
Verification Learning:
Make Unsupervised Neuro-Symbolic System Feasible

Lin-Han Jia 1 Wen-Chao Hu 1 2 Jie-Jing Shao 1 2 Lan-Zhe Guo 1 3 Yu-Feng Li 1 2

Abstract
The current Neuro-Symbolic (NeSy) Learning
paradigm suffers from an over-reliance on la-
beled data, so if we completely disregard labels,
it leads to less symbol information, a larger so-
lution space, and more shortcuts-issues that cur-
rent Nesy systems cannot resolve. This paper in-
troduces a novel learning paradigm, Verification
Learning (VL), which addresses this challenge by
transforming the label-based reasoning process
in Nesy into a label-free verification process. VL
achieves excellent learning results solely by rely-
ing on unlabeled data and a function that verifies
whether the current predictions conform to the
rules. We formalize this problem as a Constraint
Optimization Problem (COP) and propose a Dy-
namic Combinatorial Sorting (DCS) algorithm
that accelerates the solution by reducing verifica-
tion attempts, effectively lowering computational
costs and introduce a prior alignment method to
address potential shortcuts. Our theoretical analy-
sis points out which tasks in Nesy systems can be
completed without labels and explains why rules
can replace infinite labels for some tasks, while
for others the rules have no effect. We validate
the proposed framework through several fully un-
supervised tasks including addition, sort, match,
and chess, each showing significant performance
and efficiency improvements.

1. Introduction
Human cognition operates through a dual-system frame-
work: System 1 (intuitive processing) enables rapid,
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experience-based responses to simple tasks, while System 2
(deliberative processing) engages slow, knowledge-intensive
reasoning for complex ones. This cognitive architecture mir-
rors the dichotomy in artificial intelligence (AI) between
data-driven and rule-driven learning paradigms. In the past,
rule-driven symbolic learning systems were less favored
compared to data-driven neural learning systems due to
their high maintenance and search costs. However, with the
continuous iteration of neural network models, they still per-
form poorly on reasoning tasks. Consequently, an increasing
number of research efforts are now focused on Nesy systems
capable of integrating data-driven and rule-driven methods.

In the Nesy paradigm, a machine learning model f estab-
lishes a mapping between inputs X and symbolic represen-
tations S, i.e., S = f(X). Then, using a knowledge base
KB and S, to infer the label Y , i.e., KB,S |= Y . S is
unknown and needs to be predicted based on both X and
Y , ensuring consistency between the learning and reason-
ing processes. While the goal is to leverage knowledge to
reduce reliance on labeled data, the real-world application
of Nesy remains limited. For simple tasks, good results can
be achieved without a symbolic system. For complex tasks,
the required data grows exponentially but most current Nesy
algorithms still require labels Y of the same scale as the in-
put data X which are expensive to acquire. Therefore, there
is an urgent need to develop unsupervised Nesy systems.

The difficulty in bridging the gap between supervised Nesy
and unsupervised Nesy remains significant which can be
seen in Figure 1. Firstly, the unsupervised paradigm lacks
critical information compared to the supervised paradigm.
Much of the performance improvement seen in current Nesy
algorithms comes from label leakage (Chang et al., 2020).
For example, in the common task of handwritten digit ad-
dition (Manhaeve et al., 2018), providing labels Y for the
equations ( + = 0) and ( + = 18) effectively
leaks the symbolic labels 0 and 9, further propagated to
other labels, essentially supervising the learning of X di-
rectly. Secondly, the lack of labels drastically increases the
search space for problem-solving. For example, transform-
ing the problem ( + = 18) to ( + = , )
changes the search space from 102 to 104 and when labels
are available, one can further restrict the search to solutions
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where y = 18. Finally, the absence of labels leads to a sig-
nificant increase in the shortcuts problem in Nesy tasks. For
example, in the equation ( + = 17), the only shortcut
is (8+9 = 17), while for ( + = + ), every other
equation that satisfies the addition rule like (0 + 0 = 00)
forms a shortcut.

Figure 1. This example illustrates the differences between unsuper-
vised and supervised neuro-symbolic systems in the addition task.
It highlights that unsupervised neuro-symbolic systems exhibit
broader applicability but also pose greater learning challenges.

Due to the aforementioned issues, applying previous ap-
proaches for unsupervised Nesy is largely infeasible. To
address these problems, we propose a new paradigm called
Verification Learning (VL). In the VL paradigm, the model’s
entire learning process (illustrated in Figure 2) can be com-
pleted using only unlabeled data and a knowledge-based
verification function. In the unsupervised setting, where a
knowledge module cannot perform reasoning starting from
the label Y , we instead replace the reasoning process with
a constraint satisfaction verification on S drawn from the
solution space. Using satisfiability verification instead of
logical reasoning not only resolves the problem of a lack
of starting points, but also bypasses challenges inherent in
logical reasoning, such as incompleteness, infinite recursion,
and high computational complexity. Additionally, this ap-
proach is not tied to a specific logical form, allowing more
general verification functions to replace the complex logic
programming. Moreover, because it does not depend on
label Y , the VL paradigm supports test time corrections,
ensuring that the solutions output by the model conform to
the specified constraints.

In the problem-solving process, our goal is to identify the
symbolic labels that maximize the alignment between the
knowledge base and the machine learning predictions. VL’s

learning process corresponds to a Constraint Optimization
Problem (COP), where the objective is to find the solution
that maximizes the optimization score among all feasible
solutions that satisfy the constraints. If the verification of
solutions requires exhaustively traversing the entire solution
space, this becomes computationally expensive. However,
if we can sort the solutions in the solution space accord-
ing to their scores and verify them in order dynamically,
we can ensure that the first valid solution we verify is the
optimal one. Initially, this sorting process had exponential
complexity, but we introduced an algorithm called Dynamic
Combinatorial Sorting (DCS), which is an extension of (Jia
et al., 2025). This algorithm maintains a heap structure
with low computational overhead, dynamically tracking the
solution with the highest optimization goal value among
unverified solutions. By doing so, we guarantee that the first
valid solution we verify is the optimal one, thus reducing
the COP problem’s complexity to a similar level as the CSP.
Initially, we implemented DCS under the assumption of
independence and later extended it to handle some cases
where independence does not hold but monotonicity holds,
making it still applicable. This reveals that, in Nesy, mono-
tonicity is a more relaxed yet crucial property compared to
independence.

