SEARCH-ON-GRAPH: ITERATIVE INFORMED NAVIGATION FOR LARGE LANGUAGE MODEL REASONING ON KNOWLEDGE GRAPHS

Anonymous authorsPaper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated impressive reasoning abilities yet remain unreliable on knowledge-intensive, multi-hop questions—they miss long-tail facts, hallucinate when uncertain, and their internal knowledge lags behind real-world change. Knowledge graphs (KGs) offer a structured source of relational evidence, but existing KGOA methods face fundamental trade-offs: compiling complete SPARQL queries without knowing available relations proves brittle, retrieving large subgraphs introduces noise, and complex agent frameworks with parallel exploration exponentially expand search spaces. To address these limitations, we propose Search-on-Graph (SoG), a simple yet effective framework that enables LLMs to perform iterative informed graph navigation using a single, carefully designed SEARCH function. Rather than pre-planning paths or retrieving large subgraphs, SoG follows an "observe, then navigate" principle: at each step, the LLM examines actual available relations from the current entity before deciding on the next hop. This approach further adapts seamlessly to different KG schemas and handles high-degree nodes through adaptive filtering. Across six KGQA benchmarks spanning Freebase and Wikidata, SoG achieves state-of-theart performance without fine-tuning. We demonstrate particularly strong gains on Wikidata benchmarks (+15% improvement over previous best methods) alongside consistent improvements on Freebase benchmarks.

1 Introduction

Large language models (LLMs) achieve impressive results across diverse NLP tasks through extensive pre-training on vast corpora, but not when confronted with knowledge-intensive, multi-step reasoning challenges. They frequently generate plausible but factually unsupported hallucinations, lack domain-specific knowledge absent from pre-training data, and suffer from rapidly outdated parametric knowledge necessitating expensive retraining or fine-tuning. These limitations are particularly pronounced for questions requiring multi-hop reasoning capabilities (Brown et al., 2020; Kojima et al., 2022; Wei et al., 2022; Dubey et al., 2024).

To address these challenges, augmenting LLMs with external structured knowledge, specifically knowledge graphs (KGs), has emerged as a promising approach (Sun et al., 2023; Chen et al., 2024; Zhu et al., 2025b). KGs encode billions of factual assertions as typed relational edges between entities, providing structured evidential foundations for multi-hop reasoning across diverse domains while enabling dynamic knowledge maintenance through efficient graph updates. However, knowledge graph question answering (KGQA) faces significant challenges, such as navigating massive, intricate graph structures and accommodating continuously evolving schemas. Freebase (Bollacker et al., 2008), for instance, encompasses over 1.9 billion triples spanning diverse domains, while Wikidata (Vrandečić & Krötzsch, 2014) contains over 13 billion constantly-evolving triples. The heterogeneous nature of KG schemas across different repositories makes developing generalizable KGQA methodologies particularly challenging.

Existing approaches exhibit inherent limitations. Semantic parsing methods synthesize executable logical forms (SPARQL, S-expressions, etc.) but require extensive schema knowledge and demonstrate limited transferability across different KG architectures (Ye et al., 2021; Yu et al., 2022; Zhang

Figure 1: SoG workflow for "What is the capital of Vincent van Gogh's birth country?" The LLM navigates iteratively: (left) showing reasoning and SEARCH calls, (right) showing KG navigation. The path follows Van Gogh \rightarrow Zundert (place of birth) \rightarrow Netherlands (contained by) \rightarrow Amsterdam (capital). Solid boxes indicate selected entities; dotted boxes show unselected retrieved neighbours. Tables below each step display the markdown output returned by SEARCH, revealing available relations at each node.

et al., 2023; Luo et al., 2023a; Zhao et al., 2025b; Fang et al., 2024; Zhang et al., 2025; Wulamu et al., 2025). Subgraph retrieval techniques expand entity neighborhoods but frequently extract large, noisy subgraphs that obscure relevant information (Shi et al., 2021; Das et al., 2022; He et al., 2024; Tan et al., 2025; Sun et al., 2018; 2019; Jiang et al., 2022; Zhang et al., 2022). Many employ separate embedding modules for semantic similarity-based subgraph selection (Sun et al., 2018; 2019; Zhang et al., 2022; Ding et al., 2024), yet semantic representations can be misleading—for the query "What awards did the director of Inception win?", similarity-based retrievers may include extraneous movie metadata when only the director-award relational pathway is relevant. Recent agentic LLM approaches attempt more targeted path exploration (Sun et al., 2023; Chen et al., 2024; Dong et al., 2024; Luo et al., 2024; Jiang et al., 2024; Wang & Yu, 2025; Cheng et al., 2024; Sui et al., 2024; Wang et al., 2025; Li et al., 2024b) but require complex architectural frameworks, comprehensive upfront planning, or parallel path exploration, thereby increasing computational complexity and introducing failure modes when presumed relations are absent from the actual KG.

