
Differentiable Extensions with Rounding Guarantees
for Combinatorial Optimization over Permutations

Robert R. Nerem
UCSD

rrnerem@ucsd.edu

Zhishang Luo
UCSD

zluo@ucsd.edu

Akbar Rafiey
NYU

ar9530@nyu.edu

Yusu Wang
UCSD

yusuwang@ucsd.edu

Abstract

Continuously extending combinatorial optimization objectives is a powerful tech-
nique commonly applied to the optimization of set functions. However, few such
methods exist for extending functions on permutations, despite the fact that many
combinatorial optimization problems, such as the quadratic assignment problem
(QAP) and the traveling salesperson problem (TSP), are inherently optimization
over permutations. We present Birkhoff Extension (BE), an almost-everywhere-
differentiable continuous polytime-computable extension of any real-valued func-
tion on permutations to doubly stochastic matrices. Key to this construction is our
introduction of a continuous variant of the well-known Birkhoff decomposition.
Our extension has several nice properties making it appealing for optimization prob-
lems. First, BE provides a rounding guarantee, namely any solution to the extension
can be efficiently rounded to a permutation without increasing the function value.
Furthermore, an approximate solution in the relaxed case will give rise to an ap-
proximate solution in the space of permutations. Second, using BE, any real-valued
optimization objective on permutations can be extended to an almost-everywhere-
differentiable objective function over the space of doubly stochastic matrices. This
makes our BE amenable to not only gradient-descent based optimization, but also
unsupervised neural combinatorial optimization where training often requires a
differentiable loss. Third, based on the above properties, we present a simple
optimization procedure which can be readily combined with existing optimization
approaches to offer local improvements (i.e., the quality of the final solution is no
worse than the initial solution). Finally, we also adapt our extension to optimiza-
tion problems over a class of trees, such as Steiner tree and optimization-based
hierarchical clustering. We present experimental results to verify our theoretical
results on several combinatorial optimization problems related to permutations.

1 Introduction

Continuously extending combinatorial objectives is a common technique in combinatorial optimiza-
tion, e.g., relaxation through linear programming, which can offer efficient optimization algorithms.
Continuous extensions are particularly useful if they are differentiable, making them amenable to
gradient-based optimization methods. However, it is often non-trivial to develop continuous exten-
sions with theoretical guarantees that relate the optimization of the extension to the optimization of
the combinatorial objective. In this paper, we consider combinatorial optimization problems where
the goal is to minimize real-valued functions over permutations. We aim to develop extensions for
functions on permutations with theoretical guarantees that allow for gradient-based optimization of
these combinatorial objectives.

Optimization of functions on permutations is a setting that encompasses many combinatorial opti-
mization problems with important applications. One of the most famous permutation optimization

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

problems is the traveling salesperson problem (TSP), where the aim is to find the order in which a
set of n cities should be visited in a tour to minimize the length of the tour. TSP is an example of a
vertex ordering problem, a class that contains many permutation optimization problems, in which
the goal is to find an order of vertices in a graph that minimizes some objective. Examples of such
problems are: directed feedback arc set (DFASP), graph cutwidth, and minimum linear arrangement
(MLA). Another essential permutation optimization problem is the quadratic assignment problem
(QAP), in which a bijection between n facilities and n locations is sought that minimizes a quadratic
objective function (such bijections can be identified with permutations).

1.1 Our work

In this paper we develop techniques that solve combinatorial optimization problems over permutations.
Formally, let Pn denote the set of n× n permutation matrices (w.l.o.g. permutations are viewed as
matrices). For a given real-value objective function f : Pn → R the goal is find

min f(P) s.t. P ∈ Pn. (1)

Searching over the discrete space of permutation matrices is computationally prohibitive. It therefore
is appealing to turn our focus to a continuous space, such as the convex hull of permutation matrices
Dn. This space, known as the Birkhoff polytope, is the set of matrices that are doubly stochastic, i.e.,
have non-negative entries and rows and columns summing to one. The seminal result of Birkhoff
[8] states that any matrix in the Birkhoff polytope can be decomposed into a convex combination
of permutation matrices. This provides a probabilistic interpretation: any matrix A in the Birkhoff
polytope arises as a distribution ν(A) over permutation matrices A = EP∼ν(A)P . We can define our
Birkhoff extension as F (A) = EP∼ν(A)[f(P)] and solve

minF (A) s.t. A ∈ Dn. (2)

The challenge is that a Birkhoff decomposition (the distribution ν(A)) is not unique and the resulting
extension may not be continuous and differentiable. Indeed, previous techniques for performing
Birkhoff decomposition [8, 19] are not continuous.

A differentiable Birkhoff extension. Our first theoretical contribution is a Birkhoff decomposition
that is continuous and almost everywhere (a.e.) differentiable (Thm. 2.4), which gives rise to an
extension that is also continuous and a.e. differentiable (Property 1). Continuity is achieved by
utilizing an arbitrary but fixed total order of permutations and decomposing according to this order.
However, computing the extension with respect to an arbitrary ordering of permutations is intractable.
To solve this, we introduce a score matrix S, order permutations by their inner product with S,
and show that the resulting continuous and differentiable Birkhoff decomposition / extension can be
efficiently computed (Property 2).

Optimization-enabling properties. Another appealing strength of Birkhoff extension is that minima
of the extension F directly correspond to minima of the function f over permutations (Property
3). Moreover, Birkhoff extension admits a scheme (Property 4) for rounding a doubly stochastic
matrix A to a permutation P that is guaranteed not to degrade the quality of the solution, i.e.,
f(P) ≤ F (A). These properties ensure that optimizing (or approximating) the extension F yields
optimal (or approximate) solutions to f .

Different choices for S yield different continuous Birkhoff extensions, which is a valuable flexibil-
ity. Interestingly, we can choose any permutation P (e.g, an approximate solution produced by a
comparatively fast algorithm) to produce a score matrix (Property 4), which can then be combined
with optimization and rounding to produce solutions that are at least as good as P . That is, given
any existing solution to a combinatorial optimization problem, we can use it as the score matrix for a
Birkhoff extension to further improve it, thereby yielding a local improvement procedure.

Optimization algorithm. Given the a.e. differentiability of Birkhoff extension, we can compute its
gradient. However, gradient descent cannot be directly applied to optimization over the Birkhoff
polytope, since after each step the resulting matrix may not be doubly stochastic. We propose a
Frank-Wolfe algorithm that overcomes this issue and preserves double stochasticity throughout
optimization.

Birkhoff extension is not necessarily convex and, thus, gradient-based optimization could converge
to local minima. We alleviate this issue by changing the score matrix whenever the optimization

2

converges to a local minimum. Changing the score matrix changes the extension being optimized,
potentially changing the extension to one where the current iterate is not at a local minimum, allowing
further optimization. We further show that for specific changes to the score matrix (based on Property
4), we are guaranteed the quality of the rounded solution does not decrease.

Application to neural combinatorial optimization. Birkhoff extension can also be used for unsu-
pervised neural combinatorial optimization where training often requires that the objective function
is differentiable. Neural approaches are a promising new paradigm in combinatorial optimization as,
unlike traditional techniques, they inherently leverage the distribution of problem instances being
solved [7]. However, supervised neural combinatorial optimization is often prohibitively expensive
as it requires computing exact solutions to create labels for training. Unsupervised learning, such as
the set extension proposed in [29, 28], circumvents this issue by removing the need for labels. In
App. B, similar to [29], we propose an unsupervised neural approach based on our Birkhoff extension.
The properties of Birkhoff extensions offer advantages for unsupervised learning in that rounding
guarantees ensure the minima sought in training correspond well with the combinatorial objective.

Beyond permutation functions. It is compelling to consider when similar techniques can be applied
to other combinatorial functions. In App. C, we present analysis for applying Birkhoff extension to
functions on rooted binary trees over a fixed set of leaves. Optimization of these tree functions arises
in many combinatorial optimization problems such as Steiner tree [12] problems and hierarchical
clustering [17].

Experiments. In Section 3, we perform experiments on quadratic assignment (QAP), traveling
salesperson (TSP), and directed feedback arc set (DFASP) problems, showing Birkhoff extension is
an effective approach for optimizing permutation functions. Our method is especially effective for
the quadratic assignment problem (QAP), where it outperforms a range of Gurobi implementations
and common heuristics.

To summarize, our main contributions are:

• A novel Birkhoff decomposition, which has continuous, a.e. differentiable, and efficiently com-
putable coefficients.

• A continuous a.e. differentiable extension of permutation functions to real-valued functions on the
Birkhoff polytope, with properties, such as rounding guarantees, desirable for optimization.

• A theoretically-justified permutation-function optimization procedure that combines this extension
with gradient-based optimization.

• Combination of Birkhoff extension with an NN to yield an unsupervised neural optimizer (App. B).

1.2 Related work

Extensions and optimization. The optimization literature often focuses on building extensions
with desirable optimization properties, particularly convexity and concavity [15, 38, 48]. A classical
approach to extending a discrete set function f : {0, 1}n → R is by computing the convex closure,
which is the point-wise supremum over linear functions that lower bound f [22, 48].A detailed
comparison with this approach and ours is made in App. H. A prominent example of successful
application of these methods to combinatorial optimization is submodular functions. The convex
closure for a submodular function is identical to the Lovász extension [34], also known as the
Choquet integral in decision theory [13], which leads to polynomial-time algorithms for submodular
minimization [25]. A series of works [11, 53], introduced and studied multilinear extension of
submodular functions which results in approximation algorithms for certain constrained submodular
maximization problems. See [5] for further details on extensions of submodular functions. Convex
extensions have been applied to a broader class of set functions beyond submodular ones [21], as
well as to combinatorial penalties with structured sparsity [20, 40].

Extensions and neural combinatorial optimization. Unsupervised learning for combinatorial
optimization problems has recently attracted great attention [2, 28, 46, 50]. Many frameworks based
on RL [31, 33, 18, 6, 55] or supervised learning [32, 51, 24] do not hold any special requirements on
the formulation of combinatorial problems. However, these approaches often suffer from dependence
on labeled data or unstable training, respectively. In contrast, unsupervised learning for combinatorial
optimization problems, where continuous relaxations of discrete objectives are utilized, is superior in
its faster training, good generalization, and strong capability of dealing with large-scale problems.

3

The general idea is to use, as a loss function, a function on a continuous domain that extends the
discrete function. Notable examples of these types of work are [28, 54, 9] where a probabilistic
relaxation of discrete functions are used for the loss.

Neural set function extension. Karalias et al. [29] propose several continuous and a.e. differentiable
extensions for training neural networks to optimize set functions, such as for the Max Clique and
Max Independent Set problems. These extensions are formed by convex combinations, which allows
for the efficient rounding schemes. However, many combinatorial optimization problems, such as the
optimization of permutation functions, have no natural formulation as set function optimization. We
use this convex decomposition framework as inspiration for our extension of permutation functions.

2 Birkhoff Extension

In this section we introduce our continuous and a.e. differentiable Birkhoff decomposition. We then
use this decomposition to construct an extension of permutation functions to the Birkhoff polytope.
Finally, we show this extension has many advantageous properties. Proofs of the claims made in this
section are given in App. A.

2.1 Preliminaries

A doubly stochastic n× n matrix is one with non-negative entries where each row and column sums
to 1. A permutation matrix is a special doubly stochastic matrix with binary entries and a single 1 in
every row and column. The class of n× n doubly stochastic matrices is a convex polytope known as
the Birkhoff polytope Dn. The Birkhoff polytope lies in an (n− 1)2-dimensional affine subspace of
n2-dimensional Euclidean space defined by 2n− 1 independent linear constraints specifying that the
row and column sums all equal 1. Let Pn denote the set of n× n permutation matrices.
Theorem 2.1 (Birkhoff decomposition [8]). Any doubly stochastic matrix A ∈ Dn, can be decom-
posed as A =

∑M
k=1 αkPk where M < n2 − n+ 1, αk > 0,

∑
k αk = 1, and Pk ∈ Pn.

To construct this decomposition we view A as the biadjacency matrix of a bipartite graph with vertices
[n] ⊔ [n] and edges (i, j) of weight A(i, j). In this graph consider the following set of permutations,
i.e. perfect matching in this graph, that do not have edges of weight zero.
Definition 2.2. A permutation matrix P ∈ Pn is a perfect matching of non-negative matrix A iff
P (i, j) = 1 implies A(i, j) > 0. We denote the space of permutations that are perfect matchings of
A as P(A).

The standard algorithm [8] for constructing such a decomposition is given in Alg. 1. This is an
iterative algorithm that starts from B0 = A and, at each iteration k, takes the matrix Bk resulting
from the previous step, which is proportional to a doubly stochastic matrix, and finds a permutation
P that is a perfect matching of Bk. The existence of such a matching is a consequence of Bk being
proportional to a doubly stochastic matrix and Hall’s marriage theorem. Furthermore, this matching
P can be computed using a standard bipartite matching algorithm in O(n3) time. If P is a perfect
matching of Bk and α is the value of the smallest entry Bk(i, j) in Bk such that P (i, j) = 1, then
Bk+1 = Bk − αP is a matrix proportional to a doubly stochastic matrix with one less non-zero entry
than in Bk. Note that since P is a matching of Bk, we have α > 0. This process is repeated until the
resultant matrix is the zero matrix.

