
Thompson Sampling in Function Spaces via Neural Operators

Rafael Oliveira 1 Xuesong Wang 1 Kian Ming A. Chai 2 Edwin V. Bonilla 1

Abstract
We propose an extension of Thompson sampling
to optimization problems over function spaces
where the objective is a known functional of an
unknown operator’s output. We assume that func-
tional evaluations are inexpensive, while queries
to the operator (such as running a high-fidelity
simulator) are costly. Our algorithm employs a
sample-then-optimize approach using neural op-
erator surrogates. This strategy avoids explicit un-
certainty quantification by treating trained neural
operators as approximate samples from a Gaus-
sian process. We provide novel theoretical con-
vergence guarantees based on Gaussian processes
in the infinite-dimensional setting, under mini-
mal assumptions. We benchmark our method
against existing baselines on functional optimiza-
tion tasks involving partial differential equations
and other nonlinear operator-driven phenomena,
demonstrating improved sample efficiency and
competitive performance.

1. Introduction
Neural operators have been established as versatile mod-
els capable of learning complex, nonlinear mappings be-
tween function spaces (Kovachki et al., 2023), with demon-
strated success across diverse fields, including climate sci-
ence (Kurth et al., 2023), materials engineering (Oommen
et al., 2024), and computational fluid dynamics (Li et al.,
2023). Although their applications in supervised learning
and physical system emulation are well-studied, their po-
tential for online learning and optimization within infinite-
dimensional function spaces remains relatively untapped.

In many scientific contexts, learning operators that map be-
tween entire function spaces naturally arises, such as the task
of approximating solution operators for a partial differential

1CSIRO’s Data61, Sydney, Australia 2DSO National Lab-
oratories, Singapore. Correspondence to: Rafael Oliveira
<rafael.dossantosdeoliveira@data61.csiro.au>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

equation (PDE) (Kovachki et al., 2023). However, adaptive
methods that efficiently query these operators to optimize
specific functionals of their outputs (particularly in an active
learning setting) are still underdeveloped. Examples of such
functionals are fluid pressure based on pore structure design
using Darcy flows (Wiker et al., 2007), and the inverse prob-
lem of atmospheric dynamics using shallow-water equations
(Bonev et al., 2023).

We propose a framework that integrates neural operator
surrogates with Thompson sampling strategies. Namely,
let A and U denote spaces of input and output functions,
respectively. The unknown target operator1 is G∗ : A → U .
We consider f : U → R as a known and cheap-to-evaluate
objective functional. Given a compact search space S ⊂ A,
we aim to solve:

a∗ ∈ argmax
a∈S

f(G∗(a)), (1)

while G∗ is only accessible via expensive oracle queries:
for a chosen a, we observe y = G∗(a) + ξ, where ξ is
i.i.d. U -valued noise. The algorithm is allowed to query the
oracle with any function in the input function space for up
to a budget of N queries.

We follow the steps of Bayesian optimization frameworks
for composite functions (Astudillo & Frazier, 2019; Guil-
hoto & Perdikaris, 2024), which leverage knowledge of the
composite structure to speed-up optimization, extending the
framework to functional domains. Applying the theoretical
results for the infinite-width limit of neural networks (Ja-
cot et al., 2018; Lee et al., 2019), we show that a trained
neural operator approximates a posterior sample from a
vector-valued Gaussian process (Rasmussen & Williams,
2006; Alvarez et al., 2012; Jorgensen & Tian, 2024) in a
sample-then-optimize approach (Dai et al., 2022), allow-
ing us to implement Thompson sampling in a simple and
effective way, without the need for explicit uncertainty quan-
tification. Experiments on PDE benchmarks validate our
approach against Bayesian optimization (Shahriari et al.,
2016) baselines.

1Here, we use the term unknown loosely, in the sense that it
is not fully implementable within the computational resources or
paradigms accessible to us. For example, the target operator can
be a simulator in a high-performance computing facility which we
have limited access to.

1

2. Related Work
Bayesian optimization (BO) efficiently solves costly black-
box optimization problems (Shahriari et al., 2016). Prior
work includes Bayesian functional optimization (BFO) with
Gaussian process (GP) surrogates over function spaces
(Vien & Toussaint, 2018; Vellanki et al., 2019) and com-
posite BO for vector-to-function mappings (Astudillo &
Frazier, 2019; Guilhoto & Perdikaris, 2024). In contrast,
we optimize function-to-function operators, a setting unex-
plored by existing BO or bandit methods despite advances
in GP models for such mappings (Mora et al., 2025). Lastly,
the functional bandits literature (Tran-Thanh & Yu, 2014)
addresses known functionals of reward distributions.

Neural Thompson Sampling (NTS) (Zhang et al., 2021)
leverages neural networks and neural tangent kernel theory
(Jacot et al., 2018) to approximate GPs. The STO-BNTS
variant (Dai et al., 2022) improves this by using linearized
network training to emulate GP posterior samples, but these
methods have not been extended to function-valued inputs.

In Bayesian experimental design, deep operator networks
(DeepONets) and Fourier neural operators (FNOs) have
been used for uncertainty reduction with ensemble-based
mixture models (Pickering et al., 2022; Li et al., 2024a).
Similarly, Musekamp et al. (2025) applied variance-based
active learning for forecasting. Unlike these, our work tar-
gets optimization objectives beyond information gain.

3. Neural Operator Thompson Sampling
We propose a Thompson sampling algorithm for optimizing
functionals of unknown operators, leveraging neural oper-
ator surrogates. The method efficiently explores the input
space while balancing exploration and exploitation.

3.1. Approximate Posterior Sampling

Given data Dt = {(ai, yi)}ti=1, we train a neural operator
Gθ with parameters θ to minimize the empirical loss:

θt := argmin
θ∈W

t∑
j=1

∥yj −Gθ(aj)∥2U + λ∥θ∥2, (2)

where ∥·∥U represents the norm in the operator’s output
function space U and λ > 0 is a regularization factor which
relates to the noise process ξ (see Proposition 1 and Ordoñez
et al., 2025). The argmin operator is implemented via gra-
dient descent starting from θt,0 ∼ N (0,Σ0), where Σ0 is
a diagonal matrix following Kaiming (He et al., 2015) or
LeCun initialization (LeCun et al., 1998), which scale the
weights intialization variance by the width of the previous
layer. By standard results on the infinite-width limit of neu-
ral networks, we can show that the trained neural operator
converges to a posterior sample from a vector-valued GP

Algorithm 1 Neural Operator Thompson Sampling (NOTS)
1: Input: Search space S, Initial dataset D0 (optional)
2: for t = 1 to T do
3: Randomly initialize θt,0 ∼ N (0,Σ0)

4: θt ← argminθ
∑t−1

j=1∥yj −Gθ(aj)∥2U + λ∥θ∥2
5: Define Gt := Gθt

6: at ← argmaxa∈S f(Gt(a))
7: Query yt ← G∗(at) + ξt
8: Dt ← Dt−1 ∪ {(at, yt)}
9: end for

when, e.g., we train only the last linear layer (Lee et al.,
2019, App. D), which in turn guarantees regret bounds
(Section 4). In practice, we also note that inputs a and ob-
servations y are discretized either over a finite grid or other
finite-dimensional representations (Kovachki et al., 2023).

3.2. Thompson Sampling Algorithm

In Algorithm 1, we present the Neural Operator Thompson
Sampling (NOTS) algorithm, designed to efficiently opti-
mize a scalar functional of an unknown operator’s output.
The algorithm operates over T iterations. Each iteration
begins with the random initialization of the parameters of
a neural operator that serves as a surrogate model for the
true unknown operator. This surrogate is trained by mini-
mizing a regularized least-squares loss based on previously
observed data, ensuring that it does not overfit to potentially
noisy data. The next step involves selecting the input for
querying the oracle by maximizing the value of the objective
functional over the neural operator’s predictions. Finally,
the algorithm queries the oracle at the selected input and
updates the dataset with the new observation. This process
repeats for up to a given budget of T iterations.

4. Theoretical Results
We establish the theoretical foundation of our proposed
method. We show how the trained neural operator converges
to a Gaussian process in the infinite-width limit through the
use of the conjugate kernel, also known as NNGP kernel
(Neal, 1996; Daniely, 2017; Lee et al., 2018). This allows us
to extend existing guarantees for Gaussian process Thomp-
son sampling (GP-TS) to our setting (Takeno et al., 2024).