In response to these challenges, we propose Search-on-Graph (SoG), a fundamentally simpler methodology where a single LLM orchestrates iterative KG traversal through one carefully engineered SEARCH function executing 1-hop exploration. The key insight is the precedence of observation over speculation—rather than blind path planning or semantic similarity heuristics, the LLM systematically observes actual available relational connections at each entity and formulates informed navigational decisions grounded in question-specific reasoning.

For the query "What is the capital of Vincent van Gogh's birth country?" illustrated in Figure 1, the LLM executes iterative SEARCH calls while observing relational options at each step. From Van Gogh, it identifies "Place of birth" and navigates to Zundert, subsequently discovers "Contained by" to reach Netherlands, and finally selects "Capital" to arrive at Amsterdam. This methodology adapts to heterogeneous schemas—if Van Gogh connected directly to Netherlands in an alternative KG, the LLM would seamlessly adopt the shorter path. Our architectural simplicity stems from deliberate design decisions: (1) an exploration function with optimized context utilization in the returned results, (2) a dynamic filtering mechanism that returns only unique relation types for large

neighbourhoods, and (3) systematically engineered prompts that guide effective reasoning processes. These seemingly simple design choices prove crucial across diverse KG schemas and question types.

Empirically, SoG delivers strong and consistent gains across six KGQA benchmarks spanning Freebase and Wikidata. Our method achieves state-of-the-art performance on all six datasets, with particularly notable improvements on Wikidata-based benchmarks where we see average gains of over 15% compared to previous best methods. On Freebase datasets, SoG consistently outperforms existing approaches with meaningful improvements across different reasoning complexities. These results demonstrate that our simple, observation-driven design can match or exceed more elaborate architectures while maintaining computational efficiency and broad applicability across different KG schemas.

Our main contributions are:

- Propose our Search-on-Graph (SoG) framework, a general KGQA framework that uses a single LLM with an iterative 1-hop SEARCH function to navigate diverse graph schemas reliably.
- Analyze several design choices (function output format, relation filtering, few-shot examples and models) and show how careful content engineering improves both accuracy and efficiency.
- Execute extensive experiments revealing that SoG attains SOTA results across six widely-used KGQA benchmarks, while keeping the system simple and plug-and-play.

2 Related Work

Semantic Parsing Methods. Semantic parsing techniques transform natural language questions into executable logical forms before KG querying. RNG-KBQA (Ye et al., 2021) enumerates candidate logical forms through KG path searches, then employs ranking and generation models for executable form composition. A different approach is taken by DecAF (Yu et al., 2022), which linearizes KBs into text documents, enabling retrieval-based joint decoding of both logical forms and direct answers. Fine-to-coarse component detection drives FC-KBQA (Zhang et al., 2023), generating executable S-expressions with connectivity constraints.

LLM-based methods have since emerged to leverage language models' capabilities for logical form generation. ChatKBQA (Luo et al., 2023a) utilizes generate-then-retrieve pipelines, where instruction-tuned LLMs produce candidate logical forms subsequently grounded through phrase-level retrieval. By contrast, CoG (Zhao et al., 2025b) generates fact-aware queries through parametric knowledge output, then corrects hallucinated entities via KG alignment. DARA (Fang et al., 2024) introduces dual mechanisms for high-level task decomposition and low-level task grounding. Meanwhile, Rule-KBQA (Zhang et al., 2025) employs learned rules guiding generation through induction and deduction phases with symbolic agents. HTML (Wulamu et al., 2025) proposes hierarchical multi-task learning with auxiliary tasks for entities, relations, and logical forms.

While these approaches provide interpretable traces and some incorporate sophisticated error recovery, they still fundamentally operate by generating logical forms or query plans that are then validated or corrected against the KG. This generate-then-verify paradigm, even with iterative refinement, differs from navigating based solely on locally available relations at each step.

Subgraph Retrieval Methods. This category of approaches first retrieves relevant graph portions around topic entities, then proceeds with reasoning over the induced subgraph. GRAFT-Net (Sun et al., 2018) exemplifies early neural approaches by constructing heterogeneous subgraphs that merge KB entities with Wikipedia text, utilizing graph networks with directed propagation for multihop inference. PullNet (Sun et al., 2019) employs iterative subgraph expansion using graph CNNs to determine which nodes to "pull" next. TransferNet (Shi et al., 2021) transfers entity scores along activated edges through attention mechanisms while attending to question spans.

