Under review as a conference paper at ICLR 2026

SEARCH-ON-GRAPH: ITERATIVE INFORMED NAVIGA-
TION FOR LARGE LANGUAGE MODEL REASONING ON
KNOWLEDGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated impressive reasoning abilities
yet remain unreliable on knowledge-intensive, multi-hop questions—they miss
long-tail facts, hallucinate when uncertain, and their internal knowledge lags be-
hind real-world change. Knowledge graphs (KGs) offer a structured source of re-
lational evidence, but existing KGQA methods face fundamental trade-offs: com-
piling complete SPARQL queries without knowing available relations proves brit-
tle, retrieving large subgraphs introduces noise, and complex agent frameworks
with parallel exploration exponentially expand search spaces. To address these
limitations, we propose Search-on-Graph (SoG), a simple yet effective framework
that enables LLMs to perform iterative informed graph navigation using a single,
carefully designed SEARCH function. Rather than pre-planning paths or retriev-
ing large subgraphs, SoG follows an “observe, then navigate” principle: at each
step, the LLM examines actual available relations from the current entity before
deciding on the next hop. This approach further adapts seamlessly to different
KG schemas and handles high-degree nodes through adaptive filtering. Across six
KGQA benchmarks spanning Freebase and Wikidata, SoG achieves state-of-the-
art performance without fine-tuning. We demonstrate particularly strong gains on
Wikidata benchmarks (+15% improvement over previous best methods) alongside
consistent improvements on Freebase benchmarks.

1 INTRODUCTION

Large language models (LLMs) achieve impressive results across diverse NLP tasks through ex-
tensive pre-training on vast corpora, but not when confronted with knowledge-intensive, multi-step
reasoning challenges. They frequently generate plausible but factually unsupported hallucinations,
lack domain-specific knowledge absent from pre-training data, and suffer from rapidly outdated
parametric knowledge necessitating expensive retraining or fine-tuning. These limitations are par-
ticularly pronounced for questions requiring multi-hop reasoning capabilities (Brown et al., 2020;
Kojima et al., 2022; Wei et al., 2022; Dubey et al., 2024).

To address these challenges, augmenting LLMs with external structured knowledge, specifically
knowledge graphs (KGs), has emerged as a promising approach (Sun et al., 2023; Chen et al., 2024;
Zhu et al., 2025b). KGs encode billions of factual assertions as typed relational edges between en-
tities, providing structured evidential foundations for multi-hop reasoning across diverse domains
while enabling dynamic knowledge maintenance through efficient graph updates. However, knowl-
edge graph question answering (KGQA) faces significant challenges, such as navigating massive,
intricate graph structures and accommodating continuously evolving schemas. Freebase (Bollacker
et al., 2008), for instance, encompasses over 1.9 billion triples spanning diverse domains, while
Wikidata (Vrandec¢i¢ & Krotzsch, 2014) contains over 13 billion constantly-evolving triples. The
heterogeneous nature of KG schemas across different repositories makes developing generalizable
KGQA methodologies particularly challenging.

Existing approaches exhibit inherent limitations. Semantic parsing methods synthesize executable
logical forms (SPARQL, S-expressions, etc.) but require extensive schema knowledge and demon-
strate limited transferability across different KG architectures (Ye et al., 2021; Yu et al., 2022; Zhang

Under review as a conference paper at ICLR 2026

Question: What is the capital of Vincent van

g ~,
R | Gogh's birth country? F : ; :
= < 14 E Central European A
Time Zone 1

p

@ Thinking: Look for van Gogh's birth country
) Search("Vincent van Gogh”, “outgoing”) -
Receive markdown table

-

@ Thinking: Zundert is city, need country
) | Search("Zundert”, “outgoing”) -
Receive markdown table

-

@ Thinking: Netherlands found, need capital
=g Search(*Netherlands”, “outgoing”) -
Receive markdown table

- N
€D Thinking: Too many results, filter for “capital”

) Search(*Netherlands”, “outgoing”, [“capital”]) | ms
Receive markdown table
\
@ Thinking: Found answer E ‘.

»[Answer: Amsterdam] & ° - © - o J
PropertyLabel ValueLabel PropertyLabel ValueLabel PropertyLabel PropertyLabel ValueLabel
Profession Artist Contained by Netherlands Form of government Capital Amsterdam
Date of birth 1853-03-30 Notable types Dutch municipality Official language
Place of birth Zundert Time zone(s) Central European Time Zone Currency
Art forms Painting People born here Guus Dam Continent
Artworks The Starry Night Administrative parent North Brabant Capital

Figure 1: SoG workflow for “What is the capital of Vincent van Gogh’s birth country?” The LLM
navigates iteratively: (left) showing reasoning and SEARCH calls, (right) showing KG navigation.
The path follows Van Gogh — Zundert (place of birth) — Netherlands (contained by) — Amsterdam
(capital). Solid boxes indicate selected entities; dotted boxes show unselected retrieved neighbours.
Tables below each step display the markdown output returned by SEARCH, revealing available rela-
tions at each node.

et al., 2023; Luo et al., 2023a; Zhao et al., 2025b; Fang et al., 2024; Zhang et al., 2025; Wulamu
etal., 2025). Subgraph retrieval techniques expand entity neighborhoods but frequently extract large,
noisy subgraphs that obscure relevant information (Shi et al., 2021; Das et al., 2022; He et al., 2024;
Tan et al., 2025; Sun et al., 2018; 2019; Jiang et al., 2022; Zhang et al., 2022). Many employ sep-
arate embedding modules for semantic similarity-based subgraph selection (Sun et al., 2018; 2019;
Zhang et al., 2022; Ding et al., 2024), yet semantic representations can be misleading—for the query
“What awards did the director of Inception win?”, similarity-based retrievers may include extrane-
ous movie metadata when only the director-award relational pathway is relevant. Recent agentic
LLM approaches attempt more targeted path exploration (Sun et al., 2023; Chen et al., 2024; Dong
et al., 2024; Luo et al., 2024; Jiang et al., 2024; Wang & Yu, 2025; Cheng et al., 2024; Sui et al.,
2024; Wang et al., 2025; Li et al., 2024b) but require complex architectural frameworks, compre-
hensive upfront planning, or parallel path exploration, thereby increasing computational complexity
and introducing failure modes when presumed relations are absent from the actual KG.

In response to these challenges, we propose Search-on-Graph (SoG), a fundamentally simpler
methodology where a single LLM orchestrates iterative KG traversal through one carefully engi-
neered SEARCH function executing 1-hop exploration. The key insight is the precedence of ob-
servation over speculation—rather than blind path planning or semantic similarity heuristics, the
LLM systematically observes actual available relational connections at each entity and formulates
informed navigational decisions grounded in question-specific reasoning.