Additionally, we propose a distribution alignment method to
mitigate the severe shortcut and collapse problems caused
by the excessive number of feasible solutions in the unsu-
pervised setting. By leveraging the natural distribution of
symbolic systems, this algorithm adjusts the output distribu-
tion of the machine learning model, providing the necessary
self-correction capability during training.

We also established an effective theoretical framework for
unsupervised Nesy, proving that if the model’s output sym-
bolic distribution aligns with the natural distribution, the
worst-case performance of unsupervised Nesy depends on
the number of single-point orbits after performing the sym-
metry group decomposition of the rule base. The average
performance is determined by the size of each orbit corre-
sponding to symbols. This theory also reveals that if two
symbols are not completely equivalent in their role within
the knowledge base, they can be distinguished under suffi-
cient unlabeled data and optimization ultimately.

We conducted experiments on four rule-based tasks with-
out labels, and made groundbreaking progress. We were
able to: identify the numbers in addition expressions based
solely on the addition rule (Manhaeve et al., 2018); rec-
ognize numbers in ordered sequences based solely on the
sort rule (Winters et al., 2022); identify characters in strings
based solely on the string match rule (Dai et al., 2019);
and identify chess pieces on a chessboard based solely on
the chess rule. The experimental results demonstrate the
outstanding performance and efficiency of the VL paradigm.
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Figure 2. This example illustrates how verification learning can complete the entire model training process using only unlabeled data and
a knowledge-based verification function.

2. Related Works
2.1. Neuro-Symbolic Learning

Research on Nesy can generally be classified into three
types (Yu et al., 2023): Reasoning to learning, which fo-
cuses on constructing network architectures (Mao et al.,
2019) or loss functions based on rules, emphasizing the
mapping from X to S; Learning to reasoning, where learn-
ing methods are employed to identify reasoning paths (Mao
et al., 2019) or accelerate the search process (Wang et al.,
2018), focusing on the reasoning from S to Y ; Learning-
reasoning: which emphasizes the interaction between the
two components and where S is unknown and needs to
be obtained based on both X and Y , ensuring consistency
between the learning and reasoning processes (Xu et al.,
2018; Stammer et al., 2023; Petersen et al., 2021). Deep-
Problog introduces probabilistic reasoning by incorporating
probabilities predicted by neural networks into Prolog pro-
grams (Manhaeve et al., 2018), while DeepStochlog, based
on DeepProlog, uses Stochastic Definite Clause Grammars
for stochastic reasoning (Winters et al., 2022). NeurASP,
on the other hand, uses Answer Set Programming as the
knowledge base (Yang et al., 2023). Among the above meth-
ods, all tend toward probabilistic reasoning. In contrast,
abductive learning (ABL), as an important branch, is dedi-
cated to inferring a definite symbol S from Y , ensuring that
S aligns with the neural network’s predictions (Dai et al.,
2019; Huang et al., 2021; 2020; He et al., 2024; Shao et al.,
2025; Jia et al., 2025; Hu et al., 2025b). Ground ABL pre-
processes a Ground Truth knowledge base based on ABL
to avoid using Prolog search (Cai et al., 2021), while A3BL
computes loss based on confidence-weighted calculations
for different candidate symbols S (He et al., 2024).

The concept of label leakage was first introduced in the
context of SATNet (Wang et al., 2019) solving visual Su-

doku problems (Chang et al., 2020), where the model could
directly determine symbolic labels S without relying on the
input X , instead using only the labels Y . After eliminating
this leakage, SATNet’s performance on digit recognition
completely failed, even dropping to 0%. We’ve found that
this phenomenon is widespread in Nesy tasks. This reveals
a situation in many tasks where the answer can be obtained
without learning, significantly lowering the task’s difficulty
and failing to accurately reflect the system’s ability to inte-
grate the two components.

For the optimization problem of Nesy solving, it often in-
volves search problems with exponential complexity. Cur-
rently, there are some works that optimize this, such as us-
ing gradient-free optimization algorithms (Yu et al., 2016),
predicting error locations (Morishita et al., 2023), and de-
signing reward-based search methods using reinforcement
learning algorithms (Hu et al., 2025a; Li et al., 2020). How-
ever, these optimization algorithms cannot guarantee that
the solution found is globally optimal.

Additionally, Nesy faces the issue of shortcuts (Yang et al.,
2024; He et al., 2024). Many studies have highlighted that
knowledge bases may have multiple satisfying solutions,
but fail to accurately pinpoint the target one. However,
few works have provided viable solutions to address this
problem.

Recently, van Krieken et al. (2024) explores the issue of
independence in Nesy, pointing out that current Nesy frame-
works rely on the assumption of independence. However, in
reality, symbols do not satisfy independence always.

2.2. Constraint Optimization Problem (COP)

A CSP is defined as a triplet (Variable, Domain, Constraint),
where ”Variable” refers to a set of decision variables, each
with possible values from the set ”Domain,” and ”Con-
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straint” is the rules that must be satisfied by these variables.
A COP is represented as (Variable, Domain, Constraint, Ob-
jective), and it seeks to find a feasible solution that optimizes
an objective function defined over the variables (Fioretto
et al., 2018). In a minimization problem, a solution S ∈
COP (V ariable,Domain,Constraint,Objective) if
and only if S ∈ CSP (V ariable,Domain,Constraint),
and ∀T ∈ CSP (V ariable,Domain,Constraint),
Objective(S) ≤ Objective(T ) (Mulamba et al., 2020).

