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ABSTRACT

Prioritized experience replay, which improves sample efficiency by selecting rel-
evant transitions to update parameter estimates, is a crucial component of con-
temporary value-based deep reinforcement learning models. Typically, transitions
are prioritized based on their temporal difference error. However, this approach
is prone to favoring noisy transitions, even when the value estimation closely ap-
proximates the target mean. This phenomenon resembles the noisy TV problem
postulated in the exploration literature, in which exploration-guided agents get
stuck by mistaking noise for novelty. To mitigate the disruptive effects of noise
in value estimation, we propose using epistemic uncertainty to guide the prioriti-
zation of transitions from the replay buffer. Epistemic uncertainty quantifies the
uncertainty that can be reduced by learning, hence reducing transitions sampled
from the buffer generated by unpredictable random processes. We first illustrate
the benefits of epistemic uncertainty prioritized replay in two tabular toy models: a
simple multi-arm bandit task, and a noisy gridworld. Subsequently, we evaluate our
prioritization scheme on the Atari suite, outperforming quantile regression deep
Q-learning benchmarks; thus forging a path for the use of epistemic uncertainty
prioritized replay in reinforcement learning agents.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has proven highly effective across a diverse array of problems,
consistently yielding state-of-the-art results in control of dynamical systems (Nian et al., 2020;
Degrave et al., 2022; Weinberg et al., 2023), abstract strategy games (Mnih et al., 2015; Silver et al.,
2016), continual learning (Khetarpal et al., 2022; Team et al., 2021), and multi-agent learning (OpenAI
et al., 2019; Baker et al., 2020). It has also been established as a foundational theory for explaining
phenomena in cognitive neuroscience (Botvinick et al., 2020; Subramanian et al., 2022). Nonetheless,
a significant drawback of these methods pertains to their inherent sample inefficiency whereby
accurate estimations of value and policy necessitate a substantial demand for interactions with the
environment.

Sample inefficiency has been mitigated through the use of—among other methods—Prioritized
Experience Replay (PER) (Schaul et al., 2016). PER is an extension of Experience Replay (Lin,
1992), which uses a memory buffer populated with past agent transitions to improve training stability
through the temporal de-correlation of data used in parameter updates. Subsequently, PER extends
this approach by sampling transitions from the buffer with probabilities proportional to their abso-
lute Temporal Difference (TD) error, thereby allowing agents to prioritise learning from pertinent
data. PER has been widely adopted as a standard technique in DRL; however, despite significantly
better performance over uniform sampling in most cases, it is worth noting that PER can encounter
limitations under specific task conditions and agent designs. The most prominent example of such a
limitation is related to the so-called noisy TV problem (Burda et al., 2018), a thought experiment at
the heart of the literature around exploration in RL. Just as novelty-based exploration bonuses can
trap agents in noisy states, PER is susceptible to frequently replaying transitions involving high levels
of randomness (e.g. in reward or transition dynamics) even if they do not translate to meaningful
learning and thus are not useful for solving the task.

To combat this issue, we propose combining epistemic and aleatoric uncertainty measures (Clements
et al., 2020; Alverio et al., 2022; Lahlou et al., 2022; Liu et al., 2023; Jiang et al., 2023), originally
used to promote exploration, under an information gain criterion for use in replay prioritization.
Epistemic uncertainty, the uncertainty reducible through learning, is the key quantity of interest.
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However this need to be appropriately ‘calibrated’, which we show-both empirically, and with
justification from Bayesian inference-can be done effectively by dividing the epistemic uncertainty
estimate by an aleatoric uncertainty estimate (and taking the logarithm, i.e. the information gain).
Intuitively the need for this kind of calibration can be seen by considering the following game: the
aim is to estimate the mean of two distributions; the ground truth is that both distributions have
identical mean but different variance, and your current estimates for both distributions are the same
i.e. your epistemic uncertainty on the mean is the same for both distributions. However if I offer
you a new sample from either distribution to refine your estimate you would choose to sample the
distribution with lower variance since this is more likely to be informative. In addition to arguing
for this novel prioritization variable, we also provide candidate methods involving distributions of
ensembles (in the vein of Clements et al. (2020)) to estimate these quantities.

Our primary contributions are as follows: (1) In Section 3, we present a novel approach for estimating
epistemic uncertainty, building upon an existing uncertainty formalisation introduced by Clements
et al. (2020) & Jiang et al. (2023). This extension incorporates information about the target value that
the model aims to estimate thereby accounting for bias in the estimator; (2) We derive a prioritisation
variable using estimated uncertainty quantities, finding a specific functional form derived from a
concept called information gain, showing that both, epistemic and aleatoric uncertainty should
be considered for prioritisation; (3) In Section 4, we illustrate the advantages of our proposed
epistemic uncertainty prioritisation scheme through two interpretable toy models—a bandit task and
a grid world; (4) In Section 5, we demonstrate the effectiveness of this method on the Atari-57
benchmark (Bellemare et al., 2013), where it significantly outperforms baseline models based on a
combination of PER, QR-DQN and ensemble agents.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Consider an environment modelled by a Markov Decision Process (MDP), defined by (S,A,R, P, γ)
with state space S, action space A, reward function R, state-transition function P , and discount factor
γ ∈ (0, 1). Given the agent policy π : S → ∆(A), where ∆(A) denotes the probability simplex
over A, the cumulative discounted future reward is denoted by Gπ(s, a) =

∑
t γ

tR(st, at) with
s0 = s and a0 = a, and transitions sampled according to at ∼ π(a|st) and st+1, rt ∼ P (s, r|st, at).
We denote the action-value function as Qπ(s, a) = E [Gπ(s, a)], and the corresponding state-action
return-distribution function as ηπ(s, a); and we recall that Qπ(s, a) = EG∼ηπ(s,a) [G]. In general,
the action value function is parameterized by ψ, such that Qψ can be trained by minimizing a
mean-squared temporal difference (TD) error E[δ2t ]. For example, in Q-Learning the error is given by

δt = rt + γmax
a′∈A

Qψ̄(st+1, a
′)−Qψ(st, at), (1)

for the transition at time t (st, at, rt, st+1), and where ψ̄ denotes the possibly time-lagged target
parameters (Watkins & Dayan, 1992; Mnih et al., 2015). Additionally, we will use policies that are
ϵ-greedy with respect to the currently estimated action-value function, that is for some ϵ ∈ [0, 1],
the selected action from any state s is drawn as argmaxa∈AQψ(s, a) with probability 1 − ϵ and
uniformly over A otherwise. See Sutton & Barto (2018) for a more in-depth overview of RL methods.

2.2 PRIORITIZED EXPERIENCE REPLAY

Reinforcement learning algorithms are notoriously sample inefficient. A widely adopted practice to
mitigate this issue is the use of an experience replay buffer, which stores transitions in the form of
(st, at, rt, st+1) for later learning (Mnih et al., 2015). Loosely inspired by hippocampal replay to the
cortex in mammalian brains (Foster & Wilson, 2006; McNamara et al., 2014), its primary conceptual
motivation is to reduce the variance of gradient-based optimization by temporally de-correlating
updates, thereby improving sample efficiency. It can also serve to prevent catastrophic forgetting
by maintaining transitions from different time scales. The effectiveness of this buffer can often
be improved further by prioritising some transitions at the point of sampling rather than selecting
uniformly. Formally, when transition i is placed into replay, it is given a priority pi. The probability
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of sampling this transition during training is given by:

P (i) =
pαi∑
k p

α
k

, (2)

where α is a hyper-parameter called prioritisation exponent (α = 0 corresponds to uniform sampling).
Schaul et al. (2016) introduced prioritized experience replay, which most often uses the absolute
TD-error |δi| of transition i, as pi = |δi|+ ϵ where a small ϵ constant ensures transitions with zero
error still have a chance of being sampled1. Sampling transitions non-uniformly from the replay
buffer will change the observed distribution of transitions, biasing the solution of value estimates. To
correct this bias, the error used for each update is re-weighted by an importance weight of the form
wi ∝ (NP (i))

−β , where N is the size of the buffer and β controls the correction of bias introduced
by important sampling (β = 1 corresponds to a full correction).

The key intuition behind PER is that transitions on which the agent previously made inaccurate
predictions should be replayed more often than transitions on which the agent already has low error.
While this heuristic is reasonable and has enjoyed empirical success, TD-errors can be insufficiently
distinct from the irreducible aleatoric uncertainty; considering instead uncertainty measures more
explicitly, this form of prioritisation can be significantly improved.

