
Efficient long-horizon planning and learning for
locomotion and object manipulation

Victor Dhédin∗

TUM, Germany
victor.dhedin@tum.de

Huaijiang Zhu∗

NYU, USA
hzhu@nyu.edu

Ludovic Righetti
NYU, USA

ludovic.righetti@nyu.edu

Majid Khadiv
TUM, Germany

majid.khadiv@tum.de

Abstract: Locomotion and manipulation are difficult problems in robotics, as
they involve a long-horizon decision-making problem that involves a combination
of discrete and continuous decision variables. While simple end-to-end imita-
tion and reinforcement learning have shown promise in the past few years, they
generally struggle with problems that need reasoning over a long horizon, e.g.,
stacking objects and locomotion over highly constrained environments. In this
paper, we propose a structured approach to learning long-horizon locomotion and
manipulation problems. Our approach uses Monte-Carlo tree search (MCTS) to
efficiently search over discrete decision variables (e.g., whcih surface to contact
next) and structure-exploiting gradient-based trajectory optimization for check-
ing the feasibility of the candidate contact plans. Since the whole process is still
time-cnnsuming and cannot be done for real-time control, we propose to lever-
age imitation learning (in particular diffusion models) to learn a policy that can
reactively generate new feasible contact sequences. We tested our whole pipeline
on quadrupedal locomotion on stepping stones and fine object manipulation and
show that this framework can reach real-time rates.

Keywords: contact-rich manipulation and locomotion, Monte-Carlo tree search,
Diffusion models, multi-modal imitation learning

1 Introduction

The hybrid nature of intermittent contacts with the environment makes locomotion and object ma-
nipulation much more challenging problems than autonomous flying and driving. To control these
systems, a controller should simultaneously decide over both continuous (e.g., contact forces) and
discrete (e.g., which surface patch to make contact with next) decision variables. The two dominant
approaches to control these robots in multi-contact scenarios are optimal control (OC) and rein-
forcement learning (RL). OC uses a forward model of the system and finds a locally optimal control
input by minimizing a performance cost over a finite/infinite horizon into the future [3]. Similarly,
RL finds an optimal policy (usually local) by maximizing the expected reward, but by drawing sam-
ples from rolling out control policies and interactively improving it [4]. In the past few years, both
approaches have shown great success in the control of locomotion [5, 6, 7, 8, 9] and manipulation
[10, 11, 12, 13, 14] systems.

OC approaches can take the constraints of the robot and the environment to ensure safety [15]. How-
ever, they need to perform intense computation at run-time and are not able to offload some of the

* Equal contribution, Most of the content in this work has been presented in [1, 2].

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

Figure 1: Left) Locomotion on challenging stepping stones, Right) contact-rich manipulation

computation for repetitive tasks. Furthermore, they do not use the data from the execution of these
controllers in the real world or realistic simulation environments to improve the performance. State-
of-the-art deep RL (DRL) approaches, on the other hand, can learn a policy offline in simulation
which highly reduces run-time computation [16]. Furthermore, it is straightforward to randomize
the uncertain parts of the models and perception pipeline to generate robust behaviors. However,
these algorithms suffer from another set of fundamental problems: they require heavy reward shap-
ing for each single task and no transfer of knowledge from one task to the next one happens; they
are highly sample-inefficient which makes generation of large amounts of useful samples highly
inefficient; they normally struggle with the long-horizon sequential problems with sparse rewards.

In this paper, we propose to combine the benefits of OC and DRL with supervised learning to devise
a framework that efficiently generate new behaviours for robots with intermittent contact with the
environment. In particular, we propose to use Monte-Carlo tree search (MCTS) to efficiently search
over the discrete parts of decisions (which end-effector goes to contact and with wich surface). Given
the candidates for a contact sequence, we perform a gradient-based trajectory optimization (open-
loop or close-loop) to generate whole-body trajectories for the robot. We also show how supervised
learning can be leveraged to speed up the whole pipeline.

2 Contact Planning using MCTS

We formalize our contact planning problem as a Markov decision process (MDP), where the state s
represents the location of end-effectors in contact which we denote by a discrete index, and the action
a selects the next locations for each end-effectors and brings the system to a new state s′ = f(s,a).
Each state is evaluated by a reward function r(s) that specifies its associated immediate reward.
To solve this problem, MCTS creates a search tree T = (V.E) where the set of nodes V contains
the visited states and the set of edges contains the visited transitions (s

a→ s′). Each transition
maintains the state-action value Q(s,a) and the number of visits N(s,a). MCTS grows this search
tree iteratively by the following steps.

Selection: Start from the root node (initial state) and select successively a child until a leaf (node
that has not been expanded yet or terminal state) has been reached. If all the children of a node have
already been expanded, a child is selected according to its Upper Confidence Bound (UCB) (1) that
balances exploration and exploitation during the search.
Expansion: Unless the selected state from the previous step is a terminal state, its successor states
are added to the tree by enumerating all possible actions. The corresponding state-action pairs are
initialized with Q(s,a) = 0 and N(s,a) = 0.
Simulation: From one of the successor states, random actions are performed for a predefined num-
ber of steps to create a simulation rollout. The reward r is evaluated at the end of the simulation.
Back-propagation: The reward is then back-propagated to update the state-action value Q(s,a) =
Q(s,a)+r and the number of visits N(s,a) = N(s,a)+1 for all the states along the node selected
in the selection and expansion steps.