3. From Supervised Reasoning to
Unsupervised Verification

In the classical Nesy paradigm, the perception module
contains a learning function that establishes a mapping
between input X and symbols S. Here, S is a sym-
bolic sequence of length l, i.e., S = [s1, . . . , sl], where
si ∈ C = {c1, . . . , ck} and si ∼ P , with k representing
the size of the symbol space and P representing the natural
distribution of the symbols. The entire symbolic sequence
space is represented as S = CL. The input X may corre-
spond to a sequence of inputs [x1, . . . , xl] that match the
meaning of the symbols in S, where xi ∈ Rd, and d is the
dimensionality of xi. The global input space is X = RdL.

The perception module f(S|X) ∈ F maps inputs to the
symbol space. Here, f corresponds to the conditional distri-
bution of the intermediate concepts given the input, where
f is in the hypothesis space F ⊂ X → S . Additionally, we
define g(S|X) to represent the model’s predicted probability
distribution in the symbol space.

The reasoning module contains a knowledge base KB.
From the input symbolic sequence S, we can infer a
label Y ∈ Y , i.e., S,KB |= Y . Furthermore, us-
ing Y and KB, a set of possible candidate solutions
for S can also be inferred inversely, i.e., KB,Y |=
candidates(S) = {S1, . . . , S|candidates(S)|}, where the
ground truth S is guaranteed to be in candidates(S). For
any Si ∈ candidates(S) \ {S}, it is a shortcut to S.

In the training process of a Nesy system, the input dataset
Xtrain = [(X1, Y1), . . . , (Xn, Yn)] learns to maintain con-
sistency between input and output by learning intermediate
symbolic sequences S. We denote the loss function used as
L, Methods like DeepProblog, DeepStochlog, and similar
approaches minimize the following:

min
f

∑
S′∈candidates(S)

Score(S′) · L(f(X), S′) (1)

Alternatively, approaches like ABL minimize:

min
f∈F

L(f(X), Sopt)

s.t. Sopt = arg max
S′∈candidates(S)

Score(S′) (2)

Here, score(S′) represents the probability or weight asso-
ciated with S′, and the definition of the score varies across
different approaches. In DeepProblog and DeepStochlog,
the score is the product of the rule probabilities along the
reasoning path. In ABL, the score corresponds to the con-
sistency distance between f(X) and S′, while in A3BL, it
reflects the confidence in g(X).

In real-world scenarios, Y generally does not exist and
is more often part of the unknown symbolic sequence S.
Therefore, in unsupervised Nesy, we must avoid relying on
Y as a starting point for reasoning. Instead, candidates(S)
is directly determined by the knowledge base KB, i.e.,
KB |= candidates(S). This introduces several challenges:
1. It prevents label leakage of Y into S; 2. It significantly
increases the space of S; 3. More importantly, it leads to
an overabundance of candidates(S) because of extreme
shortcuts, making the process of traversing and scoring all
candidate solutions extremely difficult.

In unsupervised settings, the original reasoning process
KB |= candidates(S) and the subsequent traversal of
candidates(S) to compute scores and select the best so-
lution or a weighted sum become computationally pro-
hibitive. In practical applications, this makes the system no
longer deployable. Therefore, we convert the paradigm
of KB |= candidates(S) into a process of generating
new solutions S′ and validating whether the current pre-
dicted symbolic sequence S′ belongs to candidates(S).
Specifically, if S′,KB |= True, then we can prove that
S′ ∈ candidates(S).

This verification paradigm is simpler and more aligned with
real-world scenarios for several reasons: 1. It is suitable for
unsupervised settings and does not require a known start-
ing point Y for reasoning, which also enables verification
to support test time corrections when reasoning cannot; 2.
Verification does not rely on a complete knowledge base.
According to the incompleteness theorem, most real-world
symbolic systems (even simple arithmetic systems) are in-
complete, meaning there are many true propositions without
provable reasoning paths but can be validated as true; 3.
Verification guarantees the process is halting, whereas rea-
soning cannot guarantee this due to recursions; 4. The
computational complexity of validation is typically much
lower than that of reasoning. Many NP problems can be val-
idated in polynomial time, but finding a solution cannot be
done yet within polynomial time; 5. Verification is generally
more convenient and general at the programming level. It
only requires a function VKB : S → {True,False}, which
can replace the entire knowledge base. It is not limited to
propositional logic or first-order logic and does not require
constructing a search process like in Prolog.

With this approach, we bypass the complex processes in-
volved with candidates(S). Moreover, due to the exces-
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sive shortcuts in unsupervised settings, methods like Deep-
Problog, which find all candidate solutions and weight them,
are no longer applicable. Instead, we adopt a strategy sim-
ilar to ABL, where we select only the highest-scoring so-
lutions. Our goal now shifts to finding the highest-scoring
solution that can be verified, i.e., solving the COP problem
COP (S,S, VKB , Score). In the following, we will explore
how to solve the COP problem with minimal cost.

4. Solve COP by Dynamic Combinatorial
Sorting

Solving the optimization problem COP (S,S, VKB , Score)
requires us to find the solution that satisfies the VKB con-
straint and has the highest score. Following conventional
methods, we would need to verify all possible assignments
in the feasible set to determine which solution satisfies the
constraint and has the highest score. This exponential time
complexity approach is not feasible. Therefore, we propose
a strategy that validates solutions in descending order of
score in S. By doing so, we ensure that the first solution
validated by VKB successfully is the optimal one.

Given that S = [s1, . . . , sl] consists of l symbols, and con-
sidering the global feasible set as a combination of multiple
variables, this problem is known as the combinatorial sort-
ing problem. Since the size of the feasible set is kl, using
classical sorting algorithms would be computationally infea-
sible. However, when the score satisfies certain properties,
We can infer the (i+ 1)th ranked solution based on the top
i known solutions. In this way, we only need to know the
highest-scoring solution to sequentially derive all other solu-
tions, without having to enumerate and sort all of them. This
significantly reduces the computational complexity while
ensuring that the verification order remains strict, guarantee-
ing the global optimality of the COP solution.