2.3 UNCERTAINTY ESTIMATION IN RL

Uncertainty is a fundamental concept in statistics. Within machine learning, it has predominately been
studied in supervised learning, particularly with Bayesian methods (Lahlou et al., 2022; Narimatsu
et al., 2023). Various aspects of the task setting such as bootstrapping and non-stationarity make
uncertainty estimation a significantly more challenging problem in RL; nevertheless, it has featured
more prominently in recent work, including for use in generalization (Jiang et al., 2023), as reward
bonuses in exploration (Nikolov et al., 2019), and to guide safe actions (Lütjens et al., 2019; Kahn
et al., 2017). We discuss here some of the key concepts around uncertainty relevant to this work,
particularly those that address the delineation between aleatoric and epistemic uncertainty. A more
comprehensive overview of related work around uncertainty in RL can be found in Appendix A.

2.3.1 BOOTSTRAPPED DQN

The concept behind bootstrapping is to approximate a posterior distribution by sampling a prediction
from an ensemble of estimators, where each estimator is initialized randomly and observes a distinct
subset of the data (Tibshirani, 1994; Bickel & Freedman, 1981). In RL, Osband et al. (2016)
introduced a protocol known as bootstrapped DQN for deep exploration, whereby bootstrapping
is used to approximate the posterior of the action-value function, from which samples can be drawn.
Each agent within an effective ensemble, parameterized by ψ, is randomly initialized and trained
using a different subset of experiences via random masking. A sample estimate of the posterior
distribution, denoted as ψ ∼ P (ψ|D) (D being training data), is obtained by randomly selecting
one of the agents from the ensemble. In this work, we use extensions of the bootstrapped DQN idea
in our epistemic uncertainty measurements—notably the ensemble disagreement.

2.3.2 DISTRIBUTIONAL RL

Learning quantities beyond the mean return has been a long-standing programme of RL research,
with particular focus on the return variance (Sobel, 1982). A yet richer representation of the return
is sought by more recent methods known collectively as distributional RL (Bellemare et al., 2017),
which aims to learn not just the mean and variance, but the entire return distribution. We focus here
on one particular class of distributional RL methods: those that model the quantiles of the distribution,
specifically QR-DQN (Dabney et al., 2017). A broader treatment of the distributional RL literature
can be found in Bellemare et al. (2023).

In QR-DQN, the distribution of returns, for example from taking action a in state s and subsequently
following policy π, ηπ(s, a) is approximated as a quantile representation (Bellemare et al., 2023), that
is, as a uniform mixture of Diracs, and trained through quantile regression (Koenker & Hallock, 2001).

1Another form of prioritization, known as rank-based prioritisation, is to use pi = 1/rank(i) where rank(i)
is the rank of the experience in the buffer when ordered by |δi|.
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For such a distribution, ν̂ = 1
m

∑m
i=1 δθτi , with learnable quantile values θτi and corresponding

quantile targets τi = 2i−1
2m , the quantile regression loss for target distribution ν is given by

LQR =

m∑
i=1

EZ∼ν [ρτi(Z − θτi)], (3)

where ρτ (u) = u(τ−1u<0) and 1 is the indicator function. By leveraging the so-called distributional
Bellman operator and the standard apparatus of a DQN model, QR-DQN prescribes a temporal
difference deep learning method for minimising the above loss function and learning an approximate
return distribution function via quantile regression.

Distributional RL in itself does not (so far) permit a natural decomposition of uncertainties into
epistemic and aleatoric (Clements et al., 2020; Chua et al., 2018; Charpentier et al., 2022); rather
the variance of the learned distribution will converge on what can reasonably be thought of as the
aleatoric uncertainty. In Subsection 3.1 we extend previous techniques that combine distributions
with ensembles to construct estimates of both epistemic and aleatoric uncertainties. Both of these
techniques to characterise epistemic uncertainty can be understood under an excess risk framework,
which we outline below.

2.3.3 DIRECT EPISTEMIC UNCERTAINTY PREDICTION

We employ a clear and formal representation of uncertainty, where total uncertainty is defined as the
sum of epistemic and aleatoric components such that the epistemic uncertainty can be interpreted as
the excess risk. This notion was introduced by Xu & Raginsky (2022) and later extended by Lahlou
et al. (2022); we adapt their framing to our setting here. Consider the total uncertainty U(s, a) of an
action-value predictor Qψ(s, a), for a given state s and action a as:

U(Qψ, s, a) =
∫

(Θ(s′, r)−Qψ(s, a))2 P (s′, r|s, a)ds′dr, (4)

where Θ(s′, r) is the Q-learning target as in equation 1. Then, the aleatoric uncertainty A(s, a), is
given by the total uncertainty (as defined above) of a Bayes-optimal predictor Q∗

ψ (see Lahlou et al.
(2022)):

A(s, a) = U(Q∗
ψ, s, a). (5)

Note that this quantity is independent of any learned predictor and is a function of the data only. The
epistemic uncertainty E(Qψ, s, a), which is computed for a given predictor, is defined as the total
uncertainty of the predictor minus the aleatoric uncertainty:

E(Qψ, s, a) = U(Qψ, s, a)−A(s, a), (6)

where E(Qψ, s, a) is the squared distance between the true mean and estimate mean as shown
in Appendix C. Concretely, this decomposition can be useful in instances where you want to estimate
epistemic uncertainty, but doing so directly is significantly more difficult than estimating total and
aleatoric uncertainty, which is often the case. In Section 3, we provide a way to estimate quantities in
this manner, which later we use to prioritise transitions in the replay buffer.

2.3.4 ENSEMBLES OF DISTRIBUTIONS

Using an ensemble of distributional RL agents gives us a concrete prescription for computing
epistemic uncertainty as well as aleatoric uncertainty. This approach was first formalised by Clements
et al. (2020), who define learned aleatoric and epistemic uncertainty quantities as a decomposition of
the variance of the estimation from the ensemble (here defined as total uncertainty Û ) of distributional
RL agents:

Û(s, a) = Vτ,ψ [θτ (s, a;ψ)] = Ê(s, a) + Â(s, a) (7)

where

Â(s, a) = Vτ [Eψ(θτ (s, a;ψ))], Ê(s, a) = Eτ [Vψ(θτ (s, a;ψ))], (8)

4
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and s, a are state and action, ψ ∼ P (ψ|D) are the model parameters of each agent in the ensemble,
D denotes the data distribution, and θτ is the value of the τ th quantile. V and E are variance and
expectation operators respectively. Intuitively, Ê measures epistemic uncertainty as the expected
disagreement (variance) in quantile estimations across the ensemble, while Â takes the average
estimation across the ensemble for each quantile of the distribution, and computes the variance
of this averaged distribution. Clements et al. (2020) stop short of using a bona fide ensemble to
estimate these quantities, opting instead for a two-sample approximation in the agent they present.
However Jiang et al. (2023) go on to use ensemble methods more explicitly, as we do in this work.

3 UNCERTAINTY PRIORITISED EXPERIENCE REPLAY

In this section we will introduce a new method for estimating epistemic uncertainty, which arises from
a decomposition of the total uncertainty as defined by the average error over both the ensemble and
quantiles. This decomposition is in the vein of Clements et al. (2020); however, it considers distance
from the target in addition to the disagreement within the ensemble, thereby allowing us to handle—
among others—model bias. We go on to derive an expression for prioritisation variables based on
the concept of information gain, which trades off epistemic and aleatoric uncertainty with a view to
maximizing learnability from each sampled transition. We name this method Uncertainty Prioritised
Experience Replay (UPER). Importantly, we are not changing the prioritize replay algorithm itself,
but just the variable pi used to prioritise in Equation 2, replacing the TD-error by the information
gain.

3.1 UNCERTAINTY FROM DISTRIBUTIONAL ENSEMBLES

The definitions given in Equation 7 arise from a decomposition of Vψ,τ [θτ (s, a;ψ)], where ψ and τ
index the quantile and ensemble respectively (see Clements et al. (2020) for details). This quantity
does not explicitly consider how far estimates are from targets, but rather how consistent the estimates
are among the quantiles and members of the ensemble. We propose a modified concept of total
uncertainty Ûδ named target total uncertainty, simply defined as the average squared error to the
target Θ over the quantiles and ensemble, which can be decomposed as:

Ûδ = Eτ,ψ[(Θ(s′, r)− θτ (s, a;ψ))2] = δ2Θ(s, a) + Ê(s, a)︸ ︷︷ ︸
Êδ(s,a)

