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Abstract

Adapting pretrained language models to novel001
domains, such as clinical applications, tradi-002
tionally involves retraining their entire set of003
parameters. However, this approach is increas-004
ingly proven to be impractical owing to the005
substantial computational requirements asso-006
ciated with training such large language mod-007
els. To address this issue, Parameter-Efficient008
Fine-Tuning (PEFT) techniques offer a vi-009
able solution by selectively fine-tuning a small010
subset of additional parameters, significantly011
reducing the computational requirements for012
domain adaptation. In this study, we pro-013
pose Clinical LLaMA-LoRA, a PEFT adapter014
layer built upon the open-sourced LLaMA015
model. Clinical LLaMA-LoRA is trained us-016
ing clinical notes obtained from the MIMIC-017
IV database, thereby creating a specialised018
adapter designed for the clinical domain. Ad-019
ditionally, we propose a two-step PEFT frame-020
work which fuses Clinical LLaMA-LoRA with021
Downstream LLaMA-LoRA, another PEFT022
adapter specialised for downstream tasks. We023
evaluate this framework on multiple clinical024
outcome prediction datasets, comparing it to025
clinically trained language models. Our pro-026
posed framework achieves a state-of-the-art027
AUROC score averaged across all clinical028
downstream tasks. We observe substantial im-029
provements of 6-9% AUROC score in the large-030
scale multilabel classification tasks, such as031
diagnoses and procedures classification.032

1 Introduction033

Large Language Models (LLMs) have consistently034

achieved state-of-the-art performance across vari-035

ous NLP tasks. However, while these models ex-036

hibit impressive generalisation abilities, they often037

struggle to perform in specialised domains such as038

clinical applications, primarily due to the absence039

of domain-specific knowledge. The complexity of040

medical terminology and the presence of incom-041

plete sentences in clinical notes contribute to this042
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Figure 1: An illustration of the proposed two-step PEFT
framework. Clinical LLaMA-LoRA fine-tunes the pre-
trained LLaMA to the clinical domain. Downstream
LLaMA-LoRA further fine-tunes the domain-adapted
model to downstream clinical tasks.

challenge (Lehman and Johnson, 2023). Unfor- 043

tunately, studies have indicated that even LLMs 044

pretrained with datasets comprising biomedical 045

publications still exhibit suboptimal performance 046

when applied to downstream clinical applications, 047

particularly when compared to LLMs pretrained 048

with clinical notes (Alsentzer et al., 2019; Li et al., 049

2022; Yang et al., 2022). This observation suggests 050

that there are intrinsic nuances specific to the clini- 051

cal context that can only be effectively captured if 052

LLMs undergo pretraining using clinical datasets. 053

The current approach of adapting pretrained 054

LLMs to the clinical domain typically involves 055

fine-tuning the entire model parameters (Alsentzer 056

et al., 2019; Peng et al., 2019; van Aken et al., 2021; 057

Michalopoulos et al., 2021; Lehman and Johnson, 058

2023). However, due to the rapid increase in the 059

size of LLMs, such a practice demands extensive 060

computational resources, which may not be readily 061

accessible to all researchers. Consequently, this 062

challenge will further exacerbate the disparity be- 063

tween the resource-rich and resource-constrained 064

research institutions (Ruder et al., 2022). 065
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To address the substantial computational de-066