As shown schematically in Fig. 1, in our problem formulation, the MCTS is given the initial and final
desired locations of all the robot end-effectors and is asked to compute the feasible set of contacts

2

that results in a successful motion. To balance between the exploration of un-visited and visited
states, we consider the upper confidence bound (UCB) [17]. In the Selection phase, MCTS selects
the action with the highest UCB score

U(s,a) =
Q(s,a)

N(s,a)
+ c

√
logN(s)

N(s,a)
(1)

where c is a coefficient to balance exploration against exploitation and N(s) =
∑

a N(s,a) is the
total number of visits for a node. The reward function that is used to update the state-action value is

r(s) = Wσ(
1

Ne

ne∑
j=1

(1−
||cjW − gcjW ||2

dmax
)) (2)

where cjW is the contact location in world frame of the jth end-effector at state s, gcjW is the desired
goal location for the jth end-effector in world frame, and Ne is the total number of end-effectors.
dmax is the maximum distance between two contact patches in the map. σ : [0, 1] → [0, 1] is a
function that shapes the reward. W ∈ {−1, 1} is a success indicator, by default set to 1 when the
goal state is not reached.

To check the feasibility of the contact sequence, we takes the biconvex structure of the dynamics
between the interaction forces and the center of mass [9, 1] into account to develop an efficient
solver based on alternating direction method of multipliers (ADMM). Please refer to Appendix A
for the heuristics used for locomotion and manipulation problems.

3 Supervised learning

While efficient, our MCTS together with the OC-based feasibility check cannot be run in real-time.
To enable the robot to reactively select the next feasible contact given the current ones, we learn
a neural network to imitate the MCTS. We have slightly different supervised learning settings for
locomotion and manipulation that we outline in the following of this section.

3.1 Learning locomotion policies

While MCTS admits a natural extension of a learnable value function and action probability
prior [18, 19], for the locomotion problem, we decided not to adopt this methodology despite its
success in game-play for two reasons. First, in contrast to generic game-play, locomotion tasks on
different maps (e.g. varying locations and numbers of stepping stones) are likely to have different
states and action space; an MCTS trained on a specific map does not generalize to other environment
maps. Second, some other sensory inputs that are not modeled in the MCTS state space may provide
additional information (eg. base velocity) on if and where to make the next contact. Therefore, we
take a direct action imitation learning perspective and treat the MCTS as an algorithmic demonstra-
tor, whose behavior will be cloned by a neural network policy. We collect data of the dynamically
feasible solutions discovered by the MCTS together with the contact locations of the simulation en-
vironment. This dataset is then used to train a neural network in a supervised fashion. A schematic
structure of the network is shown in Fig. 2-left.

Our learning problem structure is a selection procedure as the policy should ideally return contact
locations that are given as input. While this can be achieved using a projection function, some
network architectures are suited to this task such as the Pointer-Network architecture (6) that we
consider as a candidate. Additionally, our dataset is multi-modal as MCTS provides different contact
sequences for the same start and goal contact locations in a given environment. It is not possible
to represent such multi-modal data distribution with a conventional uni-modal policy class as the
model could collapse to one of the modes or an average over several modes (see Fig 3). Therefore,
we consider Denoising diffusion probabilistic models (DDPMs) [20] (cf. 6), as another potential
candidate, since they are theoretically grounded to handle multi-modality [21] and is practically
verified for some robotic applications [22] [23]. We also consider multi-layer perceptron (MLP)

3

NN

state variables

goal contact loc.
for each e-eff

available contact
locations

H next
contact
locations
for each e-eff

M
L
P

Concatenation

State s

Goal λ

M
L
P

Value vθ(s, λ)
Policy pθ(s, λ)RNN

Pose

Contact 
history

Figure 2: left) Final policy network for the locomotion problem. For the NN block, we used MLP,
Pointer network and diffusion model, right) schematic diagram of the policy-value network archi-
tecture for manipulation

architecture as a baseline. Please refer to Appendix B for further discussion on the structure of the
Pointer-Networks and DDPMs.

3.2 Learning manipulation policies

One key difference between our manipulation task and generic game-play is that our dataset is
highly imbalanced—many contact sequences explored by the MCTS are dynamically infeasible,
resulting in zero reward. Directly training on such a dataset leads to underestimation of the value
function. Instead, we first train on the dataset D a binary classifier Cϕ(s) with logistic regression
where dynamically feasible samples are given more weights. At inference time, a state is only
fed into the policy-value network if the classifier labels it as dynamically feasible; otherwise, we
output zero value vθ(s) = 0 and uniformly distributed action probability pθ(s, a) = 1/|A(s)|.
This feasibility classifier screens out dynamically infeasible contact sequences before the MCTS
completes the search, thus greatly improves search efficiency.

