
aware (denoted as Ours w/o material). Table 4 and Figure 5 present the quantitative and qualitative
results. We observe that without the collider information, the predicted upsampled cloth has lots of
intersections with the collider. Without the cloth material information, though the prediction has
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Ground truth Ours w/o collider Ours w/o material Ours
Figure 5: Visual results of ablation study on model design.

Table 4: Ablation study on method design.

Method dcorr dfit
H dfit

K #I

×10−3 ×102 ×106 ×101

Ours 7.52 9.62 3.43 11.57
Ours w/o collider 13.15 16.16 6.51 27.04
Ours w/o material 14.03 20.94 8.50 22.13

Table 5: Ablation study on dataset size.

Method dcorr dfit
H dfit

K #I

×10−3 ×102 ×106 ×101

Ours w/ 30% data 27.81 20.41 12.47 81.13
Ours w/ 60% data 17.03 14.25 6.17 43.07
Ours w/ 100% data 7.52 9.62 3.43 11.57

fewer cloth-collider intersections, the method fails to add wrinkles to the upsampled cloth. The results
suggest that both the collider and the cloth material are important for the cloth upsampling task.

Dataset size. Does training on more data result in better performance? To answer this question,
we conduct an experiment by using 30%, 60% and 100% of the training set to train our method,
respectively, and evaluate the trained model on the test set. Table 5 reports the quantitative results.
We observe that the prediction quality improves as the training set size increases, showing the need
for a large-scale dataset for data-driven cloth upsampling methods.

6.4 FAILURE CASE ANALYSIS

Figure 9 shows two failure cases of our method. In the first row, when the cloth material is too stiff
(e.g., paper), our method is not able to further deform the cloth drape and tends to maintain the input
cloth geometry. In the second row, when the cloth material is too soft (e.g., wool + lycra), our method
is unable to predict intricate fine wrinkling details.

7 CONCLUSION, LIMITATIONS & FUTURE WORK

We present a large-scale dataset for physics-based cloth drape upsampling. Our work addresses
the limitations of existing datasets by introducing a comprehensive collection of cloth drapes that
exhibit self-consistency across multiple resolutions. We propose a new set of evaluation metrics,
benchmark a number of existing geometric and physics-inspired cloth upsampling methods on our
dataset and further develop a learning-based method for comparison. Experimental findings show
that our technique consistently excels over other methods across various settings. Additionally, solely
relying on cloth geometry for upsampling proves inadequate; information from the collider shape
geometry and cloth material also plays an essential role. We further show that the quality of prediction
improves as the training set size increases.

Future endeavors to expand this dataset by including shell geometries, additional collision shapes,
cloth shapes and cloth initializations, garments close to the human body, and data that reflects the
dynamic nature of cloth in real-world scenarios will enhance the dataset’s utility. Although we have
meticulously chosen a diverse set of twenty-four cloth materials for the dataset, exploring an even
wider array of materials would be intriguing.

Our dataset opens new horizons for the evolution of future physics-based upsampling techniques.
The preliminary success of our baseline method points to the potential of developing new upsampling
methods to manage cloth-collider intersections and produce contact-safe and intersection-free results
with more realistic detailed wrinkles by incorporating, for example, physics-informed GNNs (Pfaff
et al., 2020) or collision losses (Santesteban et al., 2022) to resolve cloth-collider collisions. Beyond
the benchmark’s primary goal of advancing the cloth upsampling task across a broad spectrum of
configurations and real-world materials, we believe it has potential applicability to various other
cloth-centric tasks. These include fabric material parameterization, retrieval, simulation rigging, and
forward drape synthesis, among others. We hope that by releasing our dataset, various communities
will engage in discussions and further development surrounding this practical yet challenging physics-
based cloth drape upsampling task.
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APPENDIX

A BACKGROUND: PROGRESSIVE CLOTH SIMULATION

Zhang et al. (2022) have constructed the hierarchical simulation framework, progressive cloth
simulation (PCS), which allows for rapid visualizations and high-quality solutions for shell quasistatic
simulations on triangle-meshed geometries. Progressive simulation offers consistent and improving
previews of solutions using a layered approach of increasingly higher-resolution meshes. The final,
high-quality simulation output is achieved on a high-resolution mesh.

