

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SEARCH-ON-GRAPH: ITERATIVE INFORMED NAVIGATION FOR LARGE LANGUAGE MODEL REASONING ON KNOWLEDGE GRAPHS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated impressive reasoning abilities yet remain unreliable on knowledge-intensive, multi-hop questions—they miss long-tail facts, hallucinate when uncertain, and their internal knowledge lags behind real-world change. Knowledge graphs (KGs) offer a structured source of relational evidence, but existing KGQA methods face fundamental trade-offs: compiling complete SPARQL queries without knowing available relations proves brittle, retrieving large subgraphs introduces noise, and complex agent frameworks with parallel exploration exponentially expand search spaces. To address these limitations, we propose Search-on-Graph (SoG), a simple yet effective framework that enables LLMs to perform iterative informed graph navigation using a single, carefully designed SEARCH function. Rather than pre-planning paths or retrieving large subgraphs, SoG follows an “observe, think, then navigate” principle: at each step, the LLM examines actual available relations from the current entity before deciding on the next hop. This approach further adapts seamlessly to different KG schemas and handles high-degree nodes through adaptive filtering. Across six KGQA benchmarks spanning Freebase and Wikidata, SoG achieves state-of-the-art performance without fine-tuning. We demonstrate particularly strong gains on Wikidata benchmarks (+16% improvement over previous best methods) alongside consistent improvements on Freebase benchmarks.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse natural language processing tasks through extensive pre-training on vast text corpora (Brown et al., 2020; Kojima et al., 2022; Wei et al., 2022; Dubey et al., 2024). However, these models face critical limitations when confronted with knowledge-intensive reasoning tasks. They hallucinate plausible-sounding but factually incorrect statements (Tonmoy et al., 2024; Huang et al., 2025), operate with parametric knowledge that becomes rapidly outdated (Liska et al., 2022; Kasai et al., 2023), and lack the specialized domain expertise required for technical fields (Singhal et al., 2023; Kandpal et al., 2023). These limitations are particularly acute in multi-hop reasoning scenarios, where each reasoning step depends on accurate knowledge retrieval and where errors compound across the reasoning chain (Lightman et al., 2023; Ling et al., 2023). Such weaknesses significantly undermine the reliability and trustworthiness of LLMs in real-world applications that demand both factual accuracy and complex reasoning.

To address these challenges, augmenting LLMs with external structured knowledge, specifically knowledge graphs (KGs), has emerged as a promising approach (Sun et al., 2023; Chen et al., 2024; Zhu et al., 2025b). KGs model billions of factual relationships between entities through typed edges. This structured representation supports multi-hop reasoning across diverse domains and allows for efficient updates as knowledge evolves. However, knowledge graph question answering (KGQA) faces significant challenges. KGs like Freebase (1.9 billion triples) (Bollacker et al., 2008) and Wikidata (16 billion constantly-evolving triples) (Vrandečić & Krötzsch, 2014) exemplify the massive scale and dynamic nature of these structures. Additionally, the heterogeneous nature of KG schemas across different repositories makes developing generalizable KGQA methodologies particularly challenging.

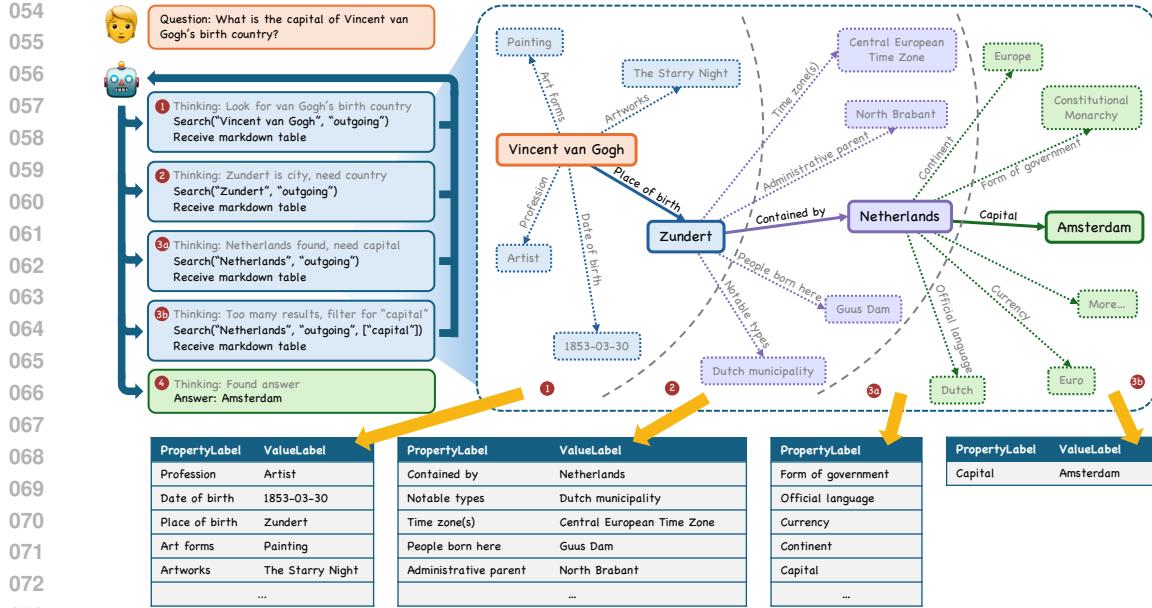


Figure 1: SoG workflow for the query “*What is the capital of Vincent van Gogh’s birth country?*” The LLM iteratively navigates the KG, with reasoning and SEARCH calls shown on the left and KG navigation on the right. The path follows Van Gogh → Zundert (place of birth) → Netherlands (contained by) → Amsterdam (capital). Solid boxes indicate selected entities; dotted boxes show unselected retrieved entities. Tables display the markdown output returned by SEARCH, revealing available 1-hop neighbours from each entity.

Existing approaches exhibit inherent limitations. Semantic parsing methods synthesize executable logical forms (SPARQL, S-expressions, etc.) but require extensive schema knowledge and demonstrate limited transferability across different KG architectures (Ye et al., 2021; Yu et al., 2022; Zhang et al., 2023; Luo et al., 2023a; Zhao et al., 2025b; Fang et al., 2024; Zhang et al., 2025; Wulamu et al., 2025). Subgraph retrieval techniques expand entity neighborhoods but frequently extract large, noisy subgraphs that obscure relevant information (Shi et al., 2021; Das et al., 2022; He et al., 2024; Tan et al., 2025; Sun et al., 2018; 2019; Jiang et al., 2022; Zhang et al., 2022). Many employ separate embedding modules for semantic similarity-based subgraph selection (Sun et al., 2018; 2019; Zhang et al., 2022; Ding et al., 2024), yet semantic representations can be misleading—for the query “*What awards did the director of Inception win?*”, similarity-based retrievers may include extraneous movie metadata when only the director-award relational pathway is relevant. Recent agentic LLM approaches attempt more targeted path exploration (Sun et al., 2023; Chen et al., 2024; Dong et al., 2024; Luo et al., 2024; Jiang et al., 2024; Wang & Yu, 2025; Cheng et al., 2024; Sui et al., 2024; Wang et al., 2025; Li et al., 2024b) but require complex architectural frameworks, comprehensive upfront planning, or parallel path exploration, thereby increasing computational complexity. Moreover, planning-based approaches introduce failure modes when presumed relations are absent from the actual KG.

In response to these challenges, we propose Search-on-Graph (SoG), a fundamentally simpler methodology where a single LLM orchestrates iterative KG traversal through one carefully engineered SEARCH function executing 1-hop exploration. The key insight is the precedence of observation over speculation—rather than blind path planning or semantic similarity heuristics, the LLM first systematically observes actual available relational connections at each entity, and then formulates informed navigational decisions grounded in question-specific reasoning.