Note that each MCTS instance only searches for the contact sequence for a given object motion
ξ, thus the rewards are motion-specific. If we were to learn from the data collected for this object
motion only, it is unlikely that the network would generalize to other motions. Thus, we generate
multiple object motions in the training phase and additionally input an intermediate goal variable to
the network. It is defined as the difference between the current desired pose and the one h steps in
the future λ(t) = q(t+ h)⊖ q(t), where ⊖ denotes subtraction in SE(3). Figure 2-right depicts the
policy-value network architecture: it takes as inputs the state s and the goal λ, and outputs the goal-
conditioned value vθ(s, λ) and action probabilities pθ(s, λ). Since the sequence of contact surfaces
has varying lengths, we use a RNN to encode this information and concatenate it with the pose and
the goal processed by a MLP. Due to the usage of the feasibility classifier mentioned above, we only
train our policy-value network on a subset D+ ⊆ D with positive samples V+ = {s ∈ V|v̄(s) > 0}
to avoid underestimating the value function.

4 Results and Discussion

In this section we present the results for multiple gaits of Solo12 quadruped robot [24] on highly
constrained random stepping stone environments. Then, we present simulation and experiment re-
sults for contact-rich object manipulation problem.

4.1 Locomotion results

In this section, we first compare the capability of different neural network architectures to han-
dle multi-modality in a simple example scenario (4.1.1). Then, we present the result of using the
diffusion model to learn a policy that can output contact plans from the state of the robot and the en-
vironment (4.1.2). Finally, we show the effectiveness of our learned policy in selecting the feasible
contact patches as the environment and goal change dynamically.

4

4.1.1 Choice of network architecture

To systematically compare the performance of different neural network architectures, we design a
simple learning problem. In this problem, the dataset, multimod, consists of two different contact
sequences to reach the same goal (in diagonal) starting from the same position in the same non-
randomized environment. One plan goes first straight and left, the other one goes left and then
straight to reach the goal. We record 50 randomized runs for each plan for a total of 700 samples in
the dataset (procedure described in Appendix B).

Since we perturb the states while collecting data, the dataset is not strictly multi-modal. We would
like to evaluate how this partial multi-modality affects the trained policy to reproduce the variety of
contact plans of the dataset. Generating diverse contact plans is beneficial as some might be more
relevant in specific states. We compare 3 different model architectures presented in Sec. 3.1 on
this dataset. The training parameters are detailed in the Appendix B. As shown in Fig. 3, only the
diffusion model was able to reproduce the two possible modes of the solution. On 20 simulations,
the diffusion model reached the goal by going 12 times first to the right and 8 times first up (we
used a different seed each time to generate the initial noise). MLP and Pointer-Network collapsed
to one of the solutions, as can be seen on the base trajectories in Fig. 3. As we would like to benefit
from the multiple feasible solutions of MCTS for a given goal, we focus on diffusion models for
the navigation task in the following section. Note that, for the diffusion model, the projection error
||ĉij,hB −pC(ĉ

ij,h
B)||2 is 5.4 mm on average and at a maximum 2.2 cm for the predicted jump locations,

which is approximately 3 times less than the half distance between two stepping stones.

4.1.2 Learning to navigate on stepping stones

In this subsection, we aim to qualitatively show that the learned policy can reactively generate fea-
sible contact plans when the environment or the goals change on the fly. To do that, we generated
Nenv = 80 different environments, but this time with less randomization as we focus on the ability
of the policy to plan and select the right contact locations: Nremoved = 12, αx = αy = αh = 0.
We expect the results to be reproducible in a randomized environment with a larger dataset. The
number of goals for each environment Ngoals is 8, Npaths = 3 and Nrepeat = 5. Our training dataset,
multigoal, has 52224 samples in total. Our test environment has been generated in the same con-
ditions on Nenv = 20 different environment. We tested our policy on test goals for which MCTS
found a feasible contact plan. Our training procedure and hyperparameters are similar to [23] and
are detailed in the appendix.

As done in [23], we used a DDIM [25] approach to decouple the number of denoising iterations
in training and inference. Taking a similar number of steps in the forward and backward diffusion
process usually leads to better results but is time-consuming. For 15 steps in the backward process
and above, the policy achieved approximately a similar success rate (our policy was trained on
T = 50 diffusion steps). Therefore, we used 15 denoising iterations in the experiments. It takes 70
ms for the policy to be evaluated on an AMD Ryzen 5 5625u CPU.

Static environments Our policy has been trained to output different contact patches for the next
jump as our dataset contains multi-modal samples. Therefore, by combination, the final full-length
contact plan is likely to differ from the ones of MCTS. This is confirmed as 40% of the successful
contact plans were not in the training dataset when replaying on the training environment. However,
since a maximum of 3 different paths are recorded for each goal in a given environment, it could lead
to a poorer success rate as the policy might end up out of the training distribution. When replayed
in the same conditions 20 times for a goal in a corner of the environment, our trained policy reached
the goal all the times in 14 different ways. Some examples can be seen in the accompanying video.
This confirms the results of Sec. 4.1.1 with a policy trained on a more diverse dataset.