First, we discuss the scenario where the score satisfies in-
dependence (van Krieken et al., 2024), and present a com-
binatorial sorting solution. We then extend the solution to
cases where independence is not satisfied but monotonicity
is, which provides more relaxed conditions. This highlights
that monotonicity is a more crucial property for Nesy tasks,
and problems that satisfy monotonicity are just as easy to
solve as those that satisfy independence.

4.1. Independent Case

In the case where the score has independence, Score(S) =∏
si∈S score(si), where score(si) represents the score of

an individual symbol in the symbol combination S, such as
the commonly used confidence g(X)i,si . Under the inde-
pendence assumption, we sort all possible values for each
symbol si. This ensures that for each position, the assign-
ment with the highest score is selected. When a symbol si,j

is changed to si,j+1, the score for that position score(si,j)
will change to score(si,j+1), which updates the global score
Score(S) by a factor of vi =

score(si,j+1)
score(si,j)

, where vi rep-
resents the minimal cost of changing symbol si. For the
current unverified assignment S, we select the next assign-
ment by sorting the successors based on the smallest cost
vi and iteratively update the assignments. Hence, each as-
signment S has at most l successors, and the successors are
ordered. We denote these successors as Suc(S).

Under the property of independence, while the greedy rule
does not hold (i.e., the (i + 1)th assignment Si+1 is not
necessarily the successor of the ith assignment Si), it is
always true that Si+1 is a successor of one of the preceding
i assignments. Formally, for any i ∈ kl, there exists 1 ≤
j ≤ i such that Si+1 ∈ Suc(Sj).

Theorem 4.1. When the Score satisfies independence, i.e.,
Score(S) =

∏
sp∈S score(sp), for any i > 1, there exists

0 < j < i, 0 < p ≤ l, 0 < q < k, such that modifying sp ∈
Sj from the original symbol sp,q to sp,q+1 results in sp′ , and
Suc(Sj)p = (s1, . . . , sp−1, sp′ , sp+1, . . . , sl) ∈ Suc(Sj).
Furthermore, there does not exist any S′ ∈ S such that
S′ /∈ {S1, . . . , Si−1} and Score(S′) > Score(Suc(Sj)p).
Therefore, Si = Suc(Sj)p.

This crucial property allows us to maintain a heap structure
dynamically, where we track the successors of each verified
assignment, keyed by the maximum successor score. This
enables us to quickly find the assignment with the highest
score among all unverified successors of the first i assign-
ments, ensuring that the assignment ranked i+1 is selected.

Next, the following process can be used to dynamically find
the next assignment to be validated:

1. For i = 1, we select the highest-scoring assignment for
each position in S1, and derive the successors Suc(S1),
which are then placed in the heap.

2. For i > 1, we select the highest-scoring successor
from the heap, i.e., the one with the maximum suc-
cessor score Sj , and then select the highest-scoring
assignment from Suc(Sj) to form Si. We then derive
the successors Suc(Si), which are then placed in the
heap. The successor assignments of Sj are updated
to Suc(Sj) \ {Si}, and if non-empty, they are placed
back in the heap.

By following this process, we ensure that the assignments
are verified in strict score order, guaranteeing that the
first solution to pass the verification is the optimal solu-
tion for the COP problem. If the first valid solution is
ranked K, the complexity of maintaining the heap struc-
ture is O(K logK), and the total complexity becomes
O(K(logK + l log l + k log k)).

5



Verification Learning: Make Unsupervised Neuro-Symbolic System Feasible

4.2. Non-Independent Case

The selection of the Score function can vary, and affects
the performance of VL. Using more diverse optimization
objectives often leads to violations of the independence as-
sumption. For instance, the consistency score Score(S) =∑l

i=1[Si = f(X)i] in (Dai et al., 2019) distance cannot be
expressed as an independent score.

We examined whether DCS remains applicable in broader
contexts. We found that the fundamental reason for DCS
success lies in Theorem 4.1: the i+ 1-th assignment comes
from one of the previous i assignments by modifying only
one symbol. If this condition is violated, it means that at
least one position has had a change in priority between
different symbols, thus affecting the global score Score(S).
As a sufficient condition, we can guarantee that if the priority
between different symbols at the same position satisfies
a fixed total ordering, DCS will always find the optimal
solution to the COP problem.

Theorem 4.2. When the Score satisfies monotonicity, i.e.,
for any 0 < p ≤ l and any 0 < q < k, there does not
exist a S′ such that modifying sp from sp,q to sp,q+1 results
in sp′ , and Suc(S′)p = (s1, . . . , sp−1, sp′ , sp+1, . . . , sl) ∈
Suc(S′), satisfying Score(Suc(S′)p) > Score(S′), then for
any i > 1, there exists 0 < j < i, 0 < p ≤ l results in
Suc(Sj)p = (s1, . . . , sp−1, sp′ , sp+1, . . . , sl) ∈ Suc(Sj).
Furthermore, there does not exist any S′ ∈ S such that
S′ /∈ {S1, . . . , Si−1} and Score(S′) > Score(Suc(Sj)p).
Therefore, Si = Suc(Sj)p.

Proposition 4.3. Clearly, the satisfaction of independence
by Score is a sufficient but not necessary condition for Score
to satisfy monotonicity.

For the consistency distance, symbol si matches the pre-
dicted value f(X)i at position i is given higher priority,
while the priorities for other symbols remain the same. This
satisfies the monotonicity property. Therefore, even with
consistency score, combinatorial sorting can still be applied
successfully. Furthermore, if we combine multiple Score
functions that satisfy monotonicity (e.g., first prioritize the
assignments with the highest consistency, then select the
ones with the highest confidence), DSC can still achieve the
optimal solution to the COP problem.

It is worth noting that when monotonicity is not satisfied,
even obtaining the top-ranked solution requires exhaustively
searching the entire solution space with exponential com-
plexity. Therefore, the following theorem holds.

Theorem 4.4. The monotonicity of the score function is a
sufficient and necessary condition for the COP problem to
admit a general algorithm with sub-exponential complexity.