The hierarchical structure of PCS consists of a set of triangle meshes along with a matching set of
prolongation operators, each corresponding to the next finer-resolution mesh. The meshes in this
hierarchy are organized in ascending resolution order by subscript l ∈ [0, L], where x̄l and xl ∈ R3nl

respectively represent the nl resting and deformed positions of mesh nodes in R3 at level l. The
coarsest mesh’s deformed positions are saved in x0, and xL holds the highest-resolution positions of
the final, high-quality simulation output. Each level l is linked with a prolongation operator, P l

l+1
that maps nodal positions from the current level to the next, higher-resolution level l+1. For the sake
of clarity, we will refer to the highest-level resolution quantities without decoration, e.g., x = xL,
x̄ = x̄L, and n = nL.

The PCS framework is founded on the barrier-based Codimensional Incremental Potential Contact
(C-IPC) (Li et al., 2021) cloth model, ensuring non-intersection and, when needed, meeting strain-
limit requirements. Each simulation mesh in the PCS framework is equipped with shell (Ψ), contact
barrier (B), friction (D), and when necessary, strain-limiting potential energies (S). These energies
are used to calculate the stable equilibria of frictionally contacting shells given imposed boundary
conditions and external forces. These equilibria are the local (constrained) minimizers of the total
potential energy, El(x) = El(x, x̄, u), constructed from the sum of the aforementioned potentials,
El = Ψl +Bl +Dl + Sl, where u collects current material and boundary-condition parameters.

Progressive simulation starts with a non-equilibrium configuration, xt, and material and scene
parameters, u, and then computes stable equilibria by time-stepping its gradient flow with implicit
Euler. At the highest level, this involves calculating a sequence of forward quasistatic positional
updates through artificial ‘time steps’ (of size h) from t to t+1 by minimizing an updated incremental
potential,

xt+1 = argmin
x

1

2h2
∥x− xt∥2M + E(x, x̄, ut+1), (2)

with a mass matrix M , until equilibrium is reached, indicated by ∥∇E(x∗)∥ ≤ ϵ.

Progressive simulation employs a one-way, nonlinear multiresolution simulation-solver (Zhang et al.,
2022) to evade costly direct simulation on the target high-resolution mesh. This solver comprises two
phases:

Preview, xt
l → xt+1

l : The solution at level l advances quasistatically from time step t to t+1, under
possibly changing u, offering consistent solution previews at each level; and

Refinement, xt+1
l → xt+1

l+1: The solution progresses spatially from level l to l + 1, enhancing the
resolution for a fixed set of conditions ut.

A.1 COARSE-LEVEL PROXY ENERGIES

At every reduced-level l < L, previews (over varying parameters u) and progressively refined
solutions are harmonized by solving each time step’s quasistatics with a proxy for the highest-level
potential energy,

Fl(xl) = Bl(xl) +Dl(xl) + Sl(xl)︸ ︷︷ ︸
Cl(xl)

+Ψl

(
P l(xl)

)
. (3)

Here, shell elastics, Ψl, are evaluated at the highest-resolution model via a direct prolongation, P l(xl),
from level l to the highest scale. At the same time, the coarse, barrier-based potential terms in Cl(xl)
ensure contact and strain-limit feasibility on the current level-l geometry. Each reduced level is then

14



processed by stepping through

xt+1
l = argmin

xl

1

2h2
∥xl − xt

l∥2Ml
+ Fl(xl). (4)

A.2 REFINEMENT AND SAFE INITIALIZATION

When the preview solution at level l < L is confirmed, refinement to the next level l + 1 necessitates
prolonging the current solution to this finer-resolution mesh, xt

l+1 = P l
l+1(x

∗
l ), after which the solver

keeps moving forward by quasistatic stepping with solutions of Equation (4). However, while this
prolonged geometry serves as a natural starting point for the next level’s solve, prolongation overlooks
contact constraints and strain limits, leading to both intersections and excessive stretching. Therefore,
for safe initialization, PCS finds a safe and simple, intersection-free initializer, xs

l+1, via in-plane
upsampling. Following it, a linear search along d = P l

l+1(xl)− xs
l+1 is conducted to find a close-by

feasible point to the prolonged solution. By introducing an intersection-free point, any remaining
violations of the strain limit are subsequently addressed through a stretch-reducing optimization
process that brings the principal stretches below their respective limits.

A.3 STOPPING CRITERIA

For each coarser-level preview solve (l < L), the solution is determined by checking if an equilibrium
is reached in terms of minimizing the proxy energy Fl, i.e., ∥∇Fl(x

∗
l )∥ ≤ ϵ. Later, when reaching

the finest level L, after refinement, the solver is, by construction, directly minimizing the target finest-
level total energy, E, via the quasistatic stepping of the fine-level incremental potential Equation (2).
This ensures that the finest-level drape geometries are always fully converged, and so high-quality
equilibrium solutions. Intermediate preview geometries are then approximated solutions estimating
this solution at coarser levels.