+Â(s, a); (9)

where δ2Θ(s, a) = (Θ(s′, r)− Eτ,ψ[θτ (s, a;ψ)])2, and we introduce the target epistemic uncertainty
Êδ(s, a) = δ2Θ(s, a) + Ê(s, a) (see proof of this decomposition in Appendix B). Note that in order
to construct ensemble disagreement estimates or estimates of the total uncertainty Ûδ, we assume
independence among the ensemble, which is facilitated by masking and random initialisation akin to
bootstrapped DQN. Through the lens of the DEUP formulation from Section 2.3.3, this decomposition
suggests a modified definition of epistemic uncertainty that considers the distance to the target δ2Θ
as well as the disagreement in estimation within the ensemble Ê from Clements et al. (2020) and
Jiang et al. (2023). To see why this extra term can be useful, consider the following pathological
example: all members of an ensemble are initialised equally, the variance among the ensemble—and
the resulting epistemic uncertainty estimate without this additional error term—will be zero. A
more subtle generalisation of this would be if inductive biases from other parts of the learning
setup (architecture, learning rule etc.) lead to characteristic learning trajectories in which individual
members of the ensemble effectively collapse with no variance. In essence, Ê assesses ensemble
disagreement without including the estimation offset. The use of pseudo-counts (Lobel et al., 2023)
presents a similar problem: while epistemic uncertainty does scale with the number of visits to
a state, it does not necessarily encode the true distance between the estimation and target values.
Pseudo-counts bear the additional disadvantage of being task agnostic, i.e. ignoring context, which
makes them brittle under any change in the underlying MDP. We provide a simulation where we
show the advantage of using Êδ instead of Ê to prioritise replay in Section 4.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 PRIORITISING USING INFORMATION GAIN

Having arrived at suitable methods for estimating both epistemic and aleatoric uncertainty, it remains
to establish a functional form for the prioritisation variable, denoted pi = h(E(si, ai),A(si, ai)).
The most straightforward approach is to directly use pi = Êδ; however, in practical applications,
this does not yield satisfactory results. One intuition for this, which will be made more concrete in
later passages, is that the magnitude of epistemic uncertainty does not in itself determine how easily
reducible that uncertainty is. It is informative therefore to also consider the aleatoric uncertainty, since
this indicates the fidelity of the data, and hence how readily it can be used to reduce the epistemic
uncertainty (this is demonstrated experimentally in Subsection 4.1 and Appendix E, and expounded
upon in Appendix D).

We take inspiration from the idea of information gain to determine h. For the purpose of this
explanation, consider a hypothetical dataset of points xi ∼ N (µx, σ

2
x). Our objective is to estimate

the posterior distribution P (ν|xi) ∝ P (xi|ν)P (ν) with a prior distribution ν ∼ N (µ, σ2). Following
the observation of a single sample xi, the posterior distribution becomes a Gaussian with variance
σ2
ν =

σ2σ2
x

σ2
x+σ

2 . To quantify the information gained by incorporating the sample xi when computing
the posterior, we measure the difference in entropy between the prior distribution and the posterior as

∆H = H (P (ν))−H (P (ν|xi)) , (10)

From here, we consider σ2 = Êδ as a form of epistemic uncertainty, since the ensemble disagreement
is reduced by sampling more points, and σ2

x = Â as aleatoric uncertainty corresponding to the
variance of the ensemble average distribution, giving the irreducible noise of the data, obtaining a
prioritisation variable

pi = ∆Hδ =
1

2
log

(
1 +
Êδ(s, a)
Â(s, a)

)
. (11)

For a detailed derivation of the information gain, an illustrative simulation demonstrating the use of
variance as an uncertainty estimate, and a comprehensive exploration of other functional forms of
prioritization variables based on uncertainty, please refer to Appendix D.

4 MOTIVATING EXAMPLES

We proceed to employ epistemic uncertainty estimators and the information gain criterion in simple
and interpretable toy models to highlight their potential as experience replay prioritisation variables.

4.1 CONAL BANDIT

We devise a multi-armed bandit task in which each arm has the same expected reward but with
increasing noise level as per arm, forming a cone as shown from left to right in Figure 1a. The
memory buffer in this experiment has one transition per arm, and after sampling one arm, the observed
reward is replaced in the buffer for the respective transition (as done in the toy example in the original
PER paper (Schaul et al., 2016)). Specifically, let na denote the number of arms; then the reward
distribution r for arm a is defined as:

r(a) = r̄ + η · σ(a), σ(a) = a · σmax/(na − 1) + σmin; (12)

where r̄ represents the expected reward, σ(a) is the reward standard deviation associated with arm a,
σmax and σmin are constant, and η is sampled from a centred, unit-variance Gaussian.

The choice of employing noisy arms serves the purpose of demonstrating that the TD-errors will
inherently include the sample noise, regardless of whether the reward estimation for each arm
Q(a) = Ej [θj(a)] approximates the target value r̄. We depict results for the bandit task using
different variables to prioritise learning in Figure 1b for na = 5, r̄ = 2, σmax = 2 and σmin = 0.1
(details in Appendix E).

Four relevant prioritisation schemes are shown in this section (see Appendix E for other prioritisation
schemes): TD-error (standard PER): pi = 1

Ne

∑
ψ |ri −Q(ai;ψ)|; Inverse count: pi = 1/

√
1 + C,

6
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Figure 1: Conal Bandit. (a) multi-armed bandit task constructed such that each arm has identical
mean payoff but increasing variance. (b) true MSE (average error across arms, between estimated
reward and the true reward mean) over 200 iterations (each of 1000 steps) using different quantities to
prioritise transitions from the replay buffer: absolute value of the TD error |δ| (PER), inverse counts
(C being the number of visits to the respective arm), information gain ∆Hδ (UPER), and an oracle
epistemic uncertainty E∗ measured as the distance from the estimated mean to the true mean. (c)
arm replaying selection probabilities for the stablest (dashed) and noisiest (solid) arms in the conal
bandit; the key intuition is that prioritising by TD-error over-samples noisier arms, while prioritising
using UPER places importance on learn-ability and leads to greater selection of stable arms. Results
averaged across 10 seeds. Noisy Gridworld. (d) 300 seeds return on a test episode throughout
training of an agent on the noisy gridworld, with the shaded region being stared error on the mean.
(e) in the Map, blue denotes the starting state, green is the goal state, and yellow are the non-zero
variance immediate rewards. Below, sampling heatmaps where yellows are highly sampled and blues
are scarcely sampled: uniform experience replay (ER) leads to sampling more from early parts of
a trajectory since these fill the buffer first; replay based on TD error (PER) leads to a pathological
sampling of the noisy part of the gridworld; replay using UPER leads to greater sampling of later
parts of the trajectory.

where C denotes the number of times an arm has been sampled to update the reward estimate;
Information gain (UPER): pi = ∆Hδ; True distance to target: pi = E∗ = |r̄ −Q(ai)|.
Prioritizing with epistemic uncertainty measures, such as UPER or inverse counts (a proxy for
epistemic uncertainty), leads to improved training speed and final true Mean Squared Error (true
MSE, averaged across all arms, between the estimated reward and the true mean reward), compared
to pi = |δi| (PER), as illustrated in Figure 1b. Throughout the paper, we highlight that the TD-
error includes aleatoric uncertainty, corresponding to the arm variance in this scenario—which is
irreducible through learning (see Subsection C.1 for more details). Therefore, the TD-error tends
to over-sample arms with high variance compared with UPER, to the cost of not sampling the low
variance arm. This is demonstrated in Figure 1c.

Using inverse counts as the prioritization variable (similar to Lobel et al. (2023)), outperforms TD-
error (as designed in the task) but not UPER. The reason is the fact that, although each initial estimated
Q-values per arm are equidistant from the true mean, the learning speed for each arm diminishes with
the variance of the respective arm. Inverse counts do not account for this variance-dependent decay in
learning speed, so the number of updates per arm will not reflect the distance of the estimation to the
true target, whereas UPER (prioritising by Êδ and inverse Â) tends to sample arms with high aleatoric
uncertainty less frequently, and is also based on the distance to the targets as defined in Equation 9.

The distance between the estimated mean and the true mean, denoted as E∗ (accessible due to the task
design), is equivalent to the epistemic uncertainty in the DEUP formulation, as derived in Appendix C.
This distance is the ideal prioritisation variable to which we do not have access in general. Notably,
using UPER, which prioritizes based on information gain, yields results comparable to prioritising
directly based on the true distance. These results show UPER as a promising modification to
TD-error-based prioritised replay.
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Figure 2: (Left) Comparing Uncertainty Prioritized Experience Replay (UPER) with Prioritized
Experience Replay (PER) and QR-DQN on the full Atari-57 benchmark. Median human normalized
score for UPER is significantly higher than baselines throughout the learning trajectory. (Right)
Example of per-game performance, with vastly superior performance on e.g. Asterix and Chopper
Command; cases in which UPER is worse are far less extreme, for instance Breakout and Krull (this
is shown graphically in Figure 14 and Figure 15). All results are averages over 3 seeds.

To emphasise the significance of incorporating the target value when utilising the target epistemic
uncertainty Êδ for replay prioritisation, we introduced modifications to the conal bandit task by
assigning distinct mean rewards per arm, denoted as r̄ → r̄(a) (see simulation details in Appendix E,
Figure 6). In the original conal bandit task, all arms shared the same mean reward r̄, resulting in an
equal initial distance expectation from Q(a) to each arm. This uniformity dampened the performance
improvement when considering the target distance δΘ in Êδ with respect to Ê . By introducing varying
mean rewards per arm, denoted as r(a), the relevance of information about the target value becomes
important. This adjustment highlights the advantage of employing our proposed target epistemic
uncertainty Êδ over merely considering ensemble disagreement Ê .