Dynamic environments Now, we proceed to evaluate how well the policy can be used in a dy-
namic environment. To do that, we randomly remove two contact locations from the environment
before each jump while the robot is reaching a goal. The removed stepping stones are chosen among

5

x

y

(a) MLP

x

y

(b) PtrNet

x

y

(c) Diffusion

Figure 3: Base position (x, y) for 20 randomized runs with models trained on the multimod dataset.
Starting contact locations are circled in red and goal contact locations in green. The base position
is recorded every 20ms. The size of the circles represents the height of the base. Only the diffusion
model 3c is able to reproduce both two contact sequences of the training dataset.

(a) Solo12 / PyBullet

① ②

③ ④

(b) finger platform / real world

Figure 4: a) Solo12 navigation on stepping stones [2], b) real-world demonstration of object manip-
ulation with a two-finger platform [1].

the ones found by MCTS. This way, it is more likely to remove a stepping stone that would have
been initially selected, which shows the ability of the policy to replan reactively. This task is chal-
lenging, as removing stepping stones could make the robot jump into a position that is bound to fail
or that is out of the training data distribution. Our policy sporadically succeeded on this task (22%
of the time on 50 trials on a goal in diagonal). Additionally, our trained policy was also able to per-
form navigation to reach some user-defined changing goals in a new environment with 12 removed
stepping stones.

5 Manipulation results

We conduct experiments in simulation and on real hardware to show that our method 1) is capable
of finding high quality dynamically feasible solutions much faster than a MIQP baseline, 2) scales to
long-horizon tasks even when trained only on data collected from shorter-horizon tasks. Throughout
all experiments, we consider a manipulator composed of two modular robot fingers similar to the
ones used in [26] and a 10 cm × 10 cm × 10 cm cube with mass m = 0.5 kg on an infinitely large
plane. The cube and the plane have the same friction coefficient µ = µe = 0.8. We consider
one contact surface for each face of the cube except for the bottom one; each contact surface is a
8 cm×8 cm square to avoid contact locations at the corner. The object motion trajectory is generated
with spline interpolation in SE(3) between the initial object pose and a desired pose parameterized
as the following primitives:

• S on the xy-plane by −10 cm to 10 cm

• SC on the xy-plane by −5 cm to 5 cm with a rotation about the z-axis by −45◦ to 45◦

• R about the z-axis by −90◦ to 90◦

• L along the z-axis by 0 cm to 10 cm, and

6

Table 1: Task performance for object motion primitives. Values ≤ 0.005 are rounded to zero.

Method Time [s] Error [N, N · m]
Mean Worst Mean Worst

S
MIQP 0.65 0.79 0.66, 0.00 2.90, 0.00
MCTS 0.10 0.18 0.00, 0.00 0.00, 0.00

MCTSU 0.24 1.23 0.00, 0.03 0.06, 1.14

L
MIQP 0.25 0.51 6.29, 0.00 6.87, 0.00
MCTS 0.15 0.23 0.24, 0.05 0.86, 0.18

MCTSU 0.53 2.23 0.53, 0.11 0.88, 0.35

R
MIQP 4.83 29.46 8.36, 16.64 30.72, 45.57
MCTS 0.12 0.27 0.00, 0.00 0.00, 0.00

MCTSU 0.41 1.22 0.00, 0.00 0.00, 0.00

SC
MIQP 2.19 4.41 11.73, 22.39 49.61, 88.27
MCTS 0.11 0.24 0.00, 0.00 0.00, 0.00

MCTSU 0.20 0.81 0.00, 0.00 0.03, 0.07

P
MIQP 6.69 50.41 7.65, 15.31 26.85, 53.65
MCTS 0.15 0.34 0.01, 1.23 0.23, 14.01

MCTSU 0.17 0.45 0.01, 1.46 0.33, 19.55

• P about the y-axis by 0◦ to 45◦.

The xy-axes span the plane that the object is placed on and the z-axis points to the opposite grav-
ity direction. Finally, the initial object position is randomly sampled on the xy-plane within a
[−5 cm, 5 cm]2 area centered at the origin and the initial orientation about the z-axis by −90◦ to
90◦. Please refer to Appendix B for details about our training procedure, baselines, and evaluation
metrics.

5.1 Single motion primitives

In this experiment, we consider object motion trajectories that consist of one single primitive. Each
primitive has a desired pose uniformly randomly sampled from its respective parameter range de-
scribed in Appendix B. Each trajectory consists of T = 10 time steps with step size ∆t = 0.1 s;
each contact persists as well at least 0.1 s, hence a trajectory can admit at most 9 contact switches.
We run 50 trials for each primitive to collect the performance statistics.