More sophisticated retrieval strategies have been proposed to address coverage and noise issues. UniKGQA (Jiang et al., 2022) uses question-relation score propagation along KG edges for unified retrieval-reasoning. SR+NSM (Zhang et al., 2022) employs trainable subgraph retrievers decoupled from reasoning to enable plug-and-play enhancement. CBR-SUBG (Das et al., 2022) dynamically retrieves similar k-NN training queries with structural similarity. G-Retriever (He et al., 2024) formulates subgraph selection as Prize-Collecting Steiner Tree problems, while EPR (Ding et al., 2024)

models structural dependencies through atomic adjacency patterns. Paths-over-Graph (Tan et al., 2025) uses multi-hop path expansion with graph reduction and pruning.

These methods face fundamental trade-offs: larger subgraphs boost recall but introduce noise, while smaller ones risk missing critical edges. Furthermore, answer quality is solely dependent on retrieval completeness—key relations filtered during construction cannot be recovered by reasoning modules.

Agentic LLM Methods. This paradigm is characterized by interactive KG exploration through LLM agents. Think-on-Graph (Sun et al., 2023) performs iterative beam search maintaining top-N partial paths with pruning. Plan-on-Graph (Chen et al., 2024) decomposes questions into sub-objectives with trajectory memory and reflection mechanisms.

Multi-model approaches are motivated by the need to balance planning and efficiency. EffiQA (Dong et al., 2024) employs LLM global planning combined with lightweight model exploration. KELDaR (Li et al., 2024b) introduces question decomposition trees for atomic KG retrieval. FiDeLiS (Sui et al., 2024) combines Path-RAG with deductive beam search, ReKnoS (Wang et al., 2025) uses super-relations enabling bidirectional reasoning, and iQUEST (Wang & Yu, 2025) integrates iterative decomposition with GNNs.

While enabling flexible exploration without complete upfront queries, these approaches often introduce complex multi-component architectures requiring separate modules for planning, memory, and pruning. Most critically, parallel path exploration using beam search exponentially expands search space, potentially overwhelming LLMs with irrelevant information.

3 PRELIMINARIES

3.1 Knowledge Graphs

A knowledge graph (KG) $\mathcal{G} = \{(e,r,e') \mid e,e' \in \mathcal{E}, r \in \mathcal{R}\}$ represents structured factual knowledge, where \mathcal{E} and \mathcal{R} denote the entity and relation sets, respectively. Each triple (e,r,e') encodes a factual relationship r between head entity e and tail entity e'. Entities are uniquely identified by specific IDs (e.g., m.07_m2 represents Vincent van Gogh in Freebase) and may possess associated textual labels and semantic types for human interpretation. For any entity e, its neighborhood structure comprises both outgoing and incoming relations. We formally define the neighboring relations as $\mathcal{R}_e = \{r \mid (e,r,e') \in \mathcal{G}\} \cup \{r \mid (e',r,e) \in \mathcal{G}\}$, encompassing relations where e serves as either subject or object. This bidirectional connectivity enables flexible traversal during reasoning, allowing navigation in either direction along relational edges.

3.2 REASONING PATH

Multi-hop reasoning over KGs requires constructing connected sequences of triples that link topic entities to answer entities. A reasoning path \mathcal{P} of length k from entity e_0 to entity e_k is formally defined as:

$$\mathcal{P} = [(e_0, r_1, e_1), (e_1, r_2, e_2), \dots, (e_{k-1}, r_k, e_k)]$$

where each consecutive pair of triples shares an entity, creating a connected traversal through the graph structure. Intermediate entities e_1, \ldots, e_{k-1} serve as stepping stones.

Consider the reasoning path illustrated in Figure 1: Vincent van Gogh $\xrightarrow{\text{Place of birth}}$ Zundert $\xrightarrow{\text{Contained by}}$ Netherlands $\xrightarrow{\text{Capital}}$ Amsterdam. This 3-hop path demonstrates how complex questions requiring decompositional reasoning can be decomposed into sequential relational steps, each building upon previous entities to reach the final answer.

3.3 Knowledge Graph Question Answering

Knowledge Graph Question Answering (KGQA) addresses the challenge of answering natural language questions using structured knowledge representations. Given a natural language question q, a KG \mathcal{G} , and topic entities $\mathcal{T}_q \subseteq \mathcal{E}$ mentioned in q, the objective is to identify answer entities $\mathcal{A}_q \subseteq \mathcal{E}$. As per prior work (Luo et al., 2023b; Sun et al., 2023; Chen et al., 2024), we use the gold entity

annotations provided in the datasets, where entity mentions in questions are already linked to their KG identifiers, thus bypassing the need for entity linking.