B EXTENDED RELATED WORK

Multi-resolution cloth simulation. Our dataset is generated with the recent Progressive Cloth
Simulation (PCS) method (Zhang et al., 2022). We delegate full consideration of the state-of-
the-art cloth simulation in computer graphics to that work and limit our discussion to alternative
choices for our multi-level data generation needs. The high-performance of methods exploiting
parallelization (Selle et al., 2008; Tang et al., 2013; Schmitt et al., 2013; Tang et al., 2016; 2018;
Li et al., 2020a) and/or fast but generally approximate solvers (Bouaziz et al., 2014; Zhang et al.,
2019; Ly et al., 2020; Daviet, 2020; Bender et al., 2013; Müller et al., 2007; English & Bridson, 2008;
Goldenthal et al., 2007) are attractive for generating massive amounts of simulation data, but are
challenging to run with real-world materials, and can suffer from unacceptable artifacts or instabilities
when doing so (e.g., see inset). Speed then is secondary to ensuring that the cloth simulations are both
highly accurate and generated in consistent levels of detail. The PCS method inherits its robustness
and accuracy from the IPC-model’s coupling of elasticity with a mollified barrier-based frictional
contact model (Li et al., 2020b), as well as even more recent improvements to include the tight
strain-limit (Li et al., 2021) resolution necessary for many cloth materials. PCS generates a cascade
of coarse-to-fine “preview” simulations that are guided by accurate quasistatic potentials measured on
the finest level. This ensures that the coarse level results modeled by PCS are consistent and improve
to a finest-level high-fidelity draped geometry as demonstrated by their analyses of wrinkle patterns
and curvature distribution (Zhang et al., 2022).

[Umetani et al. 2011]

Inconsistency
Creasing
artifacts

Coarse FinePhysics-based enrichment and refinement. An alternative
to progressive simulation would be to run an as-accurate-as-
possible simulation at each level independently. Due to both
the solution errors introduced by coarser-mesh discretizations
and the fundamental nonconvexity of cloth modeling, small
changes in discretization generally result in large differences
in final simulated drape geometries (e.g., different overall drape shapes and/or large changes in the
constellations of contacts and wrinkles emerging in drape patterns). While fine-tuning (i.e., warm
starting) finer levels with coarse-level results helps to some degree (Umetani et al., 2011), Zhang et al.
(2022) demonstrate that inconsistencies and significant numerical artifacts persist across resolution
levels. Another alternative to progressive simulation would be to run a full simulation at the coarsest
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Table 6: Material parameters.

Material Thickness Density Emem Ebend Poisson Strain limit

×10−4 ×102 ×103 ×104 ×10−1 ×100

Wool + lycra 3.28 5.43 0.76 0.76 0.71 1.13
Wool + lycra - s1 6.60 5.43 0.76 0.76 0.71 1.13
Wool + lycra - s2 1.80 5.43 0.76 0.76 0.71 1.13

Canvas 5.30 2.94 20.09 20.09 3.00 1.11
Canvas - s1 6.60 2.94 20.09 20.09 3.00 1.11
Canvas - s2 1.80 2.94 20.09 20.09 3.00 1.11

Cotton 3.18 4.73 8.21 8.21 2.43 1.06
Cotton - s1 6.60 4.73 8.21 8.21 2.43 1.06
Cotton - s2 1.80 4.73 8.21 8.21 2.43 1.06

Denim 6.60 4.00 24.48 24.48 3.00 1.28
Denim - s1 5.68 4.00 24.48 24.48 3.00 1.28
Denim - s2 1.80 4.00 24.48 24.48 3.00 1.28

Polyester 2.52 6.53 4.78 4.78 3.81 1.06
Polyester - s1 6.60 6.53 4.78 4.78 3.81 1.06
Polyester - s2 1.80 6.53 4.78 4.78 3.81 1.06

Silk 1.80 0.83 5.70 5.70 3.00 1.41
Silk - s1 6.60 0.83 5.70 5.70 3.00 1.41
Silk - s2 5.68 0.83 5.70 5.70 3.00 1.41