mands, studies have proposed various Parameter-067

Efficient Fine-Tuning (PEFT) techniques. These068

techniques present a practical solution by fine-069

tuning a small subset of additional parameters070

while keeping the remaining pretrained parameters071

fixed. As a result, this strategy significantly alle-072

viates the computational burden while achieving073

comparable performance to that of full fine-tuning.074

In this study, we propose a two-step PEFT frame-075

work (see Figure 1). Firstly, we introduce Clinical076

LLaMA-LoRA, a Low-Rank Adaptation (LoRA,077

Hu et al., 2022) PEFT adapter built upon the open-078

source Large Language Model Meta AI (LLaMA)079

(Touvron et al., 2023). Then, we introduce Down-080

stream LLaMA-LoRA, which is trained on top081

of the pretrained Clinical LLaMA-LoRA. Down-082

stream LLaMA-LoRA is specifically designed for083

clinical downstream tasks. The fusion of the two084

adapters achieves state-of-the-art performance in085

clinical NLP downstream tasks while considerably086

reducing the computational requirements. This087

study presents the following contributions:088

• We introduce Clinical LLaMA-LoRA, a PEFT-089

adapted version of the LLaMA model tailored090

specifically for the clinical domain.091

• We provide comparisons of multiple PEFT tech-092

niques in terms of language modelling perfor-093

mance based on perplexity score, shedding light094

on the optimal PEFT techniques for the clinical095

domain-adaptive pretraining.096

• We introduce Downstream LLaMA-LoRA, built097

on top of Clinical LLaMA-LoRA and tailored098

specifically for the clinical downstream tasks.099

• We evaluate the proposed mixture of Clinical100

LLaMA-LoRA and Downstream LLaMA-LoRA101

on downstream clinical datasets and tasks. Our102

proposed framework showcases improvements in103

AUROC scores over the existing clinical LLMs.104

2 Background105

2.1 Biomedical Large Language Models106

General-domain LLMs continue to face challenges107

when confronted with domain-specific tasks. The108

complexity associated with the requisite domain109

knowledge is recognised as a significant fac-110

tor (Ling et al., 2023), particularly within the111

biomedical domain. Consequently, numerous stud- 112

ies have attempted to adapt LLMs specifically for 113

the biomedical domain. 114

An early example of such adaptation is 115

BioBERT (Lee et al., 2019), which was pretrained 116

using biomedical research articles from PubMed 117

and PubMed Central. This adaptation has shown 118

improved performance across various biomedi- 119

cal NLP tasks. Recognising the significance of 120

biomedical-specific vocabularies, Gu et al. (2022) 121

proposed PubMedBERT, which is pretrained on 122

biomedical data from scratch and initialised the 123

model vocabulary with the biomedical corpus. The 124

growing interest in biomedical NLP research has 125

led to the adaptation of even larger models to the 126

biomedical domain (Luo et al., 2022; Singhal et al., 127

2022; Wu et al., 2023; Singhal et al., 2023) 128

While these biomedical LLMs have demon- 129

strated advancements in various biomedical NLP 130

benchmarking tasks, studies have revealed that 131

clinical LLMs still outperform their biomedical 132

counterparts in numerous clinical downstream 133

tasks (Alsentzer et al., 2019; Yang et al., 2022; 134

Li et al., 2022; Lehman and Johnson, 2023). This 135

suggests that domain-adaptive pretraining using 136

clinical data is still the de facto protocol in adapt- 137

ing LLMs to the clinical domain. 138

2.2 Clinical Large Language Models 139

Clinical LLMs are often fine-tuned with clinical 140

data from an LLM that is already pretrained with 141

datasets that encompass broader topics. For in- 142

stance, Bio+ClinicalBERT (Alsentzer et al., 2019) 143

is domain-adaptively pretrained using clinical notes 144

from the Medical Information Mart for Intensive 145

Care (MIMIC)-III database (Johnson et al., 2016), 146

starting from a pretrained BioBERT (Lee et al., 147

2019), which itself is pretrained on biomedical ar- 148

ticles. BlueBERT (Peng et al., 2019) is domain- 149

adaptively pretrained using PubMed abstracts and 150

MIMIC-III clinical notes from a BERT model (De- 151

vlin et al., 2019), that is pretrained with general- 152

domain texts. Similarly, Clinical-T5 (Lehman and 153

Johnson, 2023) is domain-adaptively pretrained us- 154

ing the union of MIMIC-III and MIMIC-IV (John- 155

son et al., 2023) clinical notes from T5-base (Raffel 156

et al., 2020), another general-domain LLM. 157

All these studies share a common approach, 158

which is to fine-tune the entire model parameters. 159

With massive LLMs, this method has become cost- 160

prohibitive and inaccessible for many researchers. 161
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Figure 2: Frameworks of domain-adaptive and downstream fine-tuning to adapt a pretrained LLM from the general
domain to the clinical domain. As opposed to a full fine-tuning process which can be prohibitively expensive
(left), our approach leverages PEFT techniques to introduce a clinically-specialised adapter that is attached to a
pretrained general LLM (right). Our proposed framework also introduces another clinical PEFT adapter trained on
the downstream clinical tasks, such as clinical note classification.

2.3 Parameter-Efficient Fine-Tuning for162

Large Language Models163

Suppose that we have a pretrained LLM PΦ(y|x);164

fine-tuning it can be effectively defined as find-165

ing the most appropriate parameter changes ∆Φ166

by optimising the fine-tuning objective. A con-167

ventional, full fine-tuning process means that the168

model needs to learn a ∆Φ whose dimension is169

equal to the entire parameters of the pretrained170

LLM |∆Φ| = |Φ0|, which is computationally ex-171

pensive. PEFT techniques address this by tuning172

the delta ∆Φ, which corresponds to a very small173

fraction of additional trainable parameters during174

the fine-tuning process.175

Adapter tuning (Houlsby et al., 2019) is an early176

PEFT method that involves adding small additional177

parameters called adapters to each layer of the pre-178

trained model and strictly fine-tuning this small179

set of new parameters. LoRA (Hu et al., 2022) is180

another PEFT approach that trains low-rank ma-181

trices to represent the attention weights update of182

transformer-based models.183

Another group of PEFT approaches leverages184

the concept of prompting. Prefix Tuning (Li and185

Liang, 2021) optimises a sequence of continuous186

task-specific vectors, called a prefix, which are187

trainable parameters that do not correspond to real188

tokens. P-Tuning (Liu et al., 2021b) uses a similar189

strategy as Prefix tuning with a focus on text un-190

derstanding tasks, as opposed to generative tasks.191

Prompt tuning (Lester et al., 2021) simplifies Pre-192

fix tuning by introducing trainable tokens, called193

soft prompts, for each downstream task. Liu et al.194

(2021a) introduced P-tuning v2 which uses deep 195

prompt tuning to address the lack of performance 196

gain in the previous prompt tuning techniques. 197

By fine-tuning a small fraction of additional pa- 198

rameters, all PEFT approaches alleviate the issue 199

of extensive computational resource requirements. 200

3 Methodology 201

3.1 Problem Statement 202

Figure 2 shows the comparison between the current 203

and proposed problem definitions. The general 204

problem can be decomposed into two stages: 205

Domain-adaptive Pretraining. Given a pre- 206

trained general LLM PΦ(y|x) with its parameters 207

Φ and a training dataset Z = {(xi, yi)}i=1,...,N . To 208

adapt to the new domain, the model needs to update 209

its weight iteratively from its pretrained state Φ0 210

to Φ = Φ0 +∆Φ. This process of maximising the 211

objective function can be defined as: 212

argmax
Φ

∑
(x,y)∈Z

|y|∑
t=1

log (PΦ (yt | x, y<t)) 213

In the current paradigm, a full fine-tuning process 214

means that the model needs to learn a ∆Φ whose di- 215

mension is equal to the entire pretrained parameters 216

|∆Φ| = |Φ0|, which is computationally expensive. 217

In the proposed paradigm, we tune only small 218

additional parameters θ such that Φ = Φ0+∆Φ(θ) 219

whose dimension is very small compared to the 220

original parameters |θ| ≪ |Φ0|. Thus, the training 221
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objective can be redefined as:222

argmax
θ

∑
(x,y)∈Z

|y|∑
t=1

log
(
PΦ0+∆Φ(θ) (yt | x, y<t)