Table 1 shows that our method is capable of finding dynamically feasible solutions consistently faster
than the MIQP baseline thanks to the MCTS formulation. Especially for primitives that require
non-zero torques (R, SC, P), the MIQP baseline is not only an order of magnitude slower, but also
produces solutions with large errors. We note that the force error can be reduced by letting the MIQP
solver explore more feasible solutions, while the torque error remains high nonetheless. This might
be due to its usage of the McCormick envelopes to approximate cross products, which not only
introduces approximation error but also adds additional discrete variables. In contrast, thanks to the
ADMM formulation, our method solves the original problem instead of a relaxed one and has thus
near-zero average force and torque error. We also note that while the solutions found by the MIQP
baseline are dynamically feasible, they are not necessarily kinematically feasible or collision-free
since these conditions cannot be incorporated as linear constraints. While it is possible to collect
multiple dynamically feasible solutions and pick the kinematically feasible one from them, it may
further increase the computation time.

5.2 Long-horizon tasks

In the previous experiments, we have shown the effectiveness of our method for short motion prim-
itives. Let us now consider tasks that last a longer period of time. First, we extend the primitive to
T = 30 time steps by stipulating each contact persists for d = 3 steps. Note that there are still at
most 9 contact switches for a single primitive. However, such extended primitives may be useful
for tasks that require longer execution time but not necessarily more contact switches; for instance,
sliding a cube for a long distance or rotating it very slowly. In the following experiments, we con-

7

Table 2: Task performance for object motions composed of SC primitives. Errors are computed only
on successful trials. Values ≤ 0.005 are rounded to zero.

Method Success Time [s] Error [N, N · m]
SC rate Mean Worst Mean Worst

1
MIQP 94% 10.15 60.00 3.40, 11.72 19.93, 41.68
MCTS 100% 0.21 0.41 0.00, 0.00 0.00, 0.00

MCTSU 100% 0.91 3.67 0.00, 0.00 0.03, 0.07

2
MIQP 42% 40.93 60.00 4.96, 4.38 16.61, 22.54
MCTS 100% 0.47 1.56 0.00, 0.00 0.01, 0.03

MCTSU 100% 3.08 12.84 0.00, 0.00 0.03, 0.07

3
MIQP 0% − − − −
MCTS 100% 1.35 8.84 0.00, 0.00 0.01, 0.03

MCTSU 90% 20.87 60.00 0.00, 0.00 0.01, 0.04

catenate such extended primitives to form a even longer trajectory. In particular, we consider the
primitive SC as it represents typical planar repositioning/reorienting tasks.

Table 2 reports the performance metrics for each method. A task is considered failed if no dy-
namically feasible solution is found within 60 s. We can immediately see that the trained MCTS
efficiently solves all the tasks regardless of the trajectory length, while the MIQP baseline and the
untrained MCTS struggle in long-horizon tasks (the errors decrease because they are computed only
on successful trials). Indeed, the MIQP baseline cannot solve any tasks containing more than two
primitives in 60 s. Interestingly, even for the task with a single extended primitive, where the number
of possible contact switches does not change compared to the previous tasks in Sec. 5.1, the MIQP
baseline still need significantly more time to find a feasible solution. This could again be attributed
to the McCormick envelopes as they add additional discrete variables to each time step regardless of
the underlying number of contact switches.

Finally, we highlight that the MCTS training dataset only contains object motion trajectories consist-
ing of at most two primitives. However, Table 2 shows that our method is able to efficiently solve the
longer-horizon tasks without being explicitly trained on them as our MCTS formulation exploits the
intrinsic compositionality of the task by learning a goal-conditioned policy-value network. Hence,
we do not need to collect training data on large-scale, time-consuming problems as opposed to the
learning-based MIP method proposed in [12].

5.3 Executing the contact plan

To validate the contact plans found by our method, we execute them in an open-loop fashion with a
simple impedance controller in the PyBullet simulator [27] and on a real robot

τ = JT
(
K(rw

c − rw) +D(ṙw
c − ṙw) + fw

c

)
, (3)

where J is the end-effector Jacobian; K,D are manually tuned gain matrices; rw, ṙw are the position
and velocity of the end-effector and fw

c , r
w
c , ṙ

w
c are the planed contact force, location and velocity,

all expressed in the world frame. Fig. 4b shows an example of the contact plan execution of rotating
a cube by 90◦. The robot is able to move the object towards the target pose if the object is placed
at the desired initial position. We note that the same impedance is used for all tasks with different
primitives.

6 Conclusions and future work

In this paper, we presented a framework to efficiently search for non-trivial contact plans for long
sequence of locomotion and manipulation problems. In our framework, we proposed a customized
version of MCTS together with a our ADMM-based trajectory optimization to search for feasible
solutions for contact planning. We showed that we can reliably find feasible solutions for different
arrangements of the environments as well as initial and final conditions. Collecting feasible rollouts
enabled us to collect a rich dataset and learn a control policy that can generate contact plans in real-
time rates. In the future, we plan to explore to learn long-horizon of loco-manipulation tasks, e.g.,
manipulating objects with a humanoid robot in cluttered environments.

8

References
[1] H. Zhu, A. Meduri, and L. Righetti. Efficient object manipulation planning with monte carlo

tree search. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 10628–10635. IEEE, 2023.

[2] V. Dhédin, A. K. Chinnakkonda Ravi, A. Jordana, H. Zhu, A. Meduri, L. Righetti,
B. Schölkopf, and M. Khadiv. Diffusion-based learning of contact plans for agile locomotion.
In IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages arXiv–2403,
2024.