4.2 NOISY GRIDWORLD

In order to move toward the full RL problem, we consider in this section a tabular gridworld. We take
inspiration from ideas in planning within dynamic programming methods (Moore & Atkeson, 1993)
to probe uncertainty-guided prioritised replay. Typically under this framework, ‘direct’ reinforcement
learning on interactions with the environment (sometimes referred to as control) is supplemented with
‘indirect’ learning of a model from stored experiences (sometimes referred to as planning). In our case,
we learn purely model-free but retain these ideas of offline vs. online learning. In some ways these
methods are the pre-cursor to the use of experience replay buffers in DRL. When making updates on
stored data offline (for planning or otherwise), the same questions around criteria for prioritisation
arise. Notably, prioritised sweeping (preference over high error samples in memory) was an early
extension to the Dyna models that exemplify this learning protocol (Sutton, 1991). In Figure 1e
Map, we construct a gridworld where the agent can encounter a set of very noisy states with random
rewards early on in the episode while a single deterministic state with a much larger reward is at the
end of the maze. Figure 1d shows that this simple task can be solved without the additional planning
steps, but ER (sampling uniformly) helps improve sample efficiency. This is improved further by
PER (prioritising using TD), but even more so by UPER where we prioritize using the information
gain criterion and the inverse of state visitation counts (a good proxy for epistemic uncertainty in this
tabular setting). As shown by the heatmaps in Figure 1e, PER over-samples noisy states while UPER
prioritises on novel states towards the end of the trajectory. Full details of the experimental setup and
hyper-parameters can be found in Appendix F.

5 DEEP RL: ATARI

In our final set of experiments we apply our insights in a DRL setting, specifically the Atari bench-
mark (Bellemare et al., 2013). Our agent is an ensemble of QR-DQN distributional predictors (N=10),
in which experience replay is prioritized using the information gain (UPER in Subsection 3.2). We
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compare this method to a vanilla QR-DQN agent (Dabney et al., 2017) with uniform prioritisation
and the original PER agent (Schaul et al., 2016). To show that the gain in performance is not due to
either the quantile regression method, nor the ensemble, we trained a QR-DQN agent with TD-error
prioritization (QR-PER), and an ensemble of QR agents with TD-error prioritization (QR-ENS-
PER). A summary of our empirical results is shown in Figure 2, with further ablations and details
in Appendix G.

Except for the additional hyper-parameters associated with the ensemble of distributional prediction
heads and a more commonly used configuration for the Adam optimizer (ϵ = 0.01/(batch size)2),
the network architecture and all hyper-parameters in UPER are identical to QR-DQN (Dabney et al.,
2017). Likewise PER, QRDQN, and QR-PER baselines follow the implementations of Dabney et al.
(2017) and Schaul et al. (2016) respectively, while QR-ENS-PER is identical to UPER except for
the prioritisation variable which is TD-error. Concretely for the UPER agent, we compute the target
epistemic uncertainty using Êδ(s, a) = Ûδ(s, a) − Â(s, a). Then for a given transition i the total
uncertainty is given by

Ûδ = Eτ,τ ′,ψ

[(
ri + γθτ ′(s′i, a

′
i; ψ̄)− θτ (si, ai;ψ)

)2]
, (13)

where τ (τ ′) are the quantiles of the online (target) network ψ (ψ̄). The aleatoric uncertainty estimate
is given by Â(s, a) in Equation 8. From these estimates we construct UPER priority variable using
the uncertainty ratio discussed in Subsection 3.2, i.e. Equation 11. Since UPER and QR-ENS-PER
are ensemble agents, we store a random mask m ∈ RN for each transition in the buffer where
mi ∼ B(0.5). When the transition is sampled for learning, gradients are only propagated for heads
whose corresponding element in the mask is 1. This follows the proposal of (Osband et al., 2016)
and serves to de-correlate the learning trajectories of the ensemble members, which is integral to the
validity of our uncertainty estimates.

As depicted in Figure 2, the median UPER performance across games is significantly better than
other prioritization schemes, showing that the performance improvement is not due to either the
quantile regression technique or the ensemble alone. Importantly, UPER demonstrates performance
improvement compared to its closest comparison QR-ENS-PER, whose only difference with UPER
is the prioritization using TD-error (see Figure 14). In most games where UPER does not improve
performance, such as Krull, Q∗bert or H.E.R.O., the difference in performance is not significant.
This is shown in the panels per game in Figure 15 and the assymetry of the bar plots in Appendix G.

6 RELATED WORK

Exploration. While UPER is not explicitly promoting exploration through a reward bonus to
unexplored or uncertainty states, we borrow methods from this field to estimate epistemic and
aleatoric uncertainty (Clements et al., 2020) to prioritize transitions from the replay buffer based on
the information gain. A fundamental dilemma faced by RL agents is the exploration-exploitation trade-
off (Osband et al., 2016; O’Donoghue, 2023), in which agents must balance competing objectives
for action selection, between uncovering new information about the environment (exploration) and
accumulating as much reward as they currently can (exploitation). Replay sampling and exploration
strategies both affect the data used to enhance the estimation of the value function. The former
controls the experiences used for value estimation updates, while the latter selects experiences that
will end up populating the replay buffer. Many exploration strategies have been built around ideas
of intrinsic reward (Oudeyer & Kaplan, 2007) and episodic memory (Savinov et al., 2019; Badia
et al., 2020). These are susceptible to pathological behaviour induced by the noisy TV, and later
variants are designed partly with this problem in mind; as a result they are frequently concerned with
reliable and meaningful estimates of counts and novelty (Ostrovski et al., 2017b; Bellemare et al.,
2016b; Burda et al., 2018; Lobel et al., 2023), dynamics (Stadie et al., 2015; Pathak et al., 2017),
uncertainty (Mavor-Parker et al., 2022), and related quantities—many of which are relevant to our
problem of constructing suitable measures for replay prioritization.

PER. Various efforts have been made to understand and improve upon aspects of prioritized expe-
rience replay since its introduction by Schaul et al. (2016). Integration of information related to
uncertainty has often been in conjunction with strategies for managing the exploration-exploitation
trade-off. For instance, in Sun et al. (2020), frequently visited states are sampled more frequently to
reduce uncertainty around known states. Conversely, Alverio et al. (2022) approach is prioritizing
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Table 1: Computational Cost (seconds per iteration)

Architecture CPU GPU
QR-DQN-ENS 28.40 ± 0.26 20.74 ± 0.43

QR-DQN 17.80 ± 0.13 18.49 ± 0.68
DQN 18.34 ± 0.09 18.39 ± 0.56

uncertain states to encourage exploration, utilizing epistemic uncertainty estimated as the standard
deviation across an ensemble of next-state predictors. This technique is combined with other methods
to enhance sample efficiency.

Another method, presented in Lobel et al. (2023), employs a pseudo-count approximation to gauge
state visits, fostering exploration as an intrinsic reward. In training the pseudo-count network they
prioritize transitions according to the counts themselves; they do not however go as far as performing
this prioritisation for learning the actual value network—as is the focus of our work. The method of
Lobel et al. (2023) allows estimation of epistemic uncertainty independent of the sparsity or density
of the reward signal, making it especially appealing in sparse-reward environments. However, using
pseudo-counts for epistemic uncertainty can also be poorly aligned with uncertainty about the actual
value estimation problem (Osband et al., 2018). As described in Subsection 4.1, the number of visits
to a specific state-action does not necessarily describe the error between the mean estimates to the true
one. In addition to this, as explained in Subsection 3.2 and shown by simulation in Subsection 4.1,
both epistemic and aleatoric uncertainty should be considered to build a proper prioritisation scheme.

7 DISCUSSION AND CONCLUSIONS

In this study, we propose using epistemic uncertainty measures to guide the prioritization of
transitions from the replay buffer. We demonstrate both via mathematical analysis and careful
experiments that the typically applied TD-error criterion can include aleatoric uncertainty, and lead
to over-sampling of noisy transitions. Prioritizing by a principled function of epistemic and aleatoric
uncertainty in the form of the information gain mitigates these effects. To construct this function, we
expand the concept of epistemic uncertainty from Clements et al. (2020) to incorporate the distance
to the target, achieving performance advantages in toy settings and complex problems such as the
Atari 57 benchmark. In estimating these auxiliary quantities, one concern may be the increased
computational cost in the deep learning setting. However, sharing of the lower level representation
over multiple heads alongside efficient implementations can significantly mitigate this burden. To
demonstrate this, we conducted an experiment on a lower-capacity GPU comparing the training
times of DQN, QR-DQN, and QR-DQN + ensemble networks in the Pong environment. The time per
iteration is presented in Table 1. The comparable training times can be attributed to effective batch
processing facilitated by GPU parallelization. In our implementation, each agent in the ensemble is
represented by a distinct output head in the network architecture. By extending the batch dimension
to (batch, action, quantiles, ensemble), we leverage the parallelization capacity of the GPU, which
still operates within capacity for the QR-DQN ensemble network. Further details of this experiment
and the computer architecture used are presented in Subsection G.2. Note that this analysis does not
aim to evaluate or compare the computational cost of sampling with a priority variable vs. uniform
sampling. This is already addressed in the original PER paper and has negligible impact.