For the query “*What is the capital of Vincent van Gogh’s birth country?*” illustrated in Figure 1, the LLM executes iterative SEARCH calls while observing relational options at each hop. From *Van Gogh*, it identifies “*Place of birth*” and navigates to *Zundert*, subsequently discovers “*Contained by*” to reach *Netherlands*, and finally selects “*Capital*” to arrive at *Amsterdam*. This methodology

108 adapts to heterogeneous schemas—if *Van Gogh* connected directly to *Netherlands* in an alternative
 109 KG, the LLM would adopt the shorter path. Our architectural simplicity stems from three deliberate
 110 design decisions: (1) an exploration function with compact result formatting that conserves context
 111 length, (2) a dynamic filtering mechanism that returns unique relation types when encountering large
 112 neighbourhoods, and (3) systematically engineered prompts that demonstrate effective reasoning
 113 processes. These seemingly simple design choices prove crucial across diverse KG schemas and
 114 question types.

115 Empirically, SoG delivers strong and consistent gains across six KGQA benchmarks spanning Free-
 116 base and Wikidata. Our method achieves state-of-the-art performance on all six datasets, with par-
 117 ticularly notable improvements on Wikidata-based benchmarks where we see average gains of over
 118 16% compared to previous best methods. On Freebase datasets, SoG consistently outperforms ex-
 119 isting approaches with meaningful improvements across different reasoning complexities. These
 120 results demonstrate that our simple, observation-driven design can match or exceed more elaborate
 121 architectures while maintaining computational efficiency and broad applicability across different
 122 KG schemas.

123 Our main contributions are as follows:

124

- 125 • We propose a general KGQA framework called Search-on-Graph (SoG) that uses a single
 126 LLM with an iterative 1-hop SEARCH function to reliably navigate diverse graph schemas.
- 127 • We analyze several design choices (function output format, relation filtering, few-shot exam-
 128 ples, and model selection) and show how careful design of these components improves overall
 129 performance and efficiency.
- 130 • We conduct extensive experiments demonstrating that SoG’s simple, plug-and-play design
 131 achieves state-of-the-art results across six widely-used KGQA benchmarks.

133 2 RELATED WORK

135 **Semantic Parsing Methods.** Semantic parsing techniques transform natural language questions
 136 into executable logical forms before KG querying. RNG-KBQA (Ye et al., 2021) enumerates can-
 137 didate logical forms through KG path searches, then employs ranking and generation models for
 138 executable form composition. A different approach is taken by DecAF (Yu et al., 2022), which lin-
 139 earizes KBs into text documents, enabling retrieval-based joint decoding of both logical forms and
 140 direct answers. FC-KBQA (Zhang et al., 2023) uses fine-to-coarse composition to address general-
 141 ization and executability, reformulating KB components into middle-grained knowledge pairs.

142 LLM-based methods have since emerged to leverage language models’ capabilities for logical
 143 form generation. ChatKBQA (Luo et al., 2023a) utilizes generate-then-retrieve pipelines, where
 144 instruction-tuned LLMs produce candidate logical forms subsequently grounded through phrase-
 145 level retrieval. In contrast, CoG (Zhao et al., 2025b) generates fact-aware queries through parame-
 146 tric knowledge output, then corrects hallucinated entities via KG alignment. DARA (Fang et al.,
 147 2024) introduces dual mechanisms for high-level task decomposition and low-level task grounding.
 148 Meanwhile, Rule-KBQA (Zhang et al., 2025) employs learned rules guiding generation through
 149 induction and deduction phases with symbolic agents. HTML (Wulamu et al., 2025) proposes hier-
 150 archical multi-task learning with auxiliary tasks for entities, relations, and logical forms.

151 While these approaches provide interpretable traces and error recovery, they require generating com-
 152 plete logical forms or query plans upfront, demanding extensive schema knowledge and struggling
 153 when presumed schema elements are absent. In contrast, navigation based solely on locally available
 154 relations adapts to actual KG structures without upfront schema requirements.

155 **Subgraph Retrieval Methods.** These approaches involve first retrieving relevant graph portions
 156 around topic entities, then proceeds with reasoning over the induced subgraph. GRAFT-Net (Sun
 157 et al., 2018) exemplifies early neural approaches by constructing heterogeneous subgraphs that
 158 merge KB entities with Wikipedia text, utilizing graph networks with directed propagation for multi-
 159 hop inference. PullNet (Sun et al., 2019) employs iterative subgraph expansion using graph CNNs
 160 to determine which nodes to “pull” next. TransferNet (Shi et al., 2021) transfers entity scores along
 161 activated edges through attention mechanisms while attending to question spans.

162 More sophisticated retrieval strategies have been proposed to address coverage and noise issues.
 163 UniKGQA (Jiang et al., 2022) uses question-relation score propagation along KG edges for unified
 164 retrieval-reasoning. SR+NSM (Zhang et al., 2022) employs trainable subgraph retrievers decoupled
 165 from reasoning to enable plug-and-play enhancement. CBR-SUBG (Das et al., 2022) dynamically
 166 retrieves similar k-NN training queries with structural similarity. G-Retriever (He et al., 2024) for-
 167 mulates subgraph selection as Prize-Collecting Steiner Tree problems, while EPR (Ding et al., 2024)
 168 models structural dependencies through atomic adjacency patterns. Paths-over-Graph (Tan et al.,
 169 2025) uses multi-hop path expansion with graph reduction and pruning.

170 These methods face fundamental trade-offs: larger subgraphs boost recall but introduce noise, while
 171 smaller ones risk missing critical edges. Furthermore, answer quality is solely dependent on retrieval
 172 completeness—key relations filtered during construction cannot be recovered by reasoning modules.
 173

174 **Agentic LLM Methods.** This paradigm is characterized by interactive KG exploration through
 175 LLM agents. Think-on-Graph (Sun et al., 2023) performs iterative beam search maintaining top-
 176 N partial paths with pruning. Plan-on-Graph (Chen et al., 2024) decomposes questions into sub-
 177 objectives with trajectory memory and reflection mechanisms.

178 Multi-model approaches are motivated by the need to balance planning and efficiency. EffiQA
 179 (Dong et al., 2024) employs LLM global planning combined with lightweight model exploration.
 180 KELDaR (Li et al., 2024b) introduces question decomposition trees for atomic KG retrieval. Fi-
 181 DeLiS (Sui et al., 2024) combines Path-RAG with deductive beam search, ReKnoS (Wang et al.,
 182 2025) uses super-relations enabling bidirectional reasoning, and iQUEST (Wang & Yu, 2025) inte-
 183 grates iterative decomposition with GNNs.

184 While enabling flexible exploration without complete upfront queries, these approaches often in-
 185 troduce complex multi-component architectures requiring separate modules for planning, memory,
 186 and pruning. Most critically, parallel path exploration using beam search exponentially expands the
 187 search space, inundating LLMs with extraneous information.
 188

189 3 PRELIMINARIES

191 3.1 KNOWLEDGE GRAPHS

193 A knowledge graph (KG) $\mathcal{G} = \{(e, r, e') \mid e, e' \in \mathcal{E}, r \in \mathcal{R}\}$ represents structured factual knowl-
 194 edge, where \mathcal{E} and \mathcal{R} denote the entity and relation sets, respectively. Each triple (e, r, e') encodes
 195 a factual relationship r between head entity e and tail entity e' . Entities are uniquely identified by
 196 specific IDs (e.g., m.07_m2 represents Vincent van Gogh in Freebase) and may possess associated
 197 textual labels and semantic types for human interpretation. For any entity e , its neighborhood struc-
 198 ture comprises both outgoing and incoming relations. We formally define the neighboring relations
 199 as $\mathcal{R}_e = \{r \mid (e, r, e') \in \mathcal{G}\} \cup \{r \mid (e', r, e) \in \mathcal{G}\}$, encompassing relations where e serves as
 200 either subject or object. This bidirectional connectivity enables flexible traversal during reasoning,
 201 allowing navigation in either direction along relational edges.

203 3.2 REASONING PATH

205 Multi-hop reasoning over KGs requires constructing connected sequences of triples that link topic
 206 entities to answer entities. A reasoning path \mathcal{P} of length k from entity e_0 to entity e_k is formally
 207 defined as:

$$208 \mathcal{P} = [(e_0, r_1, e_1), (e_1, r_2, e_2), \dots, (e_{k-1}, r_k, e_k)]$$

210 where each consecutive pair of triples shares an entity, creating a connected traversal through the
 211 graph structure. Intermediate entities e_1, \dots, e_{k-1} serve as stepping stones.