For the query “What is the capital of Vincent van Gogh’s birth country?” illustrated in Figure 1,
the LLM executes iterative SEARCH calls while observing relational options at each step. From Van
Gogh, it identifies “Place of birth” and navigates to Zundert, subsequently discovers “Contained
by” to reach Netherlands, and finally selects “Capital” to arrive at Amsterdam. This methodology
adapts to heterogeneous schemas—if Van Gogh connected directly to Netherlands in an alternative
KG, the LLM would seamlessly adopt the shorter path. Our architectural simplicity stems from
deliberate design decisions: (1) an exploration function with optimized context utilization in the
returned results, (2) a dynamic filtering mechanism that returns only unique relation types for large

Under review as a conference paper at ICLR 2026

neighbourhoods, and (3) systematically engineered prompts that guide effective reasoning processes.
These seemingly simple design choices prove crucial across diverse KG schemas and question types.

Empirically, SoG delivers strong and consistent gains across six KGQA benchmarks spanning Free-
base and Wikidata. Our method achieves state-of-the-art performance on all six datasets, with par-
ticularly notable improvements on Wikidata-based benchmarks where we see average gains of over
15% compared to previous best methods. On Freebase datasets, SoG consistently outperforms ex-
isting approaches with meaningful improvements across different reasoning complexities. These
results demonstrate that our simple, observation-driven design can match or exceed more elaborate
architectures while maintaining computational efficiency and broad applicability across different
KG schemas.

Our main contributions are:

* Propose our Search-on-Graph (SoG) framework, a general KGQA framework that uses a sin-
gle LLM with an iterative 1-hop SEARCH function to navigate diverse graph schemas reliably.

* Analyze several design choices (function output format, relation filtering, few-shot examples
and models) and show how careful content engineering improves both accuracy and efficiency.

» Execute extensive experiments revealing that SoG attains SOTA results across six widely-used
KGQA benchmarks, while keeping the system simple and plug-and-play.

2 RELATED WORK

Semantic Parsing Methods. Semantic parsing techniques transform natural language questions
into executable logical forms before KG querying. RNG-KBQA (Ye et al., 2021) enumerates can-
didate logical forms through KG path searches, then employs ranking and generation models for
executable form composition. A different approach is taken by DecAF (Yu et al., 2022), which
linearizes KBs into text documents, enabling retrieval-based joint decoding of both logical forms
and direct answers. Fine-to-coarse component detection drives FC-KBQA (Zhang et al., 2023),
generating executable S-expressions with connectivity constraints.

LLM-based methods have since emerged to leverage language models’ capabilities for logical
form generation. ChatKBQA (Luo et al., 2023a) utilizes generate-then-retrieve pipelines, where
instruction-tuned LLMs produce candidate logical forms subsequently grounded through phrase-
level retrieval. By contrast, CoG (Zhao et al., 2025b) generates fact-aware queries through para-
metric knowledge output, then corrects hallucinated entities via KG alignment. DARA (Fang et al.,
2024) introduces dual mechanisms for high-level task decomposition and low-level task grounding.
Meanwhile, Rule-KBQA (Zhang et al., 2025) employs learned rules guiding generation through
induction and deduction phases with symbolic agents. HTML (Wulamu et al., 2025) proposes hier-
archical multi-task learning with auxiliary tasks for entities, relations, and logical forms.

While these approaches provide interpretable traces and some incorporate sophisticated error re-
covery, they still fundamentally operate by generating logical forms or query plans that are then
validated or corrected against the KG. This generate-then-verify paradigm, even with iterative re-
finement, differs from navigating based solely on locally available relations at each step.

Subgraph Retrieval Methods. This category of approaches first retrieves relevant graph por-
tions around topic entities, then proceeds with reasoning over the induced subgraph. GRAFT-Net
(Sun et al., 2018) exemplifies early neural approaches by constructing heterogeneous subgraphs that
merge KB entities with Wikipedia text, utilizing graph networks with directed propagation for multi-
hop inference. PullNet (Sun et al., 2019) employs iterative subgraph expansion using graph CNNs
to determine which nodes to “pull” next. TransferNet (Shi et al., 2021) transfers entity scores along
activated edges through attention mechanisms while attending to question spans.

More sophisticated retrieval strategies have been proposed to address coverage and noise issues.
UniKGQA (Jiang et al., 2022) uses question-relation score propagation along KG edges for unified
retrieval-reasoning. SR+NSM (Zhang et al., 2022) employs trainable subgraph retrievers decoupled
from reasoning to enable plug-and-play enhancement. CBR-SUBG (Das et al., 2022) dynamically
retrieves similar k-NN training queries with structural similarity. G-Retriever (He et al., 2024) for-
mulates subgraph selection as Prize-Collecting Steiner Tree problems, while EPR (Ding et al., 2024)

Under review as a conference paper at ICLR 2026

models structural dependencies through atomic adjacency patterns. Paths-over-Graph (Tan et al.,
2025) uses multi-hop path expansion with graph reduction and pruning.

These methods face fundamental trade-offs: larger subgraphs boost recall but introduce noise, while
smaller ones risk missing critical edges. Furthermore, answer quality is solely dependent on retrieval
completeness—key relations filtered during construction cannot be recovered by reasoning modules.

Agentic LLM Methods. This paradigm is characterized by interactive KG exploration through
LLM agents. Think-on-Graph (Sun et al., 2023) performs iterative beam search maintaining top-
N partial paths with pruning. Plan-on-Graph (Chen et al., 2024) decomposes questions into sub-
objectives with trajectory memory and reflection mechanisms.

Multi-model approaches are motivated by the need to balance planning and efficiency. EffiQA
(Dong et al., 2024) employs LLM global planning combined with lightweight model exploration.
KELDaR (Li et al., 2024b) introduces question decomposition trees for atomic KG retrieval. Fi-
DeLiS (Sui et al., 2024) combines Path-RAG with deductive beam search, ReKnoS (Wang et al.,
2025) uses super-relations enabling bidirectional reasoning, and iQUEST (Wang & Yu, 2025) inte-
grates iterative decomposition with GNNs.

While enabling flexible exploration without complete upfront queries, these approaches often intro-
duce complex multi-component architectures requiring separate modules for planning, memory, and
pruning. Most critically, parallel path exploration using beam search exponentially expands search
space, potentially overwhelming LL.Ms with irrelevant information.

3 PRELIMINARIES

3.1 KNOWLEDGE GRAPHS

A knowledge graph (KG) G = {(e,r,¢’) | e,e’ € £, € R} represents structured factual knowl-
edge, where £ and R denote the entity and relation sets, respectively. Each triple (e, r, e’) encodes
a factual relationship = between head entity e and tail entity ¢’. Entities are uniquely identified by
specific IDs (e.g., m. 07_m2 represents Vincent van Gogh in Freebase) and may possess associated
textual labels and semantic types for human interpretation. For any entity e, its neighborhood struc-
ture comprises both outgoing and incoming relations. We formally define the neighboring relations
asRe = {r | (e,r,¢') € GYU{r | (¢/,r,e) € G}, encompassing relations where e serves as
either subject or object. This bidirectional connectivity enables flexible traversal during reasoning,
allowing navigation in either direction along relational edges.