2.2 A continuous and a.e. differentiable Birkhoff decomposition

We extend a function f : Pn → R on permutations to a function F : Dn → R on Birkhoff
polytope via the Birkhoff decomposition: F (A) =

∑
k αkf(Pk). However, Birkhoff decomposition

is non-unique; there may be many different ways to represent a doubly stochastic matrix as a convex
combination of permutations. This non-uniqueness is evident at each step of the decomposition in the
multiple choices of which permutation matrix P ∈ P(Bk) to subtract. We now describe how to fix a
particular decomposition so that the coefficients αk, and the extension F , are continuous functions of
the matrix A being decomposed (with the standard L2-induced topology on Dn).

The key insight for this construction is to fix an arbitrary total order over permutation matrices and,
at each step in the decomposition, always pick the valid permutation that comes first in the order.

4

Algorithm 1 Classical Birkhoff decomposition [8]
Require: A ∈ Dn

Ensure: {(αk, Pk)}Mk=1 s.t. A =
∑M

k=1 αkPk,∑
k αk = 1, and αk > 0.
k ← 1, B0 ← A
while Bk ̸= 0 do

Pk ← P ∈ P(Bk)
αk ← minij{Bk(i, j) | Pk(i, j) = 1}
Bk+1 ← Bk − αkPk

k ++
end while
M ← k
return {(αk, Pk)}Mk=1

Algorithm 2 Continuous Birkhoff decomposition
Require: A ∈ Dn, identifying score matrix S

Ensure: {(αk, Pk)}Mk=1 s.t. A =
∑M

k=1 αkPk,∑
k αk = 1, and αk > 0.
k ← 1, B0 ← A
while Bk ̸= 0 do

Pk ← argmaxP∈P(Bk)
⟨P, S⟩

αk ← minij{Bk(i, j) | Pk(i, j) = 1}
Bk+1 ← Bk − αkPk

k ++
end while
M ← k
return {(αk, Pk)}Mk=1

Previous decomposition algorithms fail to achieve continuity because small changes to the matrix
A being decomposed could change which permutation is subtracted at each step, which alter the
trajectory of the decomposition. By fixing the order in which permutations are subtracted in the
decomposition, we circumvent this issue. Below we introduce a continuous Birkhoff decomposition
scheme, and prove its correctness (i.e., validity and continuity) in Thm. 2.4.
Definition 2.3 (Continuous Birkhoff Decomposition). Given an enumeration {Pℓ}n!ℓ=1 of Pn (i.e, fix
a total order of all permutations), and given A ∈ Dn, the continuous Birkhoff decomposition of A
induced by {Pℓ}n!ℓ=1 is (αℓ, Pℓ)

n!
ℓ=1 where the coefficients are defined recurrently from ℓ = 1 to n! in

order by

αℓ = min
ij

{
A(i, j)−

ℓ−1∑
m=1

αmPm(i, j) | Pℓ(i, j) = 1

}
(3)

Theorem 2.4. Given an enumeration {Pℓ}n!ℓ=1 and given A ∈ Dn, the coefficients of the continuous
Birkhoff decomposition (αℓ, Pℓ)

n!
ℓ=1 of A are (i) Lipschitz continuous functions from Dn to R, (ii)

all non-negative and sum to 1, and (iii) yield a valid decomposition of A via A =
∑n!

ℓ=1 αℓPℓ.
Furthermore, (iv) there are at most n2 − n+ 1 coefficients being non-zero.

The a.e. differentiability of the continuous Birkhoff decomposition follows from Lipschitz continuity
and an application of Rademacher’s theorem [43].
Theorem 2.5. The coefficients {αℓ}n!ℓ=1 of the continuous Birkhoff decomposition are almost every-
where differentiable functions from Dn to R.

Now that we have constructed a continuous Birkhoff decomposition, the next questions are how
to represent that total order of all permutation matrices, and how to compute this decomposition
efficiently. Indeed, for an arbitrary ordering of permutations, efficient computation is not feasible as
it requires referencing the order of n! elements. We overcome this challenge by instead focusing on
orderings of permutations that arise from an inner product.
Definition 2.6 (Score-Induced Birkhoff Decompositions). Given an n× n matrix S, the score of a
permutation P is ⟨S, P ⟩ =

∑
ij S(i, j)P (i, j). We call S a score matrix, and say that S is identifying

if it assigns a unique score to every permutation, thereby inducing a total order on Pn.

Furthermore, given an identifying score matrix S, the Birkhoff decomposition as specified in Def. 2.3
with respect to an ordering of permutations by their score {Pℓ}n!ℓ=1 is called an S-induced Birkhoff
decomposition.

A simple example of an identifying score matrix is given by S(i, j) = 2(i+nj). The score-matrix
induced total order is particularly effective because for any A ∈ Dn, the permutation P ∈ P(A) that
comes first in this order can be found efficiently by solving a maximum weight matching problem.
Consequently, decompositions with respect to this order can be constructed efficiently:
Theorem 2.7. Given an identifying score matrix S, the S-induced Birkhoff decomposition can be
computed in O(n5) time by Alg. 2.

5

In practice, we may wish to use score matrices other than S(i, j) = 2(i+nj). The following theorem
shows that random assignment of S is sufficient for S to be identifying.
Claim 2.8. If the entries S are independent absolutely continuous random variables S(i, j) ∈ R
then S is identifying almost surely.

2.3 Properties of Birkhoff extension

We present several properties that make our score-induced Birkhoff extension a desirable candidate
for optimization. Proofs of these properties are given in App. A
Definition 2.9. Given A ∈ Dn and an ordering of permutations {Pℓ}n!ℓ=1, let (αk, Pk)

M
k=1 be the

non-zero Birkhoff coefficients defined in Def. 2.3. For any f : Pn → R, the Birkhoff extension of f is
the function F : Dn → R where

F (A) =

M∑
k=1

αkf(Pk). (4)

We say F is score induced or S-induced if the ordering of permutations is induced by S. We sometimes
emphasize the dependence on S by using FS to denote the S-induced Birkhoff extension.

Almost everywhere differentiability and continuity of F are essential for gradient-based optimization.
These properties follow from continuity and a.e. differentiability of the coefficients {αℓ}n!ℓ=1. Further-
more, we show that when computing the gradient of F one only needs to consider the non-zero terms
in the Birkhoff decomposition.
Property 1. Birkhoff extensions are Lipschitz continuous and almost everywhere differentiable. Fur-
thermore if L+ = {ℓ ∈ [n!] : αℓ > 0}, then ∇AF (A) =

∑
ℓ∈L+

(∇Aαℓ)f(Pℓ) almost everywhere.

Computing a Birkhoff extension reduces to computing the corresponding Birkhoff decomposition,
thus, Alg. 2 gives efficient computation of score-induced Birkhoff extensions (see Thm. 2.7).
Property 2. Score-induced Birkhoff extensions F can be computed in O(n5) time.

One concern when optimizing a continuous extension to a combinatorial function f is that the
optimization reaches some minimum in the extended space that does not correspond with minima of
the combinatorial function (which is our true goal). Property 3 below shows that (global) minima of
the extension F (i.e., over Dn) are related to those of f over the permutations.
Property 3. Let F be a Birkhoff extension of f : Pn → R. Then (1) minP∈Pn

f(P) =
minA∈Dn F (A) and (2) argminA∈Dn

F (A) ⊆ Conv(argminP∈Pn
f(P)).

The Birkhoff decomposition leads to a simple rounding strategy:
Definition 2.10. Given a matrix A ∈ Dn and a score matrix S that induces a Birkhoff decomposition
(αk, Pk)

M
k=1, we define

roundS(A) = argminPk:k∈[M](f(Pk)). (5)

Note that roundS(A) can be computed in O(n5) time by computing a Birkhoff decomposition of A.
The rounding scheme is lossless in that it can only improve solution quality; see Property 4-1 below.
Consequently, optimizing f reduces to optimizing the Birkhoff extension F , as any minimum of
F can be used to derive a minimum of f . Furthermore, approximations to minA∈Dn

FS(A) can be
rounded to approximations for minP∈Pn

f(P).
Property 4. Let FS be a score-induced Birkhoff extension of f : Pn → R. For any A ∈ Dn, then

1. f(roundS(A)) ≤ FS(A). Furthermore, if A is a C-approximation for minA∈Dn FS(A), then
roundS(A) is a C-approximation for minP∈Pn

f(P).
2. If P ∗ ∈ Pn with maxij |P ∗(i, j)− S(i, j)| < 1

2n , then f(roundS(A)) ≤ f(P ∗).

Another useful quality of this rounding scheme, Property 4-2, is that if S is sufficiently close to some
permutation P , then rounding always yields a solution at least as good as P . This holds independent
of the matrix A that is being rounded and gives useful flexibility to Birkhoff extension optimization. In
particular if the score S is close to an approximate solution to the combinatorial optimization problem,
then rounding always produces a solution at least as good as the approximation. For example, if
S = Papprox + Q where Papprox is solution produced by a fast approximation algorithm and Q is a

6

Algorithm 3 Static score Frank-Wolfe over Dn

Require: f : Pn → R, random A ∈ Dn, score
S
for t = 1 · · ·T do

Pt ← argmaxP∈Pn
⟨∇FS(At), P ⟩

At+1 ← (1− λt)At + λtPt

end for
return roundS(AT)

Algorithm 4 Dynamic score Frank-Wolfe over
Dn

Require: f : Pn → R, random A ∈ Dn, score S
for t = 1 · · ·T do

Pt ← argmaxP∈Pn
⟨∇FS(At), P ⟩

At+1 ← (1− λt)At + λtPt

P∗ ← P∗ ∪ Birkhoff(At+1)
if update_score then

Q ∼ Unif([0, 1]n×n)
P ∗ ← 1

2n
Q+ argminP∈P∗f(P)

S ← P ∗

end if
end for
return roundS(AT)

random noise matrix with entries in [0, 1/n2]. (Adding Q ensures that S is almost surely identifying
by Claim 2.8.) Then, gradient-based optimization of the Birkhoff extension associated with S finds
solutions that are guaranteed to be no worse than the approximation Papprox. This means that we can
use Birkhoff extension as a local improvement strategy to potentially improve any given solution. It
is important that Papprox is used as the score matrix, not as an initialization for the optimized matrix
A ∈ Dn. In fact, initializing A at Papprox yields weaker guarantees as optimization may produce a
solution of worse quality in this case.

2.4 Optimization procedure with dynamic score

Consider the optimization problem minP∈Pn f(P) where the goal is to minimize a function f : Pn →
R on permutations. A natural relaxation for this optimization problem is to optimize the Birkhoff
extension of f over the set of doubly stochastic matrices; namely, the constrained optimization
problem of the form minA∈Dn

F (A). Here we propose an iterative first-order optimization algorithm
that is concerned with optimizing an objective function over the Birkhoff polytope Dn.

Frank-Wolfe. One difficulty in gradient-based approaches to optimize constrained optimization
problems is the risk of stepping outside of the feasible region. We address this difficulty by adapting
the famous Frank-Wolfe approach [23]. In contrast to projected gradient descent approaches, the idea
is to follow a direction of descent that is best aligned with the negative of the gradient for which we can
also easily ensure feasibility. This is done via optimizing the negative of the gradient over the extreme
vertices Pn ⊂ Dn and then taking the obtained permutation as an alternative direction of descent. The
overall process is outlined in Alg. 3. Moreover, Frank–Wolfe reduces to iterated linear minimizations
for which highly efficient combinatorial algorithms exist, whereas projection-based methods require
solving quadratic programs over the Birkhoff polytope. In particular, argminP∈Pn

⟨∇FS(At), P ⟩
can be computed by finding a maximum weight matching in the bipartite graph G that has vertices
[n] ⊔ [n] and an edge from vertex i to vertex j of weight ∇FS(At)(i, j); the weight of a matching
P in G is ⟨∇FS(At), P ⟩. Similar applications of Frank-Wolfe to continuous optimization over the
Birkhoff polytope have been discussed by Tewari et al. [49] and Jaggi [27], however these works do
not consider applications to combinatorial optimization, as we do.

Dynamic score. One issue with gradient-based optimization of a Birkhoff extension is that the
extension is not necessarily convex, and thus, an optimization algorithm may converge to local
minima. Even if the function is convex, analyzing the convergence of Frank-Wolfe type algorithms
for non-smooth functions is highly nontrivial [3, 42, 4] and, in general, they may not converge at
all, see [39] for a counterexample. To alleviate these issues, we propose an optimization scheme in
which the score matrix S is frequently changed to help escape local minima. The key to the efficacy
of this approach is that the score matrix can be changed without decreasing the quality of the rounded
solution. Property 4-2 gives conditions for this change to be made without harming the optimization.
In particular, this occurs under the condition that the new score matrix S′ is sufficiently close to a
permutation P satisfying f(P) ≤ f(roundS(A)). We further theoretically validate this approach by
showing at any A ∈ Dn there is a score matrix S such that A is not a local minimum of FS (App. G).

Theorem 2.11 (Escaping Local Minima). Let f : Pn → R be any function on permutations, there
exists a score matrix S such that A is not a local minimum of FS .