4 METHODOLOGY

219 220 221

216

217

218

4.1 THE SEARCH FUNCTION

224 225

222

We carefully design a single SEARCH function (Algorithm 1) that enables incremental KG navigation by retrieving the 1-hop neighbourhood of a specified entity. This function serves as the LLM's sole interface for KG exploration via tool calls, accepting three parameters:

226227228

• entity: The target entity identifier (e.g., m. 07_m2 for Vincent van Gogh)

229 230 direction: Either outgoing (entity as subject) or incoming (entity as object)
properties (optional): Specific properties to filter results for focused exploration

231 232

233

234

235

236

239

240

241

242

243

The function returns results in a space-efficient markdown table format, prefixed with a row count that provides the LLM with immediate context about the result size. Each row contains four columns—property ID, property label, value ID, and value label—providing both machine-readable identifiers and human-readable labels. As demonstrated in Figure 1, calling the function to get Vincent van Gogh's outgoing neighbours returns:

237 238

```
594 rows:
property
                                      propertyLabel
                                                       value
                                                                    valueLabel
people.person.profession
                                      Profession
                                                       m.On1h
                                                                    Artist
visual_art.visual_artist.art_forms
                                     Art forms
                                                       m.05adh
                                                                    Painting
people.person.place_of_birth
                                      Place of birth
                                                       m.Ovlxv
                                                                    Zundert
people.person.date_of_birth
                                      Date of birth
                                                       1853-03-30
```

244245246

4.2 Handling High-Degree Nodes

247248249

250

251

KGs often contain high-degree nodes—entities with thousands or millions of connections such as countries, celebrities, or major organizations. Naively retrieving all neighbours of such nodes would overwhelm the LLM's context window and introduce excessive noise. We address this through a two-stage filtering mechanism formalized in Algorithm 1.

252253254255

256

257

258

259

260

261

262

263 264

Algorithm 1: ADAPTIVE NEIGHBOURHOOD RETRIEVAL

```
Input: entity_id, direction, properties; thresholds k,p Output: 1-hop neighbours of entity_id in markdown table format
```

```
R \leftarrow \texttt{GET\_ALL\_NEIGHBOURS}(\texttt{entity\_id}, \texttt{direction}, \texttt{properties})
```

```
\begin{array}{c|c} \textbf{if} & |R| > k \ \textit{and} \ \texttt{properties} \ \textit{is empty then} \\ & U \leftarrow \texttt{EXTRACT\_UNIQUE\_PROPERTIES}(R) \\ & \textbf{return} \ \texttt{FORMAT\_AS\_TABLE} \ (\textbf{U}) \end{array}
```

```
\begin{array}{l} \text{if } |R| > p \text{ then} \\ \lfloor R \leftarrow R[0:p] \end{array}
```

return FORMAT_AS_TABLE (R)

265266267

268

269

When the function encounters an entity with more than k connected neighbours without specified properties, our function returns only the unique properties rather than all neighbour instances. As shown in Figure 1, querying for the *Netherlands* outgoing neighbours returns:

```
property

location.country.form_of_government
location.country.official_language
location.country.capital
...

propertyLabel
Form of government
Official language
Capital
...
```

This property-only view allows the LLM to first survey available relation types without context overflow. The LLM then makes a targeted second call using the properties parameter to retrieve only relevant relations. This transforms high-degree node navigation from an intractable problem into two manageable steps: property discovery followed by selective retrieval.

Even with filtering, results may exceed practical limits. Algorithm 1 shows that when filtered results exceed p triples, we truncate to the first p results to ensure the response fits within context limits.

4.3 SEARCH-ON-GRAPH PROMPTING

To guide the LLM's navigation strategy, we employ few-shot prompting with navigation exemplars that demonstrate effective KG traversal patterns. For each dataset, we construct five diverse exemplars covering three key aspects:

- Initial exploration: strategically making the first SEARCH call based on the question's focus.
- Iterative traversal: analyzing retrieved neighbours, selecting relevant relations, and chaining SEARCH calls to construct reasoning paths.
- Answer extraction: recognizing completion conditions and extracting final answers from accumulated results.