)
223

In the current paradigm, the outcome of domain-224

adaptive pretraining would be a clinically-adapted225

LLM. While in the proposed paradigm, the out-226

come would be the clinical PEFT component,227

which can be combined with the untouched pre-228

trained general LLM for downstream applications.229

Downstream Fine-tuning. In the current230

paradigm, the pretrained clinical LLM is fine-231

tuned to the downstream tasks, such as document232

classification tasks. Suppose that we have a233

pretrained clinical LLM PΦ,Θ with its domain-234

adapted parameters Φ and a newly initialised235

classifier layer Θ, as well as a training dataset236

Z = {(xi, yi)}i=1,...,N . We want to maximise a237

specific loss function, such as a cross-entropy loss:238

argmax
Φ,Θ

1

N

N∑
i=1

yi log (PΦ,Θ (xi))239

In contrast, in the proposed paradigm, the fine-240

tuning process only updates the small additional241

parameters ∆Φ(θ) and the classifier head Θ:242

argmax
θ,Θ

1

N

N∑
i=1

yi log
(
PΦ+∆Φ(θ),Θ (xi)

)
243

In fact, we can also decompose the fine-tuning into244

an additional "delta-updating" process:245

argmax
θ,ϕ,Θ

1

N

N∑
i=1

yi log
(
PΦ+∆Φ(θ)+∆Φ(ϕ),Θ (xi)

)
246

Similar to the Domain-adaptive Pretraining stage,247

the dimensions of the additional parameters θ and ϕ248

are very small compared to the original parameters.249

By updating only the additional parameters and250

the classifier head, the proposed paradigm reduces251

the computational requirements, making it more252

efficient and feasible, especially for clinical settings253

that are often resource-constrained.254

3.2 Clinical LLaMA-LoRA255

Clinical LLaMA-LoRA is a LoRA adapter built256

upon LLaMA (Touvron et al., 2023). Clinical257

LLaMA-LoRA is domain-adapted to the clinical258

domain and fine-tuned to the downstream tasks259

following the proposed procedure shown on the260

right-hand side of Figure 2.261

Dataset # Class Multilabel # Train # Valid # Test

LOS 4 ✗ 30,421 4,391 8,797
MOR 2 ✗ 33,954 4,908 9,822
PMV 2 ✗ 5,666 707 706
DIAG 1,266 ✓ 33,994 4,918 9,829
PROC 711 ✓ 30,030 4,357 8,681

Table 1: Statistics and types of downstream clinical doc-
ument classification tasks: length of stay (LOS), mor-
tality (MOR), prolonged mechanical ventilation (PMV),
diagnoses (DIAG), and procedures (PROC).

LLaMA models In this study, we evaluate two 262

LLaMA models; the 7 billion parameters version 263

of LLaMA (Touvron et al., 2023) and the 7 bil- 264

lion parameters version of PMC-LLaMA(Wu et al., 265

2023). LLaMA was pretrained with an array of 266

texts from multiple sources, such as English Com- 267

monCrawl, Wikipedia, ArXiv, and C4 (Raffel et al., 268

2020). While, PMC-LLaMA is a domain-adapted 269

LLaMA model that was pretrained on 4.8 million 270

biomedical academic papers from PubMed Central. 271

Domain-adaptive Pretraining Clinical LLaMA- 272

LoRA is trained using a combination of MIMIC- 273

IV de-identified discharge summaries (331,794) 274

and radiology reports (2,321,355), resulting in a 275

collection of 2,653,149 individual clinical notes. 276

We evaluate five different PEFT techniques, which 277

include LoRA, Adaptation Prompt, Prefix Tuning, 278

Prompt Tuning, and P-tuning. 279

Our approach follows the autoregressive lan- 280

guage modelling pretraining objective employed in 281

the original LLaMA training. To ensure compatibil- 282

ity with available computational resources, we use 283

fixed model hyperparameters that allow us to fit the 284

LLM into a single NVIDIA A100-80GB GPU (see 285

Appendix A.1). We optimise the hyperparameters 286

specific to each PEFT method using Gaussian Pro- 287

cess regression for Bayesian Optimisation (Frazier, 288

2018) 1 with a maximum of 20 trials. The detailed 289

hyperparameters search space can be found in Ap- 290

pendix A.2. During this stage, we evaluate the 291

perplexity scores of the LLM variants. 292

Downstream Fine-tuning We fine-tune the Clin- 293

ical LLaMA-LoRA and Downstream LLaMA- 294

LoRA to clinical document classification tasks: 295

• Prolonged mechanical ventilation (PMV): a 296

binary classification task to predict whether a 297

patient will require mechanical ventilation for 298

1Specifically, we use the W&B Sweep APIs: https://
docs.wandb.ai/guides/sweeps
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more than seven days (Huang et al., 2020; Naik299