Wool 5.68 4.13 1.70 1.70 2.77 1.09
Wool - s1 6.60 4.13 1.70 1.70 2.77 1.09
Wool - s2 1.80 4.13 1.70 1.70 2.77 1.09

Paper 3.00 8.00 30000.00 30000.00 3.00 1.01
Paper - s1 6.60 8.00 30000.00 30000.00 3.00 1.01
Paper - s2 1.80 8.00 30000.00 30000.00 3.00 1.01

level, and then run a constrained finer-level simulation which should track the coarse level to ensure
consistency (Bergou et al., 2007). This could be applied repeatedly to build a multi-level hierarchy
of simulations. While suitable for low-accuracy requirement scenarios, the major issue with this
paradigm is that accuracy at the finest level is sacrificed to satisfy constraints pulling the finest
level solution to match the least accurate (i.e., coarsest) simulation rather than providing accurate
simulation detailing. A similar lack of high-resolution accuracy exists for methods that augment
low-res cloth with high-res details computed via separate subspaces (Müller & Chentanez, 2010;
Zurdo et al., 2012; Hahn et al., 2014; Gillette et al., 2015; Jin et al., 2020).

C MATERIAL PARAMETERS

Table 6 lists the material parameters considered in this paper. These parameters correspond to real-
world materials which are obtained by directly referencing online sources. The synthetic materials
we created have names ending with “- s1” and “- s2”.

D DETAILS OF COLLIDER OBJECT PREPROCESSING

As stated in Section 4, we include a collider-object preprocessing step. We adopt the QSlim (Garland
& Heckbert, 1997) algorithm to decimate the collider object mesh. Specifically, we decimate the
collider object mesh so that the distortion error is less than 0.1% of the bounding box diagonal length
while having the minimum number of faces. The distortion error is measured by sampling 1 million
points on the surface of the decimated collider object mesh and computing the point-to-mesh distance
of those sampled points to the original collider object mesh. This allows us to preserve the geometric
features with lower-resolution final meshes.

16



E DETAILS OF EVALUATION METRICS

Correspondence Euclidean distance dcorr. To quantitatively assess the similarity between the
predicted fine mesh and the ground truth, we adopt the Euclidean distance metric for similarity
measurement. The correspondence Euclidean distance computes the Euclidean distance between the
vertices of the predicted mesh and the vertices of the ground truth mesh (i.e., the mesh at the finest
level). For meshes (from different levels) with vertices fewer than the ground truth mesh vertices,
we apply midpoint upsampling until the number of vertices matches the ground truth mesh vertices
before computing the distance.

Curvature metrics. Since meshes are surfaces over a common parameterization of a domain Ω,
another way to measure the difference between two surfaces is to compute the difference of curvature
integrated over this parametric domain. Specifically, we compute the total integral of the squared
difference in curvature as

d =

∫
Ω

∥Hpred −Hgt∥2dA, (5)

where Hpred denotes the curvature of the predicted upsampled cloth and Hgt denotes the curvature of
the ground truth cloth (i.e., the cloth drape at the finest level.)

There are two common measures of surface curvature in differential geometry: mean curvature
(the average of the principal curvatures at a given point on a surface) and Gaussian curvature (the
product of the principal curvatures at a given point on a surface.) We adopt both of them here for
completeness. In discrete differential geometry, curvature is approximated per vertex on a discrete
surface. The curvature difference d in Equation (5) is then computed as the sum of the squared
difference in per-vertex quantities between the predicted upsampled cloth shape and the ground truth
(i.e., the cloth drape at the finest level.)

One preferred way to estimate these vertex quantities is to compute the mean curvature approximated
through local quadric fitting (Panozzo et al., 2010). We denote this mean curvature by quadric
fitting metric as dfit

H . We can similarly estimate these vertex quantities by computing the Gaussian
curvature approximated by local quadric fitting and denote this metric as dfit

K . In addition to fitting
methods, discrete methods represent another category for estimating surface curvature, which is
fundamentally based on discrete differential geometry concepts. As an emphasis of the robustness of
the experiments, we also compute discrete differential geometry curvatures using dihedral angles
around a vertex (Knöppel et al., 2013) and denote the metric as dddg

H , and using angle defect (Meyer
et al., 2003) and denote the metric as dddg

K .

DDG curvature using dihedral angles dddg
H . Curvature can be computed using dihedral angles

around a vertex, i.e., discrete differential geometry curvature using dihedral angles around a vertex
dddg

H . The dihedral angle is the angle between two adjacent triangles along an edge. The curvature
at a vertex can be related to the sum of the dihedral angles around that vertex. This is based on the
Gauss-Bonnet theorem, which states that the total curvature of a surface is related to the integral of
the Gaussian curvature over the surface.