212 Consider the reasoning path illustrated in Figure 1: Vincent van Gogh $\xrightarrow{\text{Place of birth}}$ Zundert
 213 $\xrightarrow{\text{Contained by}}$ Netherlands $\xrightarrow{\text{Capital}}$ Amsterdam. This 3-hop path demonstrates how complex questions
 214 requiring decompositional reasoning can be decomposed into sequential relational steps, each build-
 215 ing upon the previous entity to reach the final answer.

216
217

3.3 KNOWLEDGE GRAPH QUESTION ANSWERING

218
219
220
221
222
223

Knowledge Graph Question Answering (KGQA) addresses the challenge of answering natural language questions using structured knowledge representations. Given a natural language question q , a KG \mathcal{G} , and topic entities $\mathcal{T}_q \subseteq \mathcal{E}$ mentioned in q , the objective is to identify answer entities $\mathcal{A}_q \subseteq \mathcal{E}$. As per prior work (Luo et al., 2023b; Sun et al., 2023; Chen et al., 2024), we use the gold entity annotations provided in the datasets, where entity mentions in questions are already linked to their KG identifiers, thus bypassing the need for entity linking.

224
225

4 METHODOLOGY

226
227

4.1 THE SEARCH FUNCTION

228
229
230
231
232

We carefully design a single `SEARCH` function (Algorithm 1) that enables incremental KG navigation by retrieving the 1-hop neighbours of a target entity in a specified direction. This function serves as the LLM’s sole interface for KG exploration via tool calls, accepting three parameters:

233
234
235
236

- entity: The target entity identifier (e.g., `m.07_m2` for Vincent van Gogh)
- direction: Either outgoing (entity as subject) or incoming (entity as object)
- properties (optional): Specific properties to filter results for focused exploration

237
238
239
240
241

The function returns results in a space-efficient markdown table format, prefixed with a row count that provides the LLM with immediate context about the result size. Each row contains four columns—property ID, property label, value ID, and value label—providing both machine-readable identifiers and human-readable labels. As demonstrated in Figure 1, calling the function to get Vincent van Gogh’s outgoing neighbours returns:

242
243
244
245
246
247
248
249
250
251

property	propertyLabel	value	valueLabel
<code>people.person.profession</code>	Profession	<code>m.0n1h</code>	Artist
<code>visual_art.visual_artist.art_forms</code>	Art forms	<code>m.05qdh</code>	Painting
<code>people.person.place_of_birth</code>	Place of birth	<code>m.0vlxv</code>	Zundert
<code>people.person.date_of_birth</code>	Date of birth	<code>1853-03-30</code>	–
...

252
253
254
255
256
257
258
259

4.2 HANDLING HIGH-DEGREE NODES

KGs often contain high-degree nodes—entities with thousands or millions of connections such as countries, celebrities, or major organizations. Naively retrieving all neighbours of such nodes would overwhelm the LLM’s context window and introduce excessive noise. We address this through a two-stage filtering mechanism formalized in Algorithm 1.

Algorithm 1: ADAPTIVE NEIGHBOURHOOD RETRIEVAL260
261
262
263
264
265
266
267
268
269

```

Input: entity_id, direction, properties; thresholds  $k, p$ 
Output: 1-hop neighbours of entity_id in markdown table format

 $R \leftarrow \text{GET\_ALL\_NEIGHBOURS}(\text{entity\_id}, \text{direction}, \text{properties})$ 
if  $|R| > k$  and properties is empty then
     $U \leftarrow \text{EXTRACT\_UNIQUE\_PROPERTIES}(R)$ 
    return FORMAT_AS_TABLE ( $U$ )
if  $|R| > p$  then
     $R \leftarrow R[0:p]$ 
return FORMAT_AS_TABLE ( $R$ )

```

270 When the function encounters an entity with more than k connected neighbours R without specified
 271 properties, our function returns only the unique properties U rather than all neighbour instances. As
 272 shown in Figure 1, querying for the *Netherlands* outgoing neighbours returns:

property	propertyLabel
location.country.form_of_government	Form of government
location.country.official_language	Official language
location.country.capital	Capital
...	...

280 This property-only view allows the LLM to first survey available relation types without context
 281 overflow. The LLM then makes a targeted second call using the `properties` parameter to retrieve
 282 only relevant relations. This transforms high-degree node navigation from an intractable problem
 283 into two manageable steps: property discovery followed by selective retrieval.

284 Even with filtering, results may exceed practical limits. Algorithm 1 shows that when filtered results
 285 exceed p triples ($|R| > p$), we truncate to the first p results to ensure the response fits within context
 286 limits.

288 4.3 SEARCH-ON-GRAPH PROMPTING

290 To guide the LLM’s navigation strategy, we employ few-shot prompting with navigation exemplars
 291 that demonstrate effective KG traversal patterns. For each dataset, we construct five diverse exemplars
 292 covering three key aspects:

- 294 • **Initial exploration:** strategically making the first SEARCH call based on the question’s focus.
- 295 • **Iterative traversal:** analyzing retrieved neighbours, selecting a relevant relation, and chaining
 296 SEARCH calls to construct reasoning paths.
- 297 • **Answer extraction:** recognizing completion conditions and extracting final answers from the
 298 reasoning chain.

300 These exemplars demonstrate to the LLM how to navigate the KG through systematic observation
 301 and decision-making. The resulting traces remain fully interpretable as each navigation step is
 302 explicitly recorded through tool calls. Appendix A provides the tool definitions, detailed instructions
 303 given to the LLM, and representative exemplars for each dataset. Due to space constraints, we
 304 include sample exemplars rather than the complete sets used in our experiments.

306 5 EXPERIMENTS

308 5.1 EXPERIMENTAL SETUP

310 **Datasets and Evaluation Metric.** We evaluate SoG on six KGQA benchmarks spanning two major
 311 knowledge graphs, Freebase (Bollacker et al., 2008) and WikiData (Vrandečić & Krötzsch, 2014).
 312 For SimpleQuestions (SimpleQA) (Bordes et al., 2015), WebQuestionsSP (WebQSP) (Yih et al.,
 313 2016), ComplexWebQuestions (CWQ) (Talmor & Berant, 2018), and GrailQA (Gu et al., 2021), we
 314 use Freebase. For QALD-9 (Perevalov et al., 2022) and QALD-10 (Perevalov et al., 2022), we use
 315 Wikidata. For SimpleQA and GrailQA, we evaluate on the same 1,000-sample test subset adopted
 316 by ToG (Sun et al., 2023) to manage computational costs while enabling direct comparison with
 317 prior work. For other datasets, we use the full test sets. As per prior work (Li et al., 2023; Sun et al.,
 318 2023; Chen et al., 2024), we report exact match accuracy (Hits@1).

319 **Models.** We evaluate three off-the-shelf LLMs without fine-tuning: two open-source models—
 320 Qwen3-30B-A3B-Thinking-2507 and Qwen3-235B-A22B-Thinking-2507-FP8 (Yang et al., 2025)
 321 (abbreviated as Qwen3-30B and Qwen3-235B), and a proprietary model—GPT-4o. SoG is designed
 322 as a plug-and-play framework compatible with any LLM that supports tool calling. For GPT-4o,
 323 we use the OpenAI API. For Qwen3-30B and Qwen3-235B, we follow the recommended settings
 (temperature=0.6, top_p=0.95, top_k=20, min_p=0).

324
 325 Table 1: Exact match accuracy (%) of KGQA methods across six benchmarks. Bold and underlined
 326 values indicate best and second-best results per dataset, respectively. Datasets are grouped by under-
 327 lying KG: Freebase (SimpleQA, WebQSP, CWQ, GrailQA) and Wikidata (QALD-9, QALD-10).