et al., 2022).300

• In-hospital mortality (MOR): a binary classifi-301

cation task to predict whether a patient will sur-302

vive during their hospital stay (van Aken et al.,303

2021; Naik et al., 2022).304

• Length of stay (LOS): a multiclass classification305

task to predict the length of a patient’s hospital306

stay, categorised into four time-bins: less than307

three days, three to seven days, one to two weeks,308

and more than two weeks (van Aken et al., 2021;309

Naik et al., 2022).310

• Diagnoses (DIAG): a large-scale multilabel clas-311

sification task to predict the differential diagnoses312

associated with a patient, represented by sim-313

plified ICD-9 diagnosis codes (van Aken et al.,314

2021).315

• Procedures (PROC): a large-scale multilabel316

classification task to predict the diagnostics or317

treatments administered to a patient, represented318

by simplified ICD-9 procedure codes (van Aken319

et al., 2021).320

The label and split statistics of each dataset can be321

found in Table 1.322

During this downstream fine-tuning process,323

we use fixed model hyperparameters to ensure324

compatibility with the available computational re-325

sources, a single NVIDIA A100-80GB GPU (see326

Appendix B.1). We optimise the hyperparameters327

specific to each PEFT method using Gaussian Pro-328

cess regression for Bayesian Optimisation with a329

maximum of 20 trials. The detailed hyperparame-330

ters search space of the PEFT method can be found331

in Appendix B.2.332

For evaluating the performance of the model on333

these downstream tasks, we report the Area Under334

the Receiver Operating Characteristic Curve (AU-335

ROC) scores. Additionally, we report the macro-336

averaged AUROC score across all clinical tasks as337

commonly done in NLP benchmarking tasks (Wang338

et al., 2019; Peng et al., 2019; Gu et al., 2022).339

3.3 Baseline Models340

The baseline models used in the evaluation are as341

follows:342

• Bio+ClinicalBERT (Alsentzer et al., 2019):343

Bio+ClinicalBERT is pretrained on clinical344

notes from the MIMIC-III database. It is ini- 345

tialised from a biomedical language model called 346

BioBERT (Lee et al., 2019), which is pretrained 347

on biomedical research articles. 348

• BlueBERT (Peng et al., 2019): BlueBERT is 349

pretrained on clinical notes from the MIMIC-III 350

database and PubMed abstracts starting from the 351

pretrained checkpoint of BERT (Devlin et al., 352

2019), a general-domain language model. 353

• CORe (van Aken et al., 2021): CORe is pre- 354

trained on clinical notes from the MIMIC-III 355

database and biomedical articles starting from 356

the pretrained checkpoint of BioBERT (Lee et al., 357

2019). 358

• UmlsBERT (Michalopoulos et al., 2021): Umls- 359

BERT is pretrained on clinical notes from the 360

MIMIC-III database starting from the pretrained 361

checkpoint of Bio+ClinicalBERT while modi- 362

fying the architecture and pretraining objective 363

by incorporating knowledge from the Unified 364

Medical Language System (UMLS) Metathe- 365

saurus (Schuyler et al., 1993). 366

These baseline models have been trained to per- 367

form specifically on clinical data, thus providing 368

comparison points for evaluating the performance 369

of the proposed Clinical LLaMA-LoRA in down- 370

stream clinical NLP tasks. 371

4 Results and Analysis 372

4.1 Pretraining 373

The pretraining results can be found in Table 2. 374

We employ PEFT techniques to perform domain- 375

adaptive pretraining. All PEFT techniques train a 376

significantly smaller number of parameters, rang- 377

ing from only 0.001% to 0.24% of the original 378

model parameters, which substantially decreases 379

the computational resources required and short- 380

ens the training time. Note that performing full- 381

parameter training of LLaMA and PMC-LLaMA 382

with just a single GPU is unfeasible. Instead, PEFT 383

techniques require less than 24 hours per epoch on 384

average with only a single NVIDIA A100-80GB 385

GPU. 386

Among all the PEFT techniques, LoRA emerges 387

as the best-performing one for both LLaMA and 388

PMC-LLaMA in the clinical domain-adaptive pre- 389

training, achieving the lowest perplexity scores 390

of 2.244 and 2.404, respectively. This pretrained 391

LoRA is referred to as Clinical LLaMA-LoRA 392
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Base Model PEFT Trainable Params Train Perplexity Test Perplexity Train Time (h:m:s)

LLaMA

LoRA 8,388,608 (0.12%) 1.858 2.244 21:37:42
Adaptation Prompt 1,228,830 (0.02%) 2.561 2.865 24:57:17
Prefix Tuning 5,242,880 (0.08%) 2.815 2.748 20:11:07
Prompt Tuning 61,440 (0.0009%) 4.846 4.007 23:27:28
P-tuning 16,093,696 (0.24%) 2.723 3.271 23:49:31

PMC-LLaMA

LoRA 2,097,152 (0.03%) 1.938 2.404 21:32:59
Adaptation Prompt 1,228,830 (0.018%) 2.374 2.867 23:33:10
Prefix Tuning 2,621,440 (0.04%) 1.789 2.848 20:13:10
Prompt Tuning 40,960 (0.0006%) 4.821 4.385 22:25:32
P-tuning 2,171,392 (0.03%) 3.491 4.572 22:28:15

Table 2: Domain-adaptive Pretraining results of LLaMA and PMC-LLaMA trained on MIMIC-IV clinical notes
with a language modelling objective. Lower perplexity scores indicate better language modelling performance. The
boldface row indicates the model with the lowest perplexity score from each base model variant.