DDG curvature using angle defect dddg
K . Curvature can also be computed using angle defect, i.e.,

discrete differential geometry curvature using angle defect dddg
K . This method is based on the notion

of the angle defect associated with each vertex in a mesh. The angle defect captures the deviation of
the sum of angles around a vertex from the expected total angle in a flat (Euclidean) space.

Similar to the Euclidean distance metric, for meshes (from different levels) with vertices fewer than
the ground truth mesh vertices (i.e., the mesh at the finest level), we apply midpoint upsampling
until the number of vertices matches the ground truth mesh vertices before computing the curvature
metrics.

Number of intersections #I. We compute the number of cloth self-intersections and the number of
cloth-collider intersections in triangle-triangle pairs and sum them.

Gradient ∥∇W∥. To reflect the physical accuracy of the shapes, we also evaluate how close the
resulting upsampled cloth geometry is to an accurate equilibrium configuration given by force balance
as measured by the upsampled mesh’s gradient norm ∥∇W∥ = ∥∇Ψ(xL) +∇B(xL) +∇D(xL) +
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∇S(xL)∥. The gradient norm of the upsampled mesh evaluates how closely the upsampled cloth
shape aligns with an equilibrium state determined by force balance.

Residual ∥∇W̃∥. Analogous to the gradient norm, the residual norm gauges closeness through a
scaled metric by examining the Newton decrement. We quantify this error from equilibrium, rescaled
by computing the scaled Newton decrement norm ∥∇W̃∥ from Li et al. (2021).

F ADDITIONAL DETAILS OF OUR METHOD

Network details. We use the pre-trained PointNet Qi et al. (2017) from Mescheder et al. (2019)
as the point cloud encoder E. Our upsampler builds on Neural Subdivision (Liu et al., 2020). To
make the network collider-aware and material-aware, we modify the network’s input to also accept
a vector from the point cloud encoder and a vector from the material parameters. We use half-flap
representations as in Neural Subdivision. Different from Neural Subdivision which defines a local
frame for each half-flap, we define a single global frame and everything is defined with respect to it.
This allows us to encode the cloth-collider spatial relationship which is important for the upsampler
U . We refer the reader to Liu et al. (2020) for more details about Neural Subdivision.

The material parameter vector v is a 5-dimensional vector of (thickness, density, membrane, Poisson,
strain limit). See Table 6 for the material parameters. Each dimension is independently normalized to
0 and 1 before being passed to the network as input.

Implementation details. We implement our method in PyTorch (Paszke et al., 2019) We use the
ADAM (Kingma & Ba, 2014) optimizer to train our network. The learning rate is set to 1× 10−3

with a learning rate decay of 1×10−6. We train our network on one A100 GPU with 80GB memory.

G DETAILS OF EXISTING UPSAMPLING METHODS

Loop Subdivision (Loop, 1987). We adopt the well-established Loop subdivision and apply it to
iteratively subdivide the input coarse mesh to obtain the upsampled fine mesh.

Neural Subdivision (Liu et al., 2020). We apply Neural Subdivision to our data to learn cloth
upsampling. Neural Subdivision was designed to work with meshes without boundaries. To address
this limitation, we apply zero padding to handle meshes with boundaries.

Kavan et al. (2011). Kavan et al. require pre-computing a pair of coarse and fine training simula-
tions aligned with tracking constraints to avoid bifurcation and then training the upsampling operators
to learn mid-scale details with a new regularization method. Our self-consistent multi-resolution data
inherently fulfill these prerequisites, making it ideal for direct utilization in the training process.

TFW (Chen et al., 2021b). Chen et al. present a technique that effectively captures the intricate
details of thin shells in high definition using coarse meshes. Their method involves an initial estimation
of the shell’s coarse shape using tension field theory, followed by the addition of parameterized
wrinkles using amplitude and phase fields to enhance the base mesh. We adopt the second phase of
the method for adding high-frequency wrinkles given our coarse meshes as inputs and include the
converged results.

U-DNN (Lee et al., 2019). U-DNN upsamples cloth drapes by learning a mapping from the coarse
cloth drapes at times t − 2, t − 1 and t to the fine cloth drape at time t. In our setting, we focus
on static cloth drape upsampling. Therefore, we modify U-DNN’s network architecture to learn a
mapping between the coarse cloth drape at time t and the fine cloth drape at time t.