We analyze the performance of a sequential decision-making
algorithm via its Bayesian cumulative regret. An algorithm’s
regret for querying xt ∈ X at iteration t ≥ 1 is given by:

rt := f(G∗(a
∗))− f(G∗(at)) (3)

where a∗ is defined as in Equation 1. The Bayesian cumula-

2

tive regret after T iterations is then defined as:

RT := E

[
T∑

t=1

rt

]
, (4)

where the expectation is over the function space prior for
f and all other random variables involved in the decision-
making process and the function space prior. If the algo-
rithm achieves sub-linear cumulative regret, its regret van-
ishes, as limT→∞ E

[
mint∈{1,...,T} rt

]
≤ limT→∞

1
T RT .

Regularity assumptions. For our analysis, we assume
that U ⊂ L2(ν), where L2(ν) denotes the Hilbert space
of square-integrable ν-measurable functions, for a given
finite Borel measure ν on a compact domain Z . The search
space S ⊂ A is a compact metric space. The true op-
erator G∗ : A → U will be assumed to be a sample
from a vector-valued Gaussian process G∗ ∼ GP(0,K),
where the operator-valued kernel K : A × A → L(U) is
given by a neural operator’s infinite-width limit. Obser-
vations y = G∗(a) + ξ are assumed to be corrupted by
zero-mean Gaussian (process) noise, ξ ∼ GP(0, kξ), where
kξ : Z × Z → R is a positive-semidefinite kernel on the
same domain Z as the operator’s output functions.

We adapt state-of-the-art regret bounds for Gaussian process
Thompson sampling (Takeno et al., 2024) to our setting. To
do so, we show that randomly initialized neural operators
behave as Gaussian processes in the infinite-width limit (see
Proposition C.1). Their composition with fixed functionals
then yields a scalar-valued GP, allowing us to apply GP-TS
regret bounds.

Proposition 1. Let f : U → R be a bounded linear func-
tional. Assume that the search space S ⊂ A is finite, i.e.,
|S| < ∞, and that observations are corrupted by noise
ξ ∼ GP(0, kξ) such that kξ : (z, z′) 7→ σ2

ξ I[z = z′], for a
given σξ > 0. Let NOTS train only the last linear layer of
the neural operator surrogate. Then, in the infinite-width
limit, NOTS equipped with a single-hidden-layer neural
operator surrogate and λ := σ2

ξ achieves:

RT ∈ O(
√

Tγf,T) , (5)

where γf,T corresponds to the maximum information gain
after T iterations for a GP prior with kernel kf := fTKf ,
i.e., γf,T := maxST⊂S:|ST |≤T

1
2 log|I + λ−1Kf,T |, with

Kf,T := [kf (a, a
′)]a,a′∈ST

.

The result above connects existing GP-TS guarantees to
NOTS, and it differs from existing guarantees for other neu-
ral network based Thompson sampling algorithms (Zhang
et al., 2021; Dai et al., 2022), which explored a frequentist
setting (i.e., the objective function being a fixed element
of the reproducing kernel Hilbert space associated with the
network’s neural tangent kernel). In the Bayesian setting,

there is also no need for a time-dependent regularization
parameter, allowing for a simpler implementation. The last-
layer-only assumption on training ensures that the trained
network follows an exact GP posterior in the infinite-width
limit (Lee et al., 2019, App. D), while explicit regularization
accounts for observation noise (Ordoñez et al., 2025). Full
proofs and further discussions can be found in the appendix.

5. Experiments
We evaluate NOTS on PDE benchmarks (Darcy flow and
shallow water), comparing to GP-based Bayesian optimiza-
tion and neural network baselines that model the mapping
from function-valued inputs a ∈ A (discretized over a grid)
to scalar-valued functional evaluations f(G∗(a)), alongside
a random search (RS) baseline. NOTS utilizes standard and
spherical FNOs, adhering to recommended dataset settings
(Kossaifi et al., 2024). We first implement BO with a 3-
layer infinite-width ReLU BNN model, represented as a
GP with its equivalent kernel, based on Li et al. (2024b)’s
findings of optimal performance in high dimensions. Our
results include two versions of BO: one with log-expected
improvement (Ament et al., 2023), noted as “BO” in our
plots, and one using Thompson sampling (GP-TS) (Russo
& Van Roy, 2016). We also assess Bayesian functional opti-
mization (BFO), encoding input functions in an RKHS via
their minimum-norm interpolant and employing a squared-
exponential kernel, as in (Vien & Toussaint, 2018). Finally,
we evaluate sample-then-optimize neural Thompson sam-
pling (STO-NTS), training a 2-layer 256-width fully con-
nected neural network with a regularized least-squares loss
(Dai et al., 2022).

5.1. Optimization Functionals

We define several problem-dependent optimization function-
als, clarifying their physical interpretations for the bench-
mark flows in our maximization context, where negative
signs indicate quantities to be minimized.

Negative total flow rates (Katz, 1979): f(u, a) =
−
∫
∂Z a(z)(∇u(z) · n)ds integrates the volumetric flux

−a(z)∇u(z) across the boundary ∂Z (with outward normal
n), reflecting the fluid’s total flow rate, useful for leakage
reduction and contaminant control.

Negative total pressure (Jeong & Lee, 2025): f(u) =
− 1

2

∫
Z ∥u(z)∥2dz computes the average L2-norm of the

output function over the domain.

Negative total potential power (Wiker et al., 2007):
f(u, g) = − 1

2α(u, u)−
1
2β(u, u)+⟨g, u⟩, where α(u, v) =∫

Z
1∫

Z a(z)dz
u(z)·v(z)dz normalizes total power, β(u, v) =

2
∫
Z D(u(z)) · D(v(z))dz measures symmetrical power

3

Figure 1. Darcy flow rate optimization. Average cumulative regret
across trials for the negative total flow rates case in the Darcy flow
problem. The shaded areas correspond to one standard deviation
across 10 trials. The corresponding input-output functions that
achieved the best (left) and worst (right) flow rates are presented
(bottom). White regions a(x) = 1 means fully open permeability
and black regions a(x) = 0 represents impermeable pore material.
Output functions are pressure fields, where brighter color indicates
higher pressure.

Figure 2. Darcy flow potential power. Average cumulative regret
across trials for the negative total potential power functional in the
Darcy flow problem. The shaded areas correspond to one standard
deviation across 10 trials.

with D(u(z)) = 1
2 (∇u(z) + (∇u(z))T), and ⟨g, u⟩ =∫

Z g(z) · u(z)dz captures power induced by the forcing
function g(z) (set to 1 in Darcy flow).

Inverse problem: f(u) = − 1
2∥u − ut∥2 targets the ini-

tial condition a that produces the ground truth solution ut,
specifically in shallow water modeling. This mimics the
assimilation objective used in weather forecasting (Rabier
et al., 1998; Xiao et al., 2023).

5.2. Results

The results presented in Fig. 1 to 4 highlight the cumulative
regret of NOTS compared to baselines across various PDE
problem settings. In the Darcy flow benchmark (Fig. 1),
GP-based BO methods underperform in high-dimensional

Figure 3. Darcy flow pressure. Overlay of cumulative regret (left)
and its average (right) metrics across trials for the negative total
pressure functional in the Darcy flow problem.

Figure 4. Shallow water inverse problem. Overlay of cumulative
regret (left) and its average (right) metrics across trials for the
inverse problem in the shallow water data.

scenarios, while NOTS and other neural network Thomp-
son sampling methods excel. The "best candidate" design
effectively blocks fluid outflow with impermeable regions,
whereas the "worst candidate" features permeable zones
that allow high flow rates. Additional results on optimizing
power and pressure in Darcy flow (Figs. 2 and 3) further
confirm NOTS’s advantages. For the inverse problem in
the shallow water benchmark (Fig. 4), NOTS successfully
navigates the challenging 6144-dimensional input space,
leveraging the problem’s underlying physics for more effi-
cient exploration.

6. Conclusion
We introduced Neural operator Thompson sampling
(NOTS), demonstrating notable gains in capturing the com-
positional structure of black-box operator problems like
complex physics simulators. NOTS is supported by the-
oretical guarantees linking Thompson sampling to neu-
ral operator frameworks. Practically, using neural oper-
ators as surrogates for Thompson sampling is effective and
avoids costly uncertainty quantification by leveraging in-
sights from infinitely wide deep networks and Gaussian
processes. Neural operators enable scalable representation
learning in very high-dimensional spaces where traditional
bandits and Bayesian optimization struggle. Currently, our
results address finite search spaces and well-specified mod-
els; future work will extend to continuous domains and
batch settings for enhanced scalability.

