
Mobile and Edge Evaluation of Large Language Models

Stefanos Laskaridis 1 Kleomenis Katevas 1 Lorenzo Minto 1 Hamed Haddadi 1 2

Abstract
Transformers have recently revolutionized the
machine learning (ML) landscape, gradually
making their way into everyday tasks and
equipping our computers with “sparks of
intelligence”. However, their runtime require-
ments have prevented them from being broadly
deployed on mobile. As personal devices become
increasingly powerful at the consumer edge
and prompt privacy becomes an ever more
pressing issue, we explore the current state of
mobile execution of Large Language Models
(LLMs). To achieve this, we have created our
own automation infrastructure, MELT, which
supports the headless execution and benchmark-
ing of LLMs on device, supporting different
models, devices and frameworks, including
Android, iOS and Nvidia Jetson devices. We
evaluate popular instruction fine-tuned LLMs
and leverage different frameworks to measure
their end-to-end and granular performance,
tracing their memory and energy require-
ments along the way. Our code can be found at:
github.com/brave-experiments/MELT-public

1. Introduction
Our devices are getting increasingly capable in perform-
ing tasks that have traditionally required human intelli-
gence (Bubeck et al., 2023; Schaeffer et al., 2024). The
proliferation of capable on-device hardware has enhanced
their capabilities in areas such as vision (Radford et al.,
2021; Dosovitskiy et al., 2021), language (Radford et al.,
2019; Vernikos et al., 2023) and sensor understanding (Xu
et al., 2024a). Lately, transformers (Vaswani et al., 2017)
have become the go-to architecture for deep learning mod-
els, with attention mechanisms offering unparalleled perfor-
mance and scalability, along with the ability to model long
sequence data with fewer inductive biases across modali-
ties (Dosovitskiy et al., 2021; Radford et al., 2019; 2023).
This has given birth to “foundation models”, large models

1Brave Software, London, UK 2Imperial College Lon-
don, London, UK. Correspondence to: Stefanos Laskaridis
<mail@stefanos.cc>.

ES-FoMo workshop at the 41 st International Conference on Ma-
chine Learning, Vienna, Austria. 2024. Copyright by the authors.

Ubiquiti UDM

Control Power On/Off

iPhone 14 Pro Galaxy S23 iPhone SE Pixel 6a

Power
relay

YKUSH
USB

Controller

Monsoon Power Monitor

Control USB Power

Monitor Power

PhoneLab

Jetson
Orin Nano

JetsonLab

Jetson
Orin AGX

Co-ordinator 
(RPi 4)

Communicate over U
SB

Communicate

over Network

Model
Zoo

Benchmark
Binaries

Reports

LLM Bench
MELT

Figure 1: Architecture of MELT device farm
that are trained on large corpora of data and act as univer-
sal backbones for a series of downstream tasks. Despite
their accuracy benefits, such models have been pushing
the computational boundaries of cloud systems, both in
terms of training (Dao, 2023) and deployment (Kwon et al.,
2023), which poses questions both in terms of the sustain-
ability (Wu et al., 2022; Patterson et al., 2022; 2021; You
et al., 2023), as well as the privacy and custody of user
data (Ciniselli et al., 2022). We recognize that it is not al-
ways necessary to deploy a highly over-provisioned network
to solve the task at hand (Eldan & Li, 2023).

Given that model performance, even for smaller models,
does not saturate quickly, i.e., more data gives perfor-
mance gains (Zhang et al., 2023), and the need for user
privacy (Xiao et al., 2023a), we focus our attention to the
study of deploying LLMs at the edge (Laskaridis et al.,
2022), with particular emphasis on the mobile execution of
chat assistants. To this end, we have created our own infras-
tructure, named MELT (Mobile Evaluation of Language
Transformers), designed to interact, trace and benchmark
LLMs across ML frameworks, devices, and ecosystems.
With our tool, we automate the interaction with instruction
fine-tuned models and capture events and metrics of interest
at a granular level, both in terms of performance as well as
energy. To the best of our knowledge, our tool is the first
to support granular on-device energy measurements across
targets (i.e., Android, iOS, Linux) with realistic interactions.

Our analysis is the first systematic study of on-device LLM
execution, quantifying performance, energy efficiency and
accuracy across various state-of-the-art models and show-
cases the state of on-device intelligence in the era of hy-
perscale models. Results highlight the performance hetero-
geneity across targets and corroborates that LLM inference
is largely memory-bound. Quantization drastically reduces
memory requirements and renders execution viable, but at a

1

https://github.com/brave-experiments/MELT-public

Mobile and Edge Evaluation of Large Language Models
Table 1: Device Farm of MELT

Device Model SoC Mem. Battery OS version Year Tier

Co-ordinator & Builder
Raspberry Pi 4 Broadcom BCM2711 8GB - RPi OS 11.9 2019 -
Mac Studio M2 Max 32GB - macOS

14.1.2
2023 -

PhoneLab (Mobile devices)
Galaxy S23 Snapdragon 8 Gen 2 8GB 3785 mAh Android 14 2023 High
Pixel 6a Tensor Core 8GB 4410 mAh Android 13 2023 Mid
iPhone 14 Pro A16 Bionic 6GB 3200 mAh iOS 17.3.1 2022 High
iPhone SE A15 Bionic 4GB 1821 mAh iOS 17.3.1 2022 Mid

JetsonLab (Edge devices)
Jetson Orin AGX NVIDIA Carmel +

Ampere GPU
64GB - Ubuntu 20.04

(L4T 35.2.1)
2022 High

Jetson Orin Nano 8-core Arm Cortex-
A78AE + Ampere GPU

8GB - Ubuntu 20.04
(L4T 35.4.1)

2022 Mid

non-negligible accuracy cost. Last, drawing from its energy
and thermal behavior, the continuous execution of LLMs
remains elusive, as both negatively affect user experience.

2. MELT Infrastructure
In order to benchmark the runtime of LLMs on edge and
mobile devices, we have engineered our own device farm,
which comprises a combination of hardware and software
components, working in tandem to automate and measure
robustly the on-device behavior of the targeted use-case.
Our infrastructure adopts a client-server architecture, with
the co-ordinating process running on a Raspberry Pi 4 (RPi).
The co-ordinator communicates with two sets of devices,
namely PhoneLab (Sec. D.1) which consists of mobile de-
vices and JetsonLab (Sec. D.2), which includes Nvidia Jet-
son boards. The architecture of our device farm is shown
on Fig. 1 and includes devices of Tab. 1. Additional details
about the infrastructure can be found in Appendix D.

3. Methodology
For the purpose of measuring LLMs performance on device,
we created MELT as a benchmarking framework, which is
responsible for i) the download and conversion/quantization
of models, ii) the compilation of the respective benchmark-
ing suite backend, iii) the deployment, automation and run-
time of the LLM on the respective device, iv) the fine-
grained monitoring of resource and energy consumption
of the execution, v) the evaluation of the LLM accuracy and
vi) the reporting of the results. The workflow of MELT is
depicted in Fig. 2, while details about each component can
be found in Appendix E.

4. Evaluation
In this section, we present results from running LLMs across
devices and platforms with MELT. Detailed setup and re-
sults are included Appendix F. We also include an analysis
on the accuracy impact of quantization of various models,
precisions and quantization methods in Appendix F.3.

4.1. Macro Experiments
In macro-experiments, we measure how a chat assistant
behaves on device, with real conversations (details in
Sec. F.2.1) and variable token length output.

4.1.1. ON-DEVICE RUNTIME

Computational throughput. First, we show the prefill and
generation throughput of various models when used in a

Table 2: Supported pretrained models
Model Type Size Type HuggingFace Repository

TinyLlama (Zhang et al., 2023) 1.1B Decoder TinyLlama/TinyLlama-1.1B-Chat-v0.5
Zephyr-3B 3B Decoder stabilityai/stablelm-zephyr-3b
MistralAI-7B 7B Decoder mistralai/Mistral-7B-Instruct-v0.1

Gemma (Google Inc., 2024) 2B Decoder google/gemma-2b-it
7B google/gemma-7b-it

Llama-2 (Touvron et al., 2023b) 7B Decoder meta-llama/Llama-2-7b-chat-hf
13B meta-llama/Llama-2-13b-chat-hf

Model Zoo

!

Evaluator

Builder

Convert
Quantize

Runner

Monitor

Prompts

Automator

Deploy

Dispatch

Report
accuracy

Report
performance

Inject

Figure 2: MELT Workflow

conversational setting. We divide our results per device
tier and illustrate the average throughput (in tokens/sec) per
framework in Fig 3. Generally, we witness much higher
prefill vs. generation throughput, which can be largely at-
tributed to the usage of KV-cache (Pope et al., 2023) when
encoding a sequence of tokens and the compute vs. mem-
ory boundedness of the workload (Mark Sherwood, 2024).
Moreover, MLC-LLM generally offered higher performance
to llama.cpp, but at the cost of model portability (models
need to be compiled per platform). Operator fusion and
TVM-based optimization play a significant role towards this
result, with generation throughput difference of +4% on av-
erage and up to 3.53× higher. Notable exceptions included
TinyLlama across targets and Gemma on S23. We also no-
ticed that 4-bit quantized models performed better than their
3-bit variants, offering 27.19% higher throughput on aver-
age. We attribute this to the effects of dequantization and
better cache alignment during execution. However, there is
a trade-off with memory consumption, which made certain
models to run out-of-memory during runtime, especially on
phones with smaller RAM sizes. Last, the Metal-accelerated
iPhones seem to be offering higher throughput compared
to the OpenCL-accelerated Android phones for the case of
MLC, by +78.93% on average.

Energy efficiency. Next, we take the same set of models
and illustrate the energy discharge (in mAh) per token gen-
erated across devices and frameworks in Fig. 4. Overall,
we noticed that the trend of larger networks (in terms of pa-
rameter size) offering larger discharge rates across devices
and frameworks. This is expected as DRAM utilization
and memory copies into the SoC registers consume signifi-
cant energy (Patterson et al., 2022). Notable exceptions to
this rule were TinyLlama (3-bit) and Gemma (4-bit), which
we aim to investigate with help from upstream maintainers.
Last, the CPU execution of llama.cpp offered overall lower
efficiency, but this could be attributed to the increased infer-
ence latency compared to LLMFarm’s Metal acceleration
(CPU experiments in Appendix F.2.3).