7

As finding such a score matrix is computationally hard, we use the following procedure in prac-
tice. Let BirkhoffS(A) be the permutations with non-zero coefficients in the S-induced Birkhoff
decomposition of A and for each iterate At let P∗ = ∪0≤t′≤tBirkhoffS(At′). We update the score
to S′ = argminP∈P∗f(P) + 1

2nQ where Q is a matrix with uniform random entries in [0, 1]. By
Property 4-2 this update satisfies f(roundS′(At)) ≤ f(roundS(At)). This procedure is outlined in
Alg. 4, where update_score is a flag determined externally indicating if convergence has occurred
and the score should be updated.

Adaptations to constraints and trees. We provide further extensions based on our Birkhoff
decomposition. First, we show how Birkhoff extension can be adapted to a class of rooted binary
trees over a fixed leaf set (App. C). Next, we show that Birkhoff extension can easily handle a broad
class of simple constraint (App. I). In particular, we consider constraints that can be incorporated into
the corresponding matching problem.

Unsupervised learning. We apply Birkhoff extension to train neural combinatorial optimization
solvers (App. B). As Birkhoff extension is a.e. differentiable, it can be used as a loss function
in unsupervised learning. Using this loss, neural networks can be trained to output solutions to
combinatorial problems. Our proof-of-concept experiments show that training a neural network
using Birkhoff extension yields a model that predicts good approximate solutions. In particular, the
output of this NN can be used to initialize our Birkhoff extension optimization algorithm to provide
substantial speedups. Furthermore, this generalizes to larger problem instances than seen in training.

3 Experiments

We carry out experiments on three different combinatorial optimization problems: the quadratic
assignment problem (QAP), the (Euclidean) traveling salesman problem (TSP), and the directed
feedback arc set problem (DFASP). For QAP, we seek a bipartite matching that minimizes a quadratic
loss. For TSP, the goal is to find the shortest possible tour visiting each city once and returning to
the starting point. In DFASP, we aim to find a vertex ordering that minimizes the number of edges
directed against the order. Detailed definitions and linear integer programming formulations for each
problem are given in App. D. For each problem instance, we apply a variant of Alg. 4 to optimize and
compare its performances with baselines. In particular, we update the score matrix every 10 epochs
(i.e., update_score = True in Alg. 4 if and only if t ∈ {10, 20, . . . , T}). To overcome the O(n5)
time complexity, we truncate the Birkhoff decomposition to only the first k = 5 terms. Automatic
differentiation is used to compute gradients. Additional experiments and ablations are given in App.
F.

Summary of results. We first summarize our results and then provide specific discussion (full
details in App. E). Our optimization algorithm performs best at QAP, where it outperforms two
different Gurobi implementations and two popular heuristic approaches (which are the default scipy
heuristics). We suspect Birkhoff extension performs particularly well here since permutation matrices
naturally model matchings in that the i, j matrix entry indicates a match between facility i and
location j. Other permutation problems are less amenable to this representation; e.g, in TSP the i, j
matrix entry indicates that city i occurs jth in the tour. Indeed, Gurobi is highly effective for TSP
and outperforms our Birkhoff extension-based approach both in terms of accuracy and efficiency.
Nevertheless, we show that Birkhoff extension can still be used as a local improvement to further
improve solutions provided by the minimum spanning tree (MST) approximation algorithm or by
quadratic programming. Gurobi does not perform well for DFASP. In particular, our approach
provides superior solutions for large instances for DFASP.

QAP. We evaluate on the QAPLIB library [10], which contains N = 136 problem instances with
sizes between 12 and 256. Some instances have confirmed optimal objective values, while others have
the best-known objective values reported. For Gurobi, we use the Kaufman–Broeckx linearization
[30] for the Mixed-Integer Linear Programming (MILP), and we set same maximum time budget for
Gurobi and our method as 2n seconds, and we report the actual run-time on average for all methods.
For the same time budget, the canonical ILP formulation [56] fails on 70% of instances. We also test
the same benchmark with two other heuristics: Fast Approximate QAP [52] and 2-opt algorithm [16].
Our method outperforms all benchmarks (see results in Table 1).

TSP. We generate instances by uniformly sampling n vertices vi ∈ [0, 1]2. For each size n ∈
{20, 30, 40, 50, 100}, we generate N = 50 instances. Comparisons are made with an MST-based

8

Method QAP: Assignment Cost ↓
Average Gap from the best known Run-Time (secs)

Gurobi, Kaufman-Broeckx 7.67% 90.3

Fast Approximate QAP [52] 15.41% 0.01
2-opt [16] 10.38% 22.82

Random S Init. Alg. 4 6.30% 23.01

Table 1: Performances of methods for QAP in terms of assignment costs. As QAPLIB contains the
best known solutions for each problem instance, we report the average gap to these objective values.

approximation algorithm [14], a quadratic programming (QP) relaxation, and Gurobi (which is
optimal). For Alg. 4 we test three different score matrix S initializations: uniformly random in
[0, 1]n

2

, MST approximation, and the QP relaxation solution. The learning rate is η = 0.01. The
maximum number of optimization steps is T = 10000, and early stopping triggers after 2000 steps
without improvement. All optimization processes converge (see optimization curves for different
heuristics in App. E). Results for TSP are presented in Table 2. Although Gurobi is highly effective
and returns the optimal solution, our approach can still provide local improvements over QP and
MST (see the last two rows in Table 2) by using those solutions as the input score matrix for Alg. 4.

DFASP. We generate instances using a directed Erdős-Rényi model with p ∈ {0.1, 0.5, 0.9}. Again,
for each problem size n ∈ {20, 50, 100}, we generate N = 50 instances. Note, Gurobi is not able
to find an optimal solution within a reasonable time for DFASP. Hence, to compare the quality of
Gurobi vs. our approach, we limit the runtime of both algorithms to n

10 minutes for equal comparison.
Consequently, the number of steps T varies for different problem instances. (Additional experiments
(App. E) show these optimization algorithms offer minimal improvement after the n

10 minute time
limit.) The learning rate is η = 0.005. Results, given in Table 3, show our method is competitive
with Gurobi and shows superior performance for larger instances.

Method TSP: Tour Length ↓
n =˙ 20 30 40 50 100

Gurobi 3.889 4.531 5.190 5.707 7.748
MST 4.746 5.784 6.835 7.410 10.288
QP 4.553 5.666 6.818 7.782 11.896

MCTS w. Rand. Simulation 4.558 (0.5s) 5.563 (1.7s) 6.706 (4.7s) 7.468 (9.8s) 11.781 (113.37s)

Random S Init. Alg. 4 4.518 5.681 7.139 8.433 15.615
MST S Init. Alg. 4 (Improv.) 4.345 (8.33 %) 5.290 (8.53 %) 6.328 (7.42 %) 6.892 (6.99 %) 9.836 (4.60 %)
QP S Init. Alg. 4 (Improv.) 4.405 (3.25 %) 5.633 (0.58 %) 6.709 (1.60 %) 7.670 (1.45 %) 11.782 (0.96 %)

Table 2: Performances of methods for TSP in terms of tour length. Best results are marked as
bold; second bests are blue. If score is initialized to an approximate solution, percentages indicate
proportional improvement of Alg. 4 over initialization. See appendix E for optimization

Method DFASP: Feedback-Arc Set Size ↓
p = 0.1 p = 0.5 p = 0.9

n = 20 50 100 250 20 50 100 250 20 50 100 250

Gurobi 3.8 44.8 269.1 875.6 67.7 475.4 2229.9 6831.7 156.7 1028.0 4362.7 13652.4

Random S Init. Alg. 4 4.7 53.0 289.0 991.3 65.0 496.5 2123.4 6459.8 157.5 1039.0 4253.7 12198.7

Table 3: Performances of DFASP algorithms in terms of feedback-arc set cardinality.

9

4 Concluding remarks

We present Birkhoff extension, a continuous a.e. differentiable extension of permutation functions to
doubly stochastic matrices, which has rounding guarantees. Combining this extension with a gradient-
based optimization algorithm, we develop an iterative optimization framework for permutation
functions. We present experiments to validate our approach for combinatorial optimization problems.

We propose a neural optimizer based on our Birkhoff extension, however, this direction requires
further exploration and far more extensive experiments. We leave this as a future direction to
investigate. We also note that currently we use a simple strategy to update the score matrix. It would
be interesting to explore more effective update strategies. Finally, computing Birkhoff extension is
expensive (O(n5) time complexity), although in practice, the number of permutations is usually far
fewer than n2. It will be interesting to investigate how to improve the time complexity, or how to
obtain an updated the Birkhoff decomposition efficiently as the input matrix changes, given that one
needs to compute this decomposition many times within our optimization framework. One potential
for speedup is to develop matching algorithms that are more amenable to GPU computation. We
initiate discussion by introducing a GPU friendly matching algorithm in App. L.

Acknowledgments

This work is partially supported by NSF (National Science Foundation) by grant CCF-2112665.

References
[1] Ryan P. Adams and Richard S. Zemel. Ranking via Sinkhorn propagation. ArXiv, abs/1106.1925,

2011.

[2] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-SAT: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2019.

[3] Kamiar Asgari and Michael J. Neely. Projection-free non-smooth convex programming. arXiv
preprint arXiv:2208.05127, 2022.

[4] Kamiar Asgari and Michael J. Neely. Nonsmooth projection-free optimization with functional
constraints. Computational Optimization and Applications, 89:927–975, 2024.

[5] Francis Bach. Submodular functions: from discrete to continuous domains. Mathematical
Programming, 175:419–459, 2019.

[6] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning. In International Conference on Learning
Representations, 2017.

[7] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. In European Journal of Operational Research,
2018.

[8] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tucumán. Revista A.,
5:147–151, 1946.

[9] Fanchen Bu, Hyeonsoo Jo, Soo Yong Lee, Sungsoo Ahn, and Kijung Shin. Tackling prevalent
conditions in unsupervised combinatorial optimization: Cardinality, minimum, covering, and
more. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Confer-
ence on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages
4696–4729. PMLR, Jul 2024.

[10] Rainer E. Burkard, Stefan E. Karisch, and Franz Rendl. Qaplib – a quadratic assignment
problem library. Journal of Global Optimization, 10(4):391–403, 1997.

10

[11] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

[12] Gengjie Chen and Evangeline F. Y. Young. Dim sum: Light clock tree by small diameter
sum. In Proceedings of the IEEE/ACM Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 174–179, Florence, Italy, March 2019.

[13] Gustave Choquet. Theory of capacities. In Annales de l’institut Fourier, volume 5, pages
131–295, 1954.

[14] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical Report Report 388, Carnegie-Mellon University, Management Sciences Research
Group, 1976.

[15] Yves Crama. Concave extensions for nonlinear 0–1 maximization problems. Mathematical
Programming, 61:53–60, 1993.

[16] G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6(6):791–
812, 1958.

[17] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. Proceedings of
the forty-eighth annual ACM symposium on Theory of Computing, 2015.

[18] Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with
combinatorial actions: An application to vehicle routing. Advances in Neural Information
Processing Systems, 33:609–620, 2020.

[19] Fanny Dufossé and Bora Uçar. Notes on Birkhoff-von Neumann decomposition of doubly
stochastic matrices. Linear Algebra and its Applications, 497:108–115, 2016.

[20] Marwa El Halabi, Francis Bach, and Volkan Cevher. Combinatorial penalties: Which structures
are preserved by convex relaxations? In International Conference on Artificial Intelligence and
Statistics, pages 1551–1560. PMLR, 2018.

[21] Marwa El Halabi and Stefanie Jegelka. Optimal approximation for unconstrained non-
submodular minimization. In International Conference on Machine Learning, pages 3961–3972.
PMLR, 2020.

[22] James E Falk and Karla R Hoffman. A successive underestimation method for concave
minimization problems. Mathematics of Operations Research, 1(3):251–259, 1976.

[23] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

[24] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

[25] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[26] Gurobi Optimization, LLC. Traveling salesman problem (TSP) example in python. https://
www.gurobi.com/documentation/current/examples/tsp_py.html, 2024. Accessed:
2024-07-05.

[27] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Sanjoy
Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages 427–435.
PMLR, 2013.

[28] Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework
for combinatorial optimization on graphs. Advances in Neural Information Processing Systems,
33:6659–6672, 2020.

11

https://www.gurobi.com/documentation/current/examples/tsp_py.html
https://www.gurobi.com/documentation/current/examples/tsp_py.html

[29] Nikolaos Karalias, Joshua Robinson, Andreas Loukas, and Stefanie Jegelka. Neural set func-
tion extensions: Learning with discrete functions in high dimensions. Advances in Neural
Information Processing Systems, 35:15338–15352, 2022.

[30] L. Kaufman and F. Broeckx. An algorithm for the quadratic assignment problem using benders’
decomposition. European Journal of Operational Research, 2(3):207–211, May 1978.

[31] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in Neural Information Processing Systems, 30,
2017.

[32] Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

[33] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[34] László Lovász. Submodular functions and convexity. Mathematical Programming The State of
the Art: Bonn 1982, pages 235–257, 1983.

[35] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. In International Conference on Learning Representations, 2019.

[36] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling
salesman problems. Journal of the ACM, 7(4):326–329, Oct 1960.

[37] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In 45th
Annual IEEE Symposium on Foundations of Computer Science, pages 248–255. IEEE, 2004.

[38] Kazuo Murota. Discrete convex analysis. Mathematical Programming, 83:313–371, 1998.