[3] S. V. Raković and W. S. Levine. Handbook of model predictive control. Springer, 2018.

[4] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[5] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst. Blind bipedal stair traversal via sim-
to-real reinforcement learning. In Robotics: Science and Systems, 7 2021.

[6] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[7] M. Bogdanovic, M. Khadiv, and L. Righetti. Model-free reinforcement learning for robust
locomotion using demonstrations from trajectory optimization. Frontiers in Robotics and AI,
9, 2022.

[8] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter. Perceptive locomotion through
nonlinear model predictive control. IEEE Transactions on Robotics, 2023.

[9] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti. Biconmp: A nonlinear
model predictive control framework for whole body motion planning. IEEE Transactions on
Robotics, 2023.

[10] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined
task and motion planning. In Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, 2015.

[11] B. Aceituno-Cabezas and A. Rodriguez. A global quasi-dynamic model for contact-trajectory
optimization. In Robotics: Science and Systems (RSS), 2020.

[12] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Son-
nerat, C. Tjandraatmadja, P. Wang, et al. Solving mixed integer programs using neural net-
works. arXiv preprint arXiv:2012.13349, 2020.

[13] A. Cauligi et al. Coco: Online mixed-integer control via supervised learning. IEEE Robotics
and Automation Letters, 7(2):1447–1454, 2021.

[14] X. Lin, G. I. Fernandez, and D. W. Hong. Reduce: Reformulation of mixed integer programs
using data from unsupervised clusters for learning efficient strategies. In 2022 International
Conference on Robotics and Automation (ICRA), pages 4459–4465. IEEE, 2022.

[15] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. Del Prete. Optimization-based
control for dynamic legged robots. IEEE Transactions on Robotics, 2023.

[16] S. Ha, J. Lee, M. van de Panne, Z. Xie, W. Yu, and M. Khadiv. Learning-based legged loco-
motion; state of the art and future perspectives. arXiv preprint arXiv:2406.01152, 2024.

[17] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In European conference on
machine learning, pages 282–293. Springer, 2006.

9

[18] D. Silver et al. Mastering the game of go without human knowledge. Nature, 550(7676):
354–359, 2017.

[19] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609, 2020.

[20] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models, 2020.

[21] A. Block, A. Jadbabaie, D. Pfrommer, M. Simchowitz, and R. Tedrake. Provable guarantees
for generative behavior cloning: Bridging low-level stability and high-level behavior, 2023.

[22] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis, 2022.

[23] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion, 2023.

[24] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich, M. Naveau, V. Berenz,
S. Heim, F. Widmaier, T. Flayols, et al. An open torque-controlled modular robot architec-
ture for legged locomotion research. IEEE Robotics and Automation Letters, 5(2):3650–3657,
2020.

[25] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models, 2022.

[26] M. Wüthrich et al. Trifinger: An open-source robot for learning dexterity. arXiv preprint
arXiv:2008.03596, 2020.

[27] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org.

[28] Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier, M. Aubry, and J. Sivic. Monte-
carlo tree search for efficient visually guided rearrangement planning. IEEE Robotics and
Automation Letters, 5(2):3715–3722, 2020.

[29] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks, 2017.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need, 2023.

[31] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer, 2017.

[32] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[33] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex opti-
mization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[34] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator split-
ting solver for quadratic programs. Mathematical Programming Computation, 12(4):637–672,
2020.

[35] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.

gurobi.com.

10

http://pybullet.org
https://www.gurobi.com
https://www.gurobi.com

Appendix A

In the following we outline the problem-specific heuristics used for locomotion and manipulation
problems. Note that to check the dynamic feasiblity of the candidate contact sequence by MCTS, we
use the nonlinear model predictive controller (NMPC) in [9] for locomotion and a similar trajectory
optimization formulation for manipulaiton.

Locomotion heuristics

The following heuristics are used for the lcomotion problem: During the Expansion phase, to limit
the search space, we additionally perform a simplified kinematic feasibility check to prune the se-
quences that are likely to be not reachable or cause self-collision for the legs of the robot. This check
verifies that the size of the step taken by each foot is below a maximal step distance dstep and that
the legs are not crossing. It is important to note that, similar to [28], since we can define a reward at
each state that gives us a proxy of how close this state is to the end goal, we do not simulate a com-
plete rollout to a terminal state as opposed to game-play (such as chess or go). Instead, we only take
one action at the chosen state and back-propagate the reward from the resulting next state, hence a
rollout depth of one in the Simulation phase. Moreover, we perform whole-body NMPC [9] using
the found sequence of contact locations only when a terminal state is reached (all the end-effectors
are at the desired goal surface patches). This way, we avoid performing whole-body NMPC for
every rollout in the Simulation phase. This significantly reduces search time as whole-body NMPC
is computationally intensive. If this contact sequence leads to dynamically feasible whole-body
motion in physical simulation, W is set to 1, else to −1. Ultimately, we back-propagate the final
reward. Overall, the MCTS searches for promising kinematically feasible contact sequences, and
the NMPC evaluates their dynamic feasibility at the end.