If even monotonicity is violated, solving for the optimal
Score(S) without traversing all solutions becomes impos-

sible. In such cases, strategies like reinforcement learning
or other sampling-based methods can be used to estimate
Score(S). However, these methods no longer guarantee a
strict order, and thus, cannot ensure the optimal solution to
the COP problem.

5. Mitigate Shortcut Problem by Distribution
Alignment

After setting up the framework, we can begin learning using
unsupervised data and the verification procedure. However,
there are significant challenges in unsupervised scenarios,
particularly due to the shortcut problem. Additionally, dur-
ing the initialization phase of the neural network, the predic-
tions are often highly biased, leading to a situation where
the network explores only a few symbols. For example,
in an addition task, if all symbols are predicted as 0 (i.e.,
0 + 0 = 00), it can pass the verification and also minimize
the loss in the learning task to zero in the addition task.

To address this, we propose a distribution alignment strategy.
By aligning the model’s output symbol distribution with the
natural distribution P of the symbols, we can significantly
mitigate this issue. In cases where the natural distribution
is unknown, we can use a uniform distribution as a prior.
During the initial phase, this ensures that the output distri-
bution is spread out. In later stages, even after removing
the influence of the prior distribution, the model’s output
distribution will eventually concentrate on the distribution
consistent with the training data. The specific adjustment
process is to directly modify the probabilities output by the
model to:

g(X)i,j =
l · Psj · g(X)i,j∑l

k=1 g(X)k,j
. (3)

6. Theoretical Study on When Knowledge Can
Assist Unsupervised Learning

We performed a theoretical analysis of VL which relies
solely on unlabeled data and a verification function. The
theoretical results demonstrate the upper bounds that Nesy
can achieve under the condition of distribution alignment,
without requiring supervision. We further analyzed which
tasks can be solved without labels and which cannot.

In fact, the theoretical analysis of unsupervised learning
can be divided into two parts. The first component is the
knowledge-induced error, which reflects the system’s ability
to establish a correspondence between the categories identi-
fied by the learner and the labels of the symbols. The second
part is the data-induced error, which reflects the system’s
ability to group samples belonging to the same category
together. Together, these two factors determine the upper
bound of the generalization error in unsupervised learning.
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VL effectively addresses both of these issues, with the two
modules working together to promote each other’s success.

6.1. Knowledge-Induced Error in VL

VL can make the predicted results align with the rule base.
So our primary goal is to explore the gap between main-
taining consistency with the rule base and being able to
distinguish between symbols. This gap is determined by the
symmetry of the function VKB on the symbol set.

Let’s start with a symbol set S = {s1, . . . , sk}, and define
its symmetry group, Sym(S), which consists of all possible
permutations of the set. Any permutation σ ∈ Sym(S) is a
bijection σ : S → S . We define G as the symmetry group of
the verification function VKB , i.e., the subgroup of Sym(S)
that keeps the results of VKB invariant. Specifically, for
all S ∈ S and σ ∈ G, let σ(S) = (σ(si))si∈Swe have
VKB(S) = VKB(σ(S)).

We perform an orbit decomposition of the symmetry group
G for the function VKB . For each symbol si, its orbit is
defined as Osi = {σ(si)|σ ∈ G}, which represents all the
equivalence symbols that can be reached by applying the
symmetries of G to si.

If the orbit Osi of symbol si is a singleton (i.e., Osi = {si}),
then si is a fixed point of VKB . Therefore, by the orbit
decomposition, we can identify the set of fixed points of the
verification function VKB as Fix(G) = {si|Osi = {si}}.
The task-induced upper bound on error is given by the sum
of probabilities of the symbols that are not fixed points, i.e.,

Rup
task =

∑
si∈S

I(si /∈ Fix(G))Psi (4)

The average error is determined by the sum of the ratio of
the symbol probabilities to the sizes of their orbits:

Ravg
task =

∑
si∈S

Psi

|Osi |
(5)

This error, caused by the task itself, cannot be compensated
by data, making it a fundamental limitation that cannot
be addressed through knowledge verification. To better
understand these concepts, consider the following examples:

1. Sudoku Task: In the Sudoku task, any permutation
of numbers still satisfies the constraints. This means
that all permutations of symbols in Sudoku do not
alter the knowledge base. Consequently, the upper
bound on task-induced error for Sudoku is Rup

sudoku =
100%, meaning that regardless of data size or model
performance, the fully unsupervised Sudoku task could
still have a 0% accuracy.

2. Addition Task: In the addition task, no permutation of
symbols (such as numbers) can still satisfy the addition

system unless the symbols correspond to the correct
values. Thus, all symbols in the addition task are fixed
points, and the upper bound error is Rup

addition = 0%.
This means that with enough data and model improve-
ments, we can achieve good results.

3. Chess Task: It is also important to consider cases where
a one-way inclusion (not a bijection) occurs. For exam-
ple, in a chessboard scenario, a Queen can move along
diagonal and straight lines, a Rook along straight lines,
and a Bishop along diagonals. This leads to situations
where a Rook or Bishop could be mapped as a Queen.
In such cases, the task becomes unsolvable because it
lacks the necessary bijections. However, the presence
of a natural distribution P helps correct this issue by
ensuring that, the model can distinguish Rooks and
Bishops from Queens. So Rup

chess = 0%. Thus, the dis-
tribution P extends the domain of solvable problems,
enabling the model to handle more complex tasks that
would otherwise be unsolvable.

6.2. Data-Induced Error in VL

Once the error induced by the task is determined, combining
it with the error introduced by the learning process allows
us to obtain the upper bound on the generalization error. In
unsupervised learning, since it is not possible to distinguish
between the symbols in the same orbit, the empirical error
should be minimized by selecting the permutation in the
symmetry group G. We define R̂(f) as the current minimal
symmetric permutation empirical error.

R̂(f) = min
σ∈G

∑
X∈Xtrain

[g(X)i ̸= σ(si)] (6)

By minimizing the permutation error and the task-induced
error, we can derive the performance bounds for VL in
solving unsupervised neural-symbolic learning tasks.