These exemplars demonstrate to the LLM how to navigate the KG through systematic observation and decision-making. The resulting traces remain fully interpretable as each navigation step is explicitly recorded through tool calls. Appendix A provides the tool definitions, detailed instructions given to the LLM, and representative exemplars for each dataset. Due to space constraints, we include sample exemplars rather than the complete sets used in our experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metric. We evaluate SoG on six KGQA benchmarks spanning two major knowledge graphs, Freebase (Bollacker et al., 2008) and WikiData (Vrandečić & Krötzsch, 2014). For SimpleQuestions (SimpleQA) (Bordes et al., 2015), WebQuestionsSP (WebQSP) (Yih et al., 2016), ComplexWebQuestions (CWQ) (Talmor & Berant, 2018), and GrailQA (Gu et al., 2021), we use Freebase. For QALD-9 (Perevalov et al., 2022) and QALD-10 (Perevalov et al., 2022), we use Wikidata. For SimpleQuestions and GrailQA, we evaluate on the same 1,000-sample test subset adopted by ToG (Sun et al., 2023) to manage computational costs while enabling direct comparison with prior work. For other datasets, we use the full test sets. As per prior work (Li et al., 2023; Sun et al., 2023; Chen et al., 2024), we report exact match accuracy (Hits@1).

Models. We evaluate three off-the-shelf LLMs without fine-tuning two open-source models—Qwen3-30B-A3B-Thinking-2507 and Qwen3-235B-A22B-Thinking-2507-FP8 Yang et al. (2025) (abbreviated as Qwen3-30B and Qwen3-235B), and a proprietary model—GPT-4o. SoG is designed as a plug-and-play framework compatible with any LLM supporting tool calling. For GPT-4o, we use the OpenAI API. For Qwen3-235B, we follow recommended settings (temperature=0.6, top_p=0.95, top_k=20, min_p=0).

Few-shot Prompting. For each dataset, we manually construct five few-shot exemplars covering diverse reasoning patterns, including single-hop retrieval, multi-hop traversal, constraint verification, and aggregation. These exemplars are derived from training set questions.

Table 1: Exact match accuracy (%) of KGQA methods across six benchmarks. Bold and underlined values indicate best and second-best results per dataset, respectively. Datasets are grouped by underlying KG: Freebase (SimpleQA, WebQSP, CWQ, GrailQA) and Wikidata (QALD-9, QALD-10).

Method	Freebase				Wikidata					
	SimpleQA	WebQSP	CWQ	GrailQA	QALD-9	QALD-10				
Subgraph Retrieval Methods										
GRAFT-Net (Sun et al., 2018)	-	66.4	32.8	-	-	-				
PullNet (Sun et al., 2019)	-	68.1	47.2	-	-	-				
TransferNet (Shi et al., 2021)	-	71.4	48.6	-	-	-				
UniKGQA (Jiang et al., 2022)	-	77.2	51.2	-	-	-				
EWEK-QA + GPT-3.5 (Dehghan et al., 2024)	50.9	71.3	52.5	60.4	-	-				
SubgraphRAG + GPT-4o (Li et al., 2024a)	-	90.9	67.5	-	-	-				
LLM Baselines										
IO Prompting + Qwen3-30B	24.8	61.1	39.0	26.7	65.1	47.2				
IO Prompting + Qwen3-235B	30.3	61.1	51.0	32.3	62.7	48.7				
IO Prompting + GPT-4o	48.8	61.0	51.2	35.8	65.9	46.9				
Agentic LLM Methods										
Think-on-Graph + GPT-4 (Sun et al., 2023)	66.7	82.6	69.5	81.4	-	54.7				
Generate-on-Graph + GPT-4 (Xu et al., 2024)	-	84.4	<u>75.2</u>	-	-	-				
Plan-on-Graph + GPT-4 (Chen et al., 2024)	-	87.3	75.0	<u>84.7</u>	-	-				
Readi + GPT-4 (Cheng et al., 2024)	-	78.7	67.0	-	-	-				
Spinach + GPT-4o (Liu et al., 2024)	-	-	-	-	58.3	63.1				
FiDeLiS + GPT-4-Turbo (Sui et al., 2024)	-	84.4	71.5	-	-	-				
EffiQA + GPT-4 (Dong et al., 2024)	76.5	82.9	69.5	78.4	-	51.4				
KELDaR + GPT-3.5-Turbo (Li et al., 2024b)	-	79.4	53.6	-	-	-				
ReKnoS + GPT-4o-mini (Wang et al., 2025)	67.2	83.8	66.8	80.5	-	-				
iQUEST + GPT-4o (Wang & Yu, 2025)	-	88.9	73.9	73.5	-	-				
ORT + GPT-4o (Liu et al., 2025)	-	87.7	65.4	-	-	-				
Debate-on-Graph + GPT-4 (Ma et al., 2025)	-	<u>91.0</u>	56.0	80.0	-	-				
SRP + GPT-4.1-mini (Zhu et al., 2025a)	-	83.6	69.0	78.8	-	-				
KnowPath + DeepSeek-V3 (Zhao et al., 2025a)	65.3	89.0	73.5	-	-	-				
SoG + Qwen3-30B (Ours)	86.2	88.2	70.0	81.4	81.0	77.5				
SoG + Qwen3-235B (Ours)	86.4	89.3	77.1	83.9	82.5	79.8				
SoG + GPT-4o (Ours)	84.8	91.3	75.1	86.9	79.4	74.4				