Method	Freebase				Wikidata	
	SimpleQA	WebQSP	CWQ	GrailQA	QALD-9	QALD-10
<i>Subgraph Retrieval Methods</i>						
GRAFT-Net (Sun et al., 2018)	-	66.4	32.8	-	-	-
PullNet (Sun et al., 2019)	-	68.1	47.2	-	-	-
TransferNet (Shi et al., 2021)	-	71.4	48.6	-	-	-
UniKGQA (Jiang et al., 2022)	-	77.2	51.2	-	-	-
EWEK-QA + GPT-3.5 (Dehghan et al., 2024)	50.9	71.3	52.5	60.4	-	-
SubgraphRAG + GPT-4o (Li et al., 2024a)	-	90.9	67.5	-	-	-
<i>LLM Baselines</i>						
IO Prompting + Qwen3-30B	24.8	61.1	39.0	26.7	65.1	47.2
IO Prompting + Qwen3-235B	30.3	61.1	51.0	32.3	62.7	48.7
IO Prompting + GPT-4o	48.8	61.0	51.2	35.8	65.9	46.9
<i>Agentic LLM Methods</i>						
Think-on-Graph + GPT-4 (Sun et al., 2023)	66.7	82.6	69.5	81.4	-	54.7
Generate-on-Graph + GPT-4 (Xu et al., 2024)	-	84.4	75.2	-	-	-
Plan-on-Graph + GPT-4 (Chen et al., 2024)	-	87.3	75.0	84.7	-	-
Readi + GPT-4 (Cheng et al., 2024)	-	78.7	67.0	-	-	-
Spinach + GPT-4o (Liu et al., 2024)	-	-	-	-	58.3	63.1
FiDeLiS + GPT-4-Turbo (Sui et al., 2024)	-	84.4	71.5	-	-	-
EffiQA + GPT-4 (Dong et al., 2024)	76.5	82.9	69.5	78.4	-	51.4
KELDAoR + GPT-3.5-Turbo (Li et al., 2024b)	-	79.4	53.6	-	-	-
ReKnoS + GPT-4o-mini (Wang et al., 2025)	67.2	83.8	66.8	80.5	-	-
iQUEST + GPT-4o (Wang & Yu, 2025)	-	88.9	73.9	73.5	-	-
ORT + GPT-4o (Liu et al., 2025)	-	87.7	65.4	-	-	-
Debate-on-Graph + GPT-4 (Ma et al., 2025)	-	91.0	56.0	80.0	-	-
SRP + GPT-4.1-mini (Zhu et al., 2025a)	-	83.6	69.0	78.8	-	-
KnowPath + DeepSeek-V3 (Zhao et al., 2025a)	65.3	89.0	73.5	-	-	-
SoG + Qwen3-30B (Ours)	86.2	88.2	70.0	81.4	81.0	77.5
SoG + Qwen3-235B (Ours)	86.4	89.3	77.1	83.9	82.5	79.8
SoG + GPT-4o (Ours)	84.8	91.3	75.1	86.9	79.4	74.4

354
 355 **Few-shot Prompting.** For each dataset, we manually construct five few-shot exemplars covering di-
 356 verse reasoning patterns, including single-hop retrieval, multi-hop traversal, constraint verification,
 357 and aggregation. These exemplars are derived from training set questions.

358
 359 **Baselines and Parameters.** We compare SoG with 23 baselines, grouped into subgraph retrieval
 360 methods, LLM baselines, and agentic LLM methods. Semantic parsing methods are excluded due
 361 to their reliance on task-specific fine-tuning, which is orthogonal to our training-free paradigm. For
 362 all experiments, we set the high-degree threshold $k = 50$ and the maximum result size $p = 1000$,
 363 balancing information completeness with context window constraints.

364 365 5.2 MAIN RESULTS

366
 367 Table 1 presents the performance of SoG and competing methods across all six benchmarks. Our
 368 approach consistently achieves state-of-the-art or highly competitive results using only off-the-shelf
 369 LLMs, without any task-specific fine-tuning or retraining. SoG + GPT-4o achieves the highest scores
 370 on WebQSP (91.3%) and GrailQA (86.9%), while SoG + Qwen3-235B leads on SimpleQA (86.4%),
 371 CWQ (77.1%), QALD-9 (82.5%), and QALD-10 (79.8%). Notably, SoG + GPT-4o outperforms all
 372 prior systems on 5 of 6 datasets, trailing only Generate-on-Graph on CWQ by 0.1%. Similarly,
 373 SoG + Qwen3-235B also surpasses previous bests on 4 of 6 datasets, with narrow margins of 0.7%
 374 and 0.8% behind the previous best on WebQSP and GrailQA, respectively. The improvements over
 375 previous best methods range from incremental to substantial. On Freebase datasets, we improve
 376 by +0.3% on WebQSP, +1.9% on CWQ, +2.2% on GrailQA, and +9.9% on SimpleQA. The im-
 377 provements are particularly striking on Wikidata benchmarks, where we achieve double-digit gains:
 378 +16.6% on QALD-9 (82.5% vs. 65.9% for IO Prompting) and +16.7% on QALD-10 (79.8% vs.
 379 63.1%).

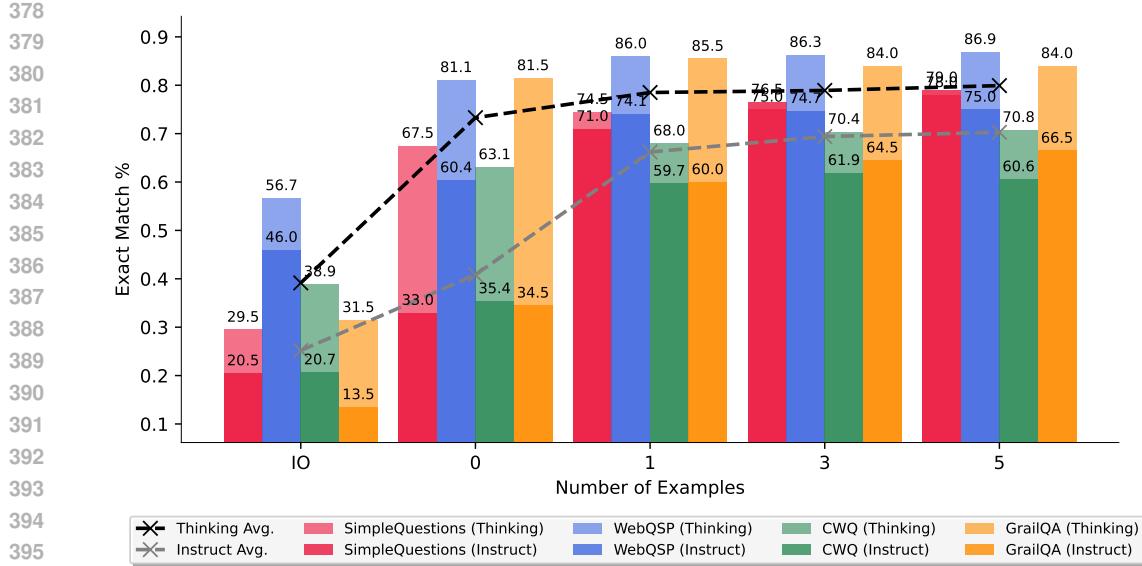


Figure 2: Impact of few-shot exemplar quantity on exact match accuracy (%) across four Freebase datasets (SimpleQA, WebQSP, CWQ, GrailQA) for Qwen3-30B-A3B-Thinking-2507 and Qwen3-30B-A3B-Instruct-2507.

The strong performance across both Freebase (SimpleQA, WebQSP, CWQ, GrailQA) and Wikidata (QALD-9, QALD-10) benchmarks validates our schema-agnostic design. While Freebase uses compound value types for complex relations and Wikidata employs qualifiers, SoG adapts to both structures without modification, confirming that our single function approach generalizes across different KG schemas. Furthermore, SoG is shown to be effective across both single-hop (SimpleQA) and multi-hop (WebQSP, CWQ, GrailQA, QALD-9, QALD-10) datasets. This contrasts with methods like Think-on-Graph, EffiQA, ReKnoS, and KnowPath, which show stronger relative performance only on multi-hop tasks. Our consistent performance across complexity levels likely stems from our focused navigation strategy—by selecting one relation per hop rather than exploring multiple paths in parallel, we avoid the noise accumulation that can overwhelm simpler questions without sacrificing performance on complex reasoning chains.