in the subsequent sections. The following experi-393

ments in downstream fine-tuning will utilise this394

pretrained Clinical LLaMA-LoRA.395

4.2 Downstream results396

From the downstream fine-tuning results shown397

in Table 3, we can decompose the analysis into398

multiple research questions:399

Can LoRA help fine-tune LLaMA from other400

domains (general and biomedical) to achieve401

higher AUROC scores in clinical tasks? We402

compare the results obtained by LLaMA and403

LLaMA + LoRA, as well as PMC-LLaMA and404

PMC-LLaMA + LoRA, as presented in Table 3.405

The obtained results consistently demonstrate im-406

proved AUROC scores when utilising LoRA across407

all tasks. The macro-averaged AUROC score of408

LoRA-equipped LLaMA shows a notable 13.01%409

increase when compared to the LLaMA-only base-410

line. Similarly, LoRA-equipped PMC-LLaMA ex-411

hibits a 12.2% improvement in macro-averaged412

AUROC compared to the original PMC-LLaMA413

Both LLaMA and PMC-LLaMA, when equipped414

with LoRA, exhibit significant AUROC score415

improvements in all tasks except the prolonged416

mechanical ventilation prediction task, which is417

proven challenging for all model variants.418

Furthermore, the marginal difference in AUROC419

scores between PMC-LLaMA and the general-420

domain LLaMA can be attributed to two factors.421

Firstly, the original LLaMA has been exposed to422

biomedical concepts during its pretraining, reduc-423

ing the need for domain-adaptive pretraining to the424

biomedical domain. Secondly, clinical NLP tasks425

are challenging, even for biomedical LLMs.426

Can LoRA-equipped LLaMA and PMC- 427

LLaMA perform comparably in comparison to 428

clinically trained LMs? We compare the AU- 429

ROC scores obtained by the baseline models, and 430

LoRA-equipped LLaMA and PMC-LLaMA (see 431

Table 3). Among the baseline models, BlueBERT 432

performs the best with a macro-averaged AUROC 433

score of 69.59%. Compared to BlueBERT, both 434

LLaMA and PMC-LLaMA underperform with 435

macro-averaged AUROC scores of 58.61% and 436

60.51%, respectively. This finding highlights the 437

importance of clinical-specific fine-tuning. 438

Significant improvements can be observed in 439

LoRA-equipped LLaMA and PMC-LLaMA, with 440

macro-averaged AUROC scores of 71.62% and 441

72.71%, respectively. We notice considerable im- 442

provements in the diagnoses and procedures predic- 443

tion tasks. For example, LoRA-equipped LLaMA 444

achieves AUROC scores of 78.37% and 87.49% 445

in the diagnoses and procedures prediction tasks, 446

respectively, compared to 73.81% and 77.70% for 447

BlueBERT. This represents improvements of 4.56% 448

in diagnoses prediction and 9.79% in procedures 449

prediction. Improvements are also observed in the 450

results obtained by LoRA-equipped PMC-LLaMA, 451

outperforming BlueBERT by 5% in diagnoses pre- 452

diction and 9.02% in procedures prediction. 453

Overall, LoRA-equipped LLaMA and PMC- 454

LLaMA achieve higher AUROC scores than the 455

baseline clinical LMs in various clinical predic- 456

tion tasks, particularly in diagnoses, procedures, 457

and mortality predictions, while maintaining com- 458

petitive AUROC scores in length-of-stay predic- 459

tion. However, LoRA-equipped LLaMA and PMC- 460

LLaMA still underperform in prolonged mechani- 461

cal ventilation prediction. 462
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Model PMV MOR LOS DIAG PROC Macro Average

BlueBERT 53.12 76.95 66.36 73.81 77.70 69.59
UmlsBERT 55.49 75.87 66.06 64.34 74.19 67.19
Bio+ClinicalBERT 54.49 72.92 65.13 65.97 71.73 66.05
CORe 52.11 71.52 64.17 72.40 72.73 66.59

LLaMA∗ 51.38 66.80 57.65 60.06 63.83 58.61
+ LoRA 51.65 74.89 65.70 78.37 87.49 71.62
+ Clinical LLaMA-LoRA (Frozen) 51.62 65.66 58.16 63.47 69.01 61.58

+ Downstream LLaMA-LoRA 51.11 66.00 58.04 60.46 65.30 60.18
+ Clinical LLaMA-LoRA (Trainable) 55.76 74.81 64.83 76.07 82.76 70.85

+ Downstream LLaMA-LoRA 56.72 77.36 66.32 78.52 87.15 73.21

PMC-LLaMA∗ 53.06 66.77 57.94 60.17 64.63 60.51
+ LoRA 53.84 78.03 66.14 78.81 86.68 72.70
+ Clinical LLaMA-LoRA (Frozen) 51.33 67.19 58.13 63.59 68.26 60.06

+ Downstream LLaMA-LoRA 50.90 67.00 58.31 60.50 64.42 60.23
+ Clinical LLaMA-LoRA (Trainable) 52.88 75.86 65.89 79.66 86.85 72.23

+ Downstream LLaMA-LoRA 52.21 76.54 68.42 78.67 87.08 72.58

Table 3: AUROC scores in clinical downstream document classification tasks. The macro-averaged AUROC score is
calculated by taking the average of AUROC scores across all tasks. The boldface cell indicates the highest AUROC
score in a column, the row in italic indicates the model variant with the highest macro-averaged AUROC in its
category. ∗ Due to restricted computing resources, the fine-tuning of LLaMA and PMC-LLaMA was constrained to
only training the final classification layer.

Model PMV MOR LOS DIAG PROC Macro Average

BlueBERT 53.12 76.95 66.36 73.81 77.70 69.59
+ LoRA 55.77 81.90 70.48 70.66 78.10 71.56

UmlsBERT 55.49 75.87 66.06 64.34 74.19 67.19
+ LoRA 56.59 80.33 69.03 69.68 77.53 70.63

BioClinicalBERT 54.49 72.92 65.13 65.97 71.73 66.05
+ LoRA 56.13 78.81 68.28 68.53 75.19 69.39

CORe 52.11 71.52 64.17 72.40 72.73 66.59
+ LoRA 55.31 79.27 68.18 67.34 72.36 68.49

LLaMA + Clinical LLaMA-LoRA + Downstream LoRA 56.72 77.36 66.32 78.52 87.15 73.21

Table 4: AUROC scores of the LoRA-equipped baseline models in clinical downstream tasks. The boldface cell
indicates the highest AUROC score in a column. The row in italic indicates the model variant with the highest
macro-averaged AUROC in its category.

Can LLaMA and PMC-LLaMA with Clinical463

LLaMA-LoRA achieve higher AUROC scores464

than the clinically trained LMs? The domain-465

adaptive pretraining step yields the clinically-466

trained LoRA adapters for LLaMA and PMC-467

LLaMA, called Clinical LLaMA-LoRA. We468

compare the results of Clinical LLaMA-LoRA-469

equipped LLaMA and PMC-LLaMA with the base-470

line models. We evaluate Clinical LLaMA-LoRA471

with and without downstream fine-tuning, referred472

to as "Trainable" and "Frozen" respectively.473

The results indicate that Clinical LLaMA-LoRA-474

equipped LLaMA and PMC-LLaMA outperform475

the baseline models. LLaMA with a trainable Clin-476

ical LLaMA-LoRA achieves an AUROC score of477

70.85%, surpassing BlueBERT’s score of 69.59%.478

PMC-LLaMA with a trainable Clinical LLaMA-479

LoRA achieves an even higher AUROC score of480

72.23%. These findings demonstrate that the Clini- 481

cal LLaMA-LoRA contributes to higher AUROC 482

scores for LLaMA and PMC-LLaMA over clini- 483

cally trained LLMs. 484

Can LLaMA and PMC-LLaMA with Clinical 485

LLaMA-LoRA achieve higher AUROC scores 486

than the other fine-tuning variants? We exam- 487

ine the importance of the domain-adapted LoRA 488

by comparing the results obtained by LLaMA and 489

PMC-LLaMA equipped with Clinical LLaMA- 490

LoRA against the results of LLaMA and PMC- 491

LLaMA fine-tuning, both original and with LoRA. 492

Firstly, we evaluate the frozen pretrained Clin- 493

ical LLaMA-LoRA. Both LLaMA and PMC- 494

LLaMA with frozen Clinical LLaMA-LoRA do 495

not exhibit a significant increase in performance 496

compared to the original fine-tuning. This indi- 497
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cates that, despite the domain-adaptive pretraining,498