Baselines and Parameters. We compare SoG with 23 baselines, grouped into subgraph retrieval methods, LLM baselines, and agentic LLM methods. Semantic parsing methods are excluded due to their reliance on task-specific fine-tuning, which is orthogonal to our training-free paradigm. For all experiments, we set the high-degree threshold k=50 and the maximum result size p=1000, balancing information completeness with context window constraints.

5.2 MAIN RESULTS

Table 1 presents the performance of SoG and competing methods across all six benchmarks. Our approach consistently achieves state-of-the-art or highly competitive results using only off-the-shelf LLMs, without any task-specific fine-tuning or retraining. SoG + GPT-40 achieves the highest scores on WebQSP (91.3%) and GrailQA (86.9%), while SoG + Qwen3-235B leads on Simple-Questions (86.4%), CWQ (77.1%), QALD-9 (82.5%), and QALD-10 (79.8%). Notably, SoG + GPT-40 outperforms all prior systems on 5 of 6 datasets, trailing only Generate-on-Graph on CWQ by 0.1%. Similarly, SoG + Qwen3-235B also surpasses previous bests on 4 of 6 datasets, with narrow margins of 0.7% and 0.8% behind the previous best on WebQSP and GrailQA, respectively. The improvements over previous best methods range from incremental to substantial. On Freebase datasets, we improve by +0.3% on WebQSP, +1.9% on CWQ, +2.2% on GrailQA, and +9.9% on SimpleQuestions. The improvements are particularly striking on Wikidata benchmarks, where we achieve double-digit gains: +16.6% on QALD-9 (82.5% vs. 65.9% for IO Prompting) and +16.7% on QALD-10 (79.8% vs. 63.1%).

The strong performance across both Freebase (SimpleQuestions, WebQSP, CWQ, GrailQA) and Wikidata (QALD-9, QALD-10) benchmarks validates our schema-agnostic design. While Freebase uses compound value types (CVTs) for complex relations and Wikidata employs qualifiers, SoG adapts to both structures without modification, confirming that our single function approach gener-

Figure 2: Impact of few-shot exemplar quantity on exact match accuracy (%) for Qwen3-30B-A3B-Thinking/Instruct-2507 across four Freebase datasets, SimpleQuestions, WebQSP, CWQ, GrailQA.

alizes across different KG schemas. Furthermore, SoG demonstrates balanced effectiveness across both single-hop (SimpleQuestions) and multi-hop (WebQSP, CWQ, GrailQA, QALD-9, QALD-10) datasets. This contrasts with methods like Think-on-Graph, EffiQA, ReKnoS, and KnowPath, which show stronger relative performance only on multi-hop tasks. Our consistent performance across complexity levels likely stems from our focused exploration strategy—by selecting one relation per hop rather than exploring multiple paths in parallel, we avoid the noise accumulation that can overwhelm simpler questions while maintaining expressiveness for complex reasoning chains.

5.3 ABLATION STUDIES AND ANALYSIS

We conduct a series of ablation studies to analyze key design choices in SoG, examining the impact of few-shot exemplar quantity, reasoning-optimized models versus standard instruction models, and different output formatting on performance. All ablations use 20% samples from each Freebase-based test set. We evaluate on Qwen3-30B-A3B-Thinking/Instruct-2507 two models.

Effect of Few-shot Exemplars. Figure 2 shows the performance of Thinking and Instruct models across varying exemplar quantities. The black and gray dashed lines represent the average exact match accuracy across the four datasets for the Thinking and Instruct models respectively. Both models show dramatic improvements when transitioning from IO prompting to 0-shot with tool instructions, demonstrating that LLMs can perform structured navigation once they understand the SEARCH function interface. Adding a single navigation exemplar (1-shot) produces another substantial boost across all datasets—from SimpleQuestions to complex multi-hop tasks—confirming that a single demonstration benefits tasks of any complexity. Performance plateaus at 3-shot with minimal gains thereafter, indicating that a small set of diverse exemplars sufficiently demonstrates effective navigation strategies.