While we focus our implementation on distributional RL—a widely used set of methods, exploring
other forms of uncertainty estimation in RL such as pseudo-counts (Lobel et al., 2023), in
combination with different functional forms outside information gain, is a promising research
path both for different prioritisation schemes and related parts of the RL problem like exploration
(see Appendix D and Appendix E).

The framework of combining epistemic and aleatoric uncertainties in an information gain introduced
in this work is not restricted to reinforcement learning. In principle, these concepts can be
extrapolated to other learning systems. A substantial body of literature exists on the efficient selection
of datapoints to enhance learning in other paradigms such as supervised (Hüllermeier & Waegeman,
2021; Zhou et al., 2022), continual (Henning et al., 2021; Li et al., 2021), or active learning (Nguyen
et al., 2022). In addition, our work has the potential to offer alternative insights into replay events
in biological agents (Daw et al., 2005; Mattar & Daw, 2018; Liu et al., 2019; Antonov et al., 2022).
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Learning with Quantile Regression, October 2017. URL http://arxiv.org/abs/1710.
10044. arXiv:1710.10044 [cs, stat].

Nathaniel D. Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12):1704–1711,
December 2005. ISSN 1546-1726. doi: 10.1038/nn1560. URL https://www.nature.com/
articles/nn1560. Number: 12 Publisher: Nature Publishing Group.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Donner, Leslie
Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, An-
toine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter,
Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Koray
Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of tokamak plasmas
through deep reinforcement learning. Nature, 602(7897):414–419, February 2022. ISSN 1476-
4687. doi: 10.1038/s41586-021-04301-9. URL https://www.nature.com/articles/
s41586-021-04301-9. Number: 7897 Publisher: Nature Publishing Group.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In Proceedings of the
37th International Conference on Machine Learning, ICML’20, pp. 3061–3071. JMLR.org, July
2020.

David J. Foster and Matthew A. Wilson. Reverse replay of behavioural sequences in hippocampal
place cells during the awake state. Nature, 440(7084):680–683, March 2006. ISSN 1476-4687.
doi: 10.1038/nature04587. URL https://www.nature.com/articles/nature04587.
Number: 7084 Publisher: Nature Publishing Group.

12

https://projecteuclid.org/journals/annals-of-statistics/volume-9/issue-6/Some-Asymptotic-Theory-for-the-Bootstrap/10.1214/aos/1176345637.full
https://projecteuclid.org/journals/annals-of-statistics/volume-9/issue-6/Some-Asymptotic-Theory-for-the-Bootstrap/10.1214/aos/1176345637.full
https://projecteuclid.org/journals/annals-of-statistics/volume-9/issue-6/Some-Asymptotic-Theory-for-the-Bootstrap/10.1214/aos/1176345637.full
https://projecteuclid.org/journals/annals-of-statistics/volume-9/issue-6/Some-Asymptotic-Theory-for-the-Bootstrap/10.1214/aos/1176345637.full
https://www.sciencedirect.com/science/article/pii/S0896627320304682
https://www.sciencedirect.com/science/article/pii/S0896627320304682
http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/2206.01558
http://arxiv.org/abs/1805.12114
http://arxiv.org/abs/1905.09638
http://arxiv.org/abs/1710.10044
http://arxiv.org/abs/1710.10044
https://www.nature.com/articles/nn1560
https://www.nature.com/articles/nn1560
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/nature04587


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Samuel J Gershman. Dopamine, inference, and uncertainty. Neural Computation, 29(12):3311–3326,
2017.

William H Greene. Econometric analysis 4th edition. International edition, New Jersey: Prentice
Hall, pp. 201–215, 2000.

Christian Henning, Maria Cervera, Francesco D’ Angelo, Johannes von Oswald, Regina Traber, Ben-
jamin Ehret, Seijin Kobayashi, Benjamin F. Grewe, and João Sacramento. Posterior Meta-Replay
for Continual Learning. In Advances in Neural Information Processing Systems, volume 34, pp.
14135–14149. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/761b42cfff120aac30045f7a110d0256-Abstract.html.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,
2019.
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A FURTHER RELATED WORK

In the main text we focus primarily on related work in uncertainty estimation for reinforcement
learning that is specific to the epistemic vs. aleatoric dichotomy. Here we give an extended discussion
on uncertainty estimation methods more generally.

A.1 DIRECT VARIANCE ESTIMATION

Distributional RL provides a framework for computing statistics of the return beyond the mean.
Efforts to compute such quantities in RL date back to Sobel (1982), who derived Bellman-like
operators for higher order moments of the return in MDPs that can be used to indirectly estimate
variance. This has since been extended to a greater set of problem settings and models (Prashanth
& Ghavamzadeh, 2016; Tamar et al., 2016; White & White, 2016). More recently methods have
also been developed to directly estimate variance (Tamar et al., 2012); arguably the simplest such
scheme for TD(0) learning is the following update rule for the action-value variance Â(s, a) at state
s, a (re-estated from Sherstan et al. (2018) for state and action):

Ât+1(s, a)← Ât(s, a) + ᾱδ̄t, (14)

where

δ̄t ← r̄t+1 + γ̄t+1Ât(s′, a′)− Ât(s, a), (15)

r̄t+1 ← δ2t , (16)

γ̄t+1 ← γ2t+1; (17)

δt is the temporal difference error of on the mean value estimate, and ᾱ is the variance learning rate.
r̄ can be thought of as a ‘meta’ reward for the variance estimate. This update corresponds to simply
regressing on the square of the mean estimate error in a standard regression problem (single state, no
concept of discounting) like in the bandit experiments shown in Section 4. This form of estimating
aleatoric uncertainty does not require quantile regression, but

A.2 BAYESIAN METHODS

A more comphrehensive Bayesian approach to the reinforcement learning problem can be formulated
via so-called Bayes-adaptive Markov decision processes (BAMDPs) (Martin, 1967), where an agent
continuously updates a belief distribution over underlying Markov decision processes. Solutions to
BAMDPs are Bayes’ optimal in the sense that they optimally trade off exploration and exploitation to
maximise expected return. However, in all but the smallest environments and settings, learning over
this entire belief distribution is intractable (Brunskill, 2012; Asmuth & Littman, 2012).

Posterior sampling, which can be viewed as the analogue of Thompson sampling for MDPs, has
been a popular method to approximate the full Bayesian posterior e.g. via ensembles (Osband et al.,
2016) or dropout (Gal & Ghahramani, 2016); extensions include provision of pseudo priors (Osband
et al., 2018; 2021). While these approaches have been successful in some settings, they have few
guarantees. A different line of work includes using methods such as meta-learning to reason on and
train the approximate posterior (Zintgraf et al., 2019; Humplik et al., 2019).

With regards to the discussions on epistemic and aleatoric uncertainty, the above methods can give
the model access to a distribution over parameters that can be sampled and operated on (e.g. to
calculate variance). They do not however—Bayes optimal or not—lead per se to a decomposition
into epistemic and aleatoric uncertainty.

A.3 COUNTS

Another category of methods that are frequently used in reinforcement learning and related paradigms
like bandits is based around notions of counts e.g. of state visitation. Such counts can be used
to construct intervals/bounds on confidence of learned quantities. This is the foundation of well
established exploration methods in tabular settings called upper confidence bounds (Auer, 2002b;a).
In function approximation settings, much of the focus has been on constructing accurate pseudo
counts that incorporate state similarities (Bellemare et al., 2016a; Ostrovski et al., 2017a; Tang et al.,
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2017). Despite the well demarcated distinction between count-based methods and those that address
the Bayesian posterior above, with access to any mean-zero unit-variance distribution, an ensemble
of mean-predictors of that distribution can be used to estimate pseudo-counts (Lobel et al., 2023). As
a result, it is generally possible to convert a Bayesian posterior into pseudo-counts.

A.4 MODEL-BASED

A set of methods that is further removed from those used in our work, but are often motivated by
similar questions consists of learning a model of the environment. Downstream quantities like the
prediction error of the environment model can be used as proxies for uncertainty or novelty e.g. for
exploration bonuses. Much of this work falls under the domain of intrinsic motivation (Barto, 2013).
Some of the methods in this area e.g. curiosity (Pathak et al., 2017) attempt implicitly to make the
distinction between epistemic uncertainty and aleatoric uncertainty to avoid the noisy TV problem.