Manipulation heuristics

We apply the following heuristics to the object manipulation setting: Each contact surface can only
be touched by at most one end-effector and each end-effector can touch at most one contact surface.
While the downstream continuous optimization problem may have a small discretization step, for
example ∆t = 0.1 s, most manipulation tasks do not require decisions of contact switch at such
a high resolution. Thus, we assume that an end-effector must remain on the same surface for d
time steps, which means a trajectory of length T can admit at most T/d − 1 contact switches. For
each end-effector c, a contact surface will only be considered if inverse kinematics can find a robot
configuration that reaches the center of this surface within an error threshold of 2 cm and does not
result in any undesired collision (e.g. between non-end-effector links and the object). We allow at
most one end-effector to make or break the contact at each time step. Moreover, the end-effector
can only break the contact if the desired object velocity and acceleration is zero.

Appendix B

In this Appendix, we present the details on the baselines and evaluation metrics for the comparisons.

Locomotion Setting

Dataset In our setup, a quadruped robot (Ne = 4) navigates in an environment with up to 81
stepping stones. Each stone provides the robot with a cylindrical patch of radius 4.4 cm and height
h = 10 cm to step onto. The stepping stones initially form a regular grid of spacing (ex, ey) so
that the feet lay on 4 stepping stones in the initial configuration. From this, the environment is
randomized. The position of each stone is then displaced by ϵx(

ex
2 − r) with ϵx ∼ U(−αx, αx),

αx ∈ [0, 1] in the x direction (respectively for the direction y). Similarly, the randomized height
equals (1 + ϵh)h with ϵh ∼ U(−αh, αh), αh ∈ [0, 1]. Additionally, Nremoved stones are randomly
removed. The simulated environment can be seen in Fig. 1. Goals are also sampled randomly so

11

that the center of the 4 goal contact locations is within dgmin and dgmax of the initial robot position.
In our experiments, H encodes the NMPC horizon, which in our problem is two jumps in the future
(H = 2). The goal is to evaluate the learned policy before each jump and feed the selected contact
locations to the NMPC. As state variables, we consider the position of the end-effectors, the current
base linear and angular velocities (all expressed in base frame B).

To be independent of the global position of the robot and environment, we express all positions in the
inputs and outputs to the network with respect to the current base frame B of the robot. The inputs,
x to the network are the current 3D position of the available contact locations xcontact, denoted by
ciB ∈ C with i ∈ {1, ..., Nc} and C the set of available contact locations (Nc is the current number
of available contact locations), xstate that includes some state variables (see Appendix A) and xgoal,
the final desired Ne end-effector locations (Ne is the number of end-effectors). The size of the input
is equal to 3× (Nc + 2× (Ne + 1)).

To collect a diverse dataset, we sample a random environment and run MCTS for a fixed maximum
number of iterations. To collect diverse paths towards a goal, we keep up to Npaths different feasible
paths for the same goal and environment. To cover a wider range of robot states, for each MCTS
solution, we perturb the simulation Nrand times and add feasible solutions to the dataset. The ran-
domization procedure consists of randomizing the initial state of the robot (position and velocity) as
well as the contact locations inside the selected patches. The training data (x,y) (see Fig. ??) are
recorded at each jump (y are the contact locations of the next two jumps). We repeat the procedure
on Nenv different environments (set of stepping stones).

Pointer-Networks Pointer-Networks [29] take as input a sequence and output discrete indices,
called pointers, that select elements from the input sequence. In this case, the projection pC is
not performed as the model directly outputs from the input set. The architecture is composed of
2 recurrent networks and an attention mechanism that operates on the past decoder’s hidden states
and all the encoder’s hidden states. At each step, the output of the decoder is the index of the
encoder’s hidden state that has the maximum attention value with the past decoder’s hidden state.
This operation is repeated for as many times as needed. In our case 8 times (the next two contact
locations for each four legs).

To make the model select only the contact patches from the input x, xcontact is given as the input
sequence while [xstate,xgoal] is embedded and given as the first hidden state of the encoder. Like
so, contact patches can be provided in any order and a different number which is not the case for
instance for an MLP.

Diffusion models DDPMs are generative models that map samples from a latent random distri-
bution to the data distribution in T steps by successive denoising of the original noise. For each
intermediate step t ∈ [1, T], one can sample a corrupted input xt by adding noise ϵt to a sample of
the data x0. A variance schedule assigns an increasing noise level at each step t so that xT can be
seen as a pure random noise (usually from a Gaussian distribution). Those corrupted samples are
used to train the diffusion model ϵθ, parametrized by θ, to estimate the noise added in a supervised
manner. It is done by minimizing the MSE loss between the actual sampled noise ϵt and the es-
timated one ϵθ(x0 + ϵt, t). Minimizing the MSE loss leads to the minimization of the variational
lower bound of the KL-divergence between the data distribution and the distribution of samples
drawn from the DDPM [20].