4

Acknowledgements
This research was carried out solely using CSIRO’s re-
sources. Chai contributed while on sabbatical leave visiting
the Machine Learning and Data Science Unit at Okinawa
Institute of Science and Technology, and the Department
of Statistics in the University of Oxford. This project was
supported by resources and expertise provided by CSIRO
IMT Scientific Computing.

References
Alvarez, M. A., Rosasco, L., and Lawrence, N. D. Kernels

for vector-valued functions: a review. Foundations and
Trends in Machine Learning, 4(3), 2012.

Ament, S., Daulton, S., Eriksson, D., Balandat, M., and Bak-
shy, E. Unexpected improvements to expected improve-
ment for Bayesian optimization. In 37th Conference on
Neural Information Processing Systems (NeurIPS 2023),
New Orleans, LA, USA, 2023.

Astudillo, R. and Frazier, P. I. Bayesian optimization of
composite functions. In 36th International Conference
on Machine Learning, ICML 2019, volume 2019-June,
2019.

Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M.,
Kashinath, K., and Anandkumar, A. Spherical Fourier
neural operators: Learning stable dynamics on the sphere.
In International conference on machine learning (ICML),
pp. 2806–2823. PMLR, 2023.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In Proceedings of the 34th International
Conference on Machine Learning (ICML), Sydney, Aus-
tralia, 2017.

Dai, Z., Shu, Y., Low, B. K. H., and Jaillet, P. Sample-
then-optimize batch neural Thompson sampling. In Pro-
ceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, Red Hook,
NY, USA, 2022. Curran Associates Inc.

Daniely, A. SGD learns the conjugate kernel class of the
network. In Guyon, I., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc., 2017.

Guilhoto, L. F. and Perdikaris, P. Composite Bayesian
optimization in function spaces using NEON – Neural
Epistemic Operator Networks. Scientific Reports, 14,
2024.

Hanin, B. Random neural networks in the infinite width limit
as Gaussian processes. The Annals of Applied Probability,

33(6A):4798 – 4819, 2023. URL https://doi.org/
10.1214/23-AAP1933.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
ImageNet classification. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pp.
1026–1034, 2015.

Hu, Z. and Huang, H. On the random conjugate kernel
and neural tangent kernel. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 4359–4368. PMLR, 18–
24 Jul 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
In Advances in Neural Information Processing Systems,
Montreal, Canada, 2018.

Jeong, S. and Lee, S. Optimal control for Darcy’s equation
in a heterogeneous porous media. Applied Numerical
Mathematics, 207:303–322, 2025.

Jorgensen, P. E. T. and Tian, J. Operator-valued Gaussian
processes and their covariance kernels. Infinite Dimen-
sional Analysis, Quantum Probability and Related Topics,
27(02), 2024.

Katz, V. J. The history of Stokes’ theorem. Mathematics
Magazine, 52(3):146–156, 1979.

Kossaifi, J., Kovachki, N., Li, Z., Pitt, D., Liu-Schiaffini, M.,
George, R. J., Bonev, B., Azizzadenesheli, K., Berner,
J., and Anandkumar, A. A library for learning neural
operators, 2024.

Kovachki, N., Lanthaler, S., and Mishra, S. On universal
approximation and error bounds for Fourier neural opera-
tors. Journal of Machine Learning Research, 22(290):1–
76, 2021. URL http://jmlr.org/papers/v22/
21-0806.html.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces. Jour-
nal of Machine Learning Research, 24(89), 2023.

Kurth, T., Subramanian, S., Harrington, P., Pathak, J.,
Mardani, M., Hall, D., Miele, A., Kashinath, K., and
Anandkumar, A. FourCastNet: Accelerating global high-
resolution weather forecasting using adaptive Fourier
neural operators. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC ’23,
New York, NY, USA, 2023. Association for Computing
Machinery.

5

https://doi.org/10.1214/23-AAP1933
https://doi.org/10.1214/23-AAP1933
http://jmlr.org/papers/v22/21-0806.html
http://jmlr.org/papers/v22/21-0806.html

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K. R. Efficient
BackProp, pp. 9–50. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington,
J., and Sohl-dickstein, J. Deep neural networks as Gaus-
sian processes. In International Conference on Learning
Representations (ICLR), 2018.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. Wide neural net-
works of any depth evolve as linear models under gradient
descent. In 33rd Conference on Neural Information Pro-
cessing Systems (NeurIPS), Vancouver, Canada, 2019.

Li, S., Yu, X., Xing, W., Kirby, R., Narayan, A., and Zhe,
S. Multi-resolution active learning of Fourier neural op-
erators. In Dasgupta, S., Mandt, S., and Li, Y. (eds.),
Proceedings of The 27th International Conference on
Artificial Intelligence and Statistics, volume 238 of Pro-
ceedings of Machine Learning Research, pp. 2440–2448.
PMLR, 2024a. URL https://proceedings.mlr.
press/v238/li24k.html.

Li, Y. L., Rudner, T. G. J., and Wilson, A. G. A study of
Bayesian neural network surrogates for Bayesian opti-
mization. In 2024 International Conference on Learning
Representations (ICLR), Vienna, Austria, 2024b. Open-
Review.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier neu-
ral operator for parametric partial differential equations.
In International Conference on Learning Representations.
OpenReview, 2021.

Li, Z., Kovachki, N., Choy, C., Li, B., Kossaifi, J., Otta, S.,
Nabian, M. A., Stadler, M., Hundt, C., Azizzadenesheli,
K., and Anandkumar, A. Geometry-informed neural op-
erator for large-scale 3d PDEs. Advances in Neural Infor-
mation Processing Systems, 36:35836–35854, 2023.

Liu, C., Zhu, L., and Belkin, M. On the linearity of large
non-linear models: When and why the tangent kernel is
constant. In Advances in Neural Information Processing
Systems, 2020.

Mao, Z. and Meng, X. Physics-informed neural networks
with residual/gradient-based adaptive sampling methods
for solving partial differential equations with sharp so-
lutions. Applied Mathematics and Mechanics, 44(7):
1069–1084, 2023.

Matthews, A. G. d. G., Hron, J., Rowland, M., Turner,
R. E., and Ghahramani, Z. Gaussian Process Behaviour
in Wide Deep Neural Networks. In International Confer-
ence on Learning Representations, Vancouver, Canada,

2018. OpenReview.net. URL https://openreview.
net/forum?id=H1-nGgWC-.

Mora, C., Yousefpour, A., Hosseinmardi, S., Owhadi, H.,
and Bostanabad, R. Operator learning with Gaussian
processes. Computer Methods in Applied Mechanics and
Engineering, 434:117581, 2025.

Musekamp, D., Kalimuthu, M., Holzmüller, D., Takamoto,
M., and Niepert, M. Active learning for neural PDE
solvers. In International Conference on Learning Repre-
sentations (ICLR), Singapore, 2025. OpenReview.

Neal, R. M. Priors for Infinite Networks, chapter 2, pp.
29–53. Springer New York, New York, NY, 1996.

Nguyen, M. and Mücke, N. Optimal convergence rates
for neural operators. arXiv e-prints, 2024. URL http:
//arxiv.org/abs/2412.17518.

Oommen, V., Shukla, K., Desai, S., Dingreville, R.,
and Karniadakis, G. E. Rethinking materials simula-
tions: Blending direct numerical simulations with neu-
ral operators. npj Computational Materials, 10(1):
145, 2024. URL https://doi.org/10.1038/
s41524-024-01319-1.

Ordoñez, S. C., Plenk, J., Bergna, R., Cartea, A., Hernández-
Lobato, J. M., Palla, K., and Ciosek, K. Observation noise
and initialization in wide neural networks. In 7th Sympo-
sium on Advances in Approximate Bayesian Inference –
Workshop Track, 2025. URL https://openreview.
net/forum?id=9A9p2lkPDI.

Owhadi, H. and Scovel, C. Gaussian Measures, Cylinder
Measures, and Fields on B, pp. 347–359. Cambridge
Monographs on Applied and Computational Mathematics.
Cambridge University Press, 2019.

Pickering, E., Guth, S., Karniadakis, G. E., and Sapsis,
T. P. Discovering and forecasting extreme events via
active learning in neural operators. Nature Computational
Science, 2(12):823–833, 2022.