5.3 ABLATION STUDIES AND ANALYSIS

We conduct a series of ablation studies to analyze key design choices in SoG, examining three factors: the impact of few-shot exemplar quantity, reasoning-optimized models versus standard instruction models, and different output formatting on performance. All ablations use 20% of samples from each Freebase-based test set. We evaluate on both Qwen3-30B-A3B-Thinking-2507 and Qwen3-30B-A3B-Instruct-2507.

Effect of Few-shot Exemplars. Figure 2 shows the performance of Thinking and Instruct models across varying exemplar quantities. The black and grey dashed lines represent the average exact match accuracy across the four datasets for the Thinking and Instruct models, respectively. Both models show dramatic improvements when transitioning from IO prompting to 0-shot with tool definitions, demonstrating that LLMs can perform structured navigation once they understand the SEARCH function interface. Adding a single navigation exemplar (1-shot) produces another substantial boost across all datasets—from simple single hop to complex multi-hop tasks—confirming that even a single demonstration benefits all complexity levels. Performance plateaus at 3-shot with minimal gains thereafter, indicating that a small set of diverse exemplars sufficiently demonstrates effective navigation strategies.

Thinking vs. Non-Thinking Models. The Thinking variant consistently outperforms the Instruct variant across all settings in Figure 2, with the gap most pronounced on multi-hop datasets (WebQSP,

432
 433 Table 2: Comparison of different output formats on SimpleQA (20% sample) using Qwen3-30B-
 434 A3B-Thinking-2507 with 5 exemplars. We report the average number of main interaction tokens,
 435 average number of reasoning tokens, average number of total tokens, average number of turns, and
 436 exact match (EM) accuracy. “Markdown + Property Filter” denotes our concise format with an
 437 additional filtering round, which achieves the best accuracy and efficiency.

438

Format	Avg. Main Tok.	Avg. Reason Tok.	Avg. Total Tok.	Avg. Turns	EM
JSON	9312.2	2735.2	12047.3	3.06	76.5
Markdown	6028.1	1953.7	7981.8	3.05	74.5
Markdown + Property Filter (Ours)	3715.9	1906.6	5622.5	3.93	78.0

439
 440
 441
 442
 443

444 CWQ, GrailQA) compared to single-hop SimpleQA. This performance difference reveals that model
 445 architecture and inherent reasoning capabilities are critical for SoG’s effectiveness. The reasoning-
 446 optimized model better leverages our iterative observation-decision framework—analyzing available
 447 relations and making informed navigation choices based on reasoning rather than question semantics
 448 or pattern-matching against exemplars. While both models benefit from additional exemplars,
 449 the Thinking variant extracts more value from navigation demonstrations, indicating that SoG’s per-
 450 formance ceiling depends on the model’s underlying capacity for structured reasoning over KGs.

451
 452 **Output Format and Filtering.** Table 2 compares the impact of different output formats on per-
 453 formance and efficiency. While the original JSON format that the SPARQL execution returns yields
 454 strong accuracy, it uses significantly more tokens than the other two formats. Switching to Mark-
 455 down format reduces token usage considerably, but slightly impacts accuracy. Our property filtering
 456 approach introduces an additional stage: when encountering high-degree nodes, we first retrieve
 457 available properties, then make a targeted second call with relevant properties only. Despite re-
 458quiring additional turns, this strategy achieves the lowest total token usage while simultaneously
 459 delivering the highest accuracy. The efficiency gain stems from avoiding redundant information
 460 in dense neighborhoods, while the accuracy improvement suggests that focused retrieval helps the
 461 LLM identify relevant paths more effectively. These results highlight how careful output design
 462 choices critically impacts both computational cost and performance in LLM-based KGQA systems.

463 6 CONCLUSION

464
 465 We present Search-on-Graph (SoG), a simple yet effective KGQA framework that enables iterative,
 466 observation-driven navigation using a single LLM with one carefully designed SEARCH function.
 467 This approach achieves state-of-the-art results across six benchmarks spanning Freebase and Wiki-
 468 data. Our analysis reveals that effective graph navigation depends on three factors: providing LLMs
 469 with actual available relations from each entity, using reasoning-optimized models that can leverage
 470 navigation demonstrations effectively, and designing output formats that balance information com-
 471 pleteness with computational efficiency. Beyond empirical gains, our work demonstrates that many
 472 perceived LLM limitations on structured reasoning tasks stem from how we present the problem
 473 rather than fundamental model capabilities. By aligning task design with LLM strengths—iterative
 474 observation and decision-making over local context—we achieve superior performance without the
 475 architectural complexity, specialized modules, or extensive scaffolding that prior work assumed
 476 necessary. The simplicity and generality of SoG, requiring no task-specific training and adapting
 477 seamlessly across KG schemas, validates this observation-centric approach as a promising direction
 478 for LLM-based structured reasoning.

480 7 REPRODUCIBILITY STATEMENT

481
 482 We provide all materials necessary for reproducibility. Prompts, tool definitions, and few-shot exem-
 483 plar samples for all datasets are included in Appendix A. Our supplementary materials contain exper-
 484 iment scripts & test data, where `main.py` implements the core processing logic and `prompt.py`
 485 contains the system prompt concatenation functions.

486 REFERENCES
487

488 Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collabor-
489 atively created graph database for structuring human knowledge. In *Proceedings of the 2008*
490 *ACM SIGMOD international conference on Management of data*, pp. 1247–1250, 2008.

491 Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question
492 answering with memory networks. *arXiv preprint arXiv:1506.02075*, 2015.

493 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
494 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
495 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

496 Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun, Jieping Ye, and Hui Xiong. Plan-on-graph:
497 Self-correcting adaptive planning of large language model on knowledge graphs. *Advances in*
498 *Neural Information Processing Systems*, 37:37665–37691, 2024.

499 Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang Huang,
500 Ling Chen, Qingwei Lin, Dongmei Zhang, et al. Call me when necessary: Llms can efficiently
501 and faithfully reason over structured environments. *arXiv preprint arXiv:2403.08593*, 2024.

502 Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot Tower, Manzil Zaheer, Hannaneh Hajishirzi,
503 Robin Jia, and Andrew McCallum. Knowledge base question answering by case-based reasoning
504 over subgraphs. In *International conference on machine learning*, pp. 4777–4793. PMLR, 2022.

505 Mohammad Dehghan, Mohammad Ali Alomrani, Sunyam Bagga, David Alfonso-Hermelo, Khalil
506 Bibi, Abbas Ghaddar, Yingxue Zhang, Xiaoguang Li, Jianye Hao, Qun Liu, et al. Ewek-qa:
507 Enhanced web and efficient knowledge graph retrieval for citation-based question answering sys-
508 tems. *arXiv preprint arXiv:2406.10393*, 2024.

509 Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong Qu. Enhancing complex question answer-
510 ing over knowledge graphs through evidence pattern retrieval. In *Proceedings of the ACM Web*
511 *Conference 2024*, pp. 2106–2115, 2024.

512 Zixuan Dong, Baoyun Peng, Yufei Wang, Jia Fu, Xiaodong Wang, Yongxue Shan, and Xin Zhou. Ef-
513 fiqa: Efficient question-answering with strategic multi-model collaboration on knowledge graphs.
514 *arXiv preprint arXiv:2406.01238*, 2024.

515 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
516 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
517 *arXiv e-prints*, pp. arXiv–2407, 2024.

518 Haishuo Fang, Xiaodan Zhu, and Iryna Gurevych. Dara: Decomposition-alignment-reasoning
519 autonomous language agent for question answering over knowledge graphs. *arXiv preprint*
520 *arXiv:2406.07080*, 2024.

521 Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond iid:
522 three levels of generalization for question answering on knowledge bases. In *Proceedings of the*
523 *web conference 2021*, pp. 3477–3488, 2021.

524 Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
525 and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
526 question answering. *Advances in Neural Information Processing Systems*, 37:132876–132907,
527 2024.

528 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
529 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
530 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information*
531 *Systems*, 43(2):1–55, 2025.