[39] Y. Nesterov. Complexity bounds for primal-dual methods minimizing the model of objective
function. Mathematical Programming, Series A, 171:311–330, 2018.

[40] Guillaume Obozinski and Francis Bach. Convex relaxation for combinatorial penalties. arXiv
preprint arXiv:1205.1240, 2012.

[41] Michael O Rabin and Vijay V Vazirani. Maximum matchings in general graphs through
randomization. Journal of algorithms, 10(4):557–567, 1989.

[42] Sathya N. Ravi, Maxwell D. Collins, and Vikas Singh. A deterministic nonsmooth frank wolfe
algorithm with coreset guarantees. INFORMS Journal on Optimization, 1(2):120–142, 2019.

[43] Walter Rudin. Principles of Mathematical Analysis. 1964.

[44] Piotr Sankowski. Maximum weight bipartite matching in matrix multiplication time. Theoretical
Computer Science, 410(44):4480–4488, 2009.

[45] Lex Schrijver. A Course in Combinatorial Optimization. 2003.

[46] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization
with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

[47] Hadar Serviansky, Nimrod Segol, Jonathan Shlomi, Kyle Cranmer, Eilam Gross, Haggai Maron,
and Yaron Lipman. Set2graph: learning graphs from sets. In Advances in Neural Information
Processing Systems, 2020.

[48] Mohit Tawarmalani and Nikolaos V Sahinidis. Convex extensions and envelopes of lower
semi-continuous functions. Mathematical Programming, 93(2):247–263, 2002.

[49] Ambuj Tewari, Pradeep K. Ravikumar, and Inderjit S. Dhillon. Greedy algorithms for struc-
turally constrained high-dimensional problems. In Advances in Neural Information Processing
Systems, volume 24, pages 882–890, 2011.

12

[50] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for
maximum constraint satisfaction. Frontiers in Artificial Intelligence, 3:580607, 2021.

[51] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in Neural
Information Processing Systems, 28, 2015.

[52] Joshua T. Vogelstein, James M. Conroy, Vince Lyzinski, Louis J. Podrazik, Steven G. Kratzer,
Eric T. Harley, Carey E. Fishkind, R. Jacob Vogelstein, Cencheng Shen, Donniell E. Fishkind,
Youngser Park, Michael S. Vogelstein, and Carey Priebe. Fast approximate quadratic program-
ming for graph matching. PLoS ONE, 10(4):e0121002, 2015.

[53] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
67–74, 2008.

[54] Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. Advances in Neural Information
Processing Systems, 35:31444–31458, 2022.

[55] Runzhong Wang, Zhigang Hua, Gan Liu, Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang,
Jun Zhou, and Xiaokang Yang. A bi-level framework for learning to solve combinatorial
optimization on graphs. Advances in Neural Information Processing Systems, 34:21453–21466,
2021.

[56] Huizhen Zhang, Cesar Beltrán-Royo, and Liang Ma. Solving the quadratic assignment problem
by means of general purpose mixed integer linear programming solvers. Technical Report 2622,
Optimization Online, 2010. Technical report, April 19, 2010.

Table of Contents

Contents

1 Introduction 1

1.1 Our work . 2

1.2 Related work . 3

2 Birkhoff Extension 4

2.1 Preliminaries . 4

2.2 A continuous and a.e. differentiable Birkhoff decomposition 4

2.3 Properties of Birkhoff extension . 6

2.4 Optimization procedure with dynamic score . 7

3 Experiments 8

4 Concluding remarks 10

A Deferred Proofs 15

B Unsupervised Neural optimizer 18

C Extensions for Optimization over Trees 22

13

D Problem Details 22

D.1 Traveling Salesperson Problem . 23

D.2 DFASP . 23

D.3 QAP . 23

E Experiments Details 23

E.1 Optimization Curves . 23

E.2 Timing . 24

F Ablation Study 25

F.1 Effect of Truncation Depth k . 25

F.2 Effect of Score-Update Frequency . 25

F.3 Initialization Strategy . 26

F.4 Optimization Method Comparison . 26

F.5 Scalability on Large-Scale QAP Instances . 26

G Escaping Local Minima via Score Matrix Modification 26

H Comparison with Convex Closure 28

H.1 Definition and Properties of Convex Closure . 28

H.2 Computational Challenges and Advantages of Our Approach 29

I Generalization to Constrained Permutations 29

I.1 Formal Setup . 29

I.2 Key Properties . 30

I.3 Compatible Constraint Types . 30

J Truncated Birkhoff Extension 31

K Global Lipschitz bound for Birkhoff extension 32

L GPU friendly maximum perfect matching 33

14

A Deferred Proofs

proof of Thm. 2.4. We show continuity (i) by induction. Note that Eq. 3 makes reference to the order
{Pℓ}n!ℓ=1, which we now induct on. For the base case, we have that α1 is a Lipschitz continuous
function of A as the sum in Eq. 3 disappears. Now, assume αm for m < ℓ is a Lipschitz continuous
function of A. Then, by Eq. 3, αℓ is a Lipschitz continuous function of A, as min is a Lipschitz
continuous function.

Now for each ℓ ∈ [n!], set Bℓ = A −
∑ℓ

m=1 αmPm. Clearly, we have Bℓ = Bℓ−1 − αℓPℓ, and
αℓ = mini,j{Bℓ−1(i, j) | Pℓ(i, j) = 1}. Furthermore let Zℓ denote the set of indices (i, j) of
non-zero entries in Bℓ; that is, Zℓ = {(i, j) | Bℓ(i, j) > 0}. First, note that since A and every Pm

are doubly stochastic, Bℓ must be proportional to some doubly stochastic matrix for any ℓ. Indeed,
for any ℓ the matrix Bℓ has rows and columns that sum to 1−

∑ℓ
m=1 αm. Next, we use induction to

show that (a) Bℓ has non-negative entries, (b) αℓ = 0 or αℓ > 0, and (c) if αℓ > 0, then Zℓ is a strict
subset of Zℓ−1; i.e. Zℓ ⊂ Zℓ−1. Note that (c) implies that the number of non-zero entries in Bℓ is
strictly smaller than that in Bℓ−1 whenever αℓ > 0. We then use these properties to prove statements
(ii) – (iv) in the theorem.

First, it is easy to see that properties (a) - (c) hold for the base case ℓ = 1. Now consider ℓ > 1, and
assume they hold for any r < ℓ. Since all entries in Bℓ−1 = A−

∑ℓ−1
m=1 αmPm are non-negative,

namely Bℓ−1(i, j) = A(i, j)−
∑ℓ−1

m=1 αmPm(i, j) ≥ 0 for any i, j ∈ [n], we have αℓ ≥ 0, proving
property (b).

If αℓ = 0, then properties (a) and (c) trivially hold so assume αℓ > 0. Let i∗, j∗ be indices that give
rise to αℓ. That is, αℓ = Bℓ−1(i∗, j∗) and Pℓ(i

∗, j∗) = 1. By definition of αℓ, for any other i, j such
that Pℓ(i, j) = 1, we have that αℓ ≤ Bℓ−1(i, j). Since Pℓ is a binary matrix, this means that for
all i, j ∈ [n], αℓPℓ(i, j) ≤ Bℓ−1(i, j). Hence all entries in Bℓ = Bℓ−1 − αℓPℓ are non-negative,
proving property (a).

Furthermore, note that by construction, Bℓ(i∗, j∗) = Bℓ−1(i∗, j∗) − αℓPℓ(i
∗, j∗) = 0, while

Bℓ−1(i∗, j∗) = αℓ > 0. As each entry in Bℓ is less than the corresponding entry in Bℓ−1, but are
still non-negative, we can conclude Zℓ ⊂ Zℓ−1. In particular, (i∗, j∗) ∈ Zℓ−1 but not in Zℓ. This
proves property (c).

Hence by induction, properties (a), (b) and (c) hold for all ℓ ∈ [n!]. We are now ready to prove
statements (ii) - (iv).

To prove (iii) we aim to show that Bn! = 0. We proceed by contradiction so suppose Bn! ̸= 0. Then
Bn! is proportional to a doubly stochastic matrix and must have at least one matching, say Pℓ∗ , by
Hall’s Marriage theorem. However, as all entries in Bℓ are non-decreasing as ℓ increases, the set of
non-zero entries in Bℓ∗−1 is a super set of those in Bn! and, thus, super set of those in Pℓ∗ . Therefore
we must have αℓ∗ > 0. Furthermore, let (i∗, j∗) be the pair of indices giving rise to αℓ∗ , i.e.,
αℓ∗ = Bℓ∗−1(i∗, j∗) and Pℓ(i

∗, j∗) = 1. Then Bℓ∗(i∗, j∗) = Bℓ∗−1(i∗, j∗)− αℓ∗Pℓ∗(i
∗, j∗) = 0.

As all entries can only decrease, Bn!(i∗, j∗) = 0. However, since Pℓ∗(i
∗, j∗) = 1, this means that

Pℓ∗ cannot be a matching for Bn!, which is a contradiction. Hence our assumption that Bn! is
non-zero cannot be true, and we must have that Bn! = 0, meaning A =

∑n!
ℓ=1 αℓPℓ. This proves

statement (iii).

To prove (ii), note that by (b), all αℓ ≥ 0. Furthermore, as we mentioned earlier, for any ℓ the matrix
Bℓ has rows and columns summing to 1−

∑ℓ−1
m=1 αm. Since Bn! is the zero-matrix, it follows that

1−
∑n!

m=1 αm = 0, proving (ii).

Finally, we bound the number of non-zero coefficients used in the decomposition and prove statement
(iv). Consider an ℓ∗ for which there are n2 − n + 1 non-zero coefficients αm with m ≤ ℓ∗. If no
such ℓ∗ exists we are done. If such ℓ∗ exists, then Bℓ∗ = A−

∑ℓ∗

m=1 αmPm is either the zero matrix
or is proportional to some doubly stochastic matrix. If Bℓ∗ is the zero matrix, then we are done. So
assume Bℓ∗ proportional to some doubly stochastic matrix. Note that any doubly stochastic matrix
necessarily has at least n non-zero entries (as each row-sum needs to be 1). Hence Bℓ∗ has at least n
non-zero entries. However, as the set of indices for non-zero entries Zm strictly decreases each time
αm > 0 (property (c) proved above), and there are n2−n+1 such αm with m ≤ ℓ∗, this means that

15

the number of non-zero entries in the original matrix A is at least n2 − n+1+ n = n2 +1, which is
not possible (as there are only n2 entries in a n× n matrix). Hence Bℓ∗ must be a zero matrix, and
there cannot be more than n2 − n+ 1 non-zero coefficients in {αℓ}n!ℓ=1. This completes the proof of
statement (iv).

proof of Thm. 2.5. Dn lies in an (n− 1)× (n− 1) dimensional affine subspace of Rn2

defined by
all n× n matrices with rows and columns summing to 1. We can parameterize this subspace with the
linear map

ϕ : R(n−1)2 → Rn2

(6)

 a1,1 . . . a1,n−1

...
. . .

...
an−1,1 . . . an−1,n−1

 7→


a1,1 . . . a1,n−1 1−
∑n−1

j=1 a1,j
...

. . .
...

...

an−1,1 . . . an−1,n−1

...
1−

∑n−1
i=1 ai,1 1−

∑n−1
i=1

(
1−

∑n−1
j=1 ai,j

)


(7)

Note that X = ϕ−1(Dn) is the subset of R(n−1)×(n−1) containing matrices with rows and column
sums in [0, 1]. This is a closed set whose boundary has measure zero since it has dimension less
than (n − 1) × (n − 1). The Lipschitz continuity of ϕ and αℓ gives that αℓ ◦ ϕ is Lipschitz
continuous. Applying Rademacher’s theorem [43] to the interior int(X) of X yields that αℓ ◦ ϕ is
an a.e. differentiable function from int(X)→ R. Since X \ int(X) has measure zero, we have that
αℓ ◦ ϕ is an a.e. differentiable function on X . Let N ⊂ X be the set of points for which αℓ ◦ ϕ is
not differentiable. Then ϕ(N) is the set of points such that αℓ is not differentiable. Furthermore,
ϕ(N) has Lebesgue measure zero in Dn since N has measure zero and ϕ is a surjective linear map to
Dn.

proof of Thm. 2.8. Consider two distinct permutations P, P ′ ∈ Pn. Let I and I ′ contain the pairs
(i, j) of indices such that P (i, j) = 1 and P ′(i, j) = 1 respectively. The score of these permutations
⟨P, S⟩ =

∑
(i,j)∈I S(i, j) and ⟨P ′, S⟩ =

∑
(i,j)∈I′ S(i, j), are equal if and only if∑

(i,j)∈I\I′

S(i, j) =
∑

(i,j)∈I′\I

S(i, j). (8)

The left-hand side and the right-hand side of this equation are independently distributed absolutely
continuous random variables, so they are equal with probability zero. Since any pair of permutations
have different scores almost surely, all permutations have different scores almost surely by the union
bound.

proof of Property 1. Lipschitz continuity and a.e. differentiability of F follow from the Lipschitz
continuity and a.e. differentiability of {αk}Mk=1 (theorems 2.4 and 2.5).