Theorem 6.1. For any function f ∈ F , if L is a ρ-Lipschitz
continuous loss function, Rn is the Rademacher complexity
for a sample size of n, Rup

task is the current task-induced
upper bound on error, and R̂(f) is the current minimal
symmetric permutation empirical error, then the empirical
error R(f) for the prediction of the current symbol set by f
satisfies, with at least probability 1− δ:

R(f) ≤ R̂(f) + 2ρRn(F ) + 3

√
log(2/δ)

2n
+Rup

task (7)

7. Experiments
To validate the effectiveness of the framework we proposed,
we conducted experiments on 4 unsupervised tasks. These
experiments were primarily extensions of previously super-
vised Nesy tasks. For all tasks, we used LeNet as the basic

7
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Table 1. The comparison of symbol recognition accuracy on the Addition dataset.

Method 2 3 4 5 6 7 8 9 10
Deepproblog 53.53 40.42 33.67 29.86 27.51 25.46 23.63 22.52 21.47
DeepStochlog 56.21 44.43 39.06 36.02 34.02 31.14 27.74 24.38 21.24

NeurASP 53.66 36.07 28.39 29.77 14.63 23.25 23.61 22.51 7.63
Ground ABL 42.50 42.00 98.25 26.00 30.25 25.25 25.75 24.00 20.25

A3BL 46.16 99.50 38.00 26.00 30.25 24.50 25.75 24.00 20.25
V L⊥ 100.00 41.38 99.50 99.80 99.65 99.19 70.70 98.73 98.28

V LTTC
⊥ 100.00 49.83 100.00 100.00 100.00 100.00 69.20 99.95 100.00

V L ̸⊥ 100.00 99.88 99.75 100.00 99.75 99.00 99.25 97.75 48.80
V LTTC

̸⊥ 100.00 100.00 100.00 100.00 100.00 99.95 100.00 100.00 51.40

Table 2. The comparison of symbol recognition accuracy on the
Sort dataset.

Method 4 5 6 7 8
Deepproblog 96.65 97.12 95.93 39.36 45.97
DeepStochlog 84.27 81.72 77.28 MLE MLE

NeurASP 5.03 8.95 TLE TLE TLE
Ground ABL 10.20 20.22 24.19 29.73 39.35

A3BL 29.75 69.43 49.28 49.61 97.28
V L⊥ 77.50 77.20 96.67 68.86 98.23

V LTTC
⊥ 78.75 76.40 99.67 69.00 99.89

V L ̸⊥ 97.00 98.76 97.97 98.20 98.71
V LTTC

̸⊥ 99.25 99.66 99.67 99.78 99.90

Table 3. The comparison of symbol recognition accuracy on the
Match dataset.

Method 6 7 8 9 10
Deepproblog 16.72 14.30 12.33 11.03 10.25
DeepStochlog 16.68 14.28 12.70 26.17 MLE

NeurASP 18.82 14.02 12.20 8.68 TLE
Ground ABL 16.68 14.28 12.35 11.03 10.02

A3BL 16.68 14.28 12.35 11.03 10.02
V L⊥ 65.95 42.50 73.97 97.38 96.67

V LTTC
⊥ 68.20 44.63 72.33 99.85 99.67

V L ̸⊥ 66.27 73.25 98.22 70.35 97.08
V LTTC

̸⊥ 68.08 75.72 99.97 81.00 99.68

Table 4. The comparison of symbol recognition accuracy on the
Chess dataset.

Method 2 3 4 5 6
Deepproblog 49.46 33.10 25.08 49.46 15.66

NeurASP 53.66 36.07 23.93 19.07 18.82
Ground ABL 49.90 67.65 75.70 70.55 33.95

A3BL 100.00 99.80 75.95 38.30 34.35
V L⊥ 100.00 99.90 98.00 95.70 95.15

V LTTC
⊥ 100.00 99.90 92.55 91.30 92.55

V L ̸⊥ 100.00 99.90 98.00 95.70 95.15
V LTTC

̸⊥ 100.00 99.90 92.55 91.30 92.55

network architecture (denoted as f ) for symbol recognition
from X to S, with a learning rate of 0.001 and Adam opti-
mizer for optimization. Due to the fact that many algorithms
train extremely slowly, in order to conduct a performance
comparison with them as comprehensively as possible, we
set a unified number of epochs to 10. All experiments were
completed on 4 A800 GPUs. The comparison methods in-
clude Deepproblog, Deepstochlog, NeurASP, Ground ABL,
and A3BL. For algorithms that are only suitable for su-
pervised learning, we used [True, False], i.e., whether the
result matches the knowledge base, as the label for the new
tasks to enable comparison. Additionally, we compared the
performance of four versions of the algorithm in ablation
experiments, including two Score settings under the inde-
pendent and non-independent hypotheses represented by
V L⊥ and V L ̸⊥, to explore the impact of optimization tar-
get settings on VL. Under the independent hypothesis, the
Score setting used the neural network model’s confidence,
while under the non-independent hypothesis, the Score used
a combination of consistency and confidence. Furthermore,
we compared the impact of using test time correction in
both cases and used the tag TTC to indicate them. Our
knowledge base is in the form of a verification function, and
the program was written in simple Python code. During
the experiments, NeurASP experienced severe timeouts (no
results returned after over 300 hours), and Deepstochlog en-
countered memory issues (the table size limit in swi-prolog
was set to 1012). In the experimental results, these issues
were indicated by TLE (Time Limit Exceeded) and MLE
(Memory Limit Exceeded), respectively.

7.1. Addition

The experiment on the Addition task is an extension of the
addition experiment from Deepproblog, where the answer
part was modified to be the input number images. To verify
its generalizability, we tested all addition bases between
binary and decimal numbers. The results demonstrated
the effectiveness of VL on this task, and showed that with
only the addition rule, the model could learn to classify all
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Table 5. The comparison of time consumption on the Addition dataset.