532 Jinzhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and
533 reasoning for solving multi-hop question answering over knowledge graph. *arXiv preprint*
534 *arXiv:2212.00959*, 2022.

540 Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong
 541 Wen. Kg-agent: An efficient autonomous agent framework for complex reasoning over knowl-
 542 edge graph. *arXiv preprint arXiv:2402.11163*, 2024.

543

544 Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
 545 models struggle to learn long-tail knowledge. In *International conference on machine learning*,
 546 pp. 15696–15707. PMLR, 2023.

547

548 Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir Radev, Noah A
 549 Smith, Yejin Choi, Kentaro Inui, et al. Realtime qa: What’s the answer right now? *Advances in*
 550 *neural information processing systems*, 36:49025–49043, 2023.

551

552 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 553 language models are zero-shot reasoners. *Advances in neural information processing systems*,
 554 35:22199–22213, 2022.

555

556 Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language mod-
 557 els in knowledge-graph-based retrieval-augmented generation. *arXiv preprint arXiv:2410.20724*,
 558 2024a.

559

560 Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhui Chen. Few-shot in-context
 561 learning for knowledge base question answering. *arXiv preprint arXiv:2305.01750*, 2023.

562

563 Yading Li, Dandan Song, Changzhi Zhou, Yuhang Tian, Hao Wang, Ziyi Yang, and Shuhao Zhang.
 564 A framework of knowledge graph-enhanced large language model based on question decomposi-
 565 tion and atomic retrieval. In *Findings of the Association for Computational Linguistics: EMNLP*
 566 2024, pp. 11472–11485, 2024b.

567

568 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 569 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 570 *International Conference on Learning Representations*, 2023.

571

572 Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
 573 Deductive verification of chain-of-thought reasoning. *Advances in Neural Information Processing*
 574 *Systems*, 36:36407–36433, 2023.

575

576 Adam Liska, Tomas Kociský, Elena Gribovskaya, Tayfun Terzi, Eren Sezener, Devang Agrawal,
 577 Cyprien De Masson D’Autume, Tim Scholtes, Manzil Zaheer, Susannah Young, et al. Stream-
 578 ingqa: A benchmark for adaptation to new knowledge over time in question answering models.
 579 In *International Conference on Machine Learning*, pp. 13604–13622. PMLR, 2022.

580

581 Runxuan Liu, Bei Luo, Jiaqi Li, Baoxin Wang, Ming Liu, Dayong Wu, Shijin Wang, and Bing Qin.
 582 Ontology-guided reverse thinking makes large language models stronger on knowledge graph
 583 question answering. *arXiv preprint arXiv:2502.11491*, 2025.

584

585 Shicheng Liu, Sina J Semnani, Harold Triedman, Jialiang Xu, Isaac Dan Zhao, and Monica S
 586 Lam. Spinach: Sparql-based information navigation for challenging real-world questions. *arXiv*
 587 *preprint arXiv:2407.11417*, 2024.

588

589 Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting
 590 Dong, Meina Song, Wei Lin, Yifan Zhu, et al. Chatkbqa: A generate-then-retrieve framework
 591 for knowledge base question answering with fine-tuned large language models. *arXiv preprint*
 592 *arXiv:2310.08975*, 2023a.

593

594 Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
 595 interpretable large language model reasoning. *arXiv preprint arXiv:2310.01061*, 2023b.

596

597 Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Yuan-Fang Li, Chen Gong, and Shirui Pan. Graph-
 598 constrained reasoning: Faithful reasoning on knowledge graphs with large language models.
 599 *arXiv preprint arXiv:2410.13080*, 2024.

594 Jie Ma, Zhitao Gao, Qi Chai, Wangchun Sun, Pinghui Wang, Hongbin Pei, Jing Tao, Lingyun Song,
 595 Jun Liu, Chen Zhang, et al. Debate on graph: a flexible and reliable reasoning framework for large
 596 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 597 pp. 24768–24776, 2025.

598 Aleksandr Perevalov, Dennis Diefenbach, Ricardo Usbeck, and Andreas Both. Qald-9-plus: A mul-
 599 tilingual dataset for question answering over dbpedia and wikidata translated by native speakers.
 600 In *2022 IEEE 16th International Conference on Semantic Computing (ICSC)*, pp. 229–234. IEEE,
 601 2022.

602 Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Hanwang Zhang. Transfernet: An effective and
 603 transparent framework for multi-hop question answering over relation graph. *arXiv preprint*
 604 *arXiv:2104.07302*, 2021.

605 Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
 606 Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
 607 clinical knowledge. *Nature*, 620(7972):172–180, 2023.

608 Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, and Bryan Hooi. Fidelis: Faithful
 609 reasoning in large language model for knowledge graph question answering. *arXiv preprint*
 610 *arXiv:2405.13873*, 2024.

611 Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
 612 William W Cohen. Open domain question answering using early fusion of knowledge bases
 613 and text. *arXiv preprint arXiv:1809.00782*, 2018.

614 Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain question answering
 615 with iterative retrieval on knowledge bases and text. *arXiv preprint arXiv:1904.09537*, 2019.

616 Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M
 617 Ni, Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
 618 language model on knowledge graph. *arXiv preprint arXiv:2307.07697*, 2023.

619 Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
 620 *arXiv preprint arXiv:1803.06643*, 2018.

621 Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, and Wenjie Zhang. Paths-over-graph:
 622 Knowledge graph empowered large language model reasoning. In *Proceedings of the ACM on*
 623 *Web Conference 2025*, pp. 3505–3522, 2025.

624 SMTI Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava
 625 Das. A comprehensive survey of hallucination mitigation techniques in large language models.
 626 *arXiv preprint arXiv:2401.01313*, 6, 2024.

627 Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. *Communi-
 628 cations of the ACM*, 57(10):78–85, 2014.

629 Shuai Wang and Yinan Yu. iquest: An iterative question-guided framework for knowledge base
 630 question answering. *arXiv preprint arXiv:2506.01784*, 2025.

631 Song Wang, Junhong Lin, Xiaojie Guo, Julian Shun, Jundong Li, and Yada Zhu. Reasoning of large
 632 language models over knowledge graphs with super-relations. *arXiv preprint arXiv:2503.22166*,
 633 2025.

634 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 635 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 636 *neural information processing systems*, 35:24824–24837, 2022.

637 Aziguli Wulamu, Lyu Zhengyu, Kaiyuan Gong, Yu Han, Zewen Wang, Zhihong Zhu, and Bowen
 638 Xing. Html: Hierarchical topology multi-task learning for semantic parsing in knowledge base
 639 question answering. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp.
 640 9307–9321, 2025.

648 Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang
 649 Liu, and Jun Zhao. Generate-on-graph: Treat llm as both agent and kg in incomplete knowledge
 650 graph question answering. *arXiv preprint arXiv:2404.14741*, 2024.

651

652 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 653 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 654 *arXiv:2505.09388*, 2025.

655

656 Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. Rng-kbqa: Gen-
 657 eration augmented iterative ranking for knowledge base question answering. *arXiv preprint*
 658 *arXiv:2109.08678*, 2021.

659

660 Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
 661 of semantic parse labeling for knowledge base question answering. In *Proceedings of the 54th*
 662 *Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.
 663 201–206, 2016.

664

665 Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
 666 William Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical
 667 forms for question answering over knowledge bases. *arXiv preprint arXiv:2210.00063*, 2022.

668

669 Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, and Hong Chen. Sub-
 670 graph retrieval enhanced model for multi-hop knowledge base question answering. *arXiv preprint*
 671 *arXiv:2202.13296*, 2022.

672

673 Lingxi Zhang, Jing Zhang, Yanling Wang, Shulin Cao, Xinmei Huang, Cuiping Li, Hong Chen,
 674 and Juanzi Li. Fc-kbqa: A fine-to-coarse composition framework for knowledge base question
 675 answering. *arXiv preprint arXiv:2306.14722*, 2023.

676

677 Zhiqiang Zhang, Liqiang Wen, and Wen Zhao. Rule-kbqa: rule-guided reasoning for complex
 678 knowledge base question answering with large language models. In *Proceedings of the 31st*
 679 *International Conference on Computational Linguistics*, pp. 8399–8417, 2025.