Pisier, G. Probabilistic methods in the geometry of Banach
spaces. Probability and analysis, pp. 167–241, 1986.

Rabier, F., Thépaut, J.-N., and Courtier, P. Extended assimi-
lation and forecast experiments with a four-dimensional
variational assimilation system. Quarterly Journal of
the Royal Meteorological Society, 124(550):1861–1887,
1998.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes
for Machine Learning. The MIT Press, Cambridge, MA,
2006.

6

https://proceedings.mlr.press/v238/li24k.html
https://proceedings.mlr.press/v238/li24k.html
https://openreview.net/forum?id=H1-nGgWC-
https://openreview.net/forum?id=H1-nGgWC-
http://arxiv.org/abs/2412.17518
http://arxiv.org/abs/2412.17518
https://doi.org/10.1038/s41524-024-01319-1
https://doi.org/10.1038/s41524-024-01319-1
https://openreview.net/forum?id=9A9p2lkPDI
https://openreview.net/forum?id=9A9p2lkPDI

Russo, D. and Van Roy, B. Learning to optimize via poste-
rior sampling. Mathematics of Operations Research, 39
(4):1221–1243, 2014.

Russo, D. and Van Roy, B. An information-theoretic analy-
sis of Thompson sampling. Journal of Machine Learning
Research (JMLR), 17:1–30, 2016.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De
Freitas, N. Taking the human out of the loop: A review
of Bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2016.

Takeno, S., Inatsu, Y., Karasuyama, M., and Takeuchi, I.
Posterior sampling-based Bayesian optimization with
tighter Bayesian regret bounds. In Proceedings of the 41
st International Conference on Machine Learning (ICML
2024), volume 235, Vienna, Austria, 2024. PMLR.

Tran-Thanh, L. and Yu, J. Y. Functional bandits. arXiv
e-prints, 2014. URL http://arxiv.org/abs/
1405.2432.

Vakili, S., Bromberg, M., Garcia, J., Shiu, D. S., and Bernac-
chia, A. Information gain and uniform generalization
bounds for neural kernel models. In IEEE International
Symposium on Information Theory (ISIT), pp. 555–560.
IEEE, 2023.

Vellanki, P., Rana, S., Gupta, S., de Celis Leal, D., Sutti,
A., Height, M., and Venkatesh, S. Bayesian functional
optimisation with shape prior. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):1617–1624,
2019.

Vien, N. A. and Toussaint, M. Bayesian functional opti-
mization. In AAAI Conference on Artificial Intelligence,
pp. 4171–4178, New Orleans, LA, USA, 2018.

Wiker, N., Klarbring, A., and Borrvall, T. Topology opti-
mization of regions of Darcy and Stokes flow. Interna-
tional journal for numerical methods in engineering, 69
(7):1374–1404, 2007.

Xiao, Y., Bai, L., Xue, W., Chen, K., Han, T., and Ouyang,
W. Fengwu-4dvar: Coupling the data-driven weather
forecasting model with 4d variational assimilation. arXiv
preprint arXiv:2312.12455, 2023.

Zhang, W., Zhou, D., Li, L., and Gu, Q. Neural Thomp-
son sampling. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=tkAtoZkcUnm.

7

http://arxiv.org/abs/1405.2432
http://arxiv.org/abs/1405.2432
https://openreview.net/forum?id=tkAtoZkcUnm
https://openreview.net/forum?id=tkAtoZkcUnm

A. Background
Neural operators. A neural operator is a specialized neural network architecture modeling operators G : A → U
between function spaces A and U (Kovachki et al., 2023). Assume A ⊂ C(X ,Rda) and U ⊂ C(Z,Rdu), where C(S,S ′)
denotes the space of continuous functions between sets S and S ′. Given an input function a ∈ A, a neural operator Gθ

performs a sequence of transformations a =: u0 7→ u1 7→ · · · 7→ uL−1 7→ uL through L layers of neural networks, where
ul : Xl → Rdl is a continuous function for each layer l ∈ {1, . . . , L}, and XL := Z is the domain of the output functions
and dL := du. In one of its general formulations, for a given l ∈ {0, 1, . . . , L− 1}, the result of the transform (or update) at
any x ∈ Xl+1 and z ∈ Z can be described as:

u0 := a (A.1)

ul+1(x) := αl+1

(∫
Xl

Rl(x, x
′, ul(Πl(x)), ul(x

′))ul(x
′) dνl(x

′) +Wl ul(Πl(x)) + bl(x)

)
(A.2)

Gθ(a)(z) := uL(z) , (A.3)

where Πl : Xl+1 → Xl is a fixed mapping (often the identity), αl : R → R denotes an activation function applied
elementwise, Rl : Xl+1×Xl×Rdl×Rdl → Rdl+1×dl defines a (possibly nonlinear or positive-semidefinite) kernel integral
operator with respect to a measure νl on Xl, Wl ∈ Rdl+1×dl is a weight matrix, and bl : Xl+1 → Rdl+1 is a bias function.
We denote by θ the collection of all learnable parameters of the neural operator: the weights matrices Wl, the parameters of
the bias functions bl and the matrix-valued kernels Rl, for all layers l ∈ {1, . . . , L}. Variations to the formulation above
correspond to various neural operator architectures based on low-rank kernel approximations, graph structures, Fourier
transforms, etc. (Kovachki et al., 2023).

Vector-valued Gaussian processes. Vector-valued Gaussian processes extend scalar GPs (Rasmussen & Williams, 2006)
to the case of vector-valued functions (Alvarez et al., 2012). Let A be an arbitrary domain, and let U be a Hilbert space
representing a codomain. We consider the case where both the domain A and codomain U might be infinite-dimensional
vector spaces, which leads to GPs whose realizations are operators G∗ : A → U (Jorgensen & Tian, 2024). To simplify
our exposition, we assume that U is a separable Hilbert space, though the theoretical framework is general enough to
be extended to arbitrary Banach spaces (Owhadi & Scovel, 2019). A vector-valued Gaussian process G∗ ∼ GP(Ĝ,K)

on A is fully specified by a mean operator Ĝ : A → U and a positive-semidefinite operator-valued covariance function
K : A×A → L(U), where L(U) denotes the space of bounded linear operators on U . Formally, given any a, a′ ∈ A and
any u, u′ ∈ U , it follows that:

E[G∗(a)] = Ĝ(a), (A.4)
Cov(⟨G∗(a), u⟩, ⟨G∗(a

′), u′⟩) = ⟨u,K(a, a′)u′⟩ , (A.5)

where ⟨·, ·⟩ denotes the inner product and Cov(·, ·) stands for the covariance between scalar variables. Assume we are
given a set of observations Dt := {(ai, yi)}ti=1 ⊂ A × U , where yi = G∗(ai) + ξi, and ξi ∼ N (0,Σ) corresponds to
Gaussian U-valued noise with covariance operator Σ ∈ L(U). The posterior mean and covariance can then be defined by
the following recursive relations:

Ĝt(a) = Ĝt−1(a) +Kt−1(a, at)(Kt−1(at, at) + Σ)−1ut (A.6)

Kt(a, a
′) = Kt−1(a, a

′)−Kt−1(a, at)(Kt−1(at, at) + Σ)−1Kt−1(at, a
′) (A.7)

for any a, a′ ∈ A, and t ∈ N, which are an extension of the same recursions from the scalar-valued case (Chowdhury &
Gopalan, 2017, App. F) to the case of vector-valued processes. Such definition arises from sequentially conditioning the GP
posterior on each observation, starting from the prior GP(Ĝ0,K0). It leads to the same matrix-based definitions of the usual
GP posterior equations (Rasmussen & Williams, 2006), but in our case avoids complications with the resulting higher-order
tensors that arise when kernels are operator-valued.

B. Conjugate Kernel vs. Neural Tangent Kernel
In this section, we discuss the main differences between the neural tangent kernel (Jacot et al., 2018) and the conjugate
kernel, also known as the neural network Gaussian process (NNGP) kernel (Lee et al., 2019). Both kernels are used to
approximate the behavior of neural networks, but they differ in how they use Gaussian processes to describe the network’s
behavior.