Method 2 3 4 5 6 7 8 9 10
Deepproblog 2778.45 9118.23 15281.67 21273.89 23988.50 30621.92 33400.69 38804.44 42391.21
DeepStochlog 1289.68 454.59 984.16 1251.83 1636.27 1583.25 2168.25 2743.55 3097.91

NeurASP 1133.23 1475.02 2407.18 2354.81 4169.20 7648.07 13483.66 23013.77 38526.15
Ground ABL 135.05 140.47 141.60 133.90 86.68 131.38 160.69 126.84 123.05

A3BL 187.25 183.92 200.41 203.90 202.73 161.57 184.81 185.87 190.74
V L⊥ 112.04 114.80 111.79 111.94 111.36 109.58 106.66 112.81 116.26
V L ̸⊥ 110.48 101.17 80.32 91.05 80.79 111.18 112.27 82.16 118.36

numbers. The results are showed in Table 1.

7.2. Sort

The Sort task is an extension of the sort task from Deep-
problog, where digit recognition is performed based on an
ordered sequence of images. The only knowledge in the
knowledge base is the ordering of the numbers. The ex-
periments demonstrated that the model, relying solely on
the ordering, could successfully perform recognition for all
digits. In the experiments, we tested ordered sequences with
lengths ranging from 4 to 8, and the results confirmed the
effectiveness of VL under the sorting rule. The results are
showed in Table 2.

7.3. Match

The Match task is an extension of the anbncn task from
Deepstochlog. The task involves character recognition
based on fixed model strings in an unsupervised setting. The
original task only matched the character set anbncn, but we
increased the task difficulty by extending it to situations not
limited to three character sets, with n being variable. We
conducted experiments with character categories ranging
from 6 to 10 and validated the effectiveness of VL in the
character matching task. The results are showed in Table 3.

7.4. Chess

The Chess task comes from (Dai et al., 2019), which is an
extension of the 8-Queens problem. In the Chess task, there
are six types of pieces: the bishop moves diagonally any
number of squares, the king moves one square in any direc-
tion, the knight moves in an L-shape, the pawn moves one
square diagonally forward, the queen moves any number
of squares along a straight line or diagonally, and the rook
moves any number of squares along a straight line. We
identify the type of piece based on the changes in the chess-
board configuration. Experiments were conducted with 2 to
6 types of chess pieces, with the piece types dynamically
added based on the lexicographical order of the piece names.
The results are showed in Table 4.

7.5. Time Consumption

In addition to its excellent performance, VL also demon-
strates exceptional time efficiency. We conducted a runtime
comparison on the addition dataset, with time measured
in seconds. The results show that VL even outperforms
Ground ABL, which has preprocessing of the knowledge
base. This is because VL finds the optimal solution with far
fewer verification steps. Compared with the training time
of some methods that increases rapidly as the symbol space
expands, the growth rate of VL’s training time is relatively
slow. The results are showed in Table 5.

8. Conclusion
This research explores the feasibility of unsupervised Nesy
system from both theoretical and practical perspectives. We
demonstrate the necessity of developing unsupervised Nesy
systems through practical cases, while highlighting three
major challenges: reduced symbolic information availability,
expanded solution space, and more prevalent shortcut issues.

We propose a verification learning framework that trans-
forms traditional symbolic reasoning starting from a super-
vision signal Y into a verification paradigm independent
of Y. This framework is formalized as a Constraint Opti-
mization Problem, for which we prove that it can be solved
with sub-exponential complexity under the condition of in-
dependence and the more general condition of monotonicity.
We propose a corresponding dynamic combinatorial sorting
algorithm for this problem. We also address the exponential
growth of shortcuts through distribution alignment.

The theoretical foundation establishes the problem types
addressable by VL using group theory, accompanied by gen-
eralization error analysis. Experimental validation across
four unsupervised learning tasks demonstrates breakthrough
progress from infeasible to feasible solutions.

Future work will focus on developing more sophisticated VL
frameworks for complex tasks and exploring applications in
broader unlabeled data scenarios.
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A. Proof of Theorems
A.1. Proof of Theorem 4.1

We can use proof by contradiction. Suppose there exists a score-ranked Si at position i such that Si ̸∈ {S1, . . . , Si−1}, and
there does not exist 0 < j < i, 0 < p ≤ l, 0 < q < k such that modifying the symbol Sp,q at position p of Sj to Sp,q+1

gives Suc(Sj)p with Score(Suc(Sj)p) ≥ Score(Si). Then for any 0 < j < i, there are at least two positions pa and pb
where the symbols Spa,qai

, Spb,qbi of Si at positions pa and pb and the symbols Spa,qaj
, Spb,qbj of Sj at these positions

satisfy qai ≥ qaj + 1, qbi ≥ qbj + 1; or there is at least one position pa where the symbol Spa,qai
of Si and Spa,qaj

of Sj

satisfy qai ≥ qaj + 2.

For the first case, there must exist 1 < j < i such that modifying the symbol at position pa (similarly for pb) of Sj to
Spa,qaj+1 gives Suc(Sj)pa . Since qai ≥ qaj + 1, qbi > qbj , and for any other position c ̸∈ {a, b}, qci ≥ qcj , and since
score is a sorted probability, we have:

score(Spa,qai) ≥ score(pa, qaj + 1), score(Spb,qbi) ≥ score(pb, qbj), score(Spc,qci) ≥ score(pc, qcj)

By the independence assumption, Score(S) =
∏l

i=1 score(pi, qi), so:

Score(Suc(Sj)pa) ≥ Score(Si)

which leads to a contradiction, thus the assumption is invalid.

For the second case, there must exist 1 < j < i such that modifying the symbol at position pa of Sj to Spa,qaj+1 gives
Suc(Sj)pa . Since qai > qaj + 1 and for any other position c ̸= a, qci ≥ qcj , we have:

score(Spa,qai
) ≥ score(pa, qaj + 1), score(Spc,qci) ≥ score(pc, qcj)

Thus:
Score(Suc(Sj)pa

) ≥ Score(Si)

leading to a contradiction, so the assumption is invalid. Therefore, Theorem 4.1 is proved.