2

https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.5
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/google/gemma-2b-it
https://huggingface.co/google/gemma-2b-it
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

Mobile and Edge Evaluation of Large Language Models

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5

q3
f16

_1

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5

q4
f16

_1

sta
ble

lm
-ze

ph
yr-

3b

q4
f16

_1

ge
mma-2

b-i
t

q3
f16

_1

ge
mma-2

b-i
t

q4
f16

_1

Lla
ma-2

-7b
-ch

at-
hf

q3
f16

_1

Model @ Quantisation

0

50

100

150

200

Pr
ef

ill
Th

ro
ug

hp
ut

(to
ke

ns
/s

)

device
Galaxy S23
iPhone 14 Pro

(a) Prefill throughput for MLC-LLM on
high-tier devices

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5

q3
f16

_1

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5

q4
f16

_1

sta
ble

lm
-ze

ph
yr-

3b

q4
f16

_1

ge
mma-2

b-i
t

q3
f16

_1

ge
mma-2

b-i
t

q4
f16

_1

Lla
ma-2

-7b
-ch

at-
hf

q3
f16

_1

Model @ Quantisation

0

10

20

30

Ge
ne

ra
tio

n
Th

ro
ug

hp
ut

(to
ke

ns
/s

)

device
Galaxy S23
iPhone 14 Pro

(b) Generation throughput for
MLC-LLM on high-tier devices

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5
q3

_k

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5
q4

_k

sta
ble

lm
-ze

ph
yr-

3b
q3

_k

sta
ble

lm
-ze

ph
yr-

3b
q4

_k

Model @ Quantisation

0

50

100

150

200

Pr
ef

ill
Th

ro
ug

hp
ut

(to
ke

ns
/s

)

device
Pixel 6a
iPhone SE

(c) Prefill throughput for llama.cpp on
mid-tier devices

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5
q3

_k

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5
q4

_k

sta
ble

lm
-ze

ph
yr-

3b
q3

_k

sta
ble

lm
-ze

ph
yr-

3b
q4

_k

Model @ Quantisation

0

10

20

Ge
ne

ra
tio

n
Th

ro
ug

hp
ut

(to
ke

ns
/s

)

device
Pixel 6a
iPhone SE

(d) Generation throughput for llama.cpp
on mid-tier devices

Figure 3: Throughput across frameworks and devices

Power timeline. Next, we zoom into the runtime of our
experiments and show the execution timeline of Zephyr-
3B (4-bit quantized) running six prompts across devices
(iPhone 14 Pro and Galaxy S23) and frameworks (MLC-
LLM and LLMFarm). During execution, we have traced
specific events of interest, that we annotate on Fig. 5, which
depicts the power draw (in Watts) of the device during infer-
ence. First off, we noticed from the beginning that iPhones
tend to boost their power draw very high, reaching a max-
imum of 13.8W of sustained (averaged) power draw and
an instantaneous maximum of over 18W. The equivalent
wattage from the Galaxy device only reached 8.5W and
14W, respectively. At the given power draw, the overall
power consumption during inference was 11.54, 10.43, 2.42
mWh (normalized per token: 0.21, 0.20, 0.16 mWh/token)
for S23 and iPhone 14 Pro on MLCChat and LLMFarm,
respectively. At that pace, each device could run 542.78,
490.05 and 590.93 prompts until its battery is depleted, at
an average input of 40 tokens and generation length of 135
tokens, not accounting for simultaneous workloads.

4.1.2. QUALITY OF EXPERIENCE (QOE)

In real-world settings, tractability does not imply deploy-
ability. What this means is that while a model can run on
a device, it can adversely affect the user experience and
render the device unstable or unusable. There are largely
three dimensions to consider:

i) Device responsiveness refers to the general stability and
reliability of the device during the runtime of LLM infer-
ence. Upon deployment, factors that affected the device
responsiveness included long model loading times (see pur-
ple areas in Fig. 5 and Fig. 9 in Appendix) during which the
device became largely unresponsive; out-of-memory errors
(OOM), which killed the application at arbitrary times; and
device restarts, which for undefined reasons caused Denial
of Service (DoS) by rebooting the device. All these neg-
atively affect the user experience and their frequency of
appearance should be minimized. We encountered multiple

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5

q3
f16

_1

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5

q4
f16

_1

sta
ble

lm
-ze

ph
yr-

3b

q4
f16

_1

ge
mma-2

b-i
t

q3
f16

_1

ge
mma-2

b-i
t

q4
f16

_1

Lla
ma-2

-7b
-ch

at-
hf

q3
f16

_1

Model @ Quantisation

0.00

0.01

0.02

0.03

0.04

Di
sc

ha
rg

e
pe

r T
ok

en
(m

Ah
/to

ke
n)

device
Galaxy S23
iPhone 14 Pro

(a) MLC-LLM on high-tier devices
Tin

yLl
am

a-1
.1B

-Cha
t-v

0.5
q3

_k

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5
q4

_k

sta
ble

lm
-ze

ph
yr-

3b
q3

_k

sta
ble

lm
-ze

ph
yr-

3b
q4

_k

ge
mma-2

b-i
t

q4
_k

Lla
ma-2

-7b
-ch

at-
hf

q3
_k

Model @ Quantisation

0.00

0.02

0.04

0.06

Di
sc

ha
rg

e
pe

r T
ok

en
(m

Ah
/to

ke
n)

device
Galaxy S23
iPhone 14 Pro

(b) llama.cpp on high-tier devices

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5

q3
f16

_1

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5

q4
f16

_1

sta
ble

lm
-ze

ph
yr-

3b

q4
f16

_1

Model @ Quantisation

0.0

0.1

0.2

0.3

0.4

Di
sc

ha
rg

e
pe

r T
ok

en
(m

Ah
/to

ke
n)

device
Pixel 6a
iPhone SE

(c) MLC-LLM on mid-tier devices
Tin

yLl
am

a-1
.1B

-Cha
t-v

0.5
q3

_k

Tin
yLl

am
a-1

.1B
-Cha

t-v
0.5
q4

_k

sta
ble

lm
-ze

ph
yr-

3b
q3

_k

sta
ble

lm
-ze

ph
yr-

3b
q4

_k

Model @ Quantisation

0.00

0.01

0.02

0.03

0.04

Di
sc

ha
rg

e
pe

r T
ok

en
(m

Ah
/to

ke
n)

device
Pixel 6a
iPhone SE

(d) llama.cpp on mid-tier devices

Figure 4: Discharge per token across frameworks and devices.
Missing bars indicate unsuccessful runs (OOM or time limit).
such events during our benchmarks, which create the need
for heterogeneous in-the-wild deployments and parameter
selection (e.g., model size, quantization precision, prefetch-
ing, KV cache size, batch size, context size) based on the
available device resources and use-case at hand.

ii) Sustained performance refers to the device’s ability
to offer the same performance throughout the runtime of
multiple inference requests. There are multiple reasons why
this may not be stable, including DVFS, thermal throttling,
different power profiles, low battery level and simultaneous
workloads, among others. To quantify how, we took Zephyr-
3B (4-bit) on iPhone 14 Pro and ran continuous inference
over 50 prompts to check where throughput starts degrading.
Results are depicted on Fig. 6a. We experience straightaway
performance dropping with two bumps happening on the
20th and 32nd prompts (on average, annotated in red). Our
hypothesis is that the device enters different energy and
DVFS modes at these stages, with higher variation signify-
ing that the point at which this happens is not fixed in time.
The performance on Jetson AGX (50W) was much smoother
(Fig. 6b), as signified by the straight line in the generation
throughput. The initial higher generation throughput can be
attributed to the context not being filled.

iii) Temperature does not only affect device performance,
but also user comfort (Wilson et al., 2011). Devices nowa-
days come in various forms, but mostly remain passively
cooled. Therefore, heat dissipation is mainly facilitated by
the use of specific materials and heat management is gov-
erned by the OS. The power draw that was witnessed in
Fig. 5b did cause temperatures to rise to uncomfortable lev-
els, reaching 47.9°C as shown in Fig. 12a of the Appendix.

4.2. Micro Experiments & Bottlenecks
In micro-experiments, we fix the output length and disregard
<EOS> to measure specific ops in a controlled manner.

4.2.1. ML OPERATIONS

We start by introspecting Llama-7B (3-bit) on Android. We
compile a custom version of TVM and MLC-LLM where

3

Mobile and Edge Evaluation of Large Language Models

(a) MLC-LLM on Galaxy S23 (b) MLC-LLM on iPhone 14 Pro (c) LLMFarm on iPhone 14 Pro
Figure 5: LLM execution timeline of Zephyr-3B (4-bit quantized) across devices and frameworks. We use a moving average of 500 points
for smoothing the timeline. We annotate the number of generated tokens per inference.

0 10 20 30 40
Prompt index

10

15
20

30

50

100

Th
ou

gh
pu

t (
to

ke
ns

/s
)

Prefill
Generation

(a) iPhone 14 Pro on LLMFarm

0 10 20 30 40
Prompt index

20
30

50

100

200

400
Th

ou
gh

pu
t (

to
ke

ns
/s

)
Prefill
Generation

(b) Jetson AGX (50W) on llama.cpp
Figure 6: Continuous inference on mobile and edge devices with
Zephyr-3B (4-bit).

we enable the vm profiler in the backend and report
kernel runtimes per operator of interest. In this section,
we only measure per kernel latency, as the end-to-end la-
tency is heavily impacted by the use of the profiler. Re-
sults are shown in Fig. 11 for the prefill, embed and
decode operations. Most of the execution is taken up by
de-quantize and matrix multiplication fused operations for
the prefill and decode operations, taking up 97% and
95.7% of the total runtime, respectively. We hypothesize
that the dequantization operation is also why 3-bit quan-
tized networks may have performed worse than their 4-bit
counterparts, as we discussed in Sec. 4.1.1. On the con-
trary, the embed operation seems mostly to be doing tensor
conversion and retrieval operations. Since the generation
process is mostly bottlenecked by the decode operation
(evident also in Fig. 3 and 6), we proceed to investigate the
real system bottleneck during execution via profiling. Due
to lack of GPU tracing via the Android GPU Inspector on
Galaxy S23, we apply the analysis on the iPhone 14 Pro.

4.2.2. MEMORY USAGE AND BOTTLENECKS

It is known that LLM execution is bottlenecked by the mem-
ory bandwidth requirements during generation (Kwon et al.,
2023; Dao et al., 2022; Dao, 2023). Our analysis corrob-
orates this on the mobile side, by what is shown in the
memory profiling of Fig. 12b, where we depict the memory
allocations and GPU computation happening effectively one
after the other. While GPU memory gets allocated, GPU
compute effectively stalls, waiting for data to process. This
was measured through xctrace tool.

4.3. Runtime at the Edge
Offloading. Hitherto, we have witnessed that high-end
mobile devices with more than 6GB of memory can run
a chat LLM at a reasonable rate. However, this comes at
the cost of significant battery depletion (see Sec. 4.1.1),
QoE (see Sec. 4.1.2) and end-task accuracy (see Sec. F.3).
Therefore, we envision that the future of LLM execution can

Orin Nano
@7W

Orin Nano
@15W

Orin AGX
@15W

Orin AGX
@30W

Orin AGX
@50W

Device @ TDP

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

model
Mistral-7B (q3_k)
Llama-2-7B (q3_k)
Gemma-2B (q4_k)
Zephyr-3B (q4_k)
TinyLlama-1.1B (q4_k)

(a) Generation throughput.