A.5 BEYOND THE PRIORITISATION VARIABLE

Altering the prioritized experience replay is not confined to changing the prioritization variable. In
Zha et al. (2019), the replay policy is adapted through gradient optimization. Balaji et al. (2020)
introduces a regularization technique, enhancing continual learning by storing a compressed network
activity version for replay. Additional methods encompass the utilization of sub-buffers storing
transitions at multiple time scales (Kaplanis et al., 2020), replay for sparse rewards (Andrychowicz
et al., 2017; Nair et al., 2018), and employing diverse sampling strategies (Pan et al., 2022). Further
endeavors are aiming to understand the effects of PER in RL (Liu & Zou, 2017; Fedus et al., 2020).

B TOTAL ERROR DECOMPOSITION

Following the same notation as in Section 3, the averaged square error to the target Θ over the
quantiles and ensemble indexed by j and ψ respectively:

Eψ,j [(Θ− θj(ψ))2] =
∫
ψ

1

N

N∑
j

(Θ− θj(ψ))2P (ψ|D)dψ, (18)

=

∫
ψ

1

N

N∑
j

[Θ− θj(ψ)± Eψ(θj(ψ))]2 P (ψ|D)dψ, (19)

=

∫
ψ

1

N

N∑
j

[
(Θ− Eψ(θj(ψ)))2 + (Eψ(θj(ψ))− θj(ψ))2 (20)

+2 (Θ− Eψ(θj(ψ))) (Eψ(θj(ψ))− θj(ψ))]P (ψ|D)dψ, (21)

=

∫
ψ

1

N

N∑
j

(Θ− Eψ(θj(ψ)))2 P (ψ|D)dψ (22)

+
1

N

N∑
j

∫
ψ

(Eψ(θj(ψ))− θj(ψ))2 P (ψ|D)dψ︸ ︷︷ ︸
Ê in equation 8

, (23)

and the term in equation 21 is zero when integrating over ψ. Finally, the term in 22 is∫
ψ

1

N

N∑
j

(Θ− Eψ(θj(ψ)))2 P (ψ|D)dψ = Θ2 − 2Eψ,j (θj(ψ)) + Ej
(
Eψ [θj(ψ)]

2
)

(24)

= (Θ− Eψ,j [θj(ψ)])2︸ ︷︷ ︸
Distance to the target δ2Θ

+Vj (Eψ [θj(ψ)])︸ ︷︷ ︸
Â in equation 7

. (25)

Obtaining

Eψ,j [(Θ− θj(ψ))2] = δ2Θ + Â+ Ê . (26)
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C DEUP DECOMPOSITION

Consider the total uncertainty as defined in Lahlou et al. (2022) (but adapted for RL), which can be
decomposed into epistemic uncertainty (distance between the mean estimation and true mean) and
aleatoric uncertain (target variance) as:

U(Qψ, s, a) =
∫

(Θ(s′, r)−Qψ(s, a))2 P (s′, r|s, a)ds′dr (27)

= Es′,r
[
(Θ(s′, r)−Qψ(s, a))2

]
(28)

= Es′,r
[
Θ(s′, r)2

]
− 2Qψ(s, a)Es′,r [Θ(s′, r)] +Qψ(s, a)

2 (29)

= Vs′,r [Θ(s′, r)] + Es′,r [Θ(s′, r)]
2 − 2Qψ(s, a)Es′,r [Θ(s′, r)] +Qψ(s, a)

2 (30)

= Vs′,r [Θ(s′, r)]︸ ︷︷ ︸
aleatoric A(s,a)

+(Qψ(s, a)− Es′,r [Θ(s′, r)])
2︸ ︷︷ ︸

epistemic E(Qψ,s,a)

(31)

C.1 UNCERTAINTY DECOMPOSITION IN QUANTILE REGRESSION

Here we provide some extra intuition on the difference between MSE curves when prioritising by
total uncertainty U , td-error |δ|, estimated epistemic uncertainty Êδ and true epistemic uncertainty
E∗. Let’s start by considering a single agent trained using quantile regression as explained in
Subsubsection 2.3.2. Consider the expected squared error of all quantiles indexed by τ and the target
distribution Z, also defined in Subsection 3.1 as U :

U2 = Eτ,r∼Z
[
(r − θτ )2

]
= Er

[
r2
]
− 2Er[r]Eτ [θτ ] + Eτ

[
θ2τ
]
, (32)

= Vr [r] + r̄2 − 2r̄Q(a) +Q(a)2 + Vτ [θτ ] , (33)

= (r̄ −Q(a))2︸ ︷︷ ︸
(E∗)2

+ Vr [r]︸ ︷︷ ︸
Target variance

+ Vτ [θτ ]︸ ︷︷ ︸
Estimation variance

. (34)

The first term is the true epistemic uncertainty E∗, second term and third term are the variance from
the target, and the estimation variance. When using the total uncertainty as priority variable pi = U ,
the target and estimation uncertainty will be considered in the priority, therefore oversampling the
noisiest arm as shown in the sampling probabilities depicted in Figures 7 and 8. When using the
TD-error pi = |δi|, consider the expected squared TD-error

Er
[
δ2
]
=
[
(r − Eτ [θτ ])2

]
, (35)

= (r̄ −Q(a))2︸ ︷︷ ︸
(E∗)2

+ Vr [r]︸ ︷︷ ︸
Target variance

. (36)

Therefore, the TD-error does not prioritise by estimation variance, but it includes the target variance.
Eventually, the target variance will be equal to the estimation variance, but from the start of the
training, this is not true. Hence, the TD-error will also oversample the noisiest arm, but less compared
to prioritising by total uncertainty U . In practice, we do not have direct to Vr [r], in fact this
is a quantity we are trying to estimate by using quantile regression. We have implicit access to
the true distance E∗ (epistemic uncertainty) through the decomposition U = E + A as explain
in Subsubsection 2.3.3, which is used to estimate epistemic uncertainty as in Section 3. Prioritising
using information gain achieve similar results compare to the direct use of E∗ to prioritise replay. For
further discussion about epistemic uncertainty ratios, refer to Subsection D.3.

D PRIORITISATION QUANTITIES BASED ON UNCERTAINTY

D.1 INFORMATION GAIN DERIVATION

Given the setup in Subsection 3.2, consider a hypothetical dataset of points xi ∼ N (µx, σ
2
x).

Our objective is to estimate the posterior distribution of the mean after observing one sample
P (ν|xi) ∝ P (xi|ν)P (ν) with a prior distribution of the mean ν ∼ N (µ, σ2). Following the ob-
servation of a single sample xi, the posterior distribution is Gaussian with variance σ2

ν =
σ2σ2

x

σ2
x+σ

2 .
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Figure 3: Variances in the information gain can be approximated by epistemic and aleatoric
uncertainty in the information gain: (a) and (b) Evolution during training of the posterior of the
mean using an ensemble (gaussian fitted to members of the ensemble at each step) and an ideal
Gaussian respectively, as described in Subsection 3.2. Training progresses from purple to yellow.
(c): Fitted ensemble quantiles to true data distribution. (d): Ensemble disagreement (equivalent to
variance of the posterior estimated with ensemble as Ê in Equation 8) and true posterior variance σ2

ν
from ideal Gaussian. (e): Distance to the target true value δΘ. (f): Data variance σ2

x approximated
with A in Equation 8. Training time was scaled to show a match between Gaussian posterior and
uncertainty measures.

Knowing that the entropy of a Gaussian random variable isH(P (ν)) = 1/2 log(2πeσ2), we proceed
to compute the information gain (or entropy reduction) of the posterior distribution as

∆H = H(P (ν))−H(P (ν|xi)) (37)

=
1

2
log
(
2πeσ2

)
− 1

2
log

(
2πe

(
σ2σ2

x

σ2
x + σ2

))
(38)

=
1

2
log

(
1 +

σ2

σ2
x

)
. (39)

We consider σ2 = Êδ as a form of epistemic uncertainty that can be reduced by sampling more points,
and σ2

x = Â as aleatoric uncertainty, which is the underlying irreducible noise of the data, giving a
prioritisation variable

pi = ∆Hδ =
1

2
log

(
1 +
Êδ(s, a)
Â(s, a)

)
. (40)

As discussed in the main text, other form of priority variables pi can be effective in some settings. We
extend the discussion about uncertainty ratios in the following sections, and show empirical results in
the arm bandit task in Appendix E.

D.2 VARIANCE AS UNCERTAINTY ESTIMATION

To justify our choice of σ2 = Ê and σ2
x = Ê in the information gain described in Equation 11,

we train an ensemble of distribution regressors to learn the mean from Gaussian samples (µx = 2,
σx = 1). This ensemble is compared to the Bayesian posterior distribution of the mean (Gaussian
prior, likelihood, and posterior) as detailed in Subsection 3.2. The ensemble, composed of 50
distribution quantile regressors, is initialized with the same prior as the Bayesian model – a unit
variance Gaussian centered at 0 – by sampling 50 values from this prior and setting the initial mean
of each quantile regressor accordingly. Both the ensemble and Bayesian models are trained using
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samples from the data distribution. The ensemble training process follows the method described
in the paper, and where each regressor is updated with a probability of 0.5 to introduce ensemble
variability. The updates are performed using quantile regression as outlined in Subsubsection 2.3.2.
At each time step, the ensemble’s estimated posterior is computed by averaging the means of all
regressors and calculating the variance of these means.