8

B.1. Conjugate Kernel (NNGP)

The conjugate kernel has long been studied in the neural networks literature, describing the correspondence neural networks
with randomized parameters and their limiting distribution as the network width approaches infinity (Neal, 1996; Daniely,
2017; Lee et al., 2018; Matthews et al., 2018; Hu & Huang, 2021). Neal (1996) first showed the correspondence between
an infinitely wide single-hidden-layer network and a Gaussian process by applying the central limit theorem. More recent
works (Daniely, 2017; Lee et al., 2018; Matthews et al., 2018) later showed that the same reasoning can be extended to
neural networks with multiple hidden layers. The NNGP kernel is particularly useful for Bayesian inference as it allows
us to define GP priors for neural networks and analyze how they change when conditioned on data, providing us with
closed-form expressions for an exact GP posterior in the infinite-width limit (Lee et al., 2018).

Define an L-layer neural network h(·,θ) : X → R with h(x;θ) := hL(x;θ) via the recursion:

h0(x;θ) := x

hl(x;θ) := αl(Wlhl−1(x;θ) + bl) , l ∈ {1, . . . , L},
(B.1)

where x ∈ X represents an arbitrary input on a finite-dimensional domain X , Wl ∈ RMl×Ml−1 denotes a layer’s weights
matrix, Ml is the width of the lth layer, bl ∈ RMl is a bias vector, αl : R → R denotes the layer’s activation function,
which is applied elementwise on vector-valued inputs, and θ := vec({Wl, bl}Ll=1) collects all the network parameters into a

vector. Assume [Wl]i,j ∼ N
(
0, 1

Ml−1

)
and [bl]i ∼ N (0, 1), for i ∈ {1, . . . ,Ml}, j ∈ {1, . . . ,Ml−1} and l ∈ {1, . . . , L},

and let M := min{M1, . . . ,ML}. The NNGP kernel then corresponds to the infinite-width limit of the network outputs
covariance function (Lee et al., 2018) as:

kNNGP(x, x
′) := lim

M→∞
E[h(x;θ)h(x′;θ)], x, x′ ∈ X , (B.2)

where the expectation is taken under the parameters distribution. By an application of the central limit theorem, it can be
shown (Neal, 1996; Lee et al., 2018) that the neural network converges in distribution to a Gaussian process with the kernel
defined above, i.e.:

hθ
d−→ h ∼ GP(0, kNNGP) , (B.3)

where d−→ denotes convergence in distribution as M → ∞. In other words, the randomly initialized network follows a
GP prior in the infinite-width limit. Moreover, it follows that, when conditioned on data DN := {xi, yi}Ni=1, assuming
yi = h(xi)+ϵi and ϵi ∼ N (0, σ2

ϵ), a Bayesian neural network is distributed according to a GP posterior in the infinite-width
limit as:

h|DN ∼ GP(µN , kN) (B.4)

µN (x) := E[h(x) | DN] = kN (x)T(KN + σ2
ϵ I)

−1yN (B.5)

kN (x, x′) := Cov[h(x), h(x′) | DN] = k(x, x′)− kN (x)T(KN + σ2
ϵ I)

−1kN (x′), (B.6)

for any x, x′ ∈ X , where KN := [k(xi, xj)]
N
i,j=1 ∈ RN×N , kN (x) := [k(xi, x)]

N
i=1 ∈ RN , yN := [yi]

N
i=1, and we set

k := kNNGP to avoid notation clutter. Hence, the NNGP kernel allows us to compute exact GP posteriors for neural network
models. However, we emphasize that the conjugate kernel should not be confused with the neural tangent kernel (Jacot
et al., 2018), which corresponds to the infinite-width limit of E[∇θh(x;θ) · ∇θh(x

′;θ)], instead.

B.2. Neural Tangent Kernel (NTK)

The NTK approximates the behavior of a neural network during training via gradient descent by considering the gradients of
the network with respect to its parameters (Jacot et al., 2018). Consider an L-layer feedforward neural network hθ : X → R
as defined in Equation B.1. In its original formulation, Jacot et al. (2018) applied a scaling factor of 1√

M
to the output of

each layer to ensure asymptotic convergence in the limit M →∞ of the network trained via gradient descent. However,
later works showed that standard network parameterizations (without explicit output scaling) also converge to the same limit
as long as a LeCun or Kaiming/He type of initialization scheme is applied to the parameters with appropriate scaling of
the learning rates (Lee et al., 2019; Liu et al., 2020), which ensure bounded variance in the infinite-width limit. The NTK
describes the limit:

kNTK(x, x
′) = lim

M→∞
E[∇θhθ(x) · ∇θhθ(x

′)] , (B.7)

9

for any x, x′ ∈ X , where the expectation is taken under the parameters initialization distribution. Under mild assumptions,
the trained network’s output distribution converges to a Gaussian process described by the NTK (Jacot et al., 2018; Lee et al.,
2018). Although originally derived for the unregularized case, applying L2 regularization to the parameters norm yields a
GP posterior with a term that can account for observation noise (Ordoñez et al., 2025). Namely, consider the following loss
function:

ℓN (θ) :=

N∑
i=1

(yi − hθ(xi))
2
2 + λ∥θ − θ0∥22 , (B.8)

where θ0 denotes the initial parameters. As the network width grows larger, the NTK tells us that the network behaves like a
linear model (Jacot et al., 2018; Liu et al., 2020) as:

h(x;θ) ≈ h(x;θ0) +∇θh(x;θ)
∣∣
θ:=θ0

· (θ − θ0) , x ∈ X . (B.9)

The approximation becomes exact in the infinite width limit within any bounded neighborhood BR(θ0) := {θ | ∥θ− θ0∥ ≤
R} of arbitrary radius 0 < R <∞ around θ0, as the second-order error term vanishes (Liu et al., 2020). The latter also
means that ∇θh(·;θ) converges to fixed feature map ϕ : X → H0, whereH0 is the Hilbert space spanned by the limiting
gradient vectors. With this observation, our loss function can be rewritten as:

ℓN (θ) ≈
N∑
i=1

(
yi − h(xi;θ0)−∇θh(xi;θ)

∣∣
θ:=θ0

· (θ − θ0)
)2

+ λ∥θ − θ0∥22 . (B.10)

The minimizer of the approximate loss can be derived in closed form. Applying the NTK then yields the infinite-width
model:

hN (x) = h(x) + kNTK
N (x)T(KNTK

N + λI)−1(yN − hN) , (B.11)

where h ∼ GP(0, kNNGP) denotes the network at its random initialization, as defined above, kNTK
N (x) := [kNTK(xi, x)]

N
i=1 ∈

RN , KNTK
N := [kNTK(xi, xj)]

N
i,j=1 ∈ RN×N , and hN := [h(xi)]

N
i=1 ∈ RN . Now applying the GP limit to the randomly

initialized network h (Lee et al., 2019; Ordoñez et al., 2025), we have that:

hN ∼ GP(µ̂N , k̂N) (B.12)

µ̂N (x) = kNTK
N (x)T(KNTK

N + λI)−1yN (B.13)

k̂N (x, x′) = k(x, x′) + kNTK
N (x)T(KNTK

N + λI)−1KN (KNTK
N + λI)−1kNTK

N (x′)

− kNTK
N (x)T(KNTK

N + λI)−1kN (x′)− kN (x)T(KNTK
N + λI)−1kNTK

N (x′),
(B.14)

where we again set k := kNNGP to avoid clutter. However, note that such GP model does not generally correspond to a
Bayesian posterior. An exception is where only the last linear layer is trained, while the rest are kept fixed at their random
initialization; in which case case, the GP described by the NTK and the exact GP posterior according to the NNGP kernel
match (Lee et al., 2019, App. D).

B.3. Application to Thompson Sampling

For our purpose, it is important to have a Bayesian posterior in order to apply Gaussian process Thompson sampling
(GP-TS) (Takeno et al., 2024) for the regret bounds in Proposition 2. Therefore, we are constrained by existing theories
connecting neural networks to Gaussian processes to assume training only the last layer of neural networks of infinite width,
which gives a Bayesian posterior of the NNGP after training. In addition, we had to consider the case of a single hidden
layer neural operator, as the usual recursive step applied to derive the infinite-width limit would require an intermediate
(infinite-dimensional) function space in our case, making the extension to the multi-layer case not trivial. Nonetheless,
the NOTS algorithm suggested by our theory has demonstrated competitive performance in our experiments even in more
relaxed settings with a multi-layer model. Future theoretical developments in Bayesian analysis of neural networks may
eventually permit the convergence analysis of the more relaxed settings in our experiments. In any case, we present an
experiment with a wide single-hidden-layer model with training only on the last layer in Appendix F.