Now we show that the gradient∇AF (A) is equivalent to

∇AF (A) =

M∑
k=1

(∇Aαk)f(Pk). (9)

We start with a dimensionality argument showing there are never more than n2 − 2n+ 2 terms in a
Birkhoff decomposition. First we show the set {Pk}Mk=1 of permutations with positive coefficients is
linearly independent.

Suppose some Pℓ ∈ {P1, . . . , PM} can be written as a linear combination Pℓ =
∑

k∈[M]\{ℓ} ckPk

for ck ∈ R. We first show all ck with k < ℓ must be zero. The proof is by induction. We have
c1 = 0 as there must be some i, j ∈ [n] such that P1(i, j) = 1 but Pk(i, j) = 0 for k > 1. Now
consider some k < ℓ and suppose c1 = . . . = ck−1 = 0. Then ck = 0 as there is a i, j ∈ [n]
such that Pk(i, j) = 1 but for k′ > k, Pk′(i, j) = 0. We can then conclude c1 = . . . = cℓ−1 = 0.
Finally, since there is i, j ∈ [n] such that Pℓ(i, j) = 1 but Pk(i, j) = 0 for k > ℓ we can conclude

16

Pℓ =
∑

k∈[M]\{ℓ} ckPk =
∑M

k=ℓ+1 ckPk cannot hold. We have, thus, shown that the set of
permutations with positive coefficients is linearly independent.

Since this set of permutations is linearly independent, the maximum number of permutations with
positive coefficient is one more than the dimension of Dn which is n2 − 2n + 2. Suppose that
A has a full Birkhoff decomposition, that is, there are n2 − 2n + 2 positive terms in its Birkhoff
decomposition. Then, by continuity of {αℓ}n!ℓ=1, there is an open ball in Dn containing A such that
all decompositions of points in the ball have the same positive coefficients. Thus, the gradient of the
zero coefficients at A is zero.

It now remains to show that a.e. A ∈ Dn has a full Birkhoff decomposition. For each subset E ⊂ Pn

with |E| = n2 − 2n + 1, note that the convex hull Conv(E) of E has dimension n2 − 2n and,
therefore, has measure zero in the space Dn, which has dimension n2 − 2n+ 1. Consider the union
of such convex hulls

E =
⋃

E⊂Pn

|E|=n2−2n+1

Conv(E). (10)

The space E also has measure zero. Suppose A does not have full Birkhoff decomposition. Then
A ∈ E as it can be represented as the convex combination of at most n2 − 2n + 1 permutation
matrices. We can then conclude that a.e. A ∈ Dn has a full Birkhoff decomposition.

proof of Property 3. (1.) Note that for P ∈ Pn we have f(P) = F (P) since all Birkhoff co-
efficients of P have only one term. Thus, minP∈Pn

f(P) ≥ minA∈Dn
F (A). Now suppose

minP∈Pn
f(P) > minA∈Dn

F (A) and let A ∈ argminA∈Dn
F (A). Note F (A) is a convex

combination F (A) =
∑M

k=1 αkf(Pk) and
∑M

k=1 αk = 1. We can then conclude that since
minP∈Pn

f(P) >
∑M

k=1 αkf(Pk) there must be some Pk such that f(Pk) ≤ minP∈Pn
f(P),

a contradiction.

(2.) Suppose A minimizes F (A) over Dn. Then F (A) = minP∈Pn f(P), which occurs only if
for each Pk in the convex combination F (A) =

∑M
k=1 αkf(Pk) we have f(Pk) = minP∈Pn

f(P).
Since A =

∑M
k=1 αkPk and Pk ∈ argminP∈Pn

f(P) the claim argminA∈Dn
F (A) ⊆

Conv(argminP∈Pn
f(P)) holds.

proof of Property 4. (1) If f(roundS(A)) > F (A) then argminMk=1(f(Pk)) > F (A) so for each
Pk in the decomposition F (A) =

∑M
k=1 αkf(Pk) we have f(Pk) > F (A). However, since∑M

k=1 αk = 1 this implies
∑M

k=1 αkf(Pk) > F (A), a contradiction.

(2) Let the decomposition of F be F (A) =
∑M

k=1 αkf(Pk). Recall by Thm. 2.7 that Alg. 2 pro-
duces this decomposition. Through Alg. 2 we have P1 = argmaxP∈Pn

⟨P, S⟩. Next we show
argmaxP∈Pn

⟨P, S⟩ = P ∗. Since each entry of S is within 1/2n of P ∗, we have

⟨S, P ∗⟩ > n

(
1− 1

2n

)
(11)

= n− 1

2
. (12)

Also, any P ′ ̸= P ∗ must differ from P ∗ by at least one entry so ⟨P ′, P ∗⟩ ≤ (n− 1) and the inner
product with S is

⟨S, P ′⟩ ≤ (n− 1) + n

(
1

2n

)
(13)

= n− 1

2
(14)

where the second term accounts for the entry-wise differences between S and P ∗. We have then
shown P1 = argmaxP∈Pn

⟨P, S⟩ = P ∗ which implies f(roundS(A)) ≤ f(P ∗).

17

proof of Thm. 2.7. Our algorithm for constructing the continuous Birkhoff decomposition is Alg. 2,
which returns only the non-zero Birkhoff coefficients. This algorithm is the same as Alg. 1 except at
each step, with B being the matrix to be decomposed at this step, we subtract off the permutation of
maximum score that is a matching of B, as opposed to an arbitrary matching of B. Recall that B is
proportional to a doubly stochastic matrix, so it either has a matching or is the zero matrix (in which
case the algorithm terminates). To compute argmaxP∈P(B)⟨P, S⟩ we first construct a bipartite graph
G that has an edge from vertex i to vertex j with weight S(i, j) if and only if B(i, j) > 0. It is easy to
see that (i) matchings of G correspond to the matchings of the scaled doubly stochastic matrix B; and
(ii) for any matching P in this graph, its weight is exactly ⟨P, S⟩ which is the score of permutation P .
Hence we can compute argmaxP∈P(B)⟨P, S⟩ simply by computing the maximum-weight matching
of this bipartite graph G. This computation takes O(n3) time using the Hungarian algorithm, and
since there are at most O(n2) matchings to compute, the total time complexity is O(n5).

We show the correctness of Alg. 2. Recall our algorithm returns a collection of permutations
P1, . . . , PM . First, let Ω = {P̂ℓ}n!ℓ=1 denote the total ordering of all permutations induced by the
score matrix S. Now let A =

∑n!
ℓ=1 α̂ℓP̂ℓ denote the Birkhoff decomposition of A w.r.t. the total

order Ω as defined in Def. 2.3. Note the slight change in notation so that α̂ℓ and P̂ℓ represent the
permutations and coefficients in Def. 2.3 and αk and Pk represent the permutations and coefficients
returned by Alg. 2. Let i1 < i2 < · · · < iR denote the set of indices whose corresponding
coefficients αik are positive. That is, ignoring all zero coefficients in the decomposition, we have
A =

∑R
k=1 α̂ik P̂ik where each α̂ik > 0. Our goal is for each k ∈ [M] to show (cond-A): that

αk = α̂ik and Pk = P̂ik . We do so via induction on the index k ∈ [M].

We begin by showing the property that P̂ℓ is a matching of Bℓ−1 = A−
∑ℓ−1

m=1 α̂mP̂m if and only if
α̂ℓ > 0. Call this property (∗). This property holds since α̂ℓ > 0 if and only if every element in the
minimum defining α̂ℓ in Def. 2.3 is non-zero, which means for each i, j ∈ [n] with P̂ℓ(i, j) = 1 we
have Bℓ−1(i, j) > 0, i.e., P̂ℓ is a matching of Bℓ−1.

The first permutation P1 returned by Alg. 2 is argmaxP∈P(A)⟨P, S⟩ which is the matching of A with
largest score. That is, P1 is the matching of A with smallest index in the total order Ω. Furthermore,
by (∗), the permutation P̂i1 must be a matching of Bi1−1 = A since α̂i1 > 0. For j < i1 we have
α̂j = 0, and again by (∗), each Pj is not a matching of Bj−1 = A. We have shown P̂i1 is the
matching of A with smallest index in Ω and, therefore, (cond-A) holds for the base case k = 1.

Now assume (cond-A) holds for all m < k; we aim to show that it holds for k. Let i1 < i2 <
· · · < ik−1 be the indices for the previous k − 1 non-zero coefficients. In the kth iteration of Alg. 2,
B = A−

∑k−1
m=1 αmPm = Bik−1 , and Pk = argmaxP∈P(B)⟨P, S⟩, which is the first permutation

matrix in the total order Ω that is a matching for B. Let j be the index of Pk in the total order Ω, that
is, Pk = P̂j . Notice that j /∈ {i1, . . . , ik−1} as this would contradict Pk being a matching of B. We
claim that j > ik−1. If not, then by (∗), α̂j > 0, a contradiction to our inductive hypothesis that
i1, . . . , ik−1 are the first k − 1 indices whose coefficients are non-zero in the Birkhoff decomposition
of A. Hence, Pj is the first permutation in the list P̂ik−1+1, . . . , P̂n! that is a matching of B.

On the other hand, since ik is the first index in ik−1+1, ik−1+2, . . . , n! such that α̂ik > 0, by (∗), the
index ik is the first in this list such that the corresponding permutation is a matching of Bik−1−1 = B.
We can then conclude ik = j and P̂ik = Pk. Furthermore, α̂ik = αk since B = Bik−1−1 = Bik−1

so the definition of αk in Alg. 2, αk = minij{B(i, j) | Pk(i, j) = 1} is equivalent to the definition
of α̂ik in Eq. 3. This finishes the proof of the inductive step. Combining the base case with the
inductive step, we have that (cond-A) holds for all k ∈ [M], hence the set {(αk, Pk)}Mk=1 returned by
Alg. 2 exactly corresponds to those terms in the Birkhoff decomposition (as computed by Def. 2.3)
with non-zero coefficients.

B Unsupervised Neural optimizer

Since Birkhoff extensions are a.e. differentiable, they can be useful for training neural networks for
unsupervised neural combinatorial optimization. In particular, similar to [29], we can train a neural
network Nθ with parameters θ that maps an instance I of a problem to a doubly stochastic matrix AI ,

18

which we aim to train for the optimization of the combinatorial objective f . See the illustration in
Figure 1.

For example, for TSP in the Euclidean space Rd the instance is a set of cities, represented by a vector
XI ∈ Rnd representing n points {x1, . . . , xn} in Rd. The output of Nθ is a n× n doubly stochastic
matrix AI = Nθ(XI), and the neural network is trained in an unsupervised manner to optimize
F (AI). Note that once trained, when a new instance I ′ is given with input XI′ , we can simply return
roundS(Nθ(XI′)) as the TSP tour. Essentially, Nθ can be viewed as an neural optimizer for the
given optimization problem over the extended space Dn. Once a solution in Dn is identified, it can
be rounded to a permutation without lowering the quality of the solution (Property 4).

Having a differentiable Birkhoff extension allows us to train such a neural network model in an
unsupervised manner. In particular, first, suppose we have a score matrix S – this score matrix can be
chosen simply as a random stochastic matrix; or it can also be a canonical choice depending on the
input problem instance. For example, in the case of TSP, we can choose S to be a perturbation of
the permutation derived from the MST. With this choice of S, let A = Nθ(XI) be the output of the
neural network. We have that (computed by Alg. 2)

FS(A) =

M∑
k=1

αk(A)f(Pk(A)). (15)

Here, note that both αk and Pk depend on A, and A itself depends on the parameters θ of the neural
network Nθ. We simply minimize FS(A) w.r.t. the parameters θ via backpropagation. More precisely,
computing ∂FS(A)

∂θ boils down to computing ∂αk

∂θ = ∂αk

∂A ·
∂A
∂θ for each positive Birkhoff coefficient

αk.

The above description is for training Nθ only for a single instance. Usually one wishes to train Nθ

over a family of instances I , so that once trained, it can be used to produce solutions to new instances.
In particular, during training, the loss is

∑
I∈I

1
|I|FS(Nθ(I)). Once trained, given a new instance

I , we can simply compute AI = Nθ(XI) and return the permutation roundS(AI) as a candidate
solution. In practice, we found that for a test instance it makes sense to optimize Nθ for a few more
iterations at testing (as a fine-tuning) to further improve the quality AI .

We also note that for the case where we have a score matrix that depends on the problem instance
(e.g, using MST to induce a score matrix for the TSP problem), it is beneficial to also take this score
matrix SI as input to the neural network Nθ to better inform the output matrix AI = Nθ(XI , SI).
This input is optional.

Finally, in the simplest form, Nθ : Rnd → Rn×n maps an n-vector X with each entry from Rd to
a n × n matrix A. In particular, again using TSP as an example, here we represent a set of points
as a vector X ∈ Rnd, which assumes an ordering of these points. The output matrix assumes the
same ordering of input points. In other words, this map Nθ needs to be permutation equivariant,
namely, if we permute the order of input points in X , then the output should permute in the same way.
Mathematically, this means that Nθ satisfies Nθ(PX) = PNθ(X)PT for any permutation matrix P
over n elements. Such a permutation equivariant neural network can be implemented using models
such as the set2graph neural network of [47] and the equivariant-graph network of [35].