A.2. Proof of Theorem 4.2

The proof process is the same as that of Theorem 4.1. Due to the satisfaction of the monotonicity assumption, for any
0 < p ≤ l and any 0 < q < k, there does not exist S′ such that modifying sp from sp,q to sp,q+1 yields Suc(S′)p =
(s1, . . . , sp−1, sp′ , sp+1, . . . , sl) ∈ Suc(S′) satisfying Score(Suc(S′)) > Score(S′). It can be seen that for any q′ > q,
modifying sp from sp,q to sp,q′ to obtain S′

q also cannot satisfy Score(Suc(S′
q)) > Score(S′).

Thus, for the first case, where qai ≥ qaj + 1, qbi > qbj , and for any other position c /∈ {a, b}, qci ≥ qcj , it can similarly be
proven that Score(Suc(Sj)pa) ≥ Score(Si) holds, leading to a contradiction and invalidating the assumption.

For the second case, where qai > qaj + 1 and for any other position c ̸= a, qci ≥ qcj , it can similarly be proven that
Score(Suc(Sj)pa

) ≥ Score(Si) holds, leading to a contradiction and invalidating the assumption.

Therefore, Theorem 4.2 is proved.

A.3. Proof of Theorem 4.4

The sufficiency can be proved according to Theorem 4.2.

When the monotonicity condition is not satisfied, even if we find the top-ranked S1 by Score, we still need to calculate the
scores of all S′ ∈ S . It is impossible to find the maximum solution without exhaustive traversal, and even more impossible
to infer the ith largest solution from the first i− 1 ranked solutions. Thus, the necessity is proved.

A.4. Proof of Theorem 6.1

First, consider the clustering ability of the function f . We define the clustering error as the error rate between the labels
assigned to samples under the optimal label assignment strategy after clustering and the true labels. According to the
Rademacher complexity theory, for any function f ∈ F and a ρ-Lipschitz continuous loss function L, under the action of
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n samples, the generalization error rate Roracle(f) under the optimal label assignment strategy can be determined by the
empirical error rate R̂(f) and the model space complexity Rn(F), that is, with probability at least 1− δ, it holds that:

Roracle(f) ≤ R̂(f) + 2ρRn(F) + 3

√
log(2/δ)

2n

Due to the indistinguishability of symbols in the system, the error between the true label assignment strategy and the
optimal label assignment strategy differs by at most Rup

task. The system’s generalization error R(f) is determined by the
generalization error Roracle(f) under the optimal label assignment strategy and the maximum difference Rup

task between the
actual label assignment strategy and the optimal one, i.e.,

R(f) ≤ Roracle(f) +Rup
task

Finally, it can be concluded that with probability at least 1− δ:

R(f) ≤ R̂(f) + 2ρRn(F) + 3

√
log(2/δ)

2n
+Rup

task

B. The Programs of All of the Verification Function
# Addition
def digits_to_number(digits,num_classes=2):

number = 0
for d in digits:

number *= num_classes
number += d

return number

def number_to_digits(number, digit_size,num_classes=2):
digits=[]
for i in range(digit_size):

digits.append(number%num_classes)
number//=num_classes

return digits[::-1]

def V_KB(nums,num_digits,num_classes):
nums1,nums2,nums3=nums[:num_digits],nums[num_digits:num_digits*2],\
nums[num_digits*2:]
return (digits_to_number(nums1,num_classes=num_classes) \
+ digits_to_number(nums2,num_classes=num_classes)==\
digits_to_number(nums3,num_classes=num_classes))

# Sort
def V_KB(nums):

l=len(nums)
for _ in range(l-1):

if nums[_+1]<=nums[_]:
return False

return True

# Match
def V_KB(nums):

l=len(nums)
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count=None
cur_count=0
for _ in range(l):

if _ >0 and nums[_]<nums[_-1]:
return False

elif _>0 and nums[_]>nums[_-1]:
if count is None:

count=cur_count
elif count!=cur_count:

return False
cur_count=0

cur_count+=1
return count is None or cur_count==count

# Chess
def attack(type, x1, y1, x2, y2):

if type == 0:
return bishop_attack(x1, y1, x2, y2)

elif type == 1:
return king_attack(x1, y1, x2, y2)

elif type == 2:
return knight_attack(x1, y1, x2, y2)

elif type == 3:
return pawn_attack(x1, y1, x2, y2)

elif type == 4:
return queen_attack(x1, y1, x2, y2)

elif type == 5:
return rook_attack(x1, y1, x2, y2)

return False

def king_attack(x1, y1, x2, y2):
# King moves one step in any direction
return abs(x1 - x2) <= 1 and abs(y1 - y2) <= 1

def queen_attack(x1, y1, x2, y2):
# Queen moves straight or diagonal
return self.straight_attack(x1, y1, x2, y2) or \
self.diagonal_attack(x1, y1, x2, y2)

def rook_attack(x1, y1, x2, y2):
# Rook moves straight
return self.straight_attack(x1, y1, x2, y2)

def bishop_attack(x1, y1, x2, y2):
# Bishop moves diagonally
return self.diagonal_attack(x1, y1, x2, y2)

def knight_attack(x1, y1, x2, y2):
# Knight moves in an "L" shape
return (abs(x1 - x2) == 2 and abs(y1 - y2) == 1) or \
(abs(x1 - x2) == 1 and abs(y1 - y2) == 2)

def pawn_attack(x1, y1, x2, y2):
# Pawn attacks diagonally (assuming it’s a white pawn)
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return abs(x1 - x2) == 1 and y2 - y1 == 1

def straight_attack(x1, y1, x2, y2):
# Moves straight: either same row or same column
return x1 == x2 or y1 == y2

def diagonal_attack(x1, y1, x2, y2):
# Diagonal move: difference between x and y is the same
return abs(x1 - x2) == abs(y1 - y2)

def V_KB(type, pos):
l=len(type)
for i in range(l):

for j in range(i+1,l):
if attack(type[i],pos[i][0],pos[i][1],pos[j][0],pos[j][1]):

return True
return False

All of the code is open-sourced on the github https://github.com/VerificationLearning/VerificationLearning.
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