C. The Infinite-Width Limit of Neural Operators
Neural operator abstraction. A neural operator is a specialized neural network architecture modeling nonlinear operators
G : A → U between possibly infinite-dimensional function spaces A and U . Current results in NTK (Jacot et al., 2018)

10

and Gaussian process theory for neural networks (Lee et al., 2019) do not immediately apply to this setting, as they are
formulated for finite-dimensional domains. However, we can leverage an abstraction for neural operator architectures to see
their layers as operating over finite-dimensional inputs (Nguyen & Mücke, 2024), which result from truncations that make
the modeling problem tractable.

Considering a single hidden layer neural operator, let M ∈ N represent the layer’s width, AR : A → C(Z,RdR) denote a
(fixed) continuous operator, and b0 : Z → Rdb denote a (fixed) continuous function. For simplicity, we will assume scalar
outputs with du = 1. In general, a single hidden layer of the model described in Equation A.3 can be rewritten as:

Gθ(a)(z) =wT
oα (WRAR(a)(z) +Wua(Π0(z)) +Wbb0(z)) , (C.1)

for z ∈ Z , where θ := vec(wo,WR,Wu,Wb) ∈ RM(1+dR+da+db) =: W represents the model’s flattened parameters.
The finite weight matrix WR representing the kernel convolution integral arises as a result of truncations required in
the practical implementation of neural operators (e.g., a finite number of Fourier modes or quadrature points). With this
formulation, one can recover most popular neural operator architectures (Nguyen & Mücke, 2024). In the appendix, we
discuss how Fourier neural operators (Li et al., 2021) fit under this formulation, though it is general enough to incorporate
other cases. We also highlight that neural operators possess universal approximation properties (Kovachki et al., 2021),
given sufficient data and computational resources, despite the inherent truncations in their architecture.

C.1. Application to Fourier Neural Operators

As an example, we show how the formulation above applies to the Fourier neural operator (FNO) architecture (Li et al.,
2021). For simplicity, assume that X is the d-dimensional periodic torus, i.e., X = [0, 2π)d, and Z = X . Then any
square-integrable function a : X → Cda can be expressed as a Fourier series:

a(x) =
∑
s∈Zd

â(s)eι⟨s,x⟩, ∀x ∈ X , (C.2)

where ι :=
√
−1 ∈ C denotes the imaginary unit, and â(s) are coefficients given by the function’s Fourier transform

F : L2(X ,Cda)→ L2(Zd,Cda) as:

â(s) := (Fa)(s) =
1

(2π)d

∫
X
a(x)e−ι⟨s,x⟩ dx , s ∈ Zd . (C.3)

For a translation-invariant kernel R(x, x′) = R(x− x′), applying the convolution theorem, the integral operator is:∫
X
R(·, x)a(x) dx = R ∗ a

= F−1(F (R) · F (a))

=
∑
s∈Zd

R̂(s)â(s)eι⟨s,·⟩

(C.4)

In practice, function observations are only available at a discrete set of points and the Fourier series is truncated at a maximum
frequency smax ∈ Zd, which allows one to efficiently compute it via the fast Fourier transform (FFT). Considering these
facts, FNOs approximate the integral as (Li et al., 2021):∫

X
R(x, x′)a(x′) dx′ ≈

N∑
n=1

R̂(sn)â(sn)e
ι⟨sn,x⟩, x ∈ Z , (C.5)

where the N values of sn range from 0 to smax in all d coordinates. Now we can finally see that, defining AR as:

AR : C(X ,Cda)→ C(X ,CNda)

a 7→

 (Fa)(s1)e
ι⟨s1,·⟩

...
(Fa)(sN)eι⟨sN ,·⟩

 ,
(C.6)

11

and letting WR = [R̂(s1), . . . , R̂(sN)], we recover Equation C.1 for FNOs in the complex-valued case.

For real-valued functions, to ensure that the result is again real-valued, a symmetry condition is imposed on R̂, so that its
values for negative frequencies are the conjugate transpose of the corresponding values for positive frequencies. However,
we can still represent it via a single matrix of weights, which is simply conjugate transposed for the negative frequencies.
Lastly, note that complex numbers can be represented as tuples of real numbers.

C.2. Infinitely Wide Neural Operator as Gaussian Process

With the construction in Equation C.1, we can simply see the result of a neural operator layer when evaluated at a fixed
z ∈ Z equivalently as a M -width feedforward neural network:

Gθ(a)(x) = hθ(vz(a)) := ⟨wo, α(Wvz(a))⟩ , (C.7)

where the input is given by vz(a) := [AR(a)(z), a(Π0(z)), b0(z)] ∈ V , and V := RdR+da+db .

Conjugate kernel. As seen above, a single-hidden-layer neural operator can be seen as a fully connected neural network
hθ : V → R when its output is evaluated at a fixed z ∈ Z . We can now derive its infinite-width limits. The conjugate kernel
describes the distribution of the untrained neural network under Gaussian weights initialization, whose infinite-width limit
yields a Gaussian process (Neal, 1996; Lee et al., 2018). Formally, the conjugate kernel is defined as:

kh(v,v
′) := lim

M→∞
Eθ0∼N (0,I)[hθ0

(v)hθ0
(v′)], v,v′ ∈ V . (C.8)

As the composition of the map A×Z ∋ (a, z) 7→ vz(a) ∈ V with a kernel on V yields a kernel on A×Z , the conjugate
kernel of Gθ is determined by:

kG(a, z, a
′, z′) := kh(vz(a),vz′(a′)), a, a′ ∈ A, z, z′ ∈ Z , (C.9)

where kh is the conjugate kernel of the neural network hθ . Such a kernel defines a covariance function for a GP over the space
of operators mapping A to U . Assume U ⊂ L2(ν) for some σ-finite Borel measure on Z , and let L(U) denote the space of
linear operators on U . The following then defines a positive-semidefinite operator-valued kernel KG : A×A → L(U):

(KG(a, a
′)u)(z) =

∫
Z
kG(a, z, a

′, z′)u(z′) dν(z′), (C.10)

for any u ∈ U , a, a′ ∈ A and z ∈ Z . Hence, we can state the following result.
Proposition C.1. Let Gθ be a neural operator with a single hidden layer, as defined as in Equation C.1. Assume
wo ∼ N (0, σ2

θI), for σ2
θ > 0 such that σ2

θ ∈ O(1
M), and let the remaining parameters have their entries sampled from a

standard normal distribution. Then, as M →∞, the neural operator converges in distribution to a zero-mean vector-valued
Gaussian process with operator-valued covariance function given by:

lim
M→∞

Eθ∼N (0,σ2
θI)

[Gθ(a)⊗Gθ(a
′)] = KG(a, a

′) , a, a′ ∈ A , (C.11)

where KG : A×A → L(U) is defined in Equation C.10, and ⊗ denotes the outer product.

To prove the result above, we first need the following definitions and auxiliary results. We start with a basic definition for a
randomly initialized neural network.
Definition C.1 (Multi-Layer Fully-Connected Neural Network). A multi-layer fully-connected neural network with L
hidden layers, input dimension d0, output dimension dL+1, and hidden layer widths d1, . . . , dL, is defined recursively as
follows. For input x ∈ X , the pre-activations and activations at layer l = 1, . . . , L+ 1 are:

v(1)(x) = W(0)x+ b(0) (C.12)

v(l)(x) = W(l−1)α(v(l−1)(x)) + b(l−1), l = 2, . . . , L, (C.13)

v(L+1)(x) = W(L)α(v(L)(x)), (C.14)

where W(l) ∈ Rdl+1×dl are weight matrices, b(l) ∈ Rdl+1 are bias vectors, α : R→ R is a coordinate-wise non-linearity,

and the network output is f(x) = v(L+1)(x). The weights are initialized as W (l)
ij =

(
cW
dl

)1/2

Ŵ
(l)
ij , where Ŵ

(l)
ij ∼ µ with

mean 0, variance 1, and finite higher moments, and biases as b(l)i ∼ N (0, cb), given fixed constants cW > 0 and cb ≥ 0.

12

Lemma C.1 (Infinite-width limit (Hanin, 2023)). Consider a feedforward fully connected neural network as in Definition C.1
with non-linearity α : R→ R that is absolutely continuous with polynomially bounded derivative. Fix the input dimension d0,
the output dimension dL+1, the number of layers L, and a compact set X ⊂ Rd0 . As hidden layer widths d1, . . . , dL →∞,
the random field x 7→ f(x) converges weakly in C(X ,RdL+1) to a centered Gaussian process with covariance K(L+1) :
X × X → Rdl+1×dl+1 defined recursively by:

K(l+1)(x, x′) = cbI+ cW E(v,v′) [α(v)⊗ α(v′)] , (C.15)

where (v,v′) ∼ N
(
0,

[
K(l)(x, x) K(l)(x, x′)

K(l)(x, x′) K(l)(x′, x′)

])
for l ≥ 2, with the initial condition for l = 1 determined by the

first-layer weights and biases.