Orin Nano
@7W

Orin Nano
@15W

Orin AGX
@15W

Orin AGX
@30W

Orin AGX
@50W

Device @ TDP

0.00

0.01

0.02

0.03

0.04

E
ne

rg
y

pe
r t

ok
en

 (m
W

h/
To

ke
n)

Gemma-2B (q4_k)
Llama-2-7B (q3_k)

(b) Energy consumed per token.
Figure 7: LLM execution on Jetson devices across energy modes
with llama.cpp.

be collaborative and cross-device at the edge (Laskaridis
et al., 2022; Qualcomm, 2023). To this direction, we test to
see the viability of offloading the DNN execution to a local
edge device, which might be a dedicated accelerator (e.g., an
Edge-AI Hub) or another edge device (e.g., a Smart TV or
a high-end router). For this reason, we employ two Jetson
devices, namely Nano (mid-tier) and AGX (high-tier) under
various energy modes, which configure the number of active
cores and their frequency, along with memory frequency to
provide different power envelopes.

In Fig. 7a we show the generation throughput (in tokens/sec)
of various models on different Jetson devices and energy pro-
files, as run with llama.cpp on CUDA. We see that through-
puts largely follow a monotonic trajectory with respect to
model size and energy modes, with the notable exception of
Orin Nano and Orin AGX at 15W, with the former perform-
ing +7.89 tokens/sec better on average. Overall, generation
throughput is significantly higher than the equivalent mobile
runtime, and this runtime can also be sustained for longer pe-
riods, as shown in Fig. 6. In Fig. 7b, we quantify the energy
efficiency of two models (Llama-7B (3-bit), Gemma-2B
(4-bit)) running across different energy modes. Interest-
ingly, efficiency moves in the same direction as device TDP,
probably due to bottlenecked generation from the lowered
memory frequency.

5. Conclusion
In this work, we have made the first step towards quantify-
ing the performance of deploying LLMs at the consumer
edge. We measured the performance, memory, and energy
requirements of such workloads across different model sizes
and a heterogeneous ecosystem of devices, pinpointing com-
putational, QoE and accuracy bottlenecks. We hope this
study will serve as a basis for subsequent algorithmic and
hardware breakthroughs that will help the realization of new
use-cases and the democratization of LLMs execution in an
open but privacy-preserving manner.

4

Mobile and Edge Evaluation of Large Language Models

Impact Statement
Our work aims to benchmark and assess the feasibility of
running large language models (LLMs) at the edge, with the
objective of promoting a fairer, more private and sustainable
deployment method. We identify three key aspects where
our research impacts the current landscape. Below, we
provide a brief overview of each area, with a more detailed
discussion available in Appendix B.3 and G.

Privacy. The predominant approach to using LLMs to-
day involves black-box access through providers such as
ChatGPT, Anthropic, and Gemini. This method requires
transmitting user prompts over the wire, thereby compromis-
ing their privacy. By enabling local deployment of LLMs,
our work aims to enhance privacy by eliminating the need
for data transmission to external servers.

Democratization. The high cost of training LLMs currently
restricts access to a few dominant players who control and
influence the technology. However, the availability of mod-
els with open weights provides an opportunity for broader
access. Local deployment allows users to customize models,
promoting a more equitable use of LLMs.

Sustainability. While not all tasks necessitate multi-billion
parameter models, which opens the door for more sustain-
able edge deployments, it is important to consider the macro-
scopic environmental impact. Edge energy sources are typ-
ically less green compared to optimized datacenters (Wu
et al., 2022; Patterson et al., 2022), a discrepancy which
should be considered when evaluating the overall energy
impact at a larger scale.

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebron, F., and Sanghai, S. GQA: Training generalized
multi-query transformer models from multi-head check-
points. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 4895–4901, Sin-
gapore, December 2023. Association for Computational
Linguistics.

Alibaba. MNN-LLM, 2023. URL https://github.
com/alibaba/MNN.

Alizadeh, K., Mirzadeh, I., Belenko, D., Khatamifard, K.,
Cho, M., Mundo, C. C. D., Rastegari, M., and Farajtabar,
M. Llm in a flash: Efficient large language model infer-
ence with limited memory, 2023.

Almeida, M., Laskaridis, S., Leontiadis, I., Venieris, S. I.,
and Lane, N. D. Embench: Quantifying performance
variations of deep neural networks across modern com-
modity devices. In The 3rd international workshop on

deep learning for mobile systems and applications, pp.
1–6, 2019.

Almeida, M., Laskaridis, S., Mehrotra, A., Dudziak, L.,
Leontiadis, I., and Lane, N. D. Smart at what cost?
characterising mobile deep neural networks in the wild.
In Proceedings of the 21st ACM Internet Measurement
Conference, pp. 658–672, 2021.

Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C.,
Li, D., Zheng, E., Ruwase, O., Smith, S., Zhang, M.,
Rasley, J., et al. Deepspeed-inference: enabling efficient
inference of transformer models at unprecedented scale.
In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15.
IEEE, 2022.

android.com. Aicore, 2023. URL https://developer.
android.com/ml/aicore. Accessed: Dec 2023.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Barbara Krasnoff,. How to use Android
12’s call screening features, 2021. URL
https://www.theverge.com/22792060/
call-screening-android-12-google-pixel-how-to.
Accessed: Mar 2024.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Cai, T., Li, Y., Geng, Z., Peng, H., and Dao, T. Medusa:
Simple framework for accelerating llm generation with
multiple decoding heads. https://github.com/
FasterDecoding/Medusa, 2023.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E. Q., Wang,
L., Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy,
A. Tvm: end-to-end optimization stack for deep learning.
arXiv preprint arXiv:1802.04799, 11(20), 2018.

Chollet, F. On the measure of intelligence. arXiv preprint
arXiv:1911.01547, 2019.

5

https://github.com/alibaba/MNN
https://github.com/alibaba/MNN
https://developer.android.com/ml/aicore
https://developer.android.com/ml/aicore
https://www.theverge.com/22792060/call-screening-android-12-google-pixel-how-to
https://www.theverge.com/22792060/call-screening-android-12-google-pixel-how-to
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa

Mobile and Edge Evaluation of Large Language Models

Ciniselli, M., Pascarella, L., and Bavota, G. To what ex-
tent do deep learning-based code recommenders gen-
erate predictions by cloning code from the training
set? In Proceedings of the 19th International Con-
ference on Mining Software Repositories, MSR ’22,
pp. 167–178, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450393034.
doi: 10.1145/3524842.3528440. URL https://doi.
org/10.1145/3524842.3528440.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression. arXiv preprint
arXiv:2306.03078, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Dong, X. L., Moon, S., Xu, Y. E., Malik, K., and
Yu, Z. Towards next-generation intelligent assistants
leveraging llm techniques. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’23, pp. 5792–5793,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9798400701030. doi: 10.1145/
3580305.3599572. URL https://doi.org/10.
1145/3580305.3599572.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Eldan, R. and Li, Y. Tinystories: How small can lan-
guage models be and still speak coherent english? arXiv
preprint arXiv:2305.07759, 2023.

Fan, H., Chau, T., Venieris, S. I., Lee, R., Kouris, A., Luk,
W., Lane, N. D., and Abdelfattah, M. S. Adaptable but-
terfly accelerator for attention-based nns via hardware
and algorithm co-design. In 2022 55th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp.
599–615. IEEE, 2022.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Frantar, E. and Alistarh, D. SparseGPT: Massive language
models can be accurately pruned in one-shot. arXiv
preprint arXiv:2301.00774, 2023a.

Frantar, E. and Alistarh, D. Qmoe: Practical sub-1-bit
compression of trillion-parameter models. arXiv preprint
arXiv:2310.16795, 2023b.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff, N.,
Phang, J., Reynolds, L., Tang, E., Thite, A., Wang, B.,
Wang, K., and Zou, A. A framework for few-shot lan-
guage model evaluation, September 2021. URL https:
//doi.org/10.5281/zenodo.5371628.

Gerganov, G. llama.cpp, 2023. URL https://github.
com/ggerganov/llama.cpp.

Google Inc. Gemma: Introducing new state-
of-the-art open models, 2024. URL https:
//blog.google/technology/developers/
gemma-open-models/. Accessed: Mar 2024.

Goyal, S., Choudhury, A. R., Raje, S., Chakaravarthy, V.,
Sabharwal, Y., and Verma, A. Power-bert: Accelerating
bert inference via progressive word-vector elimination.
In International Conference on Machine Learning, pp.
3690–3699. PMLR, 2020.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, Y., Dong, L., Wei, F., and Huang, M. Knowledge
distillation of large language models. arXiv preprint
arXiv:2306.08543, 2023.

Guan, Y., Li, Z., Leng, J., Lin, Z., and Guo, M. Tran-
skimmer: Transformer learns to layer-wise skim. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),

6

https://doi.org/10.1145/3524842.3528440
https://doi.org/10.1145/3524842.3528440
https://aclanthology.org/N19-1423
https://doi.org/10.1145/3580305.3599572
https://doi.org/10.1145/3580305.3599572
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://blog.google/technology/developers/gemma-open-models/
https://blog.google/technology/developers/gemma-open-models/
https://blog.google/technology/developers/gemma-open-models/

Mobile and Edge Evaluation of Large Language Models

pp. 7275–7286, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.502. URL https://aclanthology.org/
2022.acl-long.502.

guinmoon. LLMFarm, 2023. URL https://github.
com/guinmoon/LLMFarm.

Hannun, A., Digani, J., Katharopoulos, A., and Collobert,
R. MLX: Efficient and flexible machine learning on
apple silicon, 2023. URL https://github.com/
ml-explore.

Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hart-
ley, T., and Van Gool, L. Ai benchmark: Running deep
neural networks on android smartphones. In Proceedings
of the European Conference on Computer Vision (ECCV)
Workshops, September 2018.

Javaheripi, Mojan and Bubeck, Sébastien.
Phi-2: The surprising power of small lan-
guage models, 2024. URL https://www.
microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/.
Accessed: Mar 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Karpathy, A. llama2.c, 2023. URL https://github.
com/karpathy/llama2.c. Accessed: Dec 2023.

Kim, G. and Cho, K. Length-adaptive transformer: Train
once with length drop, use anytime with search. In
Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pp. 6501–6511, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.508. URL https:
//aclanthology.org/2021.acl-long.508.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li,
X., Shen, S., Mahoney, M. W., and Keutzer, K.
Squeezellm: Dense-and-sparse quantization. arXiv
preprint arXiv:2306.07629, 2023.