Thinking vs. Non-Thinking Models. The Thinking variant consistently outperforms the Instruct variant across all settings in Figure 2, with the gap most pronounced on multi-hop datasets (WebQSP, CWQ, GrailQA) compared to single-hop SimpleQuestions. This performance difference reveals that model architecture and inherent reasoning capabilities are critical for SoG's effectiveness. The reasoning-optimized model better leverages our iterative observation-decision framework—analyzing available relations and making informed navigation choices based on reasoning rather than question semantics or pattern-matching against exemplars. While both models benefit from additional exemplars, the Thinking variant extracts more value from navigation demonstra-

Table 2: Comparison of output formats for SimpleQuestions (20% sample) using Qwen3-30B-A3B-Thinking-2507 with 5 exemplars. We report the average number of main interaction tokens, average number of reasoning tokens, average number of total tokens, average number of turns, and exact match (EM) accuracy. "Markdown + Property Filter" denotes our concise format with an additional filtering round, which achieves the best accuracy and efficiency.

437	
438	
439	
440	

Format	Avg. Main Tok.	Avg. Reason Tok.	Avg. Total Tok.	Avg. Turns	EM
JSON	9312.2	2735.2	12047.3	3.06	76.5
Markdown	6028.1	1953.7	7981.8	3.05	74.5
Markdown + Property Filter (Ours)	3715.9	1906.6	5622.5	3.93	78.0

tions, indicating that SoG's performance ceiling depends on the model's capacity for structured reasoning over KGs.

Output Format and Filtering. Table 2 compares the impact of different output formats on performance and efficiency. While the original JSON format that the SPARQL execution returns yields strong accuracy, it uses significantly more tokens than the other two formats. Switching to Markdown format reduces token usage considerably but slightly impacts accuracy. Our optimized approach adds a property filtering stage—when encountering high-degree nodes, we first retrieve available properties, then make a targeted second call with relevant properties only. Despite requiring additional turns, this strategy achieves the lowest total token usage while simultaneously delivering the highest accuracy. The efficiency gain stems from avoiding redundant information in dense neighborhoods, while the accuracy improvement suggests that focused retrieval helps the LLM identify relevant paths more effectively. These results highlight how careful output engineering directly impacts both computational efficiency and task performance in LLM-based KGQA systems.

6 Conclusion

We present Search-on-Graph (SoG), a simple yet effective KGQA framework that achieves SOTA results by enabling LLMs to navigate KGs through iterative, informed navigation rather than upfront path planning or parallel search. Using only a single LLM with one carefully designed SEARCH function, SoG demonstrates consistent improvements across six benchmarks on Freebase and Wikidata data sources. Our analysis reveals that effective graph navigation depends critically on three factors: providing LLMs with actual available relations at each decision point, using reasoning-optimized models that can leverage navigation demonstrations effectively, and engineering output formats that balance information completeness with computational efficiency. The simplicity and generality of our approach—requiring no task-specific training and adapting seamlessly to different KG schemas—suggests that many perceived LLM limitations on structured reasoning tasks stem from problem presentation rather than fundamental model deficiencies. By aligning task structure with LLM strengths through iterative observation and decision-making, we achieve superior performance without the complex architectures, multiple modules, or extensive scaffolding assumed necessary by prior work.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and materials. The complete prompts, tool schema definitions, and few-shot examples for all datasets are included in Appendix A. Our supplementary materials contain the minimal experiment scripts with test split data, where main.py implements the core processing logic and prompt.py contains the system prompt concatenation functions (detailed at the end of the file). All hyperparameters, model configurations, and evaluation procedures are explicitly documented in Section 5.1. The Search-on-Graph framework is designed as a plug-and-play system that can be easily integrated with any LLM supporting tool calling, making our approach straightforward to replicate and extend.