Assumption 1. The activation function α : R→ R is absolutely continuous with derivative bounded almost everywhere.

Considering the assumption above, the main component of our proof of Proposition C.1 is the following lemma.
Lemma C.2 (Continuity of limiting GP). Let Gθ : A → C(Z) be a neural operator with a single hidden layer, as defined as
in Equation C.1. Assume wo ∼ N (0, σ2

θI), for σ2
θ > 0 such that σ2

θ ∈ O(1
M), and let the remaining parameters have their

elements sampled from a standard normal distribution. Then, as M →∞, the neural operator converges in distribution to
a zero-mean Gaussian process with continuous realizations G : A → C(Z).

Proof. As shown above, when evaluated at a fixed point z ∈ Z , a neural operator with a single hidden layer can be seen as:

Gθ(a)(z) = hθ(ϕ(a, z)), a ∈ A , (C.16)

where ϕ(a, z) := vz(a) is a fixed map ϕ : A×Z → V , with V = RdR+da+db , and hθ is a conventional feedforward neural
network. By Assumption 1 and Lemma C.1, it follows that, as M →∞, hθ converges in distribution to a Gaussian process
h ∼ GP(0, kh) with continuous sample paths, i.e., h ∈ C(V) almost surely. The continuity of ϕ : A×Z → V then implies
that g := h ◦ ϕ is a zero-mean GP whose sample paths lie almost surely in C(A × Z). Therefore, for each a ∈ A, we
have P [g(a, ·) ∈ C(Z)] = 1, so that G(a) := g(a, ·) defines an almost surely continuous operator G : A → C(Z). The
verification that G is a vector-valued GP trivially follows.

The proof of Proposition C.1 now proceeds as follows.

Proof of Proposition C.1. We start by noting that any continuous function u ∈ C(Z) is automatically included in U = L2(ν),
since ∥u∥2U =

∫
Z u(z)2 dν(z) ≤ ν(Z)∥u∥2∞ <∞. Hence, any operator mapping into C(Z) also maps into U by inclusion.

Applying Lemma C.2, it follows that Gθ
d→ G, where G is a zero-mean GP, as M →∞. Now, given any u ∈ U , a, a′ ∈ A

and z ∈ Z , we have that:

(E[G(a)⊗G(a′)]u)(z) = E[G(a)⟨G(a′), u⟩]

=

(
E
[
g(a, ·)

∫
Z
g(a′, z′)u(z′) dν(z′)

])
(z)

= E
[∫

Z
g(a, z)g(a′, z′)u(z′) dν(z′)

]
=

∫
Z
E[g(a, z)g(a′, z′)]u(z′) dν(z′)

=

∫
Z
kG(a, z, a

′, z′)u(z′) dν(z′) ,

(C.17)

where we applied the linearity of expectations and the correspondence between g : A×Z → R and the limiting operator
G : A → U . As the choice of elements was arbitrary, it follows that the above defines an operator-valued kernel KG.
Linearity follows from the expectations. Given any a ∈ A, the operator norm of KG(a, a) is bounded by its trace, which is
such that:

Tr(KG(a, a)) = E[∥G(a)∥2U] = E
[∫

Z
g(a, z)2 dν(z)

]
< ν(Z)E[∥g∥2∞] , (C.18)

and the last expectation is finite, since g is almost surely continuous. Hence, KG(a, a) ∈ L(U).

13

D. Regret Bound
Lemma D.1 (Thm. 3.1 in Takeno et al. (2024)). Let f ∼ GP(0, k), where k : X ×X → R is a positive-definite kernel on a
finite X . Then the Bayesian cumulative regret of GP Thompson sampling is such that:

RT ∈ O(
√
TγT) ,

where γT denotes the maximum information gain after T iterations with the GP model.

Proof of Proposition 1. Following Proposition C.1, the infinite-width limit yields G ∼ GP(0,KG). By linearity, it follows
that f ◦G ∼ GP(0, fTKGf) for any fixed bounded linear functional f : U → R.

As in practice we only observe the operators output on a finite domain, i.e., Z := {zi}nz
i=1, the assumed noise model yields a

finite-dimensional vector of observations y = G∗(a) + ξ, where ξ ∼ N (0, σ2
ξI), for any a ∈ S. Training our model via

regularized gradient descent with λ := σ2
ξ then yields a neural operator GP posterior G∗|Dt ∼ GP(Ĝt,Kt) with mean

and covariance operators defined in (A.6) and (A.7), respectively, as previously discussed. Correspondingly, we have
f ◦G∗|Dt ∼ GP(f ◦ Ĝt, f

TKtf). The result then follows by a straightforward application of Lemma D.1.

Remark D.1. Despite the result above assuming that f is only a function of G(a), there is a straightforward extension to
functionals of the form f : U ×A → R, as considered in our experiments. We simply need to replace G : A → U with the
operator G′ : a 7→ (G(a), a) by a concatenation with an identity map a 7→ a, which is deterministic. A similar result then
follows after minor adjustments.

If the cumulative regret bound above grows sublinearly over time, i.e., γf,T ∈ o(
√
T), the algorithm should eventually

find the true optimum, since its simple regret would vanish. Showing that the maximum information gain satisfies these
assumptions, however, requires specific knowledge of the chosen neural operator architecture. In the case of activation
functions of the form αs(y) = (max(0, y))s, for s ∈ N, Vakili et al. (2023) showed that γT ∈ Õ(T

d−1
d+2s), where the Õ

notation suppresses logarithmic factors. Hence, for a sufficiently smooth activation function (i.e., with a large enough
smoothness parameter s), NOTS should be able to achieve sublinear cumulative regret.

E. Experiment Details
E.1. PDE Problems

In this section, we provide the details of the problems used in the experiments.

Darcy flow. Darcy flow describes the flow of a fluid through a porous medium with the following PDE form

−∇ · (a(x)∇u(x)) = g(x) x ∈ Ω = (0, 1)2

u(x) = 0 x ∈ ∂Ω = ∂(0, 1)2

where u(x) is the flow pressure, a(x) is the permeability coefficient and g(x) is the forcing function. We fix g(x) = 1 and
generate different solutions at random with zero Neumann on the Laplacian, following the setting in Li et al. (2021) via the
neural operator library implementation (Kossaifi et al., 2024). In particular, for this problem, we generate a search space S
with |S| = 1000 data points. The divergence of f is ∇ · f = ∂fx

∂x +
∂fy
∂y where f : Ω→ R2 is a vector field f = (fx, fy).

The gradient ∇u = (∂u(x,y)∂x , ∂u(x,y)
∂y) where u(x, y) : Ω → R is a scalar field. Inspired by previous works (Wiker et al.,

2007; Katz, 1979; Mao & Meng, 2023), we chose the following objective functions to evaluate the functions assuming that
we aim to maximize the objective function f(·):

1. Negative total flow rates (Katz, 1979)

f(u, a) =

∫
∂Ω

a(x)(∇u(x) · n)ds

where s = ∂Ω is the boundary of the domain and n is the outward pointing unit normal vector of the boundary. q(x) =
−a(x)∇u(x) is the volumetric flux which describes the rate of volume flow across a unit area. Therefore, the objective

14

function measures the boundary outflux. Since the boundary is defined on a grid, n ∈ {[−1, 0], [1, 0], [0, 1], [0,−1]}
for the left, right, top and bottom boundaries. The boundary integral can be simplified as∫ 1

0

[−a(0, y)ux(0, y) + a(1, y)ux(1, y)]dy +

∫ 1

0

[−a(x, 0)uy(x, 0) + a(x, 1)uy(x, 1)]dx

where ux(x, y) =
∂u
∂x , uy(x, y) =

∂u
∂y

2. High gradient solutions (Algorithm 2 in (Mao & Meng, 2023))

f(u) =
1

K

∑
k

topk(∥∇u(x)∥2), x ∈ Ω

where the top-K highest gradients of the solution functions are averaged to approximate the high gradients of the
overall solutions. In the experiments we set K = 10 for computation efficiency.