Köpf, A., Kilcher, Y., von Rütte, D., Anagnostidis, S.,
Tam, Z.-R., Stevens, K., Barhoum, A., Duc, N. M., Stan-
ley, O., Nagyfi, R., et al. Openassistant conversations–
democratizing large language model alignment. arXiv
preprint arXiv:2304.07327, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving

with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Laskaridis, S., Venieris, S. I., Almeida, M., Leontiadis,
I., and Lane, N. D. Spinn: Synergistic progressive in-
ference of neural networks over device and cloud. In
Proceedings of the 26th Annual International Confer-
ence on Mobile Computing and Networking, MobiCom
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450370851. doi: 10.
1145/3372224.3419194. URL https://doi.org/
10.1145/3372224.3419194.

Laskaridis, S., Venieris, S. I., Kouris, A., Li, R., and Lane,
N. D. The future of consumer edge-ai computing. arXiv
preprint arXiv:2210.10514, 2022.

Li, Y., He, J., Zhou, X., Zhang, Y., and Baldridge, J. Map-
ping natural language instructions to mobile UI action
sequences. In Jurafsky, D., Chai, J., Schluter, N., and
Tetreault, J. (eds.), Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
8198–8210, Online, July 2020. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.acl-main.
729. URL https://aclanthology.org/2020.
acl-main.729.

libimobiledevice. ideviceinstaller, 2024. URL
https://github.com/libimobiledevice/
ideviceinstaller. Accessed: Mar 2024.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. arXiv preprint
arXiv:2109.07958, 2021.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning. arXiv preprint arXiv:2304.08485, 2023a.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. Llm-qat:
Data-free quantization aware training for large language
models. arXiv preprint arXiv:2305.17888, 2023b.

Liu, Z., Zhao, C., Iandola, F., Lai, C., Tian, Y., Fedorov,
I., Xiong, Y., Chang, E., Shi, Y., Krishnamoorthi, R.,
et al. Mobilellm: Optimizing sub-billion parameter lan-
guage models for on-device use cases. arXiv preprint
arXiv:2402.14905, 2024.

llama.cpp Team. k-quants, June 2023. URL
https://github.com/ggerganov/llama.
cpp/pull/1684. Accessed: March 2024.

7

https://aclanthology.org/2022.acl-long.502
https://aclanthology.org/2022.acl-long.502
https://github.com/guinmoon/LLMFarm
https://github.com/guinmoon/LLMFarm
https://github.com/ml-explore
https://github.com/ml-explore
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://github.com/karpathy/llama2.c
https://github.com/karpathy/llama2.c
https://aclanthology.org/2021.acl-long.508
https://aclanthology.org/2021.acl-long.508
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1145/3372224.3419194
https://aclanthology.org/2020.acl-main.729
https://aclanthology.org/2020.acl-main.729
https://github.com/libimobiledevice/ideviceinstaller
https://github.com/libimobiledevice/ideviceinstaller
https://github.com/ggerganov/llama.cpp/pull/1684
https://github.com/ggerganov/llama.cpp/pull/1684

Mobile and Edge Evaluation of Large Language Models

Luo, Z., Lu, L., Jin, Y., Jia, L., and Liang, Y. Calabash:
Accelerating attention using a systolic array chain on
fpgas. In 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL), pp. 242–
247. IEEE, 2023.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. In Advances in
Neural Information Processing Systems, 2023.

Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. A
survey on mobile edge computing: The communication
perspective. IEEE communications surveys & tutorials,
19(4):2322–2358, 2017.

Mark Sherwood. Large Language Mod-
els On-Device with MediaPipe and Tensor-
Flow Lite, March 2024. URL https:
//developers.googleblog.com/2024/03/
running-large-language-models-on-device-with-mediapipe-andtensorflow-lite.
html. Accessed: March 2024.

McKinzie, B., Gan, Z., Fauconnier, J.-P., Dodge, S., Zhang,
B., Dufter, P., Shah, D., Du, X., Peng, F., Weers, F., et al.
Mm1: Methods, analysis & insights from multimodal llm
pre-training. arXiv preprint arXiv:2403.09611, 2024.

mit-han lab. Tinychatengine, 2023. URL https://
github.com/mit-han-lab/TinyChatEngine.
Accessed: Dec 2023.

Monsoon Solutions Inc. Monsoon Solutions Inc., 2023.
URL https://www.msoon.com. Accessed: Dec
2023.

Nasr, M., Carlini, N., Hayase, J., Jagielski, M., Cooper,
A. F., Ippolito, D., Choquette-Choo, C. A., Wallace, E.,
Tramèr, F., and Lee, K. Scalable extraction of training
data from (production) language models. arXiv preprint
arXiv:2311.17035, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-
M., Rothchild, D., So, D., Texier, M., and Dean, J. Car-
bon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Patterson, D., Gonzalez, J., Hölzle, U., Le, Q., Liang, C.,
Munguia, L.-M., Rothchild, D., So, D. R., Texier, M.,
and Dean, J. The carbon footprint of machine learning
training will plateau, then shrink. Computer, 55(7):18–28,
2022.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Cao, H., Cheng, X., Chung, M., Grella, M., GV, K. K.,
et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Qualcomm. The future of ai is hybrid. White paper, Qual-
comm, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey,
C., and Sutskever, I. Robust speech recognition via large-
scale weak supervision. In International Conference on
Machine Learning, pp. 28492–28518. PMLR, 2023.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parame-
ter models. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, SC ’20. IEEE Press, 2020. ISBN
9781728199986.

Rebedea, T., Dinu, R., Sreedhar, M. N., Parisien, C., and
Cohen, J. NeMo guardrails: A toolkit for controllable and
safe LLM applications with programmable rails. In Feng,
Y. and Lefever, E. (eds.), Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pp. 431–445, Singapore, De-
cember 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-demo.40. URL https:
//aclanthology.org/2023.emnlp-demo.40.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., et al. Mlperf inference bench-
mark. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 446–
459. IEEE, 2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Commun. ACM, 64(9):99–106, aug 2021. ISSN
0001-0782. doi: 10.1145/3474381. URL https://
doi.org/10.1145/3474381.

8

https://developers.googleblog.com/2024/03/running-large-language-models-on-device-with-mediapipe-andtensorflow-lite.html
https://developers.googleblog.com/2024/03/running-large-language-models-on-device-with-mediapipe-andtensorflow-lite.html
https://developers.googleblog.com/2024/03/running-large-language-models-on-device-with-mediapipe-andtensorflow-lite.html
https://developers.googleblog.com/2024/03/running-large-language-models-on-device-with-mediapipe-andtensorflow-lite.html
https://github.com/mit-han-lab/TinyChatEngine
https://github.com/mit-han-lab/TinyChatEngine
https://www.msoon.com
https://aclanthology.org/2023.emnlp-demo.40
https://aclanthology.org/2023.emnlp-demo.40
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381

Mobile and Edge Evaluation of Large Language Models

Schaeffer, R., Miranda, B., and Koyejo, S. Are emergent
abilities of large language models a mirage? Advances in
Neural Information Processing Systems, 36, 2024.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli,
M., Hambro, E., Zettlemoyer, L., Cancedda, N., and
Scialom, T. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information
Processing Systems, 36, 2024.

Sellam, T., Das, D., and Parikh, A. P. Bleurt: Learning
robust metrics for text generation. In Proceedings of ACL,
2020.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-bert: Hessian based
ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 8815–8821, 2020.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen:
High-throughput generative inference of large language
models with a single gpu. In Proceedings of the 40th In-
ternational Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

team, M. MLC-LLM, 2023. URL https://github.
com/mlc-ai/mlc-llm.

Thawakar, O., Vayani, A., Khan, S., Cholakkal, H., Anwer,
R. M., Felsberg, M., Baldwin, T., Xing, E. P., and Khan,
F. S. Mobillama: Towards accurate and lightweight fully
transparent gpt, 2024.

tinygrad. Tinygrad, 2023. URL https://github.
com/tinygrad/tinygrad. Accessed: Dec 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Varvello, M., Katevas, K., Plesa, M., Haddadi, H., Busta-
mante, F., and Livshits, B. Batterylab: A collaborative
platform for power monitoring: https://batterylab. dev. In
International Conference on Passive and Active Network
Measurement, pp. 97–121. Springer, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vernikos, G., Bražinskas, A., Adamek, J., Mallinson, J.,
Severyn, A., and Malmi, E. Small language models
improve giants by rewriting their outputs. arXiv preprint
arXiv:2305.13514, 2023.

Wan, Z., Wang, X., Liu, C., Alam, S., Zheng, Y., Qu, Z.,
Yan, S., Zhu, Y., Zhang, Q., Chowdhury, M., et al. Effi-
cient large language models: A survey. arXiv preprint
arXiv:2312.03863, 1, 2023.

Wang, B., Li, G., and Li, Y. Enabling conversational
interaction with mobile ui using large language mod-
els. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, CHI ’23,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9781450394215. doi: 10.1145/
3544548.3580895. URL https://doi.org/10.
1145/3544548.3580895.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wilson, G., Halvey, M., Brewster, S. A., and Hughes,
S. A. Some like it hot: thermal feedback for mobile
devices. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’11,
pp. 2555–2564, New York, NY, USA, 2011. Associa-
tion for Computing Machinery. ISBN 9781450302289.
doi: 10.1145/1978942.1979316. URL https://doi.
org/10.1145/1978942.1979316.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani,
N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C.,
et al. Sustainable ai: Environmental implications, chal-
lenges and opportunities. Proceedings of Machine Learn-
ing and Systems, 4:795–813, 2022.

Xiao, G., Lin, J., and Han, S. Offsite-tuning: Transfer learn-
ing without full model. arXiv preprint arXiv:2302.04870,
2023a.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023b.

Xu, D., Yin, W., Jin, X., Zhang, Y., Wei, S., Xu, M., and
Liu, X. Llmcad: Fast and scalable on-device large lan-
guage model inference. arXiv preprint arXiv:2309.04255,
2023a.

Xu, H., Han, L., Yang, Q., Li, M., and Srivastava, M. Pene-
trative ai: Making llms comprehend the physical world.
In Proceedings of the 25th International Workshop on

9

https://github.com/mlc-ai/mlc-llm
https://github.com/mlc-ai/mlc-llm
https://github.com/tinygrad/tinygrad
https://github.com/tinygrad/tinygrad
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/1978942.1979316
https://doi.org/10.1145/1978942.1979316

Mobile and Edge Evaluation of Large Language Models

Mobile Computing Systems and Applications, HOTMO-
BILE ’24, pp. 1–7, New York, NY, USA, 2024a. Associa-
tion for Computing Machinery. ISBN 9798400704970.
doi: 10.1145/3638550.3641130. URL https://doi.
org/10.1145/3638550.3641130.