the limited number of trainable parameters during499

the downstream fine-tuning restricts the potential500

improvement that the model can achieve.501

This reasoning is further supported by the sig-502

nificant improvement observed in the AUROC503

scores of LLaMA and PMC-LLaMA with train-504

able Clinical LLaMA-LoRA. LLaMA and PMC-505

LLaMA with trainable Clinical LLaMA-LoRA506

achieve 70.85% and 72.23% macro-averaged AU-507

ROC scores, respectively, massive improvements508

from the vanilla fine-tuning performance (58.61%509

and 60.51% AUROC scores respectively).510

However, Clinical LLaMA-LoRA does not511

yield significant improvements when compared512

to LLaMA and PMC-LLaMA, which are directly513

equipped with LoRA without pretraining. For in-514

stance, we can observe that LLaMA with LoRA515

achieves a slightly higher macro-averaged AUROC516

score of 71.62% compared to LLaMA with Clinical517

LLaMA-LoRA, which achieves 70.85%.518

Can a downstream LoRA adapter improve the519

AUROC scores of LLaMA and PMC-LLaMA520

equipped with Clinical LLaMA-LoRA? By521

considering Clinical LLaMA-LoRA as the "delta-522

updating" outcome of the domain-adaptive pre-523

training, we can view the downstream fine-tuning524

process as an additional "delta-updating" step.525

To investigate the impact of this approach, we526

conduct experiments by adding a Downstream527

LLaMA-LoRA to LLaMA and PMC-LLaMA528

models that were already equipped with Clinical529

LLaMA-LoRA. From Table 3, we can observe530

that Downstream LLaMA-LoRA fails to improve531

the performance of LLaMA and PMC-LLaMA532

with frozen Clinical LLaMA-LoRA. On the other533

hand, improvement can be observed when adding534

Downstream LLaMA-LoRA to LLaMA with train-535

able Clinical LLaMA-LoRA. This combination of536

LLaMA with trainable Clinical LLaMA-LoRA and537

Downstream LLaMA-LoRA achieves the highest538

macro-averaged AUROC score of 72.81%. The539

macro-averaged AUROC score of Clinical LLaMA-540

LoRA was almost similar to that of PMC-LLaMA541

with LoRA, suggesting similar efficacy between542

Clinical LLaMA-LoRA and the full fine-tuning543

process that PMC-LLaMA has undergone. More-544

over, Clinical LLaMA-LoRA offers the advantage545

of reduced computational resources and training546

time, which is aligned with the requirements of547

practical implementation in clinical settings.548

Can LoRA help better fine-tune clinically- 549

trained LMs? The baseline models are relatively 550

smaller in size compared to the LLaMA-based mod- 551

els, which may be a better fit to care providers with 552

limited access to computing resources. To that 553

end, we experimented with fine-tuning the baseline 554

models with LoRA. 555

Table 4 shows the obtained results. All base- 556

line models see improvements in AUROC scores 557

in all tasks. For instance, the LoRA-equipped Blue- 558

BERT achieves an improved macro-averaged AU- 559

ROC score of 71.56% compared to the conven- 560

tional fine-tuning with 69.59%. 561

This finding highlights the possibility of using 562

LoRA to efficiently fine-tune clinically trained 563

LMs, such as BlueBERT, to downstream use cases. 564

5 Conclusions 565

In this study, we propose a two-step PEFT frame- 566

work. We introduce Clinical LLaMA-LoRA, 567

a LoRA (Hu et al., 2022) adapter built upon 568

LLaMA (Touvron et al., 2023). Then, we intro- 569

duce Downstream LLaMA-LoRA, a task-specific 570

adapter that is trained on top of the pretrained Clin- 571

ical LLaMA-LoRA. The fusion of the two adapters 572

achieves state-of-the-art performance with an AU- 573

ROC score of 72.81% macro-averaged across 574

all clinical NLP downstream tasks, which rep- 575

resents a 3.22% improvement over the previous 576

best-performing model. Our proposed framework 577

achieves improvement in performance while reduc- 578

ing the computational requirements, which is suited 579

for clinical settings that are often constrained by 580

their computational power. 581

We also find that the LoRA-equipped BlueBERT 582

model achieves a considerable improvement of 583

macro-averaged AUROC score over the full fine- 584

tuning (71.56% compared to 69.59%), with no- 585

table improvements in mortality and length-of-stay 586

prediction. These findings further highlight the 587

potential to achieve strong performance without 588

extensive computational resources. 589

Future works may explore developing a schema 590

to address various real-world use cases, building 591

upon the findings of this study. Such a schema 592

would use multiple Downstream LLaMA-LoRA 593

adapters tailored for different use cases while lever- 594

aging the pretrained LLM and Clinical LLaMA- 595

LoRA as the foundation. This solution would also 596

be suited for use cases that rely on private data 597

commonly encountered in care provider settings. 598
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Limitations599