Figure 3 (a) and (b) illustrate the posterior evolution of both models from the same starting prior,
given more samples. Both posteriors exhibit similar trends (the Bayesian model converges faster
to the mean, due to the use of TD-updates with a smaller learning rate in the ensemble). In the
Bayesian model, posterior sharpness is quantified by its variance, σ2

ν , whereas for the ensemble, it
corresponds to the epistemic uncertainty Ê from Equation 8. Both measures converge to zero, but
at different rates Figure 3d. The aleatoric uncertainty of the data, by definition the variance σ2

x, is
well approximated by Â from Equation 8, and shown in Figure 3f. The slight underestimation of the
variance is a known issue in quantile regression, as quantiles often fail to capture lower probability
regions (Figure 3c), leading to an underestimation of the distribution’s variance. Our contribution to
prioritization involves incorporating the distance to the target δΘ from Equation 9 (Figure 3e). This
approach prioritizes transitions not only based on the reduction in posterior variance but also on the
regressor’s proximity to the target.

D.3 UNCERTAINTY RATIOS

Having arrived at various methods for estimating epistemic and aleatoric uncertainty using distribu-
tional reinforcement learning, we now consider how to construct prioritisation variables from these
estimates. Naively, one might consider prioritising directly using the epistemic uncertainty estimate;
but neglecting the inherent noise or aleatoric uncertainty entirely ignores the ‘learnability’ of the data.
Many methods in related learning domains can be interpreted as incorporating both uncertainties,
including Kalman learning Welch et al. (1995); Gershman (2017), active learning Cohn et al. (1996),
weighted least-squares regression Greene (2000), and corresponding extensions in deep learning
and reinforcement learning Mai et al. (2022). To gain an intuition on how the choice of functional
form might impact our particular use-case of prioritisation for various magnitudes of epistemic and
aleatoric uncertainty.

E/A has desirable properties. For instance under Bayesian learning of Gaussian distributions,
log(1 + E/A) maximises information gain (see Subsection 3.2), but discontinuities around very low
noise must be dealt with—for instance by adding small constants to the denominator. Normalising
instead with the total uncertainty is another way of handling the discontinuities. E2/U in particular
corresponds to maximising reduction in variance under Bayesian learning in the same Gaussian
setting. Both of these forms have the advantage over e.g. E/A of preferring low epistemic uncertainty
for equal ratios of epistemic and aleatoric uncertainties, i.e. they are not constant along the diagonal
of the phase diagram. More generally, it is difficult to say a priori which functional form is optimal.
Many factors, including the data distributions, model and learning rule will play a role. Further
discussion on these considerations can be found in Subsection D.4. These trade-offs are also borne
out empirically in the experimental Section 4 & Section 5 below.

D.4 BIAS AS TEMPERATURE

Lahlou et al. (2022) and others make an equivalence between excess risk and epistemic uncertainty.
Concretely, if f∗(x) is the Bayes optimal predictor, the excess risk is defined as:

ER(f, x) = R(f, x)−R(f∗, x), (41)

where R is the risk and R(f∗, x) can be thought of as the aleatoric uncertainty.

One possible issue arises in overstating the connection between excess risk and epistemic uncertainty.
Consider the case where there is model mis-specification, and f∗ is not in the model class; then
assuming the model class is fixed (as is standard), then the lower bound of ER(f, x) is non-zero.
Stated differently, it is not fully reducible, which is often viewed as a central property of epistemic
uncertainty. For some applications this distinction may not be important; there is some non-zero lower
bound to the epistemic uncertainty but the ordering and correlations are intact under this equivalence.
But it could also play a significant role. For us in particular, adopting this equivalence has two related
consequences:
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1. The model mis-specification acts as a temperature for our prioritisation distribution;
2. The ratio, or more generally the functional form of our prioritisation variable, can offset this

temperature.

To make the above equation fully reducible, we would need to further subtract a term capturing the
difference between the Bayes predictor, and the best predictor in the model class i.e. the model bias
or mis-specification term. Let us denote this term by C, and assume it constant over the domain.
And let us denote the fully reducible uncertainty by η. In the case where we use the excess risk, the
prioritisation of sample i is given by

[Vanilla] pi =
ηi + C∑
i(ηi + C)

=
ηi + C

NC +
∑
i ηi

. (42)

It is easy to see how C acts as a temperature. In the limit of large C we get a uniform distribution
over samples. Similarly if C = 0 we recover the ‘true’ distribution for reducible uncertainty.

It is of course hard to measure this model mis-specification term. In large networks we can assume
the capacity is unlikely to be restrictive, but perhaps other parts of the training regime could play a
part. Importantly, the above holds true not just for model mis-specification, but also if there is any
systematic error in the epistemic uncertainty estimate (i.e. think of C as an error on the epistemic
uncertainty estimate).

D.5 PRIORITISATION DISTRIBUTION ENTROPY

Assuming the above effect is significant, might a different functional form (as discussed in Subsec-
tion D.3) for prioritisation alleviate the impact? Consider the following additional options:

[E/U] pi =

ηi+C
ηi+C+βi∑
i

ηi+C
ηi+C+βi

; (43)

[E2/U] pi =

(ηi+C)2

ηi+C+βi∑
i

(ηi+C)2

ηi+C+βi

; (44)

and more generally,

[Em/U] pi =

(ηi+C)m

ηi+C+βi∑
i
(ηi+C)m

ηi+C+βi

. (45)

In the limit of large C all of these forms tend to a uniform distribution. However, at what rate? And
is there anything else interesting we can say?

Consider the following toy problem:

• Populate “replay” buffer with N samples;
• Each sample’s reducible uncertainty is sampled from ρη;
• Each sample’s reducible uncertainty is sampled from ρβ ;
• C is constant over the samples.

We can plot as a function of C the entropy of the prioritisation distribution for the functional forms
above. Such a plot is shown for various choices of ρη, ρβ in Figure 4. Clearly, as C increases the
entropy in the distribution increases and saturates at some maximum entropy. There is some variation
in the entropy ordering depending on the exact ρη, ρβ distributions; in some instances the vanilla
form is lower entropy than E/U , but in general the entropy remains lower for longer (as a function of
C) when the exponent in the nominator is higher. This is not a particularly surprising result, but lends
support to the idea that a higher order function of E in a ratio form is desirable for prioritisation.

D.6 RELATION TO E UNDER 0 BIAS

Now let us consider a more interesting measure. Ordinarily, or naively—in the sense that this is the
first order approach—we want our prioritisation variable to be the vanilla prescription; and ideally
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Figure 4: Ratios can reduce entropy of distribution under bias.
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Figure 5: E2/U closely approximates E for non-trivial bias.

we would want C to be 0. We can measure the difference, which we denote δi to this ideal for each
functional form as a function of C. This plot is show for various choices of ρη , ρβ in Figure 5.

In general, the standard E/U ratio is poor, it has systematically higher mean and variance of error.
Beyond that, a clear trade-off emerges: as you increase the exponent m, then for high C there is lower
deviation from the ‘correct’ distribution for priority. This is related to maintaining lower entropy and
tending to a uniform distribution more slowly. However, for lower C you are likely to be more wrong,
catastrophically so. This trade-off for m = 3 is effectively crossed when the red line intersects with
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the blue in these plots. The point at which this intersection happens will be a function of various
things, primarily the underlying distributions—in this case ρη , ρβ .

Interestingly however, for m = 2 there is very fast convergence of E2/U and E as a function of C.
So while m = 3 has a very stark trade-off, m = 2 is less extreme: For low C it may make you more
wrong but generally you will have very similar average error by this metric to the vanilla case; all the
while the entropy of the distribution will be much lower and more informative (as shown in Figure 4).
This toy model is clearly very simplistic, not least the lack of variation in C over the samples; but
future work could be dedicated to understanding these trade-offs more formally in the context of
prioritized replay.

D.7 OFF-SETTING BIAS WITH TD TERM

Leaving aside the ratio forms, the consequences of the temperature effect may differ depending on the
choice of epistemic uncertainty estimate we use. The methods we discuss in Section 2 & Section 3
all effectively use the equivalence of excess risk and epistemic uncertainty, and so do not explicitly
consider the possibility of model bias. The possible exception is the method resulting from the
expansion of the average error over the quantiles and ensemble in Subsection 3.1. The main difference
between this decomposition and that of Clements et al. (2020) is a term that encodes the distance
from the target:

δ2Θ = (Θ− Eψ,i [θi(ψ)])2 . (46)
This term could guard against two possible shortcomings of the decomposition in Clements et al.
(2020):

1. Consider the pathological case in which each ensemble is initialised identically, then each
quantile will have zero variance and the epistemic uncertainty measure from Clements
et al. (2020) will be zero. Even if there is independence at initialisation, there may be
characteristic learning trajectories or other systematic biases that push the ensemble together
and lead to an underestimate in epistemic uncertainty. Here, the term above—if treated as
part of the epistemic uncertainty—can continue to drive learning in ways we want.