We train a neural network Nθ for solving TSP using a loss comprised of the Birkhoff extension F

and a penalty term λ

(∑
i

(∑
j Aij − 1

)2

+
∑

j (
∑

i Aij − 1)
2

)
that ensures double stochasticity,

where λ is the weight. We use the Adam optimizer [1] to train the model. We generate a training
dataset with N = 6000 instances and with a mixture of instance sizes, n = 20, 30, and 40. The input
to Nθ, for each instance, is the vector XI and the MST-derived score matrix St. We trained Nθ for
T = 100 epochs, and selected a learning rate of η = 0.001 using a hyperparameter search of the set
{0.01, 0.05, 0.001, 0.0005}. At testing we optimize the trained neural network Nθ for a few more
iterations as a fine-tuning. We compare the performance of this fine-tuned model (labeled MST S Init.
NN w. Alg. 2) with the corresponding untrained model (labeled MST S Init. Alg. 4) in Table 4. We
show that in most of the cases, the trained neural network model can achieve similar solution quality
to the untrained model with much less runtime. This result holds even for problem instances that are
larger than the instances seen in training

19

M
et

ho
d

T
SP

:T
ou

r
L

en
gt

h
↓

n
=

20
n

=
30

n
=

40
n

=
50

n
=

10
0

O
bj

.
Ti

m
e

O
bj

.
Ti

m
e

O
bj

.
Ti

m
e

O
bj

.
Ti

m
e

O
bj

.
Ti

m
e

M
ST

4.
74

6
<

1s
5.

78
4

<
1s

6.
83

5
<

1s
7.

41
0

<
1s

10
.2

88
<

1s

R
an

do
m

S
In

it.
A

lg
.4

4.
51

8
19

2s
5.

68
1

25
9s

7.
13

9
61

2s
8.

43
3

67
1s

13
.5

60
96

7s
M

ST
S

In
it.

A
lg

.4
(I

m
pr

ov
.)

4.
34

5
15

6s
5.

29
0

21
4s

6.
32

8
57

1s
6.

89
2

64
0s

9.
83

6
13

18
s

M
ST

S
In

it.
A

lg
.4

(1
00

st
ep

s)
4.

54
1

2.
71

s
5.

51
2

5.
30

s
6.

52
9

8.
29

s
7.

33
3

9.
72

s
10

.2
39

24
.5

6s
M

ST
S

In
it.

N
N

w
.A

lg
.2

(F
in

e-
tu

ne
d)

4.
18

0
1.

75
s

5.
20

6
2.

15
s

6.
21

9
2.

59
s

7.
17

0
3.

02
s

10
.2

20
5.

42
s

Ta
bl

e
4:

Pe
rf

or
m

an
ce

s
of

tr
ai

ne
d

ne
ur

al
ne

tw
or

k
an

d
pu

re
op

tim
iz

at
io

n
bo

th
w

ith
B

ir
kh

of
fe

xt
en

si
on

on
T

SP
.

20

Score Matrix
SI

Neural
network Nθ

XI

First Few Birkhoff Extension Terms

FSI
(A) =

m

∑
k=1

αk(A)f(Pk(A))

Gradient

Forward Flow

Matrix
(approximately

doubly
stochastic)

A

P1

P2

P3

Loss:
FSI

(A) + penalty

Penalty =
λ(∑

i

(∑
j

Aij − 1)2 + ∑
j

(∑
i

Aij − 1)2)

Figure 1: The pipeline of training a neural network Nθ for a single instance. For a given problem
instance I , we have its representation XI and a score matrix SI as input to the neural network
Nθ. The output of the neural network is a doubly stochastic matrix A = Nθ(XI , SI). Birkhoff
extensions are used to compute the loss FS(A) =

∑M
k=1 αk(A)f(Pk(A)) and we minimize it via

backpropagation. In the figure above, for example, M = 3 and rounding produces the permutation
P2 = roundSI

(AI), highlighted in red.

21

C Extensions for Optimization over Trees

In this section we consider how a parallel framework can be applied to optimization over rooted binary
trees with n labeled leaves. Problems such as the Steiner minimum tree problem and optimization-
based hierarchical clustering reduce to optimization over this space. For instance, given a fixed
rooted binary tree with leaves the set of terminals, the optimal Steiner tree with this topology can
be computed efficiently. Therefore, computing the Steiner minimum tree reduces to optimizing the
topology.

We begin by representing the space of rooted binary trees as matrices.
Definition C.1. Let Tn be the space of rooted binary trees with leaf set [n], which we represent
by a directed graph with edges directed away from the root. LetW2n−2 ⊂ D2n−2 be the space of
(2n− 2)× (2n− 2) doubly stochastic matrices W that satisfy W (i, j) = 0 if either

1. i > n− 1 and i ≤ j , or

2. i ≤ n− 1 and i+ (n− 1) ≤ j.

Let B2n−2 ⊂ W2n−2 be matrices inW2n−2 that have binary entries. We relate these spaces by the
map

τ : B2n−2 → Tn (16)
B 7→ T (17)

where T is the tree with vertices [2n− 1], leaves [n], and for n− 1 < i ≤ 2n− 1 and j < 2n− 1
the tree T has an edge (i, j) iff B(i, j) = 1 or B(i− (n− 1), j) = 1.
Lemma C.2. τ is well-defined and surjective.

Proof. First, we claim that for any B ∈ B2n−2 the image τ(B) is indeed a tree in Tn. Note that
since the columns of B sum to 1, each vertex of τ(B) other than the root, which is vertex 2n− 1,
has in-degree 1. Similarly, since the row sums of B are 1, each of the internal vertices (non-leaf
vertices), which are the vertices {n + 1, . . . , 2n − 1}, has out-degree 2. (For each internal vertex,
there are two rows in B that give its children.) Furthermore, τ(B) has no edges (i, j) where i ≤ j as
the only entries in B that can give rise to such edges are zero by (1.) and (2.) of Def. C.1. We can
then conclude that τ(B) is a directed acyclic graph. Furthermore, τ(B) has no cycles (regardless of
direction) since for such a cycle to not be a directed cycle it must contain a vertex with in-degree
greater than 1.

For surjectivity, consider an arbitrary T ∈ Tn. Let ϕ : {n+ 1, . . . , 2n− 1} → {n+ 1, . . . , 2n− 1}
be an enumeration of the internal vertices of T that respects topological order, i.e., ϕ(i) > ϕ(j)
implies j is not a descendent of i. For each internal vertex i in T with children j, k let B(i, j) = 1
and B(i + n − 1, k) = 1. Since ϕ respects the topological order, we can guarantee there are no
entries B(i, j) > 0 with either i ≤ j and i > n− 1 or i+ (n− 1) ≤ j and i ≤ n− 1, so (1.) and
(2.) of Def. C.1 are satisfied and B ∈ B2n−2. This B satisfies τ(B) = T , thus, τ is surjective.

Matrices in the spaceW2n−2 can be decomposed using Birkhoff decomposition asW2n−2 ⊂ D2n−2.
Additionally, if W ∈ W2n−2 then its Birkhoff decomposition only contains permutations in B2n−2 ⊂
P2n−2. By this fact, we are then free to apply Birkhoff extension to extend any function on B2n−2 to
a function F :W2n−2 → R, even if f is not defined for P2n−1 \ B2n−1.

Additionally, we can extend functions on trees Tn to functions onW2n−2; the procedure is as follows.
First f is composed with τ to yield a function f ◦ τ : B2n−2 → R. Then Birkhoff extension is used
to extend this function to F : W2n−2 → R. If the extension F is optimized to find some solution
W ∈ W2n−2 the Birkhoff extension rounding scheme can be used to find a B ∈ B2n−2 such that
f(τ(B)) ≤ F (W). Here, τ(B) is a tree T satisfying f(T) ≤ F (W), so this procedure can be used
to optimize f .

D Problem Details

In this section we give more detailed problem definitions and show the integer linear programs we
employ for optimization using Gurobi.

22

D.1 Traveling Salesperson Problem

Definition D.1. Given a set of n cities {1, 2, . . . , n} and a distance di,j between each pair of cities i
and j, the traveling salesperson problem (TSP) is to find the permutation π : [n]→ [n] that minimizes

n∑
k=1

dπ(k),π(k+1 (mod n)) (18)

TSP can be formulated as an integer linear program using subtour elimination constraints such as in
the Miller-Tucker-Zemlin formulation [36]. For optimization with Gurobi we use the formulation
given in [26].

Our experiments use the integer quadratic program minP∈Pn

∑n−1
i=1 PT (i)DP (i+1)+PT (n)DP (1)

and its relaxation minP∈Dn

∑n−1
i=1 PT (i)DP (i + 1) + PT (n)DP (1) for TSP. Here P (i) denotes

the i-th column of the square matrix P .

D.2 DFASP

Definition D.2. Let G = (V,E) be a directed graph where V is the set of vertices and E is the
set of directed edges. A feedback arc set in G is a subset of edges F ⊆ E such that the subgraph
G′ = (V,E \ F) is acyclic. The Directed Feedback Arc Set Problem (DFASP) is to find the minimum
feedback arc set, i.e., the smallest subset of edges F whose removal makes the graph G acyclic.

Alternatively, DFASP can be formulated as a vertex ordering (i.e. permutation) problem, where
the goal is to find an enumeration of vertices {vi}ni=1 that minimizes the cardinality of the set of
backward edges. Here we give an LP formulation. Let xij be a binary variable that equals 1 if the
edge (i, j) ∈ E is a backward edge, and 0 otherwise. Let yi be an integer variable for each vertex
i ∈ V representing the position of vertex i in a topological ordering. DFASP can be formulated using
the following integer linear program of [?].

minimize
∑

(i,j)∈E

xij

subject to xij ∈ {0, 1} ∀(i, j) ∈ E,

yi ∈ Z ∀i ∈ V ,

yi + 1 ≤ yj + |V | · xij ∀(i, j) ∈ E

D.3 QAP

Definition D.3. Given two non-negative n× n matrices D and L find a permutation π : [n]→ [n]
that minimizes ∑

i,j∈[n]

D(i, j)L(π(i), π(j)). (19)

We use the Kaufman-Broeckx integer linear program formulation [30] for the Gurobi implementation.

E Experiments Details

In this section we provide additional experimental results for the TSP, DFASP and QAP.

E.1 Optimization Curves

Here, we show the optimization curves for each experiment.

Below are plots of the averaged optimization curves for TSP on problem instances of different scales.
The x-axis gives the number of steps t and the y-axis gives solution tour length, averaged over the
N = 50 instances.

23

Below are plots of the optimization curves for DFASP. The x-axis gives the number of steps t and the
y-axis gives the average cardinality of the feedback arc set returned by the optimization algorithm.
The runtime limit for both methods is n

10 minutes (e.g. 2 minutes for n = 20, 5 minutes for n = 50
and 10 minutes for n = 100). Results are averaged across N = 50 instances.

E.2 Timing

We are using CentOS Linux 7 system on a Intel Xeon CPU E5-2650L processor. Gurobi is run on a
single thread per process. We report average runtime for each method for different scales of TSP and
QAP problems, see Table 5 and Table ?? below. DFASP is not included as we fix runtime for this
problem

24

Method TSP
n = 20 n = 30 n = 40 n = 50 n = 100

Gurobi < 1s < 1s < 1s < 1s < 1s

MST < 1s < 1s < 1s < 1s < 1s
QP 36s 50s 69s 95s 240s

Random S Init. Alg. 4 192s 259s 612s 671s 967s
MST S Init. Alg. 4 156s 214s 571s 640s 1318s
QP S Init. Alg. 4 135s 249s 532s 615s 953s

Table 5: Average runtime of TSP algorithms in seconds.

F Ablation Study

This section provides additional ablation studies and extended experiments to support the main results.
We examine the effects of truncation depth k, score-update frequency m, initialization strategy,
optimization method, and instance size. Each subsection specifies the experimental setup used to
isolate the respective factor.

F.1 Effect of Truncation Depth k

To analyze the influence of the truncation depth k in the Birkhoff decomposition, we conduct
controlled experiments on a subset of 14 QAP instances selected from QAPLIB, with problem
sizes ranging from n = 12 to n = 35. All experiments use identical hyperparameters: learning rate
η = 0.001, total runtime t = 2n seconds, and optimization via the Frank–Wolfe (FW) algorithm with
random initialization. We vary k ∈ {3, 5, 10, 15, 20} and report the average gap from the optimal
objective. Figure 2 below shows that performance improves as k increases up to k=10, then the
performance decreases. This indicates that a moderate truncation depth provides a good balance
between efficiency and solution quality.

Figure 2: Gap vs. truncation size Figure 3: Effect of score-update frequency

F.2 Effect of Score-Update Frequency

We study the impact of the score-update frequency m, which controls how often the scoring matrix is
recomputed during optimization. The same 14 QAPLIB instances and identical optimization settings
are used as in the truncation experiments, fixing k=5. We test m ∈ {1, 5, 10, 20, 50}, where m=1
means the score matrix is refreshed at every iteration. Figure 3 show that more frequent updates
consistently yield smaller optimality gaps, demonstrating that dynamic score re-weighting effectively
helps the optimizer escape poor local minima.