680

681 Qi Zhao, Hongyu Yang, Qi Song, Xinwei Yao, and Xiangyang Li. Knowpath: Knowledge-
 682 enhanced reasoning via llm-generated inference paths over knowledge graphs. *arXiv preprint*
 683 *arXiv:2502.12029*, 2025a.

684

685 Ruilin Zhao, Feng Zhao, and Hong Zhang. Correcting on graph: Faithful semantic parsing over
 686 knowledge graphs with large language models. In *Findings of the Association for Computational*
 687 *Linguistics: ACL 2025*, pp. 5364–5376, 2025b.

688

689 Jiajun Zhu, Ye Liu, Meikai Bao, Kai Zhang, Yanghai Zhang, and Qi Liu. Self-reflective plan-
 690 ning with knowledge graphs: Enhancing llm reasoning reliability for question answering. *arXiv*
 691 *preprint arXiv:2505.19410*, 2025a.

692

693

694

695

696

697

698

699

700

701

702 A APPENDIX

A.1 TOOL DEFINITIONS

Listing 1: Freebase Tool Definition

```
707 1 TOOLS_FREEBASE = [
708 2     {
709 3         "type": "function",
710 4         "function": {
711 5             "name": "search",
712 6             "description": (
713 7                 "Build and execute a SPARQL query on Freebase that retrieves
714 8                     adjacent properties, property labels,"
715 9                     "values, and value labels in the specified direction for a given
716 10                    entity."
717 11         ),
718 12         "parameters": {
719 13             "type": "object",
720 14             "properties": {
721 15                 "entity": {
722 16                     "type": "string",
723 17                     "description": "The entity (e.g., 'm.04yd0fh') whose
724 18                         adjacent relations and entities we want to fetch."
725 19             },
726 20             "direction": {
727 21                 "type": "string",
728 22                 "enum": ["incoming", "outgoing"],
729 23                 "description": "Direction of relationship to consider"
730 24             },
731 25             "properties_to_filter_for": {
732 26                 "type": "array",
733 27                 "items": {"type": "string"},
734 28                 "description": "Optional list of specific properties to
735 29                     filter by (e.g., ['people.person.place_of_birth', 'people.person.nationality'])."
736 30             }
737 31         },
738 32         "required": ["question", "entity", "direction"],
739 33         "additionalProperties": False
740 34     },
741 35     }
742 36 ],
743 37 ]
```

Listing 2: Wikidata Tool Definition

```
739 1 TOOLS_WIKIDATA = [
740 2     {
741 3         "type": "function",
742 4         "function": {
743 5             "name": "search",
744 6             "description": (
745 7                 "Build and execute a SPARQL query on Wikidata that retrieves
746 8                     adjacent properties, property labels,"
747 9                     "values, and value labels in the specified direction for a given
748 10                    entity."
749 11             ),
750 12             "parameters": {
751 13                 "type": "object",
752 14                 "properties": {
753 15                     "entity": {
754 16                         "type": "string",
755 17                         "description": "The entity (e.g., 'wd:Q187805') whose
756 18                             adjacent relations and entities we want to fetch.",
757 19                     },
758 20                     "direction": {
759 21                         "type": "string",
760 22                         "enum": ["incoming", "outgoing"],
761 23                         "description": "Direction of relationship to consider",
762 24                     },
763 25                 }
764 26             }
765 27         }
766 28     }
767 29 }
```

```

756     },
757     21     "properties_to_filter_for": {
758     23         "type": "array",
759     24         "items": {"type": "string"},
760     25         "description": "Optional list of specific properties to
761     26             filter by (e.g., ['people.person.place_of_birth', 'people.person.nationality'])."
762     27     },
763     28     "required": ["question", "entity", "direction"],
764     29     "additionalProperties": False,
765     30 },
766     31     },
767     32 },
768     33 ],
769     34
770
771 A.2 TOOL INSTRUCTION PROMPT
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

```

Listing 3: Tool Instructions

You are a knowledgeable question-answering agent specializing in knowledge-graph question answering. You will receive a question and may call a tool to navigate the knowledge graph, collect information, and then formulate an answer.

You may call the tool `search(entity, direction)` to retrieve adjacent relations and 1-hop neighbouring entities to the entity given in the input. Additionally, direction must be incoming or outgoing.

When you want to call the tool:

- Always follow the CORRECT format whenever you want to make a tool call.
- Continue making tool calls until you arrive at a final textual answer. Then, and only then, stop making tool calls and provide your final answer in 'content'.

Furthermore,

- Sometimes the 'search' tool returns an entity ID ('value') without a corresponding entity name ('valueLabel'). If that occurs, continue making the correct tool calls using the entity ID ('value') alone, if necessary, until you find the information needed to answer the question. Relevant details may appear in subsequent tool calls.
- Whenever 'search' returns multiple entities for a single relevant relation, you must examine every single one of those entities, even if there are tens or hundreds. Do not skip any; each could be relevant to the question.
- If the question happens to be a 'when' question, you must provide the final answer with the value of the entity as given (i.e., in the format {1889-04-20} or {1889-04-20-08:00}) from the results of 'search'.
- If searching from one direction does not yield information that seems relevant to the question, you may try searching from the other direction (e.g., "incoming" instead of "outgoing", or "outgoing" instead of "incoming") of the starting entity if you think it makes sense to try.
- In your final answer, you must 1) write 'Final answer:' immediately before providing your final answer, 2) enclose the answer entity (or entities) in curly braces, and 3) use each entity name exactly as returned by the 'search' tool. For example, if the tool's output shows "English Language", you must produce {English Language} (keeping the exact phrase) rather than shortening it to "English".

810
 811 - If you cannot gather enough information using the tools to answer
 812 the question, rely on the information you already have, your
 813 reasoning abilities, and your own knowledge to produce the best
 814 possible answer(s).

815
 816 A.3 SAMPLE EXEMPLARS
 817

818 **Listing 4: SimpleQA Sample Exemplar**

819 Question: where did the continental celtic languages originate? {'
 820 Continental Celtic languages': 'm.06v3q8'}
 821 Outgoing relations from m.06v3q8 (Continental Celtic languages)
 822 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
 823 name": "search", "arguments": {"entity": "m.06v3q8", "direction": "outgoing"}}}]
 824 Suppose it returns:
 825 property|propertyLabel|value|valueLabel
 826 ---|---|---|---
 827 language.language_family.member_of_language_families|member of language
 828 families|m.01sd8|Celtic languages
 829 language.language_family.geographic_distribution|geographic
 830 distribution|m.02j9z|Europe
 831 kg.object_profile.prominent_type||language.language_family|Language
 832 Family
 833 We see there is a language.language_family.geographic_distribution (geographic distribution) property that points to the object m.02j9z (Europe).
 834 Final answer: The Continental Celtic languages originated in {Europe}.

835
 836 **Listing 5: WebQSP Sample Exemplar**

837 Question: what is cher 's son 's name {'Cher': 'm.01vtj38', 'Male': 'm.05zppz'}
 838 'm.01vtj38' ('Cher') is the topic entity of the question. Look for
 839 outgoing edges from 'm.01vtj38' and look for relations and entities
 840 related to Cher's son. Any linked object entities are potential
 841 candidates.
 842 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
 843 name": "search", "arguments": {"entity": "m.01vtj38", "direction": "outgoing"}}}]
 844 Suppose it returns:
 845 property|propertyLabel|value|valueLabel
 846 ---|---|---|---
 847 base.schemastaging.context_name.official_name|Official name|Cherilyn
 848 Sarkisian|
 849 people.person.children|Children|m.01w4bt1|Elijah Blue Allman
 850 people.person.children|Children|m.0br66|Chaz Bono
 851 people.person.parents|Parents|m.0kmhsk2|Gilbert Hartmann LaPiere
 852 We see there is the people.person.children (Children) property that
 853 points to entities m.01w4bt1 (Elijah Blue Allman) and m.0br66 (Chaz
 854 Bono).
 855 To specifically look for son(s) of Cher, we check the gender of each of
 856 those entities
 857 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
 858 name": "search", "arguments": {"entity": "m.01w4bt1", "direction": "outgoing"}}}]
 859 Suppose it returns:
 860 property|propertyLabel|value|valueLabel
 861 ---|---|---|---
 862 people.person.parents|Parents|m.01vtj38|Cher
 863 people.person.gender|Gender|m.05zppz|Male
 864 people.person.sibling_s|Siblings|m.0w4gdrb|
 865 people.person.sibling_s|Siblings|m.0vvfthw|

```

864 We see that Elijah Blue Allman's gender is Male.
865 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
866     name": "search", "arguments": {"entity": "m.0br66", "direction": "outgoing"} }]}
867 Suppose it returns:
868 property|propertyLabel|value|valueLabel
869 ---|---|---|
870 people.person.parents|Parents|m.01vtj38|Cher
871 people.person.sibling_s|Siblings|m.0w4gdrl|
872 people.person.gender|Gender|m.05zppz|Male
873 We see that Chaz Bono's gender is Male.
874 Final answer: Cher's sons' names are {Elijah Blue Allman} and {Chaz
875 Bono}.
876