Xu, M., Liu, J., Liu, Y., Lin, F. X., Liu, Y., and Liu,
X. A first look at deep learning apps on smartphones.
In The World Wide Web Conference, WWW ’19, pp.
2125–2136, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450366748. doi: 10.
1145/3308558.3313591. URL https://doi.org/
10.1145/3308558.3313591.

Xu, M., Xu, Y. L., and Mandic, D. P. Tensorgpt: Ef-
ficient compression of the embedding layer in llms
based on the tensor-train decomposition. arXiv preprint
arXiv:2307.00526, 2023b.

Xu, M., Yin, W., Cai, D., Yi, R., Xu, D., Wang, Q., Wu, B.,
Zhao, Y., Yang, C., Wang, S., et al. A survey of resource-
efficient llm and multimodal foundation models. arXiv
preprint arXiv:2401.08092, 2024b.

yepkit.com. Ykush usb controller, 2023. URL https://
www.yepkit.com/products/ykush. Accessed:
Dec 2023.

Yi, R., Guo, L., Wei, S., Zhou, A., Wang, S., and Xu,
M. Edgemoe: Fast on-device inference of moe-based
large language models. arXiv preprint arXiv:2308.14352,
2023.

You, J., Chung, J.-W., and Chowdhury, M. Zeus:
Understanding and optimizing GPU energy consump-
tion of DNN training. In 20th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI 23), pp. 119–139, Boston, MA, April
2023. USENIX Association. ISBN 978-1-939133-33-5.
URL https://www.usenix.org/conference/
nsdi23/presentation/you.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama, Sep
2023. URL https://github.com/jzhang38/
TinyLlama.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.

10

https://doi.org/10.1145/3638550.3641130
https://doi.org/10.1145/3638550.3641130
https://doi.org/10.1145/3308558.3313591
https://doi.org/10.1145/3308558.3313591
https://www.yepkit.com/products/ykush
https://www.yepkit.com/products/ykush
https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/nsdi23/presentation/you
https://github.com/jzhang38/TinyLlama
https://github.com/jzhang38/TinyLlama

Mobile and Edge Evaluation of Large Language Models

Appendix
Contents of the Appendix

A Contributions 11

B Background & Motivation 11
B.1 Transformer Preliminaries . 11
B.2 Large Language Models . 12
B.3 Current State and Motivating Factors . 12

C Related Work 13

D Infrastructure 13
D.1 PhoneLab . 13
D.2 JetsonLab . 14

E MELT Workflow Components 14
E.1 Model Zoo and Evaluation . 14
E.2 Automated On-Device Benchmarking . 15

F Evaluation 17
F.1 Experimental Setup . 17
F.2 Macro-experiments . 17

F.2.1 Dataset Qualitative Analysis . 17
F.2.2 Model Loading Latency . 17
F.2.3 CPU runtimes . 18

F.3 Impact of Quantization . 18
F.4 Micro-benchmarks . 19

F.4.1 ML Operations . 19
F.4.2 Memory Usage and Bottlenecks . 19

G Discussion & Limitations 20

A. Contributions
Concretely, our paper makes the following contributions:

• We gather the most popular open-source LLMs and benchmark them across mid and high-tier mobile and edge devices of
different manufacturers, including iOS and Android-based phones as well as Nvidia Jetson edge devices. Our goal is to
explore the deployability of broadly available LLMs on broadly available consumer hardware.

• To this end, we have developed the first mobile LLM evaluation suite, called MELT, responsible for downloading,
quantizing, deploying and measuring the performance and energy of an LLM across heterogeneous targets.

• Through MELT, we trace specific events during inference and pinpoint their computational and energy impact. We also
evaluate the continuous runtime of LLMs and their impact on battery life and user’s Quality of Experience.

• We further quantify the impact of quantization on the accuracy of models, over different datasets and tasks.
• Last, we pinpoint bottlenecks in deployment and explore alternative avenues for edge deployment.

B. Background & Motivation
B.1. Transformer Preliminaries

Transformers (Vaswani et al., 2017) were introduced back in 2017 as an alternative architecture for NLP tasks, providing
better performance and scalability than their recurrent counterparts and fewer inductive biases than convolutional networks.
Since then, they have been expanded to more tasks, including vision (Dosovitskiy et al., 2021) and multi-modal use-
cases (Radford et al., 2021). In this paper, we are focusing our attention on large-scale language transformers.

11

Mobile and Edge Evaluation of Large Language Models

The original transformer comprises an encoder-decoder architecture, where the encoder digests tokens from the input
sequence, whereas the decoder digests tokens from the output in an autoregressive manner. Each part of the architecture
consists of multiple attention blocks. There are also encoder and decoder-only model variants, which include the respective
part of the architecture. Tokens are (sub-)word representations, generated by a tokenizer model, embedded into as subspace
(e.g., WordPiece (Devlin et al., 2019) or BytePair (Radford et al., 2019) encoding).

The main contribution of transformers has undoubtedly been the attention mechanism, which captures the relationship
between tokens in a sequence from a single source (self-attention) or multiple sources (multi-head attention). Attention is
calculated as A(Q,K, V) = softmax(QKT

√
dk

)V , where Q, K, V represent the query, key, and value matrices, respectively
and dk the dimensionality of the key matrix. The inner product boosts closer query-key vectors (relevance), softmax
normalizes the dot-product and the multiplication with the value results in the relevant value scores being retrieved. The
quadratic complexity of attention, with respect to the sequence length (i.e., the prompt or intermediate tokens), is one
of the main bottlenecks of deployment, which has given way to alternatives such as sparse (Beltagy et al., 2020) or
approximate (Wang et al., 2020; Ainslie et al., 2023) attention mechanisms, as well as attention-free variants as of lately (Gu
& Dao, 2023). Context size refers to the maximal window of tokens a transformer block can pay attention to, whereas
the maximum generated length refers to the maximum number of tokens generated as output. Generation ends when an
<EOS> (end-of-sequence) token is generated. The auto-regressive nature of decoding means that given input sequence
X = {x1, x2, . . . , xt}, the model generates xt+1, which is fed to the next generation step. Key-Value cache (Pope et al.,
2023) optimizes this by storing intermediary attention states.

B.2. Large Language Models

What has made Transformers an instant success has been their applicability to various modalities and their scalability
to very large parameter sizes without saturating accuracy (Touvron et al., 2023b). This phenomenon has given birth to
Foundation Models (FMs), pretrained on huge corpora of data, i.e., text in our case, and act as a great tool for modeling
language and a starting point for fine-tuning on downstream tasks. The task of pretraining usually comprises masked or
next-word prediction (self-supervised), whereas downstream tasks can include anything from translation to summarization.
Instruction fine-tuning (Ouyang et al., 2022) refers to a specific form of fine-tuning where the model is trained on pairs of
input-output instructions. Last, alignment is usually the final step of model tuning, typically through reinforcement learning
from human (Ouyang et al., 2022) or automated (Bai et al., 2022) feedback, to promote a certain style or content or reply
that “aligns” with values of the creator (e.g., safety). Training cost generally scales down as we move from pretraining
downstream, as do data ingestion needs (Zhou et al., 2024).

B.3. Current State and Motivating Factors

Centralization and privacy. Training a large-scale LLM is a costly effort, and many models are only offered as black-box
solutions to users, such as ChatGPT and GPT-4 by OpenAI, Claude by Anthropic or Gemini by Google. These are offered
as-a-service, which means that user prompts are transmitted to the provider, thereby compromising user-privacy. At the
same time, users lack control over whether their data get incorporated in the training set of models without their explicit
consent (Ciniselli et al., 2022), making them amenable to various attacks (Nasr et al., 2023). Additionally, these tools remain
accessible and operational only under an active internet connection.

LLMs democratization. Nevertheless, more and more models offer openly their weights, including models from Meta (Tou-
vron et al., 2023a;b), Mistral AI (Jiang et al., 2023), Google (Google Inc., 2024) and Microsoft (Javaheripi, Mojan and
Bubeck, Sébastien, 2024). This creates an excellent opportunity for users to deploy their models locally and even personalize
them to their preferences, without data ever leaving their device premises. However, such models remain significantly smaller
in scale and still require considerable resources to deploy. Towards this end, new frameworks are emerging for enabling
local execution of LLMs across different targets (Gerganov, 2023; team, 2023; Hannun et al., 2023; Mark Sherwood, 2024;
Alibaba, 2023; tinygrad, 2023). In this effort, quantization (Shen et al., 2020; Frantar et al., 2022; Lin et al., 2023) is one of
the most prominent out-of-the-box solutions for reducing their footprint. Yet another enabler towards this democratization is
the broad availability of capable SoCs at cost. Indicatively, from our measurements, a recent M2-based Mac Studio can run
Llama-2 (Touvron et al., 2023b) 7B model (4-bit quantized) at a sustained 46.8 tokens/sec.

Sustainability. Last but not least, the issue of sustainability becomes ever more pronounced (Wu et al., 2022; Patterson
et al., 2021; 2022; You et al., 2023), since the training and deployment of large models requires a significant amount of
energy, be it inside or outside the premises of the data center. As a result, the cost is not only monetary, but also energy
consumption bound.

12

Mobile and Edge Evaluation of Large Language Models

For all the reasons above, we feel it is more critical than ever before to quantify the cost or running LLMs on mobile and
edge devices, the current bottlenecks and the sustainability of this deployment model. This way we aim to fuel future
research avenues for optimizing local model deployment and further democratizing their adoption. i

C. Related Work
Benchmarking models on device. In terms of on-device DNN benchmarking, there has been a rich set of literature in the
past for edge and mobile deployment. Indicatively, Ignatov et al. (Ignatov et al., 2018) had been one of the first in-the-wild
benchmark suites for on-device benchmarking and device ranking across a multitude of downstream tasks and modalities.
Embench (Almeida et al., 2019) quantified the different dynamics of model execution across various mobile, edge and
desktop devices. MLPerf (Reddi et al., 2020) is an industry-wide standardized ML benchmark tool. Another tangential line
of work has focused on quantifying the performance of already deployed models in mobile apps, with works (Almeida et al.,
2019; Xu et al., 2019) showcasing a surging trend in the deployment of on-device ML. Nevertheless, the advent of LLMs
have pushed the compute requirements for executing such workloads, and thus current most deployments offload inference
to the cloud (Mao et al., 2017), while on-device deployment remains limited. This phenomenon is hindered by the currently
available tools and asks for better on-device measurements so that edge execution of LLMs is faciliated. To the best of our
knowledge, this is the first study of LLMs on-device performance. Prior work has either focused on training efficiency (You
et al., 2023; Rajbhandari et al., 2020) or served inference (Kwon et al., 2023; Aminabadi et al., 2022) in the datacenter.