25

F.3 Initialization Strategy

We compare random initialization and barycenter initialization to understand their effects on opti-
mization stability. Both configurations are evaluated on the same 14 QAPLIB instances with identical
hyperparameters (k=5, η=0.001, runtime t=2n seconds). In the barycenter case, optimization starts
from the uniform doubly stochastic matrix, while the random case samples each entry uniformly
from [0, 1] before projecting onto the Birkhoff polytope via Sinkhorn iterations. Both use the same
Frank–Wolfe optimizer. The comparison shows that random initialization achieves a slightly smaller
average gap to optimal (4.14% vs. 4.42%), see results below in Table 6, suggesting that stochasticity
in initialization provides beneficial diversity in the optimization trajectory.

Initialization Method Avg. Gap from Optimal (%) ↓
Random Initialization 4.14
BaryCenter Initialization 4.42

Table 6: Comparison of initialization strategies on 14 QAPLIB instances (n = 12–35). Both methods
use identical hyperparameters (k = 5, η = 0.001, runtime 2n s). Random initialization achieves a
slightly lower average gap from optimal than barycenter initialization.

F.4 Optimization Method Comparison

We compare two continuous optimization schemes over the Birkhoff polytope: (1) gradient descent
with Sinkhorn projection and (2) the Frank-Wolfe (FW) algorithm proposed in this work. Both
methods operate on the same 14 QAPLIB instances, with fixed k=5, learning rate η=0.001, and
runtime t=2n seconds. For the gradient-based variant, we apply 10 Sinkhorn iterations after each
gradient step to enforce double stochasticity. FW achieves a lower average optimality gap (4.14%)
than Gradient+Sinkhorn (4.55%), see results in Table 7 below.

Optimization Method Avg. Gap from Optimal (%) ↓
Gradient + Sinkhorn Projection 4.55
Frank–Wolfe (ours) 4.14

Table 7: Comparison between Frank–Wolfe and Gradient + Sinkhorn optimization over the Birkhoff
polytope on 14 QAPLIB instances (sizes n=12–35). Frank–Wolfe achieves a lower average optimality
gap. All experiments use identical hyperparameters (k=5, η=0.001, runtime 2n s).

F.5 Scalability on Large-Scale QAP Instances

To assess scalability, we perform large-scale experiments on 20 synthetic random QAP instances
of size n=1000. Because QAPLIB includes no instances larger than n=256, we generate our own
dataset as follows: we uniformly sample 1000 facility points and 1000 location points in [0, 1]2. The
distance matrix D is constructed from pairwise Euclidean distances among locations, and the flow
matrix F is defined as the inverse of pairwise distances among facilities. We evaluate BE using both
Frank–Wolfe and Gradient+Sinkhorn optimizers under random and FAQ initialization. Each configu-
ration is run with runtime limits of 2000 and 4000 seconds, corresponding to approximately 10,000
and 20,000 optimization epochs, respectively. We also include comparisons with Fast Approximate
QAP (FAQ) and 2-opt baselines, see the results below in Table 8.

G Escaping Local Minima via Score Matrix Modification

In this section, we provide theoretical justification for Algorithm 4’s strategy of modifying score
matrices to escape local minima. We first establish a key lemma about the linearity of our Birkhoff
extension along certain directions, then show that when the current solution is a local (but not global)
minimum, there always exists a score matrix that allows escape from this local minimum.
Lemma G.1 (Linearity Along Highest-Score Direction). Let f : Pn → R be any function on
permutations, and let FS be the Birkhoff extension of f induced by score matrix S. Let P be a
permutation matrix that has the highest score under S. Then for any A ∈ Dn and β ∈ [0, 1]:

FS((1− β)A+ βP) = (1− β)FS(A) + βf(P)

26

Method Run-time (secs) # of epochs Avg. Objective ↓ Gap from best % ↓
Random assignment — — 138,005,401 77.37%
2-opt (Restart=3) 2,000 — 119,216,266 53.13%
2-opt (Restart=5) 2,000 — 109,965,065 41.28%
FAQ 345 — 77,894,862 0.10%
Ours (BE w/ Grad+Sink, Random Init.) 2,000 10,133 100,894,812 29.64%
Ours (BE w/ Grad+Sink, Random Init.) 4,000 20,064 90,244,871 15.97%
Ours (BE w/ FW, Random Init.) 2,000 10,024 102,393,212 31.57%
Ours (BE w/ FW, Random Init.) 4,000 20,091 89,114,150 14.40%
Ours (BE w/ FW, FAQ Init.) 2,000 10,102 77,819,625 0.00%

Table 8: Comparison of QAP solution methods on large-scale instances.

Proof. Let A =
∑M

k=1 αkPk be the Birkhoff decomposition of A under score matrix S. Consider
(1− β)A+ βP .

We consider two cases:

Case 1: If P ̸= P1 (i.e., P is not the first permutation in the decomposition of A), then the Birkhoff
decomposition of (1− β)A+ βP is simply βP + (1− β)

∑M
k=1 αkPk. This follows because:

• P appears first with coefficient β since it has highest score

• The remaining terms are proportional to (1− β) times the original decomposition

Therefore in this case:

FS((1− β)A+ βP) = βf(P) + (1− β)FS(A)

Case 2: If P = P1 (i.e., P is the first permutation in the decomposition of A), then for any entry
(i, j) where P (i, j) = 1:

((1− β)A+ βP)(i, j) = (1− β)(α1 +

M∑
k=2

αkPk(i, j)) + β

= (1− β)α1 + β + (1− β)

M∑
k=2

αkPk(i, j)

By definition of the Birkhoff decomposition, there exists at least one entry (i∗, j∗) where P (i∗, j∗) =

1 such that
∑M

k=2 αkPk(i
∗, j∗) = 0 (this is what determines α1 in the original decomposition). For

this entry:

((1− β)A+ βP)(i∗, j∗) = (1− β)α1 + β

This means that in the Birkhoff decomposition of (1− β)A+ βP :

• P must appear first (since it has highest score) with coefficient exactly (1−β)α1 +β (since
this is the minimum value at any position where P has a 1)

• After subtracting ((1− β)α1 + β)P , the remaining matrix is proportional to (1− β) times
the matrix obtained after removing α1P from A’s decomposition

27

Therefore:

FS((1− β)A+ βP) = ((1− β)α1 + β)f(P) + (1− β)

M∑
k=2

αkf(Pk)

= ((1− β)α1)f(P) + βf(P) + (1− β)

M∑
k=2

αkf(Pk)

= (1− β)(α1f(P) +

M∑
k=2

αkf(Pk)) + βf(P)

= (1− β)FS(A) + βf(P)

In both cases we obtain FS((1− β)A+ βP) = (1− β)FS(A) + βf(P).

Proof of Thm 2.11. We choose S as S = P ∗ where P ∗ is some minimizer of f . This ensures that P ∗

has strictly higher score than any other permutation under S. For any permutation matrix P ̸= P ∗,
the score of P ∗ under S is n (since each permutation has exactly n 1’s), while the score of P under
S is equal to the number of positions where P and P ∗ agree, which is strictly less than n. Therefore,
in the Birkhoff decomposition induced by S, P ∗ appears as the first term.

Recall that a vector v is called a descent direction at point x if moving infinitesimally in direction v
decreases the function value. This can be verified by checking if the directional derivative is negative.
For our extension F′ , the directional derivative at A in direction P ∗ −A is:

⟨∇FS(A), P ∗ −A⟩ = lim
ϵ→0

FS(A+ ϵ(P ∗ −A))− FS(A)

ϵ

= lim
ϵ→0

FS((1− ϵ)A+ ϵP ∗)− FS′(A)

ϵ

= lim
ϵ→0

(1− ϵ)FS(A) + ϵf(P ∗)− FS(A)

ϵ
(by Lem. G.1)

= lim
ϵ→0

ϵ(f(P ∗)− FS(A))

ϵ
= f(P ∗)− FS(A).

The third equality holds by Lem. G.1 since our construction of S ensures P ∗ appears first in any
Birkhoff decomposition.

If f(P ∗) − FS(A) = 0 then A must be a global minimum of FS . If f(P ∗) − FS(A) < 0 then
P ∗ −A is a descent direction for FS at A. In either case, A is not a local minimum of FS .

This theorem provides theoretical justification for Algorithm 4’s strategy of modifying score matrices
when stuck at local minima. It shows that as long as better solutions exist (i.e., permutations with
lower objective value), there always exists a score matrix that enables escape from the current local
minimum.

H Comparison with Convex Closure

In this section, we compare our Birkhoff extension with the convex closure, a well-known theoretical
concept in convex analysis. While the convex closure provides certain theoretical guarantees, our
Birkhoff extension offers practical computability, making it more suitable for real-world optimization
problems.

H.1 Definition and Properties of Convex Closure

The convex closure of a function f : Pn → R is defined as the greatest convex function that is
pointwise less than or equal to f on the domain of permutation matrices. For our purposes, since we
are extending f from Pn to Dn, the convex closure can be expressed as:

28

Definition H.1 (Convex Closure). Given a function f : Pn → R, its convex closure Conv(f) : Dn →
R is defined as:

Conv(f)(X) = inf

{
k∑

i=1

αif(Pi) | X =

k∑
i=1

αiPi, αi ≥ 0,

k∑
i=1

αi = 1

}
where the infimum is taken over all possible Birkhoff decompositions of X .

The convex closure is convex by definition, agrees with f on all permutation matrices, and for
minimization problems, minimizing Conv(f) over Dn gives the same optimal value as minimizing f
over Pn.

H.2 Computational Challenges and Advantages of Our Approach

Despite its theoretical appeal, computing the convex closure for a general function f and doubly
stochastic matrix X is computationally intractable. Determining the convex closure requires solving a
combinatorial optimization problem to find the optimal set of permutation matrices and their weights,
which is generally NP-hard for large n.

In contrast, our score-based Birkhoff extension can be computed in O(n5) time for any doubly
stochastic matrix. It is continuous and almost everywhere differentiable, enabling the use of gradient-
based optimization methods. While not necessarily convex, our extension preserves the property that
minimizing over Dn and rounding gives the same value as minimizing directly over Pn (Property 3).
The flexibility provided by different score matrices allows for exploration of the solution space and
escape from local minima.

The computational efficiency of our Birkhoff extension makes it applicable to practical problems
where the convex closure would be intractable to compute. For optimization problems over permuta-
tions, we can use gradient-based methods efficiently, integrate with machine learning approaches
like neural networks, and handle larger problem instances than would be possible with exact convex
closure computations.

In summary, while the convex closure provides a theoretically optimal convex relaxation, our Birkhoff
extension offers a practical, computable alternative that preserves many desirable properties while
enabling efficient optimization.

I Generalization to Constrained Permutations

The framework presented in this paper can be naturally extended to consider only a subset of
permutations that satisfy certain constraints. This generalization is particularly useful in applications
where not all permutations are valid or desirable solutions. The key insight is that our framework can
work with any subset of permutations for which we can efficiently solve the corresponding matching
problem under the given constraints.

I.1 Formal Setup

Let Cn ⊆ Pn be a subset of permutation matrices that satisfy some constraints. We define the
constrained Birkhoff polytope Dn(C) as the convex hull of Cn:

Dn(Cn) =

{
A ∈ Rn×n | A =

∑
P∈Cn

αPP,
∑
P

αP = 1, αP ≥ 0

}
(20)

For this framework to be practical, we require two key properties of the constraint set Cn:

1. Efficient Matching: We must be able to efficiently solve the constrained matching problem
argmaxP∈Cn

⟨P, S⟩ for any score matrix S. This same matching problem is used in two
contexts in our framework: (1) finding the highest scoring permutation in the decomposition
algorithm, and (2) finding the permutation with greatest inner product with the gradient in
the Frank-Wolfe optimization step. The matching problem must be modified to respect the
given constraints while still finding the permutation that maximizes the inner product.

29

2. Efficient Initialization: We must be able to efficiently generate points within the con-
strained polytope Dn(C). This is crucial because optimization methods like Frank-Wolfe
require feasible starting points. For many constraint types, finding such initial points is
straightforward.

The continuous decomposition framework can be adapted to work with Dn(Cn) as follows:

Algorithm 5 Constrained Continuous Birkhoff decomposition
Require: A ∈ Dn(C), identifying score matrix S

Ensure: {(αk, Pk)}Mk=1 s.t. A =
∑M

k=1 αkPk,∑
k αk = 1, αk > 0, and Pk ∈ Cn.

k ← 1, B ← A
while B ̸= 0 do

Pk ← argmaxP∈Cn
⟨P, S⟩

αk ← minij{B(i, j) | Pk(i, j) = 1}
B ← B − αkPk

k ++
end while
M ← k
return {(αk, Pk)}Mk=1

For optimization over the constrained polytope, we use the Frank-Wolfe algorithm with constrained
matching:

Algorithm 6 Constrained Frank-Wolfe over Dn(C)
Require: Initial point A0 ∈ Dn(C), score matrix S, step sizes {γt}Tt=1
Ensure: Final doubly stochastic matrix AT ∈ Dn(C)
A0 ← initialize(Dn(C))
for t = 1 to T do

Pt ← argmaxP∈Cn
⟨P,∇FS(At−1)⟩

At ← (1− γt)At−1 + γtPt

end for
return AT

I.2 Key Properties

The constrained version maintains two key properties of the original framework:

1. Continuity: The decomposition remains continuous as long as the constraint set Cn is
fixed and the matching problem under constraints can be solved efficiently. This follows
from the same argument as in the unconstrained case, where we fix an ordering over the
constrained permutations. The continuity of the decomposition implies that the extension
F (A) =

∑
k αkf(Pk) of any function f : Cn → R is also continuous.