2. However, it could be that the ensemble behaves nicely and the metric over the ensemble
from Clements et al. (2020) is principally a good one, *but* that there is significant model
bias. This could also be captured by the term above but would need to be subtracted from
the total error in order to get a fully reducible measure for epistemic uncertainty (as per the
argument discussed above).

Which of the two problems is more pronounced is difficult to know a priori, and could be an avenue
for future work. Empirically, the performance of the UPER agent in Section 5 suggests that the
former is the greater effect—at least on the atari benchmark with the model architecture and learning
setting used.
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Figure 6: Comparison of MSE for different prioritisation scheemes. Left panel, shows ratios and
information gain based on epistemic uncertainty Ê proposed by Clements et al. (2020). Middle panel,
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Figure 7: Comparison of MSE for different prioritisation scheemes using Ê based prioritisation.
Total uncertainty U and TD-error prioritisation tend to oversample high variance arms compared to
epistemic uncertainty prioritisation.

E ARM-BANDIT TASK

The hyperparameters used in the Arm-Bandit Task shown in section 4 are shown below:

• Number of train steps: 205

• Learning rate annealing: 0.005 · 2−iters/40000.

• Init variance estimation: uniformly sampled from to 0.1

• Number of agents in the ensemble: 30

• α = 0.7, β is annealing from 0.5 to 1 in 0.4 to 1 in proportional prioritisation as in the
original work by Schaul et al. (2016).

• n arms: na = 5, r̄ = 2, σmax = 2 and σmin = 0.1.

• Number of quantiles: 30.

• Quantiles initialized as uniform distribution between -1 and 1. For the main results in ??, θτ
are initialized randomly between -1 and 1, then sorted to describe a cumulative distribution.

• Each agent in the ensemble is updated with probability 1/2 on each step.

• For the shifted arm experiment, the mean reward per arm r̄(a) = 3, 2.75, 2.5, 2.25, 2 for
arms 1, 2, 3, 4 and 5.

Figure 6 show the mean squared error from the estimated Q(a) = Ej,ψ [θj(ψ)] to the true mean,
where ψ denotes agents in the ensemble case. Figure 8 and Figure 8 show the probability of sampling
each arm from the memory buffer throughout the training, and the mean square error from the
estimated arm value Q(a) to the true arm value r̄ (the same for every arm). In addition, we depict the
evolution of uncertainty quantities for all prioritisation variables for the arm bandit task in Figure 9.
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Figure 9: Epistemic uncertainty Ê and target uncertainty δ2Θ decrease more rapidly for lower noise
arm (first column), for UPER compared to other methods. The inclusion of aleatoric uncertainty in
the prioritization variable, as utilized in the information gain formula, aims to sample transitions
with high epistemic uncertainty for its reduction, while also avoiding transitions with high aleatoric
uncertainty with less learnable content. This rationale is reflected in the ratio presented in the derived
∆Hδ, and shown its effect in the sampling probabilities plotted in Figure 8. The TD-error tends to
oversample noisier transitions, resulting in less frequent updates for the least noisy arm, consequently
leading to higher levels of epistemic and target uncertainty for that arm.

F GRIDWORLD EXPERIMENTS

The hyperparameters used in Figure 1 are listed below:

• Learning rate: 0.1
• Discount factor, γ: 0.9
• Exploration co-efficient, ϵ: 0.95
• Buffer capacity: 10,000
• Episode timeout: 1000 steps
• Random reward distribution: N (0, 2)

For every 10 steps of ‘direct’ interaction and learning from the environment, the agent makes 5
updates with ‘indirect’ learning from the buffer replay. The data shown in the plots consists of 100
repeats and is smoothed over a window of 10.
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G ATARI EXPERIMENTS

Cumulated training improvement of UPER over PER, QRDQN, QR-PER and QR-ENS-PER are
shown in Figure 11 to Figure 14. The accumulate percent improvement CUPER/PER, (same for
CUPER/QRDQN and the rest), is computed as

CUPER/PER =

∑
t [UPERhuman(t)− PERhuman(t)]∑

t PERhuman(t)
· 100 (47)

where t indexes training time, and UPERhuman (same for PERhuman and QRDQNhuman) denotes human
normalized performance.

For the baseline experiments we use the same implementations as those of the original papers, includ-
ing hyperparemeter specifications. For our UPER method, we performed a limited hyperparameter
sweep over 3 key hyperparameters: learning rate and ϵ for the optimizer, and the priority exponent.
The sweep ranged 3 × 10−5 to 5 × 10−5 for the learning rate, 6.1 × 10−7 to 3.125 × 10−4 for ϵ
and 0.6 to 1 for the priority exponent. We chose values for our final experiments based on average
performance over 2 seeds across a sub-selection of 5 Atari games (chopper command, asterix, gopher,
space invaders, and battlezone).

G.1 QR MODELS ABLATION
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Figure 10: Comparison of ablated prioritization
variables. Median Human Normalized Score for
QR-DQN ensembles, where only the prioritization
variable is changed. UPER, PER, EPI, and UNI
use the information gain in Equation 11, the TD-
error, target epistemic uncertainty in Equation 13,
and uniform sampling, respectively.

To demonstrate the effectiveness of the infor-
mation gain prioritization, and to confirm that
the performance improvement stems from our
proposed prioritization variable, we compared
UPER to identical QR-DQN ensemble agents,
maintaining the same architecture but altering
only the prioritization variable. The results are
presented in Figure 10. UPER outperforms al-
ternative approaches such as QR-DQN-PER,
which uses the TD-error to prioritize (as previ-
ously shown in Figure 2), QR-ENS-EPI, which
directly prioritizes using epistemic uncertainty
as defined in Equation 13, and QR-ENS-UNI,
which uses uniform sampling. These findings
highlight the significance of both epistemic un-
certainty and aleatoric uncertainty in prioritizing
replay, as included in the information gain term.
Additionally, these results confirm that the per-
formance improvement can be solely attributed
to the prioritization variable, as the QR-DQN
ensemble architecture employed in each agent
remains constant.

G.2 COMPUTATIONAL COST

For the main Atari-57 benchmark results, aver-
age clock time training for PER, QR-DQN, and UPER (standard DQN, distributed RL agent, and
ensemble of distributed RL agents) are ≈ 150 hours, ≈ 149 hours, and ≈ 162 hours respectively, all
implemented in JAX running in Tesla V100 NVIDIA Tensor Cores.

To generate Table 1, we conducted experiments on a laptop equipped with an i5-10500H CPU
(2.50GHz) and a 6GB NVIDIA GeForce RTX 3060 Mobile/Max-Q (not the same architecture as the
main results in the paper, which uses Tesla V100 NVIDIA Tensor Cores). We ran 40 iterations of
Pong for each model, using the last 20 iterations to avoid initialization and buffer filling times. The
experiments were conducted on both CPU and GPU using different network architectures. In each
iteration, the agent processed 1000 frames and performed one batch update of 64 transitions, with 4
frames per iteration. For all these runs, we used the publicly available implementation of DQN Zoo
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by DeepMind. Table 1 shows the time it takes for each iteration (1000 frames and a batch update)
in seconds, along with standard deviations. There are two main conclusions from this experiment.
First, most of the time consumed during each iteration is spent running the game engine (the 1000
frames per iteration), which is typically run on the CPU. This is evident from the small difference in
time between QR-DQN and DQN in both the CPU and GPU cases. This difference could be larger in
favor of the GPU if the batch size is increased and the frames per iteration are reduced. Second, we
are significantly leveraging the parallelization capabilities of GPUs, as shown by the reduced times
for the QR-DQN-ENS model (the architecture needed for UPER) when comparing GPU to CPU
performance. The 2-second gap per iteration when comparing QR-DQN-ENS with QR-DQN and
DQN is further reduced by utilizing V100 GPUs, as demonstrated by the training times reported in
the main Atari-57 experiment.
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Figure 11: Cumulated training improvement of UPER over PER defined as CUPER/PER.
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Figure 12: Cumulated training improvement of UPER over QR-DQN defined as CUPER/QR-DQN.
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Figure 13: Cumulated training improvement of UPER over QR-PER defined as CUPER/QR-PER.
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Figure 14: Cumulated training improvement of UPER over QR-ENS-PER defined as
CUPER/QR-ENS-PER.
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Figure 15: Average performance and corresponding standard deviation for all games across 3 seeds.
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