3.2 REASONING PATH

Multi-hop reasoning over KGs requires constructing connected sequences of triples that link topic
entities to answer entities. A reasoning path P of length £ from entity eg to entity ey, is formally
defined as:

P =[(eo,r1,€1), (e1,72,€2), ..., (€k—1,Tk, €)]

where each consecutive pair of triples shares an entity, creating a connected traversal through the
graph structure. Intermediate entities eq, . .., e, Serve as stepping stones.

Place of birth
_—

Consider the reasoning path illustrated in Figure 1: Vincent van Gogh Zundert

Contained b Capital . .
SO, Netherlands ——s Amsterdam. This 3-hop path demonstrates how complex questions

requiring decompositional reasoning can be decomposed into sequential relational steps, each build-
ing upon previous entities to reach the final answer.

3.3 KNOWLEDGE GRAPH QUESTION ANSWERING

Knowledge Graph Question Answering (KGQA) addresses the challenge of answering natural lan-
guage questions using structured knowledge representations. Given a natural language question ¢, a
KG G, and topic entities 7, C £ mentioned in g, the objective is to identify answer entities A4, C £.
As per prior work (Luo et al., 2023b; Sun et al., 2023; Chen et al., 2024), we use the gold entity

Under review as a conference paper at ICLR 2026

annotations provided in the datasets, where entity mentions in questions are already linked to their
KG identifiers, thus bypassing the need for entity linking.

4 METHODOLOGY

4.1 THE SEARCH FUNCTION

We carefully design a single SEARCH function (Algorithm 1) that enables incremental KG naviga-
tion by retrieving the 1-hop neighbourhood of a specified entity. This function serves as the LLM’s
sole interface for KG exploration via tool calls, accepting three parameters:

* entity: The target entity identifier (e.g., m. 07_m2 for Vincent van Gogh)
* direction: Either outgoing (entity as subject) or incoming (entity as object)

* properties (optional): Specific properties to filter results for focused exploration

The function returns results in a space-efficient markdown table format, prefixed with a row count
that provides the LLM with immediate context about the result size. Each row contains four
columns—property ID, property label, value ID, and value label—providing both machine-readable
identifiers and human-readable labels. As demonstrated in Figure 1, calling the function to get
Vincent van Gogh’s outgoing neighbours returns:

594 rows:

property propertyLabel value valuelabel
people.person.profession Profession m.0Onlh Artist
visual_art.visual_artist.art_forms | Art forms m.05gdh Painting
people.person.place_of birth Place of birth | m.0vlxv Zundert
people.person.date_of_birth Date of birth 1853-03-30 -

4.2 HANDLING HIGH-DEGREE NODES

KGs often contain high-degree nodes—entities with thousands or millions of connections such as
countries, celebrities, or major organizations. Naively retrieving all neighbours of such nodes would
overwhelm the LLM’s context window and introduce excessive noise. We address this through a
two-stage filtering mechanism formalized in Algorithm 1.

Algorithm 1: ADAPTIVE NEIGHBOURHOOD RETRIEVAL

Input: entity_id, direction, properties; thresholds k, p
Output: 1-hop neighbours of ent ity_id in markdown table format

R < GET_ALL_NEIGHBOURS(entity_id,direction,properties)
if |R| > k and properties is empty then

U < EXTRACT_UNIQUE_PROPERTIES(R)
return FORMAT_AS_TABLE (U)

if |[R| > p then
| R < R[0:p]

return FORMAT_AS_TABLE (R)

When the function encounters an entity with more than k£ connected neighbours without specified
properties, our function returns only the unique properties rather than all neighbour instances. As
shown in Figure 1, querying for the Netherlands outgoing neighbours returns:

Under review as a conference paper at ICLR 2026

property propertyLabel
location.country.formof_government Form of government
location.country.official_language Official language
location.country.capital Capital

This property-only view allows the LLM to first survey available relation types without context
overflow. The LLM then makes a targeted second call using the properties parameter to retrieve
only relevant relations. This transforms high-degree node navigation from an intractable problem
into two manageable steps: property discovery followed by selective retrieval.

Even with filtering, results may exceed practical limits. Algorithm 1 shows that when filtered results
exceed p triples, we truncate to the first p results to ensure the response fits within context limits.

4.3 SEARCH-ON-GRAPH PROMPTING

To guide the LLM’s navigation strategy, we employ few-shot prompting with navigation exemplars
that demonstrate effective KG traversal patterns. For each dataset, we construct five diverse exem-
plars covering three key aspects:

* Initial exploration: strategically making the first SEARCH call based on the question’s focus.

* Iterative traversal: analyzing retrieved neighbours, selecting relevant relations, and chaining
SEARCH calls to construct reasoning paths.

* Answer extraction: recognizing completion conditions and extracting final answers from accu-
mulated results.

These exemplars demonstrate to the LLM how to navigate the KG through systematic observation
and decision-making. The resulting traces remain fully interpretable as each navigation step is
explicitly recorded through tool calls. Appendix A provides the tool definitions, detailed instructions
given to the LLM, and representative exemplars for each dataset. Due to space constraints, we
include sample exemplars rather than the complete sets used in our experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metric. We evaluate SoG on six KGQA benchmarks spanning two major
knowledge graphs, Freebase (Bollacker et al., 2008) and WikiData (Vrandeci¢ & Krotzsch, 2014).
For SimpleQuestions (SimpleQA) (Bordes et al., 2015), WebQuestionsSP (WebQSP) (Yih et al.,
2016), ComplexWebQuestions (CWQ) (Talmor & Berant, 2018), and GrailQA (Gu et al., 2021),
we use Freebase. For QALD-9 (Perevalov et al., 2022) and QALD-10 (Perevalov et al., 2022), we
use Wikidata. For SimpleQuestions and GrailQA, we evaluate on the same 1,000-sample test subset
adopted by ToG (Sun et al., 2023) to manage computational costs while enabling direct comparison
with prior work. For other datasets, we use the full test sets. As per prior work (Li et al., 2023; Sun
et al., 2023; Chen et al., 2024), we report exact match accuracy (Hits@1).

Models. We evaluate three off-the-shelf LLMs without fine-tuning two open-source models—
Qwen3-30B-A3B-Thinking-2507 and Qwen3-235B-A22B-Thinking-2507-FP8 Yang et al. (2025)
(abbreviated as Qwen3-30B and Qwen3-235B), and a proprietary model—GPT-40. SoG is designed
as a plug-and-play framework compatible with any LLM supporting tool calling. For GPT-40, we
use the OpenAl API. For Qwen3-235B, we follow recommended settings (temperature=0. 6,
top_p=0.95, top_k=20, min_p=0).