3. Negative total pressure (Eq 2.1 in (Jeong & Lee, 2025))

f(u, g) = −1

2

∫
Ω

(∥u(x)∥2 + β∥g(x)∥2)dx

with β > 0 is a coefficient for the forcing term g(x). With a constant g(x), the objective is simplified as
− 1

2

∫
Ω
∥u(x)∥2dx.

4. Negative total potential power (Eq (14) in (Wiker et al., 2007))

f(u, g) = −1

2
α(u, u)− 1

2
β(u, u) + ⟨g, u⟩

where α(u, v) =
∫
Ω

1∫
Ω
a(x)dx

u(x) · v(x)dx evaluates the normalized total power, β(u, v = 2
∫
Ω
D(u(x)) ·D(v(x))dx

measures the symmetrical power with D(u(x)) = 1
2 (∇u(x)+ (∇u(x))T), and ⟨g, u⟩ =

∫
Ω
g(x) ·u(x)dx is the power

induced by the forcing function.

Shallow Water. The shallow water equation on the rotating sphere is often used to model ocean waters over the surface of
the globe. This problem can be described by the following PDE (Bonev et al., 2023):

∂φ

∂t
+∇ · (φv) = 0 in S2 × {0,+∞}

∂(φv)

∂t
+∇ · (φv ⊗ v) = g in S2 × {0,+∞}

φ = φ0, v = v0 on S2 × {0}

where the input function is defined as the initial condition of the state a = (φ0, φ0v0) with the geopotential layer depth φ
and the discharge (v is the velocity field), g is the Coriolis force term. The output function u predicts the state function at
time t: (φt, φtvt). For this problem, we use a search space S with |S| = 200 data points.

As the shallow water equation is usually chosen as a simulator of global atmospheric variables, we adopt the most common
data assimilation objective (Rabier et al., 1998; Xiao et al., 2023) in the weather forecast literature defined as

f(u, a) =
1

2
⟨a− ap, B

−1(a− ap)⟩+
1

2
⟨u− ut, R

−1(u− ut)⟩

where ap describes the prior estimate of the initial condition, ut represents the ground truth function, the background kernel
B and error kernel R can be computed with historical data. The objective can be defined as an inverse problem which
corresponds to finding the initial condition a that generates the ground truth solution function ut. Here we simplify the
objective by not penalizing the initial condition (dropping the prior term) and assuming independence and unit variance on
the solution functions using an identity kernel R), the simplified objective function f(u) = 1

2 ⟨u− ut, u− ut⟩ can be used
to measure different initial conditions.

15

Figure 5. Cumulative regret across trials for the Darcy flow rate optimization problem with only the last linear layer of a single-hidden-layer
FNO trained via full-batch gradient descent for NOTS (labelled as SNOTS). Results were averaged over 10 independent trials, and shaded
areas represent ±1 standard deviation.

Figure 6. Cumulative regret across trials for the Darcy flow potential power optimization problem with only the last linear layer of
a single-hidden-layer FNO trained via full-batch gradient descent for NOTS (labelled as SNOTS). Results were averaged over 10
independent trials, and shaded areas represent ±1 standard deviation.

E.2. Algorithm Settings

NOTS was implemented using the Neural Operator library (Kossaifi et al., 2024). For each dataset, we selected the
recommended settings for FNO models according to examples in the library. Parameters were randomly initialized using
Kaiming (or He) initialization (He et al., 2015) for the network weights, sampling from a normal distribution with variance
inversely proportional to the input dimensionality of each layer, while biases were initialized at zero. For all experiments,
we trained the model for 10 epochs of mini-batch stochastic gradient descent with an initial learning rate of 10−3 and a
cosine annealing scheduler. The regularization factor for the L2 penalty was set as λ := 10−4. This same setting for the
regularization factor was also applied to our implementation of STO-NTS.

F. Additional Results with Single-Hidden-Layer Model
More closely to the setting in our theoretical results, we tested a single-hidden-layer FNO on the Darcy flow PDE. Only the
last hidden layer of the model was trained via full-batch gradient descent. The FNO was configured without any lifting layer,
having only a single Fourier kernel convolution and a residual connection, as in the original formulation. The number of
hidden channels was set to 2048 to approximate the infinite-width limit, and the model was trained for 2000 steps with a
fixed learning rate of 10−3.

The results in Figure 5 show that the algorithm with the simpler model (SNOTS) can perform well in this setting, even
surpassing the performance of the original NOTS. However, in the more challenging scenario imposed by the potential
power problem, we note that SNOTS struggles, only achieving mid-range performance when compared to other baselines,
as shown in Figure 6. This performance drop suggests that the complexity of the potential power problem may require more
accurate predictions to capture details in the output functions that might heavily influence the potential power. In general, a

16

quadratic objective will be more sensitive to small disturbances than a linear functional, requiring a more elaborate model.

G. Limitations and Extensions
Noise. We note that, although our result in Proposition 2 assumes a well specified noise model, it should be possible to
show that the same holds for noise which is sub-Gaussian with respect to the regularization factor. The latter would allow
for configuring the algorithm with any regularization factor which is at least as large as the assumed noise sub-Gaussian
parameter (i.e., its variance if Gaussian distributed). However, this analysis can be quite involved and out of the immediate
scope of this paper, so we leave it for further research.

Nonlinear functionals. We assumed a bounded linear functional in Proposition 2, which should cover a variety of
objectives involve integrals and derivatives of the operator’s output. However, this assumption may not hold for more
interesting functionals, such as most objectives considered in our experiments. Similar to the case with noise, any Lipschitz
continuous functional of the neural operator’s output should follow a sub-Gaussian distribution (Pisier, 1986). Hence, the
Gaussian approximation remains reasonable, though a more in-depth analysis would be needed to derive the exact rate of
growth for the cumulative regret in these settings.

Mult-layer models. We assumed a single hidden layer neural network as the basis of our Thompson sampling algorithm.
While this choice provides a simple and computationally efficient framework, it may not be optimal for all applications or
datasets. For instance, in some cases, a deeper neural network with more layers might provide better performance due to
increased capacity to capture complex patterns in the data. Extending our analysis to this setting involves extending the
inductive proofs for the multi-layer NNGP (Lee et al., 2018; Matthews et al., 2018) to the case of neural operators. Such
extension, however, may require transforming the operator layer’s output back into a function in an infinite-dimensional
space. In the single-hidden-layer case, the latter was not required by operating directly with the finite-dimensional input
function embedding AR(a)(z) ∈ RdR . We conjecture that such extension should be possible, though we leave it as subject
of future work.

Prior misspecification. We assumed that the true operator G∗ follows the same prior as our model, which was also
considered to be infinitely wide. While this assumption greatly simplifies our analysis, more practical results may be
derived by considering finite-width neural operators and a true operator which might not exactly correspond to a realization
of the chosen class of neural operator models. For the case of finite widths, one simple way to obtain a similar regret
bound is to let the width of the network grow at each Thompson sampling iteration. The approximation error between
the GP model and the finite width neural operator can potentially be bounded as O(M−1/2) (Liu et al., 2020). Hence if
the sequence of network widths {Mt}∞t=1 is such that

∑∞
t=1

1√
Mt

<∞, a similar regret bound to the one in Proposition 2
should be possible. Furthermore, if other forms of prior misspecification need to be considered, analyzing the Bayesian
cumulative regret (instead of the more usual frequentist regret), as we did, allows one to bound the resulting cumulative
regret of the misspecified algorithm via the Radon-Nikodym derivative dP

dP̂
of the true prior P with respect to the algorithm’s

prior probability measure P̂ . If its essential supremum
∥∥∥ dP

dP̂

∥∥∥
∞

is bounded, then the resulting cumulative regret remains
proportional to the same bound derived as if the algorithm’s prior was the correct one (Russo & Van Roy, 2014).

17

	Introduction
	Related Work
	Neural Operator Thompson Sampling
	Approximate Posterior Sampling
	Thompson Sampling Algorithm

	Theoretical Results
	Experiments
	Optimization Functionals
	Results

	Conclusion
	Background
	Conjugate Kernel vs. Neural Tangent Kernel
	Conjugate Kernel (NNGP)
	Neural Tangent Kernel (NTK)
	Application to Thompson Sampling

	The Infinite-Width Limit of Neural Operators
	Application to Fourier Neural Operators
	Infinitely Wide Neural Operator as Gaussian Process

	Regret Bound
	Experiment Details
	PDE Problems
	Algorithm Settings

	Additional Results with Single-Hidden-Layer Model
	Limitations and Extensions