Edge execution of LLMs. There have been various lines of work attempting to port LLM computation on-device.
Starting with frameworks, llama.cpp (Gerganov, 2023) and MLC (team, 2023) have stood out, offering cross-platform
accelerated execution and support for various LLM architectures and device targets. Other open-source frameworks include
llama2.c (Karpathy, 2023), aimed at simplicity without dependencies and tinygrad (tinygrad, 2023), focused on accelerated
execution, but without support quantized mobile execution. Last, TinyChatEngine (mit-han lab, 2023) showcased on-device
inference with compressed models, but lacks mobile support. Lately, OS providers have released their own platforms, such
as Apple’s MLX (Hannun et al., 2023) and Google’s AICore (android.com, 2023). The former only provides support for
desktop platforms (M-series SoCs) and the latter remains closed-source and only deployed on Pixel 8 Pro. Very recently,
Google also released MediaPipe (Mark Sherwood, 2024) for running LLMs on device.

Efficient LLMs. As we have shown, these workloads have been largely bottlenecked by the memory size and throughput
of the underlying hardware. Therefore, a lot of research has focused on compressing these models to economize on their
memory and bandwidth requirements. Various works have proposed quantization (Lin et al., 2023; Frantar et al., 2022;
Xiao et al., 2023b; Liu et al., 2023b; Dettmers et al., 2023; Kim et al., 2023) and sparsification/pruning schemes (Ma
et al., 2023; Frantar & Alistarh, 2023a), low-rank methods (Xu et al., 2023b) and distillation-based solutions (Gu et al.,
2023) aimed specifically at LLMs. Orthogonally, one can leverage secondary storage for running LLMs with limited local
resources (Sheng et al., 2023; Alizadeh et al., 2023). The quadratic cost of attention has also been a large scalability issue.
Therefore, various techniques try to address this cost, through different attention patterns (Wang et al., 2020; Beltagy et al.,
2020; Dao et al., 2022; Dao, 2023), token skipping (Guan et al., 2022; Kim & Cho, 2021; Goyal et al., 2020) or alternative
architectures (Peng et al., 2023; Gu & Dao, 2023).

Employing multiple models for dropping the overall cost of inference has also been a popular approach, with techniques
such as Mixture-of-Experts (Frantar & Alistarh, 2023b; Yi et al., 2023; Fedus et al., 2022) focusing on using subsets of
weights based on the input at hand. However, these remain difficult to deploy on device, due to their memory and storage
requirements. Speculative decoding (Chen et al., 2023; Cai et al., 2023) has been recently introduced as a way of accelerating
inference, based on the fact that not every token needs to be generated by a large LLM, but a significantly smaller draft
model can be leveraged for quick token generation while the original model operates in a batched fashion. (Xu et al., 2023a)
proposes a distributed such setup for the edge. For a more complete overview of related work, we divert the reader to (Wan
et al., 2023; Xu et al., 2024b).

D. Infrastructure
In this section, we expand on the infrastructure overview of Sec. 2, by providing details on PhoneLab and JetsonLab.

D.1. PhoneLab

We have incorporated four smartphones into our device farm, spanning across different resource tiers (mid and high tier)
and platforms (Android and iOS), as detailed in Tab. 1. These mobile devices are interfaced with a Monsoon high-voltage

13

Mobile and Edge Evaluation of Large Language Models

power monitor (model AAA10F) (Monsoon Solutions Inc., 2023). To facilitate accurate power measurements, we employ a
battery bypass process that requires disassembling each device to remove its battery, extracting the internal battery controller
and expose the power terminals through cables. This setup ensures precise monitoring of the devices’ power consumption
directly from their power terminals (Varvello et al., 2022) at a maximum frequency of 5KHz through Monsoon. In order
to support the powering of multiple devices, we have a programmable relay that communicates over general-purpose
input/output (GPIO) pins of Raspberry Pi and can selectively power on and off the devices, one at a time. The host machine
initially communicates with the mobile devices via USB, connected over a YKUSH Switchable Hub (yepkit.com, 2023).
Its purpose is to selectively disable the power lanes of the USB connection, so as not to measure USB charging draw. For
monitoring the thermal behavior of the devices, we have a Flir One Edge wireless thermal camera positioned at 0.5-1.0m
from the device whose temperature we want to measure. To minimize the influence from extraneous factors we disabled the
automated OS and App updates, turned off the adaptive brightness/charging/battery features, enabled the dark mode and
standardized the brightness level to 25% across devices. We call this part of the infrastructure PhoneLab (see Fig. 1).

Communication to Android devices is accomplished via the Android Debug Bridge (ADB). This enables us to interact (over
tap or typing events) over CLI commands with the device and application, without the need for explicit human intervention
during the experiment. ADB connection is established over Wi-Fi 6 (5GHz channel) for automation, because data and
power lines cannot be independently controlled over the USB channel. Interfacing with iOS is more intricate, as there is no
automated toolchain for controlling the device. To achieve this, we have built a Python-based service which maps commands
like touch, swipe, and text input to a virtual Human Interface Device (HID), simulating a Bluetooth keyboard and mouse
that controls the device. In both cases, the baseline power draw of Bluetooth and Wi-Fi events is subtracted from the energy
traces. For the compilation and deployment of apps, we have a Mac Studio in the same network as the rest of PhoneLab,
with remote access to the devices. Packages are installed through ADB and ideviceinstaller (libimobiledevice,
2024) for Android and iOS, respectively.

D.2. JetsonLab

At the same time, the co-ordinator is connected over Ethernet to the same network as our Jetson boards with SSH access to
them. We are able to take power and temperature metrics through SysFS probes available on the devices, at a frequency of
approximately 100Hz1. This way, not only can we calculate the power and thermal behavior of each device, but we are also
able to calculate the power draw from specific components of the board (e.g., CPU, GPU, SoC, DRAM, etc.). Last, Jetson
devices support a range of predefined power modes, which we control over the nvpmode. For all experiments, we used the
fan speed in its maximum setting. We call this part of the infrastructure JetsonLab (see Fig. 1).

Compilation of packages and models happens directly on Jetson devices over Docker images2. Automation is handled over
SSH commands from RPi and results are collected immediately after execution. Both Jetsons have their Operating System
(OS) installed on a high speed UHS-I SD card and have dedicated M2 SSDs for the rest of the filesystem, where models and
executables reside.

E. MELT Workflow Components
In this section, we move to the workflow of MELT, as introduced in Sec. 3 and depicted in Fig. 2. This workflow is used for
our LLM evaluation process, as described later in Sec. F.1.

E.1. Model Zoo and Evaluation

Model Zoo. As a first step, we collect the models we would like to benchmark on device from their respective sources
and convert them, based on the backends available, to the respective format (e.g., GGUF - formerly known as GGML -
for llama.cpp; MLC/TVM compiled files and libraries for MLC-LLM). The benchmarked models are shown on Tab. 2.
Moreover, given the sheer size of the model weights, more often than not, it is necessary to quantize the models to lower
precision so that their memory footprint is reduced, and the traffic between on-chip and DRAM memory is smaller. To this
end, MELT’s converter is able to resolve and download models from git or huggingface and convert their weights to the
respective format. This format varies both in terms of the ML framework, as well as the hardware executing the network.
The supported formats and quantization methods are depicted in Tab. 3. The original models were downloaded directly

1This granularity was explicitly tuned to capture events of interest, without interfering with the measurement itself due to I/O thrashing.
2Based on images from https://github.com/dusty-nv/jetson-containers/.

14

https://github.com/dusty-nv/jetson-containers/

Mobile and Edge Evaluation of Large Language Models

from HuggingFace Hub and the converted models reside in MELT’s Model Zoo, which is a repository of converted models
available to be benchmarked.

Model Evaluator. The next step is to evaluate the accuracy degradation of the model due to quantization. To accomplish
this, we use MELT’s Model Evaluator component, which is responsible for evaluating the model3 on a given dataset and
reporting its accuracy. We leveraged the LM-Evaluation Harness (Gao et al., 2021) and integrated a custom inference server
to serve our converted models from each of the supported backends. This offers a convenient abstraction layer between the
frameworks and the evaluation harness. Because of the lack of native support from the frameworks, we had to implement
the extraction of token log probabilities to assess the accuracy per downstream dataset4. The currently supported datasets
are depicted in Table 6 and the results of the evaluation are presented in Sec. F.3.

E.2. Automated On-Device Benchmarking

Benchmark Workflow. During the execution of the respective model, we have instrumented the binaries of each framework
so that we can report fine-grained timings of chat and model operations. This instrumentation includes timing of granular
chat and DNN graph operations as well as calculation of performance metrics. Chat events include operations such as prefill,
encoding or decoding, whereas graph operations refer to the LLM layers and kernel operations, which vary per framework
because of optimizations happening during model conversion (e.g., operator fusion (Chen et al., 2018)). Due to the overhead
of tracing very granular events (i.e., single operations), we only enable the respective flag in specific experiments (Sec. 4.2).

Builder. In order to evaluate the performance across devices, we have used two frameworks that have constituted so far the
benchmarks for executing LLMs on device, namely MLC-LLM (team, 2023; Chen et al., 2018) and llama.cpp (Gerganov,
2023) (detailed in Tab. 3). While there are increasingly more such frameworks (Alibaba, 2023; Hannun et al., 2023; Mark
Sherwood, 2024; tinygrad, 2023; mit-han lab, 2023), we selected the ones with the highest popularity (measured by their
stars on GitHub) and widest model and platform support. We have made MELT extensible so that new frameworks can be
integrated with minimal effort.

We have automated the build of the framework backends and applications for each platform (e.g., Android, iOS, Linux
(CUDA)), along with the conversion binaries for the respective models. We used an M2-powered Mac Studio in the local
network to build and package dependencies for mobile targets, especially since Xcode was required to sign app releases on
iOS. Specifically, the Android apps were built with Android SDK v.35.0.0 and NDK v.26.1, whereas for iOS we used Xcode
15.2. Installation of packages (.apk and .ipa) was done by the co-ordinator. For the case of JetsonLab, the frameworks
and models were compiled on device with CUDA 12.2.

Automator. In order to measure the performance of the respective model on device, we automate the interaction with the
chat application. To accomplish this, we use a set of precanned prompts, sampled from the OAAST chat dataset (Köpf
et al., 2023), and interact in a multi-turn manner with the LLM. More information about the distribution of these prompts in
Sec. F.2.1.