Few-shot Prompting. For each dataset, we manually construct five few-shot exemplars covering di-
verse reasoning patterns, including single-hop retrieval, multi-hop traversal, constraint verification,
and aggregation. These exemplars are derived from training set questions.

Under review as a conference paper at ICLR 2026

Table 1: Exact match accuracy (%) of KGQA methods across six benchmarks. Bold and underlined

values indicate best and second-best results per dataset, respectively. Datasets are grouped by under-

lying KG: Freebase (SimpleQA, WebQSP, CWQ, GrailQA) and Wikidata (QALD-9, QALD-10).
Freebase Wikidata

Method
SimpleQA WebQSP CWQ GrailQA QALD-9 QALD-10
Subgraph Retrieval Methods
GRAFT-Net (Sun et al., 2018) - 66.4 32.8 - - -
PullNet (Sun et al., 2019) - 68.1 47.2 - - -
TransferNet (Shi et al., 2021) - 71.4 48.6 - - -
UniKGQA (Jiang et al., 2022) - 77.2 51.2 - - -
EWEK-QA + GPT-3.5 (Dehghan et al., 2024) 50.9 71.3 52.5 60.4 - -
SubgraphRAG + GPT-4o (Li et al., 2024a) - 90.9 67.5 - - -
LLM Baselines
10 Prompting + Qwen3-30B 24.8 61.1 39.0 26.7 65.1 47.2
10 Prompting + Qwen3-235B 30.3 61.1 51.0 32.3 62.7 48.7
10 Prompting + GPT-40 48.8 61.0 51.2 35.8 65.9 46.9
Agentic LLM Methods

Think-on-Graph + GPT-4 (Sun et al., 2023) 66.7 82.6 69.5 81.4 - 54.7
Generate-on-Graph + GPT-4 (Xu et al., 2024) - 84.4 75.2 - - -
Plan-on-Graph + GPT-4 (Chen et al., 2024) - 87.3 75.0 84.7 - -
Readi + GPT-4 (Cheng et al., 2024) - 78.7 67.0 - - -
Spinach + GPT-4o (Liu et al., 2024) - - - - 58.3 63.1
FiDeLiS + GPT-4-Turbo (Sui et al., 2024) - 84.4 71.5 - - -
EffiQA + GPT-4 (Dong et al., 2024) 76.5 82.9 69.5 78.4 - 514
KELDaR + GPT-3.5-Turbo (Li et al., 2024b) - 79.4 53.6 - - -
ReKnoS + GPT-4o0-mini (Wang et al., 2025) 67.2 83.8 66.8 80.5 - -
iQUEST + GPT-40 (Wang & Yu, 2025) - 88.9 73.9 73.5 - -
ORT + GPT-40 (Liu et al., 2025) - 87.7 65.4 - - -
Debate-on-Graph + GPT-4 (Ma et al., 2025) - 91.0 56.0 80.0 - -
SRP + GPT-4.1-mini (Zhu et al., 2025a) - 83.6 69.0 78.8 - -
KnowPath + DeepSeek-V3 (Zhao et al., 2025a) 65.3 89.0 73.5 - - -
SoG + Qwen3-30B (Ours) 86.2 88.2 70.0 814 81.0 71.5
SoG + Qwen3-235B (Ours) 86.4 89.3 77.1 83.9 82.5 79.8
SoG + GPT-40 (Ours) 84.8 91.3 75.1 86.9 79.4 74.4

Baselines and Parameters. We compare SoG with 23 baselines, grouped into subgraph retrieval
methods, LLM baselines, and agentic LLM methods. Semantic parsing methods are excluded due
to their reliance on task-specific fine-tuning, which is orthogonal to our training-free paradigm. For
all experiments, we set the high-degree threshold k£ = 50 and the maximum result size p = 1000,
balancing information completeness with context window constraints.

5.2 MAIN RESULTS

Table 1 presents the performance of SoG and competing methods across all six benchmarks. Our
approach consistently achieves state-of-the-art or highly competitive results using only off-the-shelf
LLMs, without any task-specific fine-tuning or retraining. SoG + GPT-40 achieves the highest
scores on WebQSP (91.3%) and GrailQA (86.9%), while SoG + Qwen3-235B leads on Simple-
Questions (86.4%), CWQ (77.1%), QALD-9 (82.5%), and QALD-10 (79.8%). Notably, SoG +
GPT-40 outperforms all prior systems on 5 of 6 datasets, trailing only Generate-on-Graph on CWQ
by 0.1%. Similarly, SoG + Qwen3-235B also surpasses previous bests on 4 of 6 datasets, with nar-
row margins of 0.7% and 0.8% behind the previous best on WebQSP and GrailQA, respectively.
The improvements over previous best methods range from incremental to substantial. On Freebase
datasets, we improve by +0.3% on WebQSP, +1.9% on CWQ, +2.2% on GrailQA, and +9.9% on
SimpleQuestions. The improvements are particularly striking on Wikidata benchmarks, where we
achieve double-digit gains: +16.6% on QALD-9 (82.5% vs. 65.9% for 10 Prompting) and +16.7%
on QALD-10 (79.8% vs. 63.1%).

The strong performance across both Freebase (SimpleQuestions, WebQSP, CWQ, GrailQA) and
Wikidata (QALD-9, QALD-10) benchmarks validates our schema-agnostic design. While Freebase
uses compound value types (CVTs) for complex relations and Wikidata employs qualifiers, SoG
adapts to both structures without modification, confirming that our single function approach gener-

Under review as a conference paper at ICLR 2026

Exact Match %

10 0 1 3 5
Number of Examples
=& Thinking Avg. B SimpleQuestions (Instruct) I WebQSP (Instruct) BE CWAQ (Instruct) GrailQA (Instruct)
=3¢ Instruct Avg. mmm SimpleQuestions (Thinking) [WebQSP (Thinking) mmm CWQ (Thinking) GrailQA (Thinking)

Figure 2: Impact of few-shot exemplar quantity on exact match accuracy (%) for Qwen3-30B-A3B-
Thinking/Instruct-2507 across four Freebase datasets, SimpleQuestions, WebQSP, CWQ, GrailQA.

alizes across different KG schemas. Furthermore, SoG demonstrates balanced effectiveness across
both single-hop (SimpleQuestions) and multi-hop (WebQSP, CWQ, GrailQA, QALD-9, QALD-
10) datasets. This contrasts with methods like Think-on-Graph, EffiQA, ReKnoS, and KnowPath,
which show stronger relative performance only on multi-hop tasks. Our consistent performance
across complexity levels likely stems from our focused exploration strategy—by selecting one rela-
tion per hop rather than exploring multiple paths in parallel, we avoid the noise accumulation that
can overwhelm simpler questions while maintaining expressiveness for complex reasoning chains.