To sample with the trained model, noise is successively removed from a random sample xT in the
following way

xt−1 = at (xt − bt ϵθ(xt, t)) + σtz

where z ∼ N (0, I), and at, bt, σt are computed according to the noise schedule.

U-Net-based architectures are widely used as DDPMs, especially for conditional image generation.
Following [22], we consider a conditional U-Net1D with 1D convolutions applied on the input
sequence length (end-effector dimension). The conditioning is done on both the denoising iteration

12

U-Net1D
corrupted data
sample

Multi-Head
Attention

Q

K, V

Add & Norm

stack

FiLM

sin

conditioned

Figure 5: High-level description of the conditional U-Net1D with multi-head attention. sin refers to
Sinusoidal positional embedding applied to t.

t of the diffusion process and the current input x. Similarly to what has been done with the Pointer-
Network in Sec. 6, the input x is split into two. We apply a multi-head attention layer [30] with
[xstate,xgoal] as query and xcontact as key and values. Thus, contact locations can be shuffled and
provided in any number. The resulting embedding of xstate is concatenated to a sinusoidal position
embedding [30] of t to form the input of a feature-wise linear modulation (FiLM) [31] layer, as
proposed by [23]. The architecture is detailed in Fig. 5. Finally, the conditioning vector is added to
all layers of the encoder and the decoder parts of the network, as done in [22].

MLP parameters We used a standard MLP with 4 hidden layers of latent dimension 64 with
LeakyReLU activation. The size input dimension is 273 (81 stepping stones locations) and the size
output dimension is 24. The total number of trainable parameters of this model is 35736.

Pointer-Network parameters Both the encoder and decoder are LSTMs with 2 layers and hidden
dimension 32. The attention mechanism is also of hidden dimension 32. [xstate,xgoal] is embedded
through an MLP with 2 hidden layers of hidden dimensions 16 and 32 with PReLU activation.
The total number of trainable parameters is 31521 which is comparable to the MLP architecture
considered.

U-Net1D parameters We chose a U-Net with 3 layers with respectively a channel width equal
to 64, 128 and 256 and a kernel size of 3 for the convolutions. Convolutions are sliding on the
temporal/end-effector dimension. The sinusoidal embedding dimension is 32. The multi-head at-
tention layer has only one head. We used a squared cosine noise schedule with β1 = 0.004 and
βT = 0.02 as suggested by [20] for T = 50 training iterations. The model has in total 2639207
parameters.

Manipulation setting

Baselines We compare our method (MCTS) with two baselines:

• the MIQP baseline is implemented following [11]. We did not use the authors’ open-source
implementation as it was only implemented for 2D objects. But the same formulation
can be directly extended to 3D. To facilitate a fair comparison, we also implemented all
heuristics described in Sec ?? except the kinematic feasibility check. For the McCormick
envelope relaxation of the cross product, we partition the contact location into 4 intervals
and the contact force into 2 intervals. In all experiments, we terminate the MIQP solver
at the first feasible solution instead of waiting for the global optimum which may take

13

https://github.com/baceituno/QuasiDynamics
https://github.com/baceituno/QuasiDynamics

extremely long time. In addition, we implement the constraint (??) as a penalty term in the
cost function. This accelerates the MIQP solver significantly from our observation during
the experiments. We note that our implementation has comparable computation time as
reported in [11].

• the MCTSU baseline represents an untrained model and constantly outputs zero values
vθ(s) = 0 and uniform action probability pθ(s, a) = 1/|A(s)|.

Training procedure We generate 300 object motion trajectories, each comprising two primitives
with randomly sampled parameters. In particular, 200 trajectories are composed of two SC primi-
tives; 50 trajectories of one SC and one L; 50 trajectories of one SC and one P. For the i-th trajectory,
we let an untrained MCTS run until it evaluates 200 candidate contact sequences; then we construct
the dataset D = D∪{(v̄(s), p̄(s))|s ∈ Vi} where Vi contains all the states the MCTS visited for the
i-th trajectory. The policy-value network and the value classifier are then trained via Adam [32] for
300 epochs.

Evaluation metrics We examine two metrics to evaluate the effectiveness and efficiency of our
method:

• the force and torque error between the desired and the solution. The error is averaged
over the horizon T and scaled by the object mass and inertia respectively. The smaller this
error is, the better the solution tracks the desired object motion.

• The computation time needed to find the first dynamically feasible solution.

Software and hardware We conduct all experiments on a single GeForce RTX 2080 TI GPU
and an Intel Xeon CPU at 3.7GHz using Python and PyTorch. We model and solve the QP with
CVXPY [33] and OSQP [34] and use Gurobi [35] for MIQP. All source code including the baseline
can be found at https://hzhu.io/contact-mcts.

14

https://hzhu.io/contact-mcts

	Introduction
	Contact Planning using MCTS
	Supervised learning
	Learning locomotion policies
	Learning manipulation policies

	Results and Discussion
	Locomotion results
	Choice of network architecture
	Learning to navigate on stepping stones

	Manipulation results
	Single motion primitives
	Long-horizon tasks
	Executing the contact plan

	Conclusions and future work