For mobile execution, we have used custom native applications5 that automatically read prompts from a given file and replay
the discussion with the model at hand. For edge execution and Android llama.cpp, we leverage the command-line interface
to converse with the LLM and automate the interaction with expect scripts. These are TCL-based scripts that operate
based on the text output of a binary. In the future, we would also like to evaluate guardrail chat mechanisms (Rebedea et al.,
2023) and how the impact runtime characteristics.

For JetsonLab, transferring the dependencies and executing the job is accomplished over SSH commands. For PhoneLab, the
process is more involved. For Android devices, communication and execution of jobs is mostly handled over ADB. We use
the ADB as the controller for transferring files, installing and launching the application as well as automating the interaction
with the app (i.e., launching a fragment or tapping on screen elements). For iOS devices, we emulate an HID Bluetooth
device with the RPi that acts as a combo mouse/keyboard device. This way, we carefully script the series of actions that
need to be taken so that we launch and execute a job on that device. At the end of the experiment, the co-ordinator (RPi)
is automatically notified when the evaluation task is complete through a REST request. The reason behind this is for the

3We evaluate the non-finetuned variants of the models, as a typical proxy of the accuracy degradation of downstream models.
4Because of issues with evaluating quantized models on MLC-LLM, we evaluate AWQ (Lin et al., 2023) quantized models with

autoawq package as a proxy.
5All applications have graphical user interface except for llama.cpp on Android, for which we used the ADB CLI interface (Almeida

et al., 2021).

15

Mobile and Edge Evaluation of Large Language Models

co-ordinator to know when an experiment has finished to stop energy measurements, persist logs and continue with the next
job. At the same time, we collect the generated responses and the metrics of interest.

Algorithm 1: MELT (Experiment Process)
Pseudocode for MELT experiments. Functionality of undefined methods in comment. Prefixed methods run on the device in prefix (e.g., Monsoon, device).
Input: PhoneLab, JetsonLab, Monsoon, GPIO, YKUSH, device, Qdevice

experiments, iterations, samplingFrequency, betweenExpSleep
1 PowerOn(device)
2 if device.platform == ”ios” :
3 ConnectBT(device) # connect as HID device via Bluetooth
4 UnlockScreen(device) # unlock screen with passcode over HID
5 SyncClocks(device) # sync host and guest clocks
6 apiAddress = StartRESTServer() # start REST service on host
7 for exp in Qdevice

experiments : # iterate over experiments in the queue
8 Push([exp.model, exp.conversations], device) # push dependencies
9 Apply(exp.conf, exp.model, device) # edit model conf and execution parameters on device

10 for it=0; it¡iterations;++it :
11 StartMonitoring(Monsoon, device)
12 RunExperiment(exp, device)
13 StopMonitoring(Monsoon, device) # disable monitoring
14 CollectMeasurements(exp, device) # get results from FS
15 sleep(betweenExpSleep) # sleep between runs
16 def PowerOn(GPIO, YKUSH, device):
17 if device in PhoneLab.devices :
18 GPIO.EnableRail(device.rails) # enable rail through GPIO
19 YKUSH.PowerOn(device) # enable YKUSH USB of device
20 Monsoon.SetVoutCurr(device) # configure Monsoon power out
21 Wait(device) # wait until device is responsive
22 def StartMonitoring(Monsoon, YKUSH, device):
23 if device in PhoneLab.devices :
24 YKUSH.DisableUSB()
25 Monsoon.MeasurementMode(”on”, samplingFrequency)
26 elif device in JetsonLab.devices :
27 Jetsonlab.ScheduleEvents(samplingFrequency)
28 Jetsonlab.Monitor(”on”) # poll SysFS
29 def RunExperiment(exp, device, apiAddress):
30 # open app w/ ADB, Bluetooth HID or SSH
31 app = device.OpenApp(exp.backend)
32 Automate(app, model, device) # automate interaction with app
33 http.post(”start”, apiAddress) # notify through REST service
34 for conversation in exp.conversations :
35 for prompt in conversation :
36 report = device.Trace(model(prompt)) # run inference
37 device.Write(report, exp.conf.outputPath) # results to FS
38 http.post(”stop”, apiAddress) # notify through REST service

Runner. The runner is tasked with deploying the built application or binary, along with the associated converted models to
the respective device, running the automated interaction and gathering the reported results and logs. The experiment runtime
is documented in more detail in Algorithm 1

When an experiment is run, the co-ordinator is responsible for powering the device if in PhoneLab (L.1), connecting to
it (over SSH or USB), synchronizing the clocks (L.5), deploying the job dependencies (model, application, inputs) (L.8),
executing the task (L.12) and gathering the outputs to return (L.14). This happens over multiple iterations, with configurable
waiting times between experiments (L.15).

Monitor. Our monitoring infrastructure comprises a combination of hardware and software components. We measure coarse
(end-to-end) and fine-grained (per-operator) metrics about latency and memory from the benchmark binaries. We also traced
the execution through Android, Xcode and Nvidia Visual profilers for analyzing the behavior of each runtime across different
platforms. These were invoked in isolation due to their overhead. These give us computational information about the LLM
workload. At the same time, as aforementioned in Sec. 2, our mobile devices from PhoneLab are connected to a Monsoon
high-voltage power monitor (AAA10F) for energy measurements, while JetsonLab supports power monitoring through
SysFS probes. These metrics are buffered in memory and asynchronously persisted to the filesystem in a CSV timeseries
file. As we have granular and synchronized timings for each operation of the LLM chat execution, we can correlate the
power and thermal behavior of the device with the execution of the respective operation.

16

Mobile and Edge Evaluation of Large Language Models

F. Evaluation
In this section, we provide additional details about the setup and experiments of Sec. 4 that could not be presented in the
main text.

F.1. Experimental Setup

Table 3: Frameworks and platforms supported by MELT.
Framework Backend Version Supported Platforms Quantization

MLC-LLM (team, 2023) TVM (Chen et al., 2018) 96a68e† Android (GPU), iOS
(Metal), Linux (CUDA)

Group Quantization (Shen et al.,
2020), GPTQ (Frantar et al.,
2022), FasterTransformer Row-
wise Quantization

llama.cpp (Gerganov, 2023) llama.cpp (Gerganov, 2023) b22022‡ Android (CPU, GPU),
Linux (CUDA) k-quants (llama.cpp Team, 2023)

LLMFarm (guinmoon, 2023) llama.cpp (Gerganov, 2023) 7226a8 iOS (Metal)
† We used version 784530 for supporting Gemma models and Llama-2-7B on Android.
‡ We used version d5ab29 for supporting Gemma models.

For our experiments, we leverage the infrastructure and methodology described in Sec. 2 and 3, respectively. For each
device (Tab. 1), we tweak the model size, quantization bitwidth, context size, maximum generated length and token batch
size through a grid search6. We always run on GPU, except for the case of llama.cpp for Android, where the gains from
running on GPU were minimal7. We based our infrastructure on the versions of frameworks shown on Tab. 3, but with
further instrumentation and automations on our side to support the scalable evaluation of performance across platforms
and devices. We used the models of Tab. 2, and converted/quantized them with the native tools of each backend. This was
necessary as we needed to alter the generated libraries for instrumentation. Unless stated otherwise, all experiments were
repeated three times and we report mean and standard deviation of the runs.

F.2. Macro-experiments

F.2.1. DATASET QUALITATIVE ANALYSIS

For macro-experiments, we used a subset of prompts from the OpenAssistant/oasst1 dataset (Köpf et al., 2023). We filtered
out inputs, so that the resulting dataset has prompts in English, with at least 5 turns of interaction. We used a sample of 2k
data points and ended up with a dataset of 50 conversations. We present some qualitative results on Fig. 8, where we depict
the distributions of conversation lengths, prompt lengths and also part-of-speech categories across prompts. We can see
from Fig. 8a that the conversation length spans linearly from 6 to 10 prompts with the 80-th percentile of prompts below 36
words. Most words represent verbs, determiners and nouns, as analyzed with the nltk python package. We combined the
long tail of tags of less than 1% to the category “other”. Of course, the correspondence of words to tokens depends on the
tokenizer used by the respective model.

6 8 10
Conversation length

(prompts per conversation)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ise

d)

20 40 60
Prompt length

(words per prompt)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ise

d)

(a) CDFs of conversation (# prompts) and prompt lengths (# words)

7.9%

3.1%

3.1%

10.4%

1.5%2.5%
6.1%

22.7%

3.3%

6.2%

10.0%

2.8%
17.1%

3.2% Part of speech
adjective
adverb
conjuction
determiner
digit
modal
name
noun
other
poss. pronoun
preposition
to
verb
wh-word

(b) Part of speech categories distribution across prompts
Figure 8: Qualitative analysis of prompts used for macro-experiments to assess the behaviour of LLM-powered chats on device.

F.2.2. MODEL LOADING LATENCY

In this section, we have analysed the model loading latency per device for various frameworks, which we depict as a boxplot
in Fig. 9. We see that most models are loaded in less than 5 seconds, with significant outliers when model sizes get too

6(context size={512, 1024, 2048} ⊙ max gen. length={64, 128, 256}) × batch size={128, 512, 1024}, where ⊙ is the Hadamard and
× the Cartesian product.

7Indicatively, running TinyLlama-1.1B (4-bit) on S23 resulted in 13.61±0.54 vs. 13.22±0.46 tok/sec on CPU and GPU, respectively.
Others have also documented this: https://github.com/ggerganov/llama.cpp/issues/5965.

17

https://github.com/ggerganov/llama.cpp/issues/5965

Mobile and Edge Evaluation of Large Language Models

large. While iPhones show lower loading latencies, this is a repercussion of also supporting only smaller models due to their
limited RAM size.

Galaxy S23 Pixel 6a iPhone 14 Pro iPhone SE
Device

0

5

10

15

20

25

30

35

M
od

el
 L

oa
d

Ti
m

e
(s

ec
)

Llama 7B q{3,4}
 @ llama.cpp

Zephyr 3B f32
 @ llama.cpp

Llama 7B q3
 @ MLC-LLM

Zephyr 3B q4
 @ LLMFarm

Figure 9: Model loading time per device. Each supports different set of models, based on available memory and framework.

F.2.3. CPU RUNTIMES

In the main text, we provided GPU runtimes for all but android on Llama.cpp due to its abysmal performance. To further
complement our results, we also showcase below results from CPU execution of llama.cpp on iOS (Tab. 4) and Jetson
devices (Tab. 5). Overall, performance is significantly lower than the equivalent GPU execution, and consumes more energy
for the same workload.