5.3 ABLATION STUDIES AND ANALYSIS

We conduct a series of ablation studies to analyze key design choices in SoG, examining the impact
of few-shot exemplar quantity, reasoning-optimized models versus standard instruction models, and
different output formatting on performance. All ablations use 20% samples from each Freebase-
based test set. We evaluate on Qwen3-30B-A3B-Thinking/Instruct-2507 two models.

Effect of Few-shot Exemplars. Figure 2 shows the performance of Thinking and Instruct models
across varying exemplar quantities. The black and gray dashed lines represent the average exact
match accuracy across the four datasets for the Thinking and Instruct models respectively. Both
models show dramatic improvements when transitioning from IO prompting to 0-shot with tool in-
structions, demonstrating that LLMs can perform structured navigation once they understand the
SEARCH function interface. Adding a single navigation exemplar (1-shot) produces another sub-
stantial boost across all datasets—from SimpleQuestions to complex multi-hop tasks—confirming
that a single demonstration benefits tasks of any complexity. Performance plateaus at 3-shot with
minimal gains thereafter, indicating that a small set of diverse exemplars sufficiently demonstrates
effective navigation strategies.

Thinking vs. Non-Thinking Models. The Thinking variant consistently outperforms the Instruct
variant across all settings in Figure 2, with the gap most pronounced on multi-hop datasets (We-
bQSP, CWQ, GrailQA) compared to single-hop SimpleQuestions. This performance difference
reveals that model architecture and inherent reasoning capabilities are critical for SoG’s effective-
ness. The reasoning-optimized model better leverages our iterative observation-decision frame-
work—analyzing available relations and making informed navigation choices based on reasoning
rather than question semantics or pattern-matching against exemplars. While both models benefit
from additional exemplars, the Thinking variant extracts more value from navigation demonstra-

Under review as a conference paper at ICLR 2026

Table 2: Comparison of output formats for SimpleQuestions (20% sample) using Qwen3-30B-A3B-
Thinking-2507 with 5 exemplars. We report the average number of main interaction tokens, average
number of reasoning tokens, average number of total tokens, average number of turns, and exact
match (EM) accuracy. “Markdown + Property Filter” denotes our concise format with an additional
filtering round, which achieves the best accuracy and efficiency.

Format Avg. Main Tok. Avg. Reason Tok. Avg. Total Tok. Avg. Turns EM
JSON 9312.2 2735.2 12047.3 3.06 76.5
Markdown 6028.1 1953.7 7981.8 3.05 74.5
Markdown + Property Filter (Ours) 37159 1906.6 5622.5 3.93 78.0

tions, indicating that SoG’s performance ceiling depends on the model’s capacity for structured
reasoning over KGs.

Output Format and Filtering. Table 2 compares the impact of different output formats on per-
formance and efficiency. While the original JSON format that the SPARQL execution returns yields
strong accuracy, it uses significantly more tokens than the other two formats. Switching to Mark-
down format reduces token usage considerably but slightly impacts accuracy. Our optimized ap-
proach adds a property filtering stage—when encountering high-degree nodes, we first retrieve avail-
able properties, then make a targeted second call with relevant properties only. Despite requiring
additional turns, this strategy achieves the lowest total token usage while simultaneously deliver-
ing the highest accuracy. The efficiency gain stems from avoiding redundant information in dense
neighborhoods, while the accuracy improvement suggests that focused retrieval helps the LLM iden-
tify relevant paths more effectively. These results highlight how careful output engineering directly
impacts both computational efficiency and task performance in LLM-based KGQA systems.

6 CONCLUSION

We present Search-on-Graph (SoG), a simple yet effective KGQA framework that achieves SOTA
results by enabling LLMs to navigate KGs through iterative, informed navigation rather than upfront
path planning or parallel search. Using only a single LLM with one carefully designed SEARCH
function, SoG demonstrates consistent improvements across six benchmarks on Freebase and Wiki-
data data sources. Our analysis reveals that effective graph navigation depends critically on three
factors: providing LLMs with actual available relations at each decision point, using reasoning-
optimized models that can leverage navigation demonstrations effectively, and engineering output
formats that balance information completeness with computational efficiency. The simplicity and
generality of our approach—requiring no task-specific training and adapting seamlessly to different
KG schemas—suggests that many perceived LLM limitations on structured reasoning tasks stem
from problem presentation rather than fundamental model deficiencies. By aligning task structure
with LLM strengths through iterative observation and decision-making, we achieve superior per-
formance without the complex architectures, multiple modules, or extensive scaffolding assumed
necessary by prior work.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and ma-
terials. The complete prompts, tool schema definitions, and few-shot examples for all datasets are
included in Appendix A. Our supplementary materials contain the minimal experiment scripts with
test split data, where main.py implements the core processing logic and prompt.py contains the
system prompt concatenation functions (detailed at the end of the file). All hyperparameters, model
configurations, and evaluation procedures are explicitly documented in Section 5.1. The Search-on-
Graph framework is designed as a plug-and-play system that can be easily integrated with any LLM
supporting tool calling, making our approach straightforward to replicate and extend.

Under review as a conference paper at ICLR 2026

REFERENCES

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collab-
oratively created graph database for structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pp. 1247-1250, 2008.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question
answering with memory networks. arXiv preprint arXiv:1506.02075, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun, Jieping Ye, and Hui Xiong. Plan-on-graph:
Self-correcting adaptive planning of large language model on knowledge graphs. Advances in
Neural Information Processing Systems, 37:37665-37691, 2024.

Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang Huang,
Ling Chen, Qingwei Lin, Dongmei Zhang, et al. Call me when necessary: Llms can efficiently
and faithfully reason over structured environments. arXiv preprint arXiv:2403.08593, 2024.

Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot Tower, Manzil Zaheer, Hannaneh Hajishirzi,
Robin Jia, and Andrew McCallum. Knowledge base question answering by case-based reasoning
over subgraphs. In International conference on machine learning, pp. 4777-4793. PMLR, 2022.

Mohammad Dehghan, Mohammad Ali Alomrani, Sunyam Bagga, David Alfonso-Hermelo, Khalil
Bibi, Abbas Ghaddar, Yingxue Zhang, Xiaoguang Li, Jianye Hao, Qun Liu, et al. Ewek-qa:
Enhanced web and efficient knowledge graph retrieval for citation-based question answering sys-
tems. arXiv preprint arXiv:2406.10393, 2024.

Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong Qu. Enhancing complex question answer-
ing over knowledge graphs through evidence pattern retrieval. In Proceedings of the ACM Web
Conference 2024, pp. 2106-2115, 2024.