18



Table 7: Cloth statistics. We report the numbers of vertices #V and faces #F at each level for each cloth shape.

Shape Triangulation Level 0 Level 1 Level 2 Level 3 Level 4

#V #F #V #F #V #F #V #F #V #F

Square Regular 441 800 1,681 3,200 6,561 12,800 25,921 51,200 103,041 204,800
Circle Irregular 442 815 1,698 3,260 6,655 13,040 26,349 52,160 104,857 208,640

Table 8: Dataset analysis. dcorr: correspondence euclidean distance. dfit
H : quadric fitting mean curvatures. dddg

H :
discrete differential geometry curvatures using dihedral angles around a vertex. dfit

K : Gaussian curvatures. dddg
K :

discrete differential geometry curvatures using angle defect. See Section 4.2 for details.

Shape Level dcorr dfit
H dddg

H dfit
K dddg

K

×10−2 ×102 ×102 ×105 ×106

Square

0 2.25 6.01 6.56 8.69 5.24
1 1.19 5.10 5.55 8.48 4.03
2 0.48 3.53 3.74 8.36 3.48
3 0.16 1.53 1.46 6.68 2.88

Shape Level dcorr dfit
H dddg

H dfit
K dddg

K

×10−2 ×102 ×102 ×105 ×106

Circle

0 1.63 5.96 6.90 9.85 3.97
1 0.79 4.91 5.70 10.1 2.93
2 0.31 2.96 3.39 10.0 2.19
3 0.09 0.92 0.89 6.83 0.96

Table 9: Runtime analysis.

Seconds

Level 0 16.40
Level 1 7.96
Level 2 6.92
Level 3 281.61
Level 4 18.34
Others 33.37

Figure 6: Dataset access.
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Input Kavan et al. U-DNN

Ground truth Neural Subdiv Ours

Input Kavan et al. U-DNN

Ground truth Neural Subdiv Ours

Input Kavan et al. U-DNN

Ground truth Neural Subdiv Ours
Figure 7: Visual comparison to existing upsampling methods.
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Ground truth Kavan et al. TFW

U-DNN Neural Subdiv Ours

Ground truth Kavan et al. TFW

U-DNN Neural Subdiv Ours

Ground truth Kavan et al. TFW

U-DNN Neural Subdiv Ours
Figure 8: Visual comparison to existing upsampling methods.
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Table 10: Experimental results of cloth drape upsampling. Each method takes as input the cloth drape mesh
at level 0 and upsamples it to levels 1, 2, 3 and 4. Kavan et al. (2011) can only produce results at levels 1 and 2.

Method Level dcorr dfit
H dfit

K #I ∥∇W∥ ∥∇W̃∥

×10−3 ×102 ×106 ×101 ×100 ×10−1

Kavan et al.
1 17.41 16.56 4.02 32.90 0.82 0.47
2 13.48 16.10 3.80 60.33 1.31 0.43

TFW

1 217.36 23.03 6.65 18.60 1.56 2.67
2 73.42 20.85 6.37 31.57 3.83 4.01
3 38.85 20.34 5.03 57.06 9.21 11.01
4 30.68 18.81 4.09 106.00 12.07 19.81

Loop

1 123.50 19.17 7.31 2.70 0.97 0.18
2 93.51 15.68 5.31 6.80 1.17 0.82
3 76.52 15.13 3.57 8.60 2.77 6.31
4 25.56 15.11 3.48 12.30 6.05 3.21

U-DNN

1 22.81 16.68 4.21 16.40 0.66 0.60
2 16.44 15.51 3.62 25.06 1.95 5.81
3 11.43 15.06 3.56 42.03 3.47 8.71
4 10.74 15.04 3.52 75.17 4.11 4.07

Neural Subdiv

1 26.54 16.81 4.14 11.33 0.91 0.42
2 20.77 15.91 3.90 12.37 1.88 0.72
3 18.43 15.32 3.71 17.96 1.06 2.89
4 12.35 15.29 3.54 26.96 4.72 1.93

Ours

1 19.45 15.95 4.13 5.96 0.73 0.44
2 10.57 12.21 3.84 6.97 1.44 0.98
3 7.53 9.59 3.45 9.73 1.55 2.01
4 7.52 9.62 3.43 11.57 3.02 1.75

Input Ground truth Ours

Input Ground truth Ours

Figure 9: Failure cases.
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