Table 4: Generation throughput and energy of iOS devices on llama.cpp

Device Model Throughput Discharge (mAh/token)

iPhone-14-Pro TinyLlama-q4 15.5054±1.2012 0.0252±0.0039
Zephyr-q3 6.4820±0.4226 0.0587±0.0039
Gemma-2B-q4 12.4338±0.1512 0.0141±0.0018

iPhone-SE TinyLlama-q4 13.4730±0.8370 0.0185±0.0004
Zephyr-q3 5.0990±0.7038 0.0482±0.0043
Gemma-2B-q4 3.3561±0.5763 0.0946±0.0036

Table 5: Generation throughput and energy of Jetson AGX on llama.cpp

Device Model Throughput Energy (mWh/token)

OrinAGX-50W TinyLlama-q4 13.3085±0.7917 0.0015±0.0004
Zephyr-q4 5.4001±0.2857 0.0033±0.0013

OrinAGX-30W TinyLlama-q4 10.7740±0.6574 0.0023±0.0007
Zephyr-2B-q4 4.2830±0.2189 0.0067±0.0054

F.3. Impact of Quantization
Table 6: Evaluation datasets description

Dataset Task Size Description

HellaSwag (Zellers et al., 2019) Common-
sense NLI

70k Given an event description, select the most
likely continuation.

Winogrande (Sakaguchi et al., 2021) Common-
sense NLI

44k Benchmark for common-sense reasoning, de-
signed not to be easily solvable by statistical
models and plain word associations.

ThuthfulQA (Lin et al., 2021) Knowledge
NLG

817 Benchmark for measuring truthfulness in a
model’s generated answers.

ARC-{E,C} (Chollet, 2019) Reasoning NLI 5.2k,
2.6k

Science and language exam questions from a
variety of sources. E: Easy; C: Complex

A prominent method for reducing the memory traffic between main and on-chip memory is to decrease the precision of the
weights and activations of the Neural Network (Frantar et al., 2022; Xiao et al., 2023b; Lin et al., 2023). However, this often
comes at the expense of model accuracy, especially at sub 4-bit weight precision. Moreover, the hardware needs to support
operations at these precisions, to avoid dequantization before computation.

By leveraging the supported quantization schemes in the two LLM frameworks MELT supports (Tab. 3), we measure
the impact of quantization in various tasks on the pretrained models. We use pretrained instead of fine-tuned models for

18

Mobile and Edge Evaluation of Large Language Models

this because the latter’s fine-tuning and RLHF (Ouyang et al., 2022) alignment can affect the original performance. A
description of the employed quantization schemes is presented in Sec. C. We use the benchmark datasets depicted in Tab. 6,
which consist of Natural Language Inference (NLI) and Natural Language Generation (NLG) tasks. In the former case, it
comprises multiple choice questions, and the most likely answer – expressed by cumulative log likelihood of the model’s
output – is selected and matched against the correct label. In the latter case, the model’s output is evaluated against template
answers over BLEURT (Sellam et al., 2020) score.

Results are depicted in Fig. 10 across datasets and models. From the data we can see that the most evident performance
difference comes from the model architecture and parameter size, and this performance difference persists across datasets. In
terms of quantization schemes, it is obvious that bitwidth is correlated to model size, but also to accuracy, i.e., lower bitwidth
means higher error rate. This was very evident in our qualitative evaluations, where some smaller models (≤3B parameters)
were unusable with 3-bit precision, mostly hallucinating or plainly repeating the prompt. On the other hand, there was
no single quantization scheme that performed uniformly better across the board. For larger models (≥7B parameters),
AWQ (Lin et al., 2023) and GPTQ (Frantar et al., 2022) performed slightly better, at the expense of elevated model sizes.

1 2 4 8 16 32
Model Size (GB)

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

 (%
)

(a) HellaSwag

1 2 4 8 16 32
Model Size (GB)

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ac
cu

ra
cy

 (%
)

(b) Winogrande

1 2 4 8 16 32
Model Size (GB)

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Ac
cu

ra
cy

 (%
)

(c) TruthfulQA

1 2 4 8 16 32
Model Size (GB)

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

 (%
)

model
Llama-2-13b
Llama-2-7b
Mistral-7b-v0.1
TinyLlama-1.1B-v0.5
Zephyr-3b
gemma-2b
gemma-7b

quantization
AWQ
GPTQ
None
q4_k
q3_k
q4_0

(d) ARC
Figure 10: Model size vs. accuracy for different models, quantization schemes and precisions.

F.4. Micro-benchmarks

F.4.1. ML OPERATIONS

Here, we provide a visualization fused operators and their percentage of the computation for three LLM operations, namely
embed, prefill and decode for Samsung Galaxy S23 on MLC-LLM. We comment on the results in Sec. 4.2.1.

28.0%
20.0%

23.9%

28.1%

embed

fused_dequantize_take1
reshape14
vm.builtin.make_shape
vm.builtin.match_shape

(a) Embed

22.6%

6.6%

39.3%

24.4%
4.1%

3.0%

prefill fused_dequantize1
_NT_matmul5
fused_dequantize2
_NT_matmul6
fused_dequantize3
_NT_matmul7
fused_dequantize4
_NT_matmul8
fused_dequantize_fused
_NT_matmul14_cast2
vm.builtin.paged_attention
_kv_cache_attention
_with_fused_qkv

(b) Prefill

12.6%

4.3%

22.5%
11.3%

45.0%

4.3%

decode fused_dequantize1
_NT_matmul10
fused_dequantize2
_NT_matmul11
fused_dequantize3
_NT_matmul12
fused_dequantize4
_NT_matmul13
fused_dequantize_fused
_NT_matmul14_cast2
vm.builtin.paged_attention
_kv_cache_attention
_with_fused_qkv

(c) Decode
Figure 11: Per-op benchmarks of Llama-7B (3-bit) with MLC-LLM on Samsung Galaxy S23. These are operations generated by the
TVM compiler. The variants may signify different implementation or hyperparameters tuned for performance.

F.4.2. MEMORY USAGE AND BOTTLENECKS

Here, we provide details of the thermal and memory behaviour of LLM runtime on iPhone 14 Pro, as discussed in Sec. 4.1.2
and Sec. 4.2.2, respectively. Specifically, Fig. 12a showcases the temperature of the device after a full conversation on
Zephyr-3B (4-bit) on MLC-LLM while Fig. 12b depicts the GPU stalls and memory allocations as measured through
xctrace and visualized with the Apple Instruments application.

(a) Temperature after a full conversation on Zephyr-3B (4-bit) on MLC-LLM

00:27.000 00:27.500 00:28.000

Allocations
(density)

GPU
(active)

Time
(min:sec.ms)

(b) Memory trace when running Zephyr-3B (4-bit) on LLMFarm
Figure 12: Thermal and memory behavior on iPhone 14 Pro

19

Mobile and Edge Evaluation of Large Language Models

G. Discussion & Limitations
Summary of results. In the main evaluation, we visited the performance and energy consumption characteristics of running
LLMs on mobile and edge devices. We measured the throughput and energy efficiency of various models and showed
that smaller quantized models can run sufficiently well on device at the cost of increased power consumption. Moreover,
we studied the device behavior during model loading and sustained inference, along with the power variability during
a conversation, witnessing high peaks and apparent consequences in user QoE. Last, we dove into the specific operator
runtime and memory bottlenecks during execution and showed the memory-bound nature of generation. Recognizing that
quantization is one of the main ways to drop the memory requirements, we measured the accuracy impact on various tasks,
which was non-negligible in sub 4-bit precisions. Drawing from these results, we discuss their impact in LLM deployment
and how they can shape future research avenues.

Hardware/Software advances While the area of generative AI has seen great acceleration the past years, so have the
associated workloads. As an area of active research and industrial interest, new algorithmic methods (Dao, 2023; Chen et al.,
2023; Gu & Dao, 2023) and hardware (Fan et al., 2022; Luo et al., 2023) can provide non-linear scaling in how the current
workloads run. Therefore, not only can current models be deployed more efficiently, but also larger models can be trained
and deployed, leading to smarter models (Bubeck et al., 2023; Schaeffer et al., 2024).

Multimodality & emergent abilities. In terms of capabilities, the ability of models to deal with multi-modal inputs and
outputs become of great value (Liu et al., 2023a; Radford et al., 2021; McKinzie et al., 2024), effectively giving assistants
an extra sense. However, their overhead for deployment is non-negligible, especially on embedded hardware like smart
glasses or robotics. Therefore, on-device deployment of such models emerges as an area of interest.

New use-cases. This paper is the first step towards enabling use-cases at the edge, offering metrics that can fuel algorithmic
and edge hardware research, with efficiency, privacy and sustainability in mind. We envision a future where multi-modal and
context-aware personalized assistants will be locally conversing with users and have long-term memory with recollection of
past interactions (Dong et al., 2023). At the same time, users will be able to interact with interfaces in natural language to
accomplish tasks (Li et al., 2020), without the need to imperatively define the individual steps (Schick et al., 2024; Wang
et al., 2023). Last, we envision this automation expanding to interactions between humans, where individuals would be able
to proxy their availability over smart assistants (Barbara Krasnoff,, 2021).

Organization of edge hardware resources. Last, in terms of system architecture, we foresee two major avenues of
deploying intelligence at the edge. One requires SoC manufacturers to design accelerators explicitly for running LLMs in
an energy efficient manner, in a way that does not hurt QoE of concurrent apps or deplete the battery in an unreasonable
manner. To this direction, NPUs capable of running matrix-to-matrix multiplications efficiently with larger on-chip cache
and memory throughput seems crucial. The future can also be hybrid (Qualcomm, 2023) and hierarchical, with part of the
workload being accelerated at the edge or cloud (Xu et al., 2023a; Laskaridis et al., 2022; 2020).

Limitations. Our study is simply the first attempt towards analyzing the on-device behavior of LLM workloads and hope
can make them more accessible to the public. However, our analysis has been limited to chat fine-tuned models of 1-13B
parameter size due to their broad availability and popularity. Very lately, sub-billion models have emerged (Thawakar
et al., 2024; Liu et al., 2024), which present their own computational interest in edge settings. Moreover, we analyzed the
inference energy at a device-centric level. It is well known, though, that the consumer edge is not as green as state-of-the-art
datacenters (Wu et al., 2022). The global impact of distributing LLM computation has not been considered. Last, we only
studied quantization as a way of reducing model footprint. There are various alternatives, briefly introduced Sec. C, for
further optimizing these workloads. We leave such topics as future work.

20

	Contributions
	Background & Motivation
	Transformer Preliminaries
	Large Language Models
	Current State and Motivating Factors

	Related Work
	Infrastructure
	PhoneLab
	JetsonLab

	MELT Workflow Components
	Model Zoo and Evaluation
	Automated On-Device Benchmarking

	Evaluation
	Experimental Setup
	Macro-experiments
	Dataset Qualitative Analysis
	Model Loading Latency
	CPU runtimes

	Impact of Quantization
	Micro-benchmarks
	ML Operations
	Memory Usage and Bottlenecks

	Discussion & Limitations