Zixuan Dong, Baoyun Peng, Yufei Wang, Jia Fu, Xiaodong Wang, Yongxue Shan, and Xin Zhou. Ef-
figa: Efficient question-answering with strategic multi-model collaboration on knowledge graphs.
arXiv preprint arXiv:2406.01238, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Haishuo Fang, Xiaodan Zhu, and Iryna Gurevych. Dara: Decomposition-alignment-reasoning
autonomous language agent for question answering over knowledge graphs. arXiv preprint
arXiv:2406.07080, 2024.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond iid:
three levels of generalization for question answering on knowledge bases. In Proceedings of the
web conference 2021, pp. 3477-3488, 2021.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
question answering. Advances in Neural Information Processing Systems, 37:132876-132907,
2024.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and
reasoning for solving multi-hop question answering over knowledge graph. arXiv preprint
arXiv:2212.00959, 2022.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong

Wen. Kg-agent: An efficient autonomous agent framework for complex reasoning over knowl-
edge graph. arXiv preprint arXiv:2402.11163, 2024.

10

Under review as a conference paper at ICLR 2026

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Mufei Li, Sigi Miao, and Pan Li. Simple is effective: The roles of graphs and large language mod-
els in knowledge-graph-based retrieval-augmented generation. arXiv preprint arXiv:2410.20724,
2024a.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. Few-shot in-context
learning for knowledge base question answering. arXiv preprint arXiv:2305.01750, 2023.

Yading Li, Dandan Song, Changzhi Zhou, Yuhang Tian, Hao Wang, Ziyi Yang, and Shuhao Zhang.
A framework of knowledge graph-enhanced large language model based on question decomposi-
tion and atomic retrieval. In Findings of the Association for Computational Linguistics: EMNLP
2024, pp. 11472-11485, 2024b.

Runxuan Liu, Bei Luo, Jiaqi Li, Baoxin Wang, Ming Liu, Dayong Wu, Shijin Wang, and Bing Qin.
Ontology-guided reverse thinking makes large language models stronger on knowledge graph
question answering. arXiv preprint arXiv:2502.11491, 2025.

Shicheng Liu, Sina J Semnani, Harold Triedman, Jialiang Xu, Isaac Dan Zhao, and Monica S
Lam. Spinach: Sparql-based information navigation for challenging real-world questions. arXiv
preprint arXiv:2407.11417, 2024.

Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting
Dong, Meina Song, Wei Lin, Yifan Zhu, et al. Chatkbga: A generate-then-retrieve framework
for knowledge base question answering with fine-tuned large language models. arXiv preprint
arXiv:2310.08975, 2023a.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv preprint arXiv:2310.01061, 2023b.

Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Yuan-Fang Li, Chen Gong, and Shirui Pan. Graph-
constrained reasoning: Faithful reasoning on knowledge graphs with large language models.
arXiv preprint arXiv:2410.13080, 2024.

Jie Ma, Zhitao Gao, Qi Chai, Wangchun Sun, Pinghui Wang, Hongbin Pei, Jing Tao, Lingyun Song,
Jun Liu, Chen Zhang, et al. Debate on graph: a flexible and reliable reasoning framework for large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pp. 24768-24776, 2025.

Aleksandr Perevalov, Dennis Diefenbach, Ricardo Usbeck, and Andreas Both. Qald-9-plus: A mul-
tilingual dataset for question answering over dbpedia and wikidata translated by native speakers.
In 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pp. 229-234. IEEE,
2022.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Hanwang Zhang. Transfernet: An effective and
transparent framework for multi-hop question answering over relation graph. arXiv preprint
arXiv:2104.07302, 2021.

Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, and Bryan Hooi. Fidelis: Faithful
reasoning in large language model for knowledge graph question answering. arXiv preprint
arXiv:2405.13873, 2024.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and
William W Cohen. Open domain question answering using early fusion of knowledge bases
and text. arXiv preprint arXiv:1809.00782, 2018.

Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text. arXiv preprint arXiv:1904.09537, 2019.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M
Ni, Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. arXiv preprint arXiv:2307.07697, 2023.

11

Under review as a conference paper at ICLR 2026

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643, 2018.

Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, and Wenjie Zhang. Paths-over-graph:
Knowledge graph empowered large language model reasoning. In Proceedings of the ACM on
Web Conference 2025, pp. 3505-3522, 2025.

Denny Vrandeci¢ and Markus Krotzsch. Wikidata: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78-85, 2014.

Shuai Wang and Yinan Yu. iquest: An iterative question-guided framework for knowledge base
question answering. arXiv preprint arXiv:2506.01784, 2025.

Song Wang, Junhong Lin, Xiaojie Guo, Julian Shun, Jundong Li, and Yada Zhu. Reasoning of large
language models over knowledge graphs with super-relations. arXiv preprint arXiv:2503.22166,
2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Aziguli Wulamu, Lyu Zhengyu, Kaiyuan Gong, Yu Han, Zewen Wang, Zhihong Zhu, and Bowen
Xing. Html: Hierarchical topology multi-task learning for semantic parsing in knowledge base
question answering. In Findings of the Association for Computational Linguistics: ACL 2025, pp.
9307-9321, 2025.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang
Liu, and Jun Zhao. Generate-on-graph: Treat llm as both agent and kg in incomplete knowledge
graph question answering. arXiv preprint arXiv:2404.14741, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. Rng-kbqa: Gen-
eration augmented iterative ranking for knowledge base question answering. arXiv preprint
arXiv:2109.08678, 2021.

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value
of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
201-206, 2016.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases. arXiv preprint arXiv:2210.00063, 2022.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, and Hong Chen. Sub-
graph retrieval enhanced model for multi-hop knowledge base question answering. arXiv preprint
arXiv:2202.13296, 2022.

Lingxi Zhang, Jing Zhang, Yanling Wang, Shulin Cao, Xinmei Huang, Cuiping Li, Hong Chen,
and Juanzi Li. Fc-kbqa: A fine-to-coarse composition framework for knowledge base question
answering. arXiv preprint arXiv:2306.14722, 2023.

Zhiqiang Zhang, Liqiang Wen, and Wen Zhao. Rule-kbqa: rule-guided reasoning for complex
knowledge base question answering with large language models. In Proceedings of the 31st
International Conference on Computational Linguistics, pp. 8399-8417, 2025.

Qi Zhao, Hongyu Yang, Qi Song, Xinwei Yao, and Xiangyang Li. Knowpath: Knowledge-
enhanced reasoning via llm-generated inference paths over knowledge graphs. arXiv preprint
arXiv:2502.12029, 2025a.

12

10
11
12
13

14

15

16
17
18
19
20
21

22

24

25

26

27

29

Under review as a conference paper at ICLR 2026

Ruilin Zhao, Feng Zhao, and Hong Zhang. Correcting on graph: Faithful semantic parsing over
knowledge graphs with large language models. In Findings of the Association for Computational
Linguistics: ACL 2025, pp. 5364-5376, 2025b.