```

Listing 6: CWQ Sample Exemplar

```

877 Question: What structure build on June 5, 2007 is Charlotte, North
878 Carolina known for? {'Charlotte': 'm.0fsb8'}
879 'm.0fsb8' ('Charlotte') is the topic entity of the question. Look for
880 outgoing edges from 'm.0fsb8' and look for relations and entities
881 related to structures built in Charlotte. Any linked object entities
882 are potential candidates.
883 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
884     name": "search", "arguments": {"entity": "m.0fsb8", "direction": "outgoing"} }]}
885 Suppose it returns:
886 property|propertyLabel|value|valueLabel
887 ---|---|---|
888 common.topic.topical_webpage|Topical webpage|http://www.charmeck.org/|
889 travel.travel_destination.tourist_attractions|Tourist attractions|m.09
890 k6h_2|Bechtler Museum of Modern Art
891 travel.travel_destination.tourist_attractions|Tourist attractions|m.02
892 vnhrq|Billy Graham Library
893 travel.travel_destination.tourist_attractions|Tourist attractions|m.05
894 g_v01|Bojangles' Coliseum
895 travel.travel_destination.tourist_attractions|Tourist attractions|m.0
896 cq5c0|Carolinas Aviation Museum
897 We see the property travel.travel_destination.tourist_attractions (
898     Tourist attractions), which points to m.09k6h_2 (Bechtler Museum of
899     Modern Art), m.02vnhrq (Billy Graham Library), and m.05g_v01 (
900     Bojangles' Coliseum). These are all tourist attractions in Charlotte
901     , North Carolina.
902 Get outgoing relations and entities from each candidate entity to find
903     information on the date that it was built:
904 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
905     name": "search", "arguments": {"entity": "m.09k6h_2", "direction": "outgoing"} }]}
906 Suppose it returns:
907 property|propertyLabel|value|valueLabel
908 ---|---|---|
909 type.object.type|Type|common.topic|Topic
910 type.object.type|Type|architecture.building|Building
911 type.object.type|Type|architecture.structure|Structure
912 There is no property that indicates the build date of m.09k6h_2 (
913     Bechtler Museum of Modern Art).
914 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
915     name": "search", "arguments": {"entity": "m.02vnhrq", "direction": "outgoing"} }]}
916 Suppose it returns:
917 property|propertyLabel|value|valueLabel
918 ---|---|---|
919 common.topic.notable_types|Notable types|m.01y2hbz|Museum
920 architecture.structure.opened|Opened|2007-06-05-08:00|
921 type.object.type|base.type_ontology.abstract|Abstract

```

```

918 We see that there is the property architecture.structure.opened (Opened
919 ), which points to the date 2007-06-05T08:00. This indicates an
920 opening date of 2007-06-05 (June 5, 2007), which matches our target
921 date.
922 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {""
923     "name": "search", "arguments": {"entity": "m.05g_v01", "direction": "outgoing"} }]}
924 Suppose it returns:
925 property|propertyLabel|value|valueLabel
926 ---|---|---|---
927 architecture.structure.opened|Opened|1955-08:00|
928 common.topic.social_media_presence|Social media presence|http://www.
929     facebook.com/pages/Bojangles-Coliseum/196122978761|
930 common.topic.social_media_presence|Social media presence|https://
931     twitter.com/BojanglesCol|
932 We see that there is the property architecture.structure.opened (Opened
933 ), which points to the date 1955-08:00. This indicates an opening
934 date of 1955 at 8am, which does not match our target date of June 5,
935 2007.
936 Final answer: Charlotte, North Carolina is known for the structure {
937     Billy Graham Library} that is built on June 5, 2007.
938

```

Listing 7: GrailQA Sample Exemplar

```

939 Question: what is the language regulator of basque? {'basque': 'm.017k6'
940     '}
941 'm.017k6' ('basque') is the topic entity of the question. Look for
942 incoming edges from 'm.017k6' and look for relations and entities
943 related to language regulators of Basque. Any linked object entities
944 are potential candidates.
945 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {""
946     "name": "search", "arguments": {"entity": "m.017k6", "direction": "incoming"} }]}
947 Suppose it returns:
948 property|propertyLabel|value|valueLabel
949 ---|---|---|---
950 base.rosetta_rosetta_document.refers_to|Refers To|m.05tr3c6|Basque
951     Numbers
952 language.language_regulator.language|Language|m.057xsn|Euskaltzaindia
953 type.type.instance|Instance|language.languoid|
954 We see the property language.language_regulator.language (Language),
955 which points to m.057xsn (Euskaltzaindia). This may be the language
956 regulator of Basque. Let's double check by calling the tool to look
957 at its outgoing edges.
958 Tool Call: [{"id": "some_unique_id", "type": "function", "function": {""
959     "name": "search", "arguments": {"entity": "m.057xsn", "direction": "outgoing"} }]}
960 Suppose it returns:
961 property|propertyLabel|value|valueLabel
962 ---|---|---|---
963 type.object.type|Type|common.topic|Topic
964 type.object.type|Type|base.type_ontology.agent|Agent
965 type.object.type|Type|language.language_regulator|Language Regulator
966 We see that there is the property type.object.type (Type), which points
967 to language.language_regulator (Language Regulator). This confirms
968 that m.057xsn (Euskaltzaindia) is indeed a language regulator.
969 Final answer: The language regulator of Basque is {Euskaltzaindia}.
970

```

Listing 8: QALD Sample Exemplar

```

968 Question: In which country does the Ganges start? {'Ganges': 'wd:Q5089'
969     '}
970 'wd:Q5089' ('Ganges') is the topic entity of the question. Look for
971 outgoing edges from 'wd:Q5089' and look for relations and entities

```

```

972     related to which country the Ganges starts in. Any linked subjects
973     are potential candidates.
974     Tool Call:[{"id": "some_unique_id", "type": "function", "function": {"name": "search", "arguments": {"entity": "wd:Q5089", "direction": "outgoing"}}}]
975     Suppose it returns:
976     property|propertyLabel|value|valueLabel
977     ---|---|---|---
978     wdt:P885|origin of the watercourse|wd:Q691557|Gangotri Glacier
979     wdt:P974|tributary|wd:Q3635865|Punpun River
980     wdt:P30|continent|wd:Q48|Asia
981     We see the property wdt:P885 (origin of the watercourse) that links to
982     the entity wd:Q691557 (Gangotri Glacier).
983     Look at each candidate entity's outgoing relations for information
984     regarding its country
985     Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"name": "search", "arguments": {"entity": "wd:Q691557", "direction": "outgoing"}}}]
986     Suppose it returns:
987     property|propertyLabel|value|valueLabel
988     ---|---|---|---
989     wdt:P4552|mountain range|wd:Q3777888|Gangotri Group
990     wdt:P31|instance of|wd:Q35666|glacier
991     wdt:P17|country|wd:Q668|India
992     We see the property wdt:P17 (country) that links to the entity wd:Q668
993     (India).
994     Final Answer: The Ganges starts in {India}.
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

```