This study presents a two-step PEFT framework600

aimed at effectively adapting LLMs to diverse clin-601

ical downstream applications. However, the evalu-602

ation of our model was restricted to MIMIC-based603

datasets, which are constrained to English and ob-604

tained exclusively within the Commonwealth of605

Massachusetts, United States of America. Con-606

sequently, despite the promising efficacy demon-607

strated by our proposed method, it would have been608

advantageous to directly assess its performance609

across diverse hospital systems spanning various610

geographical locations and languages. This would611

enable a more comprehensive understanding of its612

applicability and generalizability. However, it is613

essential to acknowledge that conducting such an614

analysis would require working within a trusted615

research environment and obtaining the necessary616

permissions to access the relevant datasets.617

It is crucial to recognise the restrictions imposed618

on accessing internal clinical datasets, as they limit619

our ability to evaluate the effectiveness of our620

approach across different care provider systems.621

Therefore, we encourage care providers to conduct622

internal experiments within their trusted research623

environment to ensure the efficacy of our proposed624

method within their specific use cases should they625

adopt this approach.626

Despite the demonstrated performance improve-627

ments, the proposed model may still be suscep-628

tible to spurious correlations. Predicting patient629

outcomes solely based on clinical notes presents630

significant challenges due to the other factors that631

may not be captured within those notes. For in-632

stance, the length of a patient’s in-hospital stay633

is not solely correlated with their diagnoses and634

disease progression. Factors such as the patient’s635

insurance status, which is not typically mentioned636

in clinical notes, can severely impact the duration637

of a patient’s stay. Therefore, we encourage end638

users of such clinical LLMs to consider additional639

measures to ensure predictions that reflect a holistic640

view of the patient’s situation, instead of relying641

solely on the predictions of LLMs.642

Ethics Statement643

In this study, we use MIMIC-based datasets ob-644

tained after completing the necessary training.645

These datasets comply with de-identification stan-646

dards set by the Health Insurance Portability and647

Accountability Act (HIPAA) through data cleans-648

ing. Due to privacy concerns, we refrain from in- 649

cluding direct excerpts of the data in the paper. We 650

also refrain from publicly sharing the pretrained 651

checkpoints. 652

While our model demonstrates effectiveness, it is 653

important to acknowledge the risks associated with 654

relying solely on clinical outcome prediction mod- 655

els. There are crucial pieces of information that 656

can be found beyond the scope of clinical notes. 657

Considering the potential impact on patient health 658

outcomes, it is crucial to exercise caution when util- 659

ising these clinical LLMs. Therefore, we propose 660

that the PEFT adapter generated by our framework, 661

in conjunction with the pretrained LLM, should be 662

used as an aid rather than a replacement for trained 663

clinical professionals. 664

References 665

Emily Alsentzer, John Murphy, William Boag, Wei- 666
Hung Weng, Di Jindi, Tristan Naumann, and 667
Matthew McDermott. 2019. Publicly available clin- 668
ical BERT embeddings. In Proceedings of the 2nd 669
Clinical Natural Language Processing Workshop, 670
pages 72–78, Minneapolis, Minnesota, USA. Associ- 671
ation for Computational Linguistics. 672

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 673
Kristina Toutanova. 2019. BERT: pre-training of 674
deep bidirectional transformers for language under- 675
standing. In Proceedings of the 2019 Conference of 676
the North American Chapter of the Association for 677
Computational Linguistics: Human Language Tech- 678
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, 679
June 2-7, 2019, Volume 1 (Long and Short Papers), 680
pages 4171–4186. Association for Computational 681
Linguistics. 682

Peter I. Frazier. 2018. A tutorial on bayesian optimiza- 683
tion. CoRR, abs/1807.02811. 684

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto 685
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng 686
Gao, and Hoifung Poon. 2022. Domain-Specific Lan- 687
guage Model Pretraining for Biomedical Natural Lan- 688
guage Processing. ACM Transactions on Computing 689
for Healthcare, 3(1):1–23. 690

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 691
Bruna Morrone, Quentin De Laroussilhe, Andrea 692
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 693
Parameter-efficient transfer learning for nlp. In Pro- 694
ceedings of the 36th International Conference on 695
Machine Learning, page 2790–2799. PMLR. 696

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 697
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 698
Chen. 2022. LoRA: Low-rank adaptation of large 699
language models. In International Conference on 700
Learning Representations. 701

9

https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Kexin Huang, Abhishek Singh, Sitong Chen, Edward702
Moseley, Chih-Ying Deng, Naomi George, and703
Charolotta Lindvall. 2020. Clinical XLNet: Mod-704
eling Sequential Clinical Notes and Predicting Pro-705
longed Mechanical Ventilation. In Proceedings of706
the 3rd Clinical Natural Language Processing Work-707
shop, pages 94–100, Online. Association for Compu-708
tational Linguistics.709

Alistair E. W. Johnson, Lucas Bulgarelli, Lu Shen,710
Alvin Gayles, Ayad Shammout, Steven Horng, Tom J.711
Pollard, Benjamin Moody, Brian Gow, Li-wei H.712
Lehman, Leo A. Celi, and Roger G. Mark. 2023.713
MIMIC-IV, a freely accessible electronic health714
record dataset. Scientific Data, 10(1):1.715

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-716
wei H. Lehman, Mengling Feng, Mohammad Ghas-717
semi, Benjamin Moody, Peter Szolovits, Leo An-718
thony Celi, and Roger G. Mark. 2016. MIMIC-III,719
a freely accessible critical care database. Scientific720
Data, 3(1):160035.721

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon722
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.723
2019. BioBERT: a pre-trained biomedical language724
representation model for biomedical text mining.725
Bioinformatics, 36(4):1234–1240.726

Eric Lehman and Alistair Johnson. 2023. Clinical-T5:727
Large Language Models Built Using MIMIC Clinical728
Text.729

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.730
The power of scale for parameter-efficient prompt731
tuning. In Proceedings of the 2021 Conference on732
Empirical Methods in Natural Language Processing,733
pages 3045–3059, Online and Punta Cana, Domini-734
can Republic. Association for Computational Lin-735
guistics.736

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:737
Optimizing Continuous Prompts for Generation. In738
Proceedings of the 59th Annual Meeting of the Asso-739
ciation for Computational Linguistics and the 11th740
International Joint Conference on Natural Language741
Processing (Volume 1: Long Papers), pages 4582–742
4597, Online. Association for Computational Lin-743
guistics.744

Yikuan Li, Ramsey M. Wehbe, Faraz S. Ahmad, Hanyin745
Wang, and Yuan Luo. 2022. Clinical-longformer746
and clinical-bigbird: Transformers for long clinical747
sequences. CoRR, abs/2201.11838.748

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng,749
Can Zheng, Junxiang Wang, Tanmoy Chowdhury,750
Yun Li, Hejie Cui, Xuchao Zhang, Tianjiao Zhao,751
Amit Panalkar, Wei Cheng, Haoyu Wang, Yanchi752
Liu, Zhengzhang Chen, Haifeng Chen, Chris White,753
Quanquan Gu, Carl Yang, and Liang Zhao. 2023.754
Beyond one-model-fits-all: A survey of domain755
specialization for large language models. CoRR,756
abs/2305.18703.757