Jiajun Zhu, Ye Liu, Meikai Bao, Kai Zhang, Yanghai Zhang, and Qi Liu. Self-reflective plan-
ning with knowledge graphs: Enhancing 1lm reasoning reliability for question answering. arXiv
preprint arXiv:2505.19410, 2025a.

Yihua Zhu, Qianying Liu, Akiko Aizawa, and Hidetoshi Shimodaira. Beyond chains: Bridging
large language models and knowledge bases in complex question answering. arXiv preprint
arXiv:2505.14099, 2025b.

A APPENDIX
A.1 TooL DEFINITIONS

Listing 1: Freebase Tool Definition

TOOLS_FREEBASE = [
{
"type": "function",
"function": {
"name": "search",
"description": (
"Build and execute a SPARQL query on Freebase that retrieves
adjacent properties, property labels,"
"values, and value labels in the specified direction for a given

entity."
)I
"parameters": {
"type": "object",
"properties": {
"entity": {

"type": "string",

"description": "The entity (e.g., 'm.04yd0fh’) whose
adjacent relations and entities we want to fetch."

I
"direction": {

"type": "string",

"enum": ["incoming", "outgoing"],

"description": "Direction of relationship to consider"

}I
"properties_to_filter_ for": {

"type": "array",

"items": {"type": "string"},

"description": "Optional list of specific properties to
filter by (e.g., ['people.person.place_of_birth’, '
people.person.nationality’])."

}
}I
"required": ["question", "entity", "direction"],
"additionalProperties": False

by

Listing 2: Wikidata Tool Definition

TOOLS_WIKIDATA = [
{

"type": "function",

"function": {
"name": "search",
"description": (

"Build and execute a SPARQL query on Wikidata that retrieves
adjacent properties, property labels,"

13

10
11
12
13
14
15

16
17
18
19
20

Under review as a conference paper at ICLR 2026

"values, and value labels in the specified direction for a given

entity."

)!

"parameters": {
"type": "object",
"properties": {

"entity": {

"type": "string",

"description": "The entity (e.g., ’"wd:0187805’) whose
adjacent relations and entities we want to fetch.",

}l
"direction": {

"type": "string",

"enum": ["incoming", "outgoing"],

"description": "Direction of relationship to consider",

}I
"properties_to_filter_for": {

"type": "array",

"items": {"type": "string"},

"description": "Optional list of specific properties to
filter by (e.g., [’'people.person.place_of_birth’, '
people.person.nationality’])."

}
}I
"required": ["question", "entity", "direction"],
"additionalProperties": False,

}I

}l

A.2 ToOL INSTRUCTION PROMPT

Listing 3: Tool Instructions

You are a knowledgeable question-answering agent specializing in
knowledge—-graph question answering. You will receive a question and
may call a tool to navigate the knowledge graph, collect information
, and then formulate an answer.

You may call the tool search(entity, direction) to retrieve adjacent
relations and l-hop neighbouring entities to the entity given in the
input. Additionally, direction must be incoming or outgoing.

When you want to call the tool:
- Always follow the CORRECT format whenever you want to make a tool
call.
— Continue making tool calls until you arrive at a final textual
answer. Then, and only then, stop making tool calls and provide
your final answer in ’‘content’.

Furthermore,
- Sometimes the ’search’ tool returns an entity ID (’value’) without
a corresponding entity name (’valuelabel’). If that occurs,

continue making the correct tool calls using the entity ID (’value
") alone, if necessary, until you find the information needed to
answer the question. Relevant details may appear in subsequent
tool calls.

— Whenever ’search’ returns multiple entities for a single relevant
relation, you must examine every single one of those entities,
even if there are tens or hundreds. Do not skip any; each could be

relevant to the question.

- If the question happens to be a ’'when’ question, you must provide
the final answer with the value of the entity as given (i.e., in

14

Under review as a conference paper at ICLR 2026

the format {1889-04-20} or {1889-04-20-08:00}) from the results of
"search’.

- If searching from one direction does not yield information that
seems relevant to the question, you may try searching from the
other direction (e.g., "incoming" instead of "outgoing", or "
outgoing" instead of "incoming") of the starting entity if you
think it makes sense to try.

— In your final answer, you must 1) write ’'Final answer:’ immediately

before providing your final answer, 2) enclose the answer entity
(or entities) in curly braces, and 3) use each entity name exactly
as returned by the ’search’ tool. For example, if the tool’s
output shows "English Language", you must produce {English
Language} (keeping the exact phrase) rather than shortening it to
"English.".

- If you cannot gather enough information using the tools to answer
the question, rely on the information you already have, your
reasoning abilities, and your own knowledge to produce the best
possible answer(s) .

A.3 SAMPLE EXEMPLARS

Listing 4: SimpleQA Sample Exemplar

Question: where did the continental celtic languages originate? {’
Continental Celtic languages’: 'm.06v3g8’}

Outgoing relations from m.06v3g8 (Continental Celtic languages)

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.06v3g8", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertylLabel |value|valuelabel

——|==I==1==

language.language_family.member_of_ language_families|member of language

families|m.01lsd8|Celtic languages
language.language_family.geographic_distribution|geographic
distribution|m.02j9z|Europe

kg.object_profile.prominent_typel |language.language_family|Language
Family

We see there is a language.language_family.geographic_distribution (
geographic distribution) property that points to the object m.027j9z
(Europe) .

Final answer: The Continental Celtic languages originated in {Europe}.

Listing 5: WebQSP Sample Exemplar

Question: what is cher ’'s son ’s name {’Cher’: 'm.0lvtj38’, 'Male’: 'm
.05zppz’}

'm.01vtj38’ (’Cher’) is the topic entity of the question. Look for
outgoing edges from ’'m.01lvtj38’ and look for relations and entities
related to Cher’s son. Any linked object entities are potential

candidates.
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.0lvtj38", "direction": "

outgoing"}}}]
Suppose it returns:
property|propertylLabel |value|valuelLabel
——l—=1==1==
base.schemastaging.context_name.official_name|Official name|Cherilyn
Sarkisian|
people.person.children|Children|m.0lw4btl|Elijah Blue Allman
people.person.children|Children|m.0br66|Chaz Bono
people.person.parents|Parents|m.0kmhsk2|Gilbert Hartmann LaPiere

15

Under review as a conference paper at ICLR 2026

We see there is the people.person.children (Children) property that
points to entities m.0lw4d4btl (Elijah Blue Allman) and m.0br66 (Chaz
Bono) .