2. Rounding: The constrained version inherits all the rounding properties proved for the origi-
nal Birkhoff extension, as the the extension is still a convex combination of permutations.

I.3 Compatible Constraint Types

The framework can handle any constraint set Cn for which the matching problem argmaxP∈Cn
⟨P, S⟩

can be solved efficiently. A key class of constraints that satisfy this requirement are those whose
linear programming relaxation has integral solutions. This means that when we relax the permutation
constraints to allow for doubly stochastic matrices, the optimal solution of the constrained matching
problem is still a permutation matrix. This property ensures that the matching problem can be solved
efficiently using standard linear programming algorithms, and the solution will automatically satisfy
the permutation constraints.

30

Most notably this includes LPs with a unimodular constraint matrix and an integer right-hand sides
[45]. The integrality of the LP relaxation is a powerful property that guarantees the existence
of efficient algorithms for solving the matching problem, making these constraints particularly
well-suited for our framework.

A simple but important example is the case of "don’t match" constraints, where certain pairs of
elements are forbidden from being matched. This can be expressed by setting the corresponding
entries in the score matrix S to −∞, effectively making these matches impossible. The LP relaxation
of this constrained matching problem has integral solutions, as the optimal solution will never select a
forbidden match. This basic case demonstrates how the framework can handle even simple constraints
while maintaining its key properties.

J Truncated Birkhoff Extension

In practice, computing the full S-induced Birkhoff decomposition can be expensive. We introduce
a truncated and normalized variant that uses only the first K non-zero terms of the decomposition
while preserving the convex-combination interpretation.
Definition J.1 (Truncated, normalized Birkhoff extension). Let S be an identifying score matrix and
let (αk(A), Pk(A))Mk=1 be the non-zero terms in the S-induced Birkhoff decomposition of A ∈ Dn,
ordered as in Alg. 2. For any K ∈ {1, . . . ,M}, define the truncated normalization factor

ZK(A) =

K∑
k=1

αk(A), (21)

and the normalized coefficients

α̃
(K)
k (A) =


αk(A)

ZK(A)
if k ≤ K,

0 if k > K.
(22)

The truncated Birkhoff extension of f : Pn → R at level K is

F
(K)
S (A) =

K∑
k=1

α̃
(K)
k (A) f

(
Pk(A)

)
, (23)

which satisfies
∑K

k=1 α̃
(K)
k (A) = 1 by construction.

Theorem J.2 (Escaping Local Minima for Truncated Extension). Let f : Pn → R and let F (K)
S be

the truncated, normalized Birkhoff extension at level K > 1. There exists a score matrix S such that
any A ∈ Dn is not a local minimum of F (K)

S .

Proof. The proof parallels that of Thm. 2.11. Choose an identifying score matrix S and choose it so
that some P ∗ ∈ argminP f(P) is the unique top-scoring permutation under S. Let the S-ordered
decomposition of A be A =

∑
i≥1 αiPi. Define the path A(β) = (1− β)A+ βP ∗, β ∈ [0, 1].

Let J be the set of the top-K permutations (by S) at β = 0 after inserting P ∗ if needed: if
P ∗ /∈ {P1, . . . , PK} then J = {P ∗} ∪ {P1, . . . , PK−1}; otherwise J = {P1, . . . , PK}. Write

SJ =
∑
P∈J

αP , TJ =
∑
P∈J

αP f(P), f̄J(A) = TJ/SJ .

Since S is identifying, the S-order is strict; hence for all sufficiently small β > 0, the top-K set
along A(β) remains J and all coefficients of terms in J are scaled by (1− β) while P ∗ gains +β.
Therefore

F
(K)
S

(
A(β)

)
=

(1− β)TJ + β f(P ∗)

(1− β)SJ + β
.

Differentiating at β = 0+ gives

d

dβ
F

(K)
S

(
A(β)

)∣∣∣∣
β=0

=
f(P ∗)− f̄J(A)

SJ
≤ 0,

31

since f(P ∗) = minP f(P) ≤ f̄J(A). If the inequality is strict, P ∗ − A is a descent direction and
A is not a local minimum. If equality holds, then f̄J(A) = f(P ∗), so every P ∈ J already attains
the global value and F

(K)
S (A) = f(P ∗), i.e., A already achieves the global minimum of F (K)

S . This
proves the claim for K ≥ 2.

Remark J.3 (Truncated preservation of properties). All properties established for score-induced
Birkhoff extensions continue to hold for the truncated, normalized extension F

(K)
S :

• Efficient computation (Prop. 2). Running Alg. 2 for K iterations yields the truncated decomposition
and F

(K)
S in O(K n3) time (via K maximum-weight matchings), which is ≤ O(n5) as in the full

case.
• Minima correspondence (Prop. 3). For any permutation P , F (K)

S (P) = f(P). For any A,
F

(K)
S (A) is a convex combination of {f(Pk(A))}k≤K , so F

(K)
S (A) ≥ minP∈Pn

f(P). Thus
minA∈Dn F

(K)
S (A) = minP∈Pn f(P), and any minimizer belongs to Conv(argminP∈Pn

f(P))
by the same argument as Prop. 3.

• Rounding and approximation (Prop. 4). Using the K permutations returned by the truncated
decomposition, define round

(K)
S (A) = argmink≤Kf(Pk(A)). Since F

(K)
S (A) is an average over

{f(Pk(A))}k≤K , we have f(round
(K)
S (A)) ≤ F

(K)
S (A). The C-approximation transfer follows

identically. For the score-update guarantee (Prop. 4–2), if S′ is sufficiently close to P ∗, then P ∗ is
the top-scoring permutation under S′ and thus appears as the first term, so in particular among
the first K terms for any K ≥ 1; the same argument goes through.

• Dynamic score and escaping local minima. Thm. J.2 provides the truncated analogue of Thm.
2.11; the proof follows the same linearity-along-P ∗ direction combined with normalization.

K Global Lipschitz bound for Birkhoff extension

We now provide an explicit Lipschitz bound for the (non-truncated) score-induced Birkhoff extension
that is independent of the choice of score matrix.
Theorem K.1 (Score-matrix–independent Lipschitz bound). Let f : Pn → R and define the
oscillation ∆f = maxP f(P)−minP f(P). For any identifying score matrix S and any A,A′ ∈ Dn,

|FS(A)− FS(A
′)| ≤ ∆f

2 ∥A−A′∥1. (24)

In particular, the Lipschitz constant in (24) is independent of S.

Proof. By Prop. 1, FS is a.e. differentiable on Dn with

∇AFS(A) =
∑
ℓ∈L+

(∇Aαℓ(A)) f(Pℓ), L+ = {ℓ : αℓ(A) > 0}.

From Def. 2.3, αℓ(A) is the minimum over the n entries on the support of Pℓ after subtracting earlier
terms. Hence, at points of differentiability,∇Aαℓ is supported on a single entry (the active minimum),
and different ℓ have disjoint supports along the decomposition path. Moreover, since

∑
ℓ αℓ(A) = 1

for all A, we have
∑

ℓ∇Aαℓ(A) = 0 entrywise. Indeed, the map A 7→
∑

ℓ αℓ(A) is the constant
function 1, so its directional derivative in any direction H is zero: 0 =

∑
ℓ⟨∇Aαℓ(A), H⟩. As this

holds for every H , it follows that the matrix
∑

ℓ∇Aαℓ(A) must be identically zero. Using this, for
any scalar c,

∇AFS(A) =
∑
ℓ∈L+

∇Aαℓ(A) (f(Pℓ)− c).

Choosing c = maxP f(P)+minP f(P)
2 centers the values so that |f(Pℓ)− c| ≤ ∆f/2 for all ℓ. Because

each entry of∇AFS(A) receives contribution from at most one ℓ (disjoint supports), it follows that

∥∇AFS(A)∥∞ ≤ ∆f

2 .

Along the segment At = (1− t)A+ tA′, the fundamental theorem of calculus gives

FS(A
′)− FS(A) =

∫ 1

0

⟨∇AFS(At), A
′ −A⟩ dt,

32

where ⟨·, ·⟩ denotes the Frobenius inner product. Then |⟨X,Y ⟩| ≤ ∥X∥∞ ∥Y ∥1 for matrices X,Y
yields

|FS(A
′)− FS(A)| ≤

∫ 1

0

∥∇AFS(At)∥∞ dt ∥A′ −A∥1 ≤ ∆f

2 ∥A
′ −A∥1,

where we have applied the uniform bound on ∥∇AFS∥∞ a.e. along the segment.

L GPU friendly maximum perfect matching

We present a suboptimal randomized algorithm for the Maximum Weight Perfect Matching problem
in bipartite graphs, with a runtime of O(n3). While this problem can be solved deterministically
in O(n3) time, and more efficiently in O(nω) time using randomized algorithms with low failure
probability [37, 44], our goal is different: we aim to design an algorithm that is simple to implement
and efficient on a GPU. Our algorithm runs in O(n3) time and returns a perfect matching with weight
at least half of the optimal.

Let G = (U, V,E) be a bipartite graph, where |U | = |V | = n, U = {u1, ..., un}, V = {v1, ..., vn}.
Let A(G)i,j be a random number from {1, ..., R} if (ui, vj) ∈ E, otherwise A(G)i,j = 0. Here R is
chosen to be large enough e.g., R = nO(1) and the matrix A is known as random adjacency matrix of
G. The matrix A(G) has nice properties some of which we use here to design our algorithm. First
the rank of A(G) is at most equal to the size of the maximum matching and the equality holds with
probability at least 1−n/R. More importantly, if G has a perfect matching then with high probability
det(A(G)) ̸= 0, and so A(G) is invertible. Rabin and Vazirani [41] showed that

Theorem L.1. With high probability, A(G)−1
i,j ̸= 0 if and only if graph G− {ui, vj} has a perfect

matching.

In particular for edge e = (ui, vj), A(G)−1
i,j ̸= 0 if and only if e is allowed, i.e. is contained in

a perfect matching. We use this result and the techniques developed by [37] to design our greedy
algorithm for finding a maximum weight perfect matching. We note that in the worst case our
algorithm returns a perfect matching with weight at least 1/2 of the optimal one.

Algorithm 7 2-approximation maximum weight perfect matching
Require: Bipartite graph G
B = A(G)−1

M = ∅
for c = 1 · · ·n do

Find maximum weight edge (uc, vr) that is an allowed edge in G −M i.e. row r, not yet
eliminated, and such that Br,c ̸= 0 and A(G)c,r ̸= 0.

eliminate the r-th row and the c-th column of B
Add (uc, vr) to M

end for
return M

Theorem L.2. Algorithm 7 runs in time O(n3) and with high probability returns a perfect matching
M such that the weight of M is at least 1/2 times the weight of the optimal matching.

Proof. The proof that Algorithm 7 runs in time O(n3) and with high probability returns a perfect
matching follows from [37]. The approximation guarantee follows from our greedy selection among
the feasible edges at each iteration.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

33

Justification: We claim to provide an extension (Sec. 2.3), optimization algorithm (Sec. 2.4),
and experiments (Sec. 3), all of which are clearly given in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the concluding section of the paper (Sec. 4).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Assumptions are stated in theorem statements and all proofs are provided in
the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

34

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have made code and data public (or reference the data source where
appropriate). It is available at https://github.com/luckyjackluo/BE-for-Combinatorial-
Optimization.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All data and code are public. The link to the repository is given in the previous
answer.

35

https://github.com/luckyjackluo/BE-for-Combinatorial-Optimization
https://github.com/luckyjackluo/BE-for-Combinatorial-Optimization

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This information is reported in sections 3 and E. In particular, the choice of
score matrix is often complex and variable and we provide full details for this.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars or statistical significance due to computational and
time constraints; as is common in combinatorial optimization, we report mean results over
multiple problem instances.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are given in Sec. E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Given the focus on foundations, we do not have human subjects or sensitive
data and we do not perceive risks of harm or misuse.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The societal impact of improved combinatorial optimization or neural combi-
natorial optimization techniques are minimal.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

37

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not contain data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide citations to all data and code we use. All material is licensed for
such use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

38

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no new assets released in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There were no human subjects in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects or study participants were used in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

39

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in the core methods of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Our work
	Related work

	Birkhoff Extension
	Preliminaries
	A continuous and a.e. differentiable Birkhoff decomposition
	Properties of Birkhoff extension
	Optimization procedure with dynamic score

	Experiments
	Concluding remarks
	Deferred Proofs
	Unsupervised Neural optimizer
	Extensions for Optimization over Trees
	Problem Details
	Traveling Salesperson Problem
	DFASP
	QAP

	Experiments Details
	Optimization Curves
	Timing

	Ablation Study
	Effect of Truncation Depth k
	Effect of Score-Update Frequency
	Initialization Strategy
	Optimization Method Comparison
	Scalability on Large-Scale QAP Instances

	Escaping Local Minima via Score Matrix Modification
	Comparison with Convex Closure
	Definition and Properties of Convex Closure
	Computational Challenges and Advantages of Our Approach

	Generalization to Constrained Permutations
	Formal Setup
	Key Properties
	Compatible Constraint Types

	Truncated Birkhoff Extension
	Global Lipschitz bound for Birkhoff extension
	GPU friendly maximum perfect matching