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin 758
Yang, and Jie Tang. 2021a. P-tuning v2: Prompt 759
tuning can be comparable to fine-tuning universally 760
across scales and tasks. CoRR, abs/2110.07602. 761

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 762
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT 763
understands, too. CoRR, abs/2103.10385. 764

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng 765
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022. 766
BioGPT: generative pre-trained transformer for 767
biomedical text generation and mining. Briefings 768
in Bioinformatics, 23(6). Bbac409. 769

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, 770
Younes Belkada, and Sayak Paul. 2022. Peft: State- 771
of-the-art parameter-efficient fine-tuning methods. 772
https://github.com/huggingface/peft. 773

George Michalopoulos, Yuanxin Wang, Hussam Kaka, 774
Helen Chen, and Alexander Wong. 2021. Umls- 775
BERT: Clinical domain knowledge augmentation of 776
contextual embeddings using the Unified Medical 777
Language System Metathesaurus. In Proceedings of 778
the 2021 Conference of the North American Chap- 779
ter of the Association for Computational Linguistics: 780
Human Language Technologies, pages 1744–1753, 781
Online. Association for Computational Linguistics. 782

Aakanksha Naik, Sravanthi Parasa, Sergey Feldman, 783
Lucy Lu Wang, and Tom Hope. 2022. Literature- 784
augmented clinical outcome prediction. In Findings 785
of the Association for Computational Linguistics: 786
NAACL 2022, Seattle, WA, United States, July 10-15, 787
2022, pages 438–453. Association for Computational 788
Linguistics. 789

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019. Trans- 790
fer learning in biomedical natural language process- 791
ing: An evaluation of BERT and ELMo on ten bench- 792
marking datasets. In Proceedings of the 18th BioNLP 793
Workshop and Shared Task, pages 58–65, Florence, 794
Italy. Association for Computational Linguistics. 795

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 796
ine Lee, Sharan Narang, Michael Matena, Yanqi 797
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the 798
limits of transfer learning with a unified text-to-text 799
transformer. Journal of Machine Learning Research, 800
21(140):1–67. Citation Key: JMLR:v21:20-074. 801

Sebastian Ruder, Jonas Pfeiffer, and Ivan Vulić. 2022. 802
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A Hyperparameters for the883

Domain-adaptive Pretraining884

A.1 Fixed Model Hyperparameters885

Hyperparameter Value

Learning rate 3e-4
Warmup steps ratio 0.06
Maximum sequence length 128
Gradient accumulation step 4
Batch size 10

Table 5: Fixed model hyperparameters for language
modelling pretraining. These hyperparameters remain
unchanged to fit LLaMA into a single GPU.

A.2 PEFT Hyperparameters Optimisation886

Search Space887

PEFT Hyperparameter Search space

LoRA
r [2, 4, 8, 16]
alpha [4, 8, 16, 32]
dropout [0.0, 0.1, 0.2]

Prefix Tuning num virtual tokens [1, 5, 10, 15, 20]
prefix projection [true, false]

Prompt Tuning
num virtual tokens [1, 5, 10, 15, 20]
prompt init [text, random]

P-Tuning

num virtual tokens [1, 5, 10, 15, 20]
reparameterisation ["MLP", "LSTM"]
hidden size [64, 128, 256, 768]
num layers [1, 2, 4, 8, 12]
dropout [0.0, 0.1, 0.2]

Adaptation Prompt adapter length [5, 10]
adapter layers [10, 20, 30]

Table 6: The search space for PEFT Hyperparameters
optimisation runs during the domain adaptation fine-
tuning with language modelling objective. Each PEFT
technique has a specific set of hyperparameters to tune,
we selected the combination of hyperparameters which
has the lowest perplexity score.

Specifically for Prompt Tuning, we use a com-888

mon prompt initialisation text "Finish this clinical889

note:".890

B Hyperparameters for the Downstream891

Fine-tuning892

B.1 Fixed Model Hyperparameters893

Hyperparameter Value

Learning rate 5e-5
Warmup steps ratio 0.06
Maximum sequence length 128
Gradient accumulation step 10
Batch size 10

Table 7: Fixed model hyperparameters for the clinical
downstream fine-tuning. These hyperparameters remain
unchanged to fit LLaMA into a single GPU.

B.2 PEFT Hyperparameters Optimisation 894

Search Space 895

PEFT Hyperparameter Search space

LoRA
r [2, 4, 8, 16]
alpha [4, 8, 16, 32]
dropout [0.0, 0.1, 0.2]

Table 8: The search space for PEFT Hyperparameters
optimisation runs during the downstream fine-tuning.
Each PEFT technique has a specific set of hyperparam-
eters to tune, we selected the combination of hyperpa-
rameters which has the highest AUROC score.

C Training Configurations 896

We use HuggingFace’s Transformers (Wolf et al., 897

2020) and PEFT (Mangrulkar et al., 2022) libraries 898

for the experiments. All LLaMA-based models are 899

trained on one NVIDIA A100-80GB GPU, while 900

the baseline models are trained on a single NVIDIA 901

GeForce GTX 1080 Ti-16GB GPU. 902

D Artefacts 903

The pretrained baseline models including BioClini- 904

calBERT (Alsentzer et al., 2019), BlueBERT (Peng 905

et al., 2019), and CORe (van Aken et al., 2021) 906

were released under the Creative Commons desig- 907

nation CC0 1.0 Universal license, whereas Umls- 908

BERT (Michalopoulos et al., 2021) was released 909

under the MIT license. LLaMA (Touvron et al., 910

2023) was released under a noncommercial license. 911

MIMIC-III and MIMIC-IV dataset was released 912

under the PhysioNet Credentialed Health Data Li- 913

cense 1.5.0 and can only be accessed after one fin- 914

ishes the CITI Data or Specimens Only Research 915

training2. 916

2https://physionet.org/about/citi-course/
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