To specifically look for son(s) of Cher, we check the gender of each of

those entities

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.0lw4btl", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertylLabel |value|valuelabel

people.person.parents|Parents|m.01lvtj38|Cher

people.person.gender |Gender |m.05zppz|Male

people.person.sibling _s|Siblings|m.0w4gdrb|

people.person.sibling_s|Siblings|m.Ovvithw|

We see that Elijah Blue Allman’s gender is Male.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.Obr66", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertylLabel |value|valuelLabel

—=[==ll==]==

people.person.parents|Parents|m.01lvtj38|Cher

people.person.sibling_s|Siblings|m.0w4gdrb|

people.person.gender |Gender |m.05zppz|Male

We see that Chaz Bono’s gender is Male.

Final answer: Cher’s sons’ names are {Elijah Blue Allman} and {Chaz
Bono}.

Listing 6: CWQ Sample Exemplar

Question: What structure build on June 5, 2007 is Charlotte, North
Carolina known for? {’Charlotte’: "'m.0fsb8’}

'm.0fsb8’” (’Charlotte’) is the topic entity of the question. Look for
outgoing edges from 'm.0fsb8’ and look for relations and entities
related to structures built in Charlotte. Any linked object entities

are potential candidates.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "m.0fsb8", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertyLabel |value|valuelabel

——l—=l-=1--

common.topic.topical_webpage|Topical webpage|http://www.charmeck.org/ |

travel.travel_destination.tourist_attractions|Tourist attractions|m.09
koh_2|Bechtler Museum of Modern Art

travel.travel_destination.tourist_attractions|Tourist attractions|m.02
vnhrg|Billy Graham Library

travel.travel_destination.tourist_attractions|Tourist attractions|m.05
g_v0l|Bojangles’ Coliseum

travel.travel_destination.tourist_attractions|Tourist attractions|m.0
cgbcO|Carolinas Aviation Museum

We see the property travel.travel_destination.tourist_attractions (
Tourist attractions), which points to m.09%6h_2 (Bechtler Museum of
Modern Art), m.02vnhrg (Billy Graham Library), and m.05g_vO0l (
Bojangles’ Coliseum). These are all tourist attractions in Charlotte
, North Carolina.

Get outgoing relations and entities from each candidate entity to find
information on the date that it was built:

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.09k6h_2", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertylLabel |value|valuelabel

16

Under review as a conference paper at ICLR 2026

type.object.type|Type|common.topic|Topic

type.object.type|Typelarchitecture.building|Building

type.object.type|Type|architecture.structure|Structure

There is no property that indicates the build date of m.09%k6h_2 (
Bechtler Museum of Modern Art).

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.02vnhrqg", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertylLabel |value|valuelabel

——=—=l==1--

common.topic.notable_types|Notable types|m.0ly2hbz|Museum

architecture.structure.opened|Opened|2007-06-05-08:00 |

type.object.typel|Type|base.type_ontology.abstract|Abstract

We see that there is the property architecture.structure.opened (Opened
), which points to the date 2007-06-05-08:00. This indicates an
opening date of 2007-06-05 (June 5, 2007), which matches our target

date.
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.05g_vO0l", "direction": "

outgoing"}}}]

Suppose it returns:

property|propertylLabel |value|valuelLabel

—— === 1-=

architecture.structure.opened|Opened|1955-08:00 |

common.topic.social_media_presence|Social media presence|http://www.
facebook.com/pages/Bojangles—Coliseum/196122978761 |

common.topic.social_media_presence|Social media presence|https://
twitter.com/BojanglesCol |

We see that there is the property architecture.structure.opened (Opened
), which points to the date 1955-08:00. This indicates an opening
date of 1955 at 8am, which does not match our target date of June 5,
2007.

Final answer: Charlotte, North Carolina is known for the structure {
Billy Graham Library} that is built on June 5, 2007.

Listing 7: GrailQA Sample Exemplar

Question: what is the language regulator of basque? {’basque’: 'm.017k6
"}

'm.017k6’ ("basque’) is the topic entity of the question. Look for
incoming edges from 'm.017k6’ and look for relations and entities
related to language regulators of Basque. Any linked object entities

are potential candidates.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.017k6", "direction": "
incoming"}}}]

Suppose it returns:

property|propertylLabel |value|valuelLabel

——l—=l==1==

base.rosetta.rosetta_document.refers_to|Refers To|m.05tr3c6|Basque
Numbers

language.language_regulator.language|Language |m.057xsn|Euskaltzaindia

type.type.instance|Instance|language.languoid]

We see the property language.language_regulator.language (Language),
which points to m.057xsn (Euskaltzaindia). This may be the language
regulator of Basque. Let’s double check by calling the tool to look
at its outgoing edges.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "m.057xsn", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertylLabel |value|valueLabel

——l—=l==1==

type.object.type|Type|common.topic|Topic

17

Under review as a conference paper at ICLR 2026

type.object.type|Type|base.type_ontology.agent |Agent

type.object.type|Type|language.language_regulator|Language Regulator

We see that there is the property type.object.type (Type), which points
to language.language_regulator (Language Regulator). This confirms
that m.057xsn (Euskaltzaindia) is indeed a language regulator.

Final answer: The language regulator of Basque is {Euskaltzaindia}.

Listing 8: QALD Sample Exemplar

Question: In which country does the Ganges start? {’Ganges’: 'wd:Q5089
"}

wd:05089" (’Ganges’) is the topic entity of the question. Look for
outgoing edges from 'wd:Q5089’ and look for relations and entities
related to which country the Ganges starts in. Any linked subjects
are potential candidates.

Tool Call:[{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "wd:Q5089", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertyLabel |value|valuelabel

== == == (==

wdt :P885|origin of the watercourse|wd:Q691557|Gangotri Glacier

wdt:P974 |tributary|wd: 03635865 |Punpun River

wdt :P30|continent |wd:Q48 |Asia

We see the property wdt:P885 (origin of the watercourse) that links to
the entity wd:0691557 (Gangotri Glacier).

Look at each candidate entity’s outgoing relations for information
regarding its country

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search", "arguments": {"entity": "wd:0691557", "direction": "
outgoing"}}}]

Suppose it returns:

property|propertylLabel |value|valuelLabel

——l—=l==1==

wdt :P4552 |[mountain range|wd:Q3777888|Gangotri Group

wdt:P31|instance of|wd:Q35666|glacier

wdt :P17|country|wd:0668|India

We see the property wdt:P17 (country) that links to the entity wd:0668
(India) .

Final Answer: The Ganges starts in {India}.

18

	Introduction
	Related Work
	Preliminaries
	Knowledge Graphs
	Reasoning Path
	Knowledge Graph Question Answering

	Methodology
	The Search Function
	Handling High-Degree Nodes
	Search-on-Graph Prompting

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies and Analysis

	Conclusion
	Reproducibility statement
	Appendix
	Tool Definitions
	Tool Instruction Prompt
	Sample Exemplars