REFERENCES

- Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collaboratively created graph database for structuring human knowledge. In *Proceedings of the 2008 ACM SIGMOD international conference on Management of data*, pp. 1247–1250, 2008.
- Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question answering with memory networks. *arXiv* preprint arXiv:1506.02075, 2015.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Liyi Chen, Panrong Tong, Zhongming Jin, Ying Sun, Jieping Ye, and Hui Xiong. Plan-on-graph: Self-correcting adaptive planning of large language model on knowledge graphs. *Advances in Neural Information Processing Systems*, 37:37665–37691, 2024.
- Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang Huang, Ling Chen, Qingwei Lin, Dongmei Zhang, et al. Call me when necessary: Llms can efficiently and faithfully reason over structured environments. *arXiv preprint arXiv:2403.08593*, 2024.
- Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot Tower, Manzil Zaheer, Hannaneh Hajishirzi, Robin Jia, and Andrew McCallum. Knowledge base question answering by case-based reasoning over subgraphs. In *International conference on machine learning*, pp. 4777–4793. PMLR, 2022.
- Mohammad Dehghan, Mohammad Ali Alomrani, Sunyam Bagga, David Alfonso-Hermelo, Khalil Bibi, Abbas Ghaddar, Yingxue Zhang, Xiaoguang Li, Jianye Hao, Qun Liu, et al. Ewek-qa: Enhanced web and efficient knowledge graph retrieval for citation-based question answering systems. *arXiv preprint arXiv:2406.10393*, 2024.
- Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong Qu. Enhancing complex question answering over knowledge graphs through evidence pattern retrieval. In *Proceedings of the ACM Web Conference* 2024, pp. 2106–2115, 2024.
- Zixuan Dong, Baoyun Peng, Yufei Wang, Jia Fu, Xiaodong Wang, Yongxue Shan, and Xin Zhou. Effiqa: Efficient question-answering with strategic multi-model collaboration on knowledge graphs. *arXiv* preprint arXiv:2406.01238, 2024.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.
- Haishuo Fang, Xiaodan Zhu, and Iryna Gurevych. Dara: Decomposition-alignment-reasoning autonomous language agent for question answering over knowledge graphs. *arXiv* preprint arXiv:2406.07080, 2024.
- Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond iid: three levels of generalization for question answering on knowledge bases. In *Proceedings of the web conference 2021*, pp. 3477–3488, 2021.
- Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson, and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and question answering. *Advances in Neural Information Processing Systems*, 37:132876–132907, 2024.
- Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and reasoning for solving multi-hop question answering over knowledge graph. *arXiv* preprint *arXiv*:2212.00959, 2022.
- Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song, Chen Zhu, Hengshu Zhu, and Ji-Rong Wen. Kg-agent: An efficient autonomous agent framework for complex reasoning over knowledge graph. *arXiv preprint arXiv:2402.11163*, 2024.

- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:22199–22213, 2022.
 - Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language models in knowledge-graph-based retrieval-augmented generation. *arXiv preprint arXiv:2410.20724*, 2024a.
 - Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. Few-shot in-context learning for knowledge base question answering. *arXiv preprint arXiv:2305.01750*, 2023.
 - Yading Li, Dandan Song, Changzhi Zhou, Yuhang Tian, Hao Wang, Ziyi Yang, and Shuhao Zhang. A framework of knowledge graph-enhanced large language model based on question decomposition and atomic retrieval. In *Findings of the Association for Computational Linguistics: EMNLP* 2024, pp. 11472–11485, 2024b.
 - Runxuan Liu, Bei Luo, Jiaqi Li, Baoxin Wang, Ming Liu, Dayong Wu, Shijin Wang, and Bing Qin. Ontology-guided reverse thinking makes large language models stronger on knowledge graph question answering. *arXiv preprint arXiv:2502.11491*, 2025.
 - Shicheng Liu, Sina J Semnani, Harold Triedman, Jialiang Xu, Isaac Dan Zhao, and Monica S Lam. Spinach: Sparql-based information navigation for challenging real-world questions. *arXiv* preprint arXiv:2407.11417, 2024.
 - Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo, Wentai Zhang, Chenghao Ma, Guanting Dong, Meina Song, Wei Lin, Yifan Zhu, et al. Chatkbqa: A generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models. *arXiv preprint arXiv:2310.08975*, 2023a.
 - Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and interpretable large language model reasoning. *arXiv preprint arXiv:2310.01061*, 2023b.
 - Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Yuan-Fang Li, Chen Gong, and Shirui Pan. Graph-constrained reasoning: Faithful reasoning on knowledge graphs with large language models. *arXiv preprint arXiv:2410.13080*, 2024.
 - Jie Ma, Zhitao Gao, Qi Chai, Wangchun Sun, Pinghui Wang, Hongbin Pei, Jing Tao, Lingyun Song, Jun Liu, Chen Zhang, et al. Debate on graph: a flexible and reliable reasoning framework for large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 24768–24776, 2025.
 - Aleksandr Perevalov, Dennis Diefenbach, Ricardo Usbeck, and Andreas Both. Qald-9-plus: A multilingual dataset for question answering over dbpedia and wikidata translated by native speakers. In 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pp. 229–234. IEEE, 2022.
 - Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Hanwang Zhang. Transfernet: An effective and transparent framework for multi-hop question answering over relation graph. *arXiv* preprint arXiv:2104.07302, 2021.
 - Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, and Bryan Hooi. Fidelis: Faithful reasoning in large language model for knowledge graph question answering. *arXiv* preprint *arXiv*:2405.13873, 2024.
 - Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and William W Cohen. Open domain question answering using early fusion of knowledge bases and text. *arXiv preprint arXiv:1809.00782*, 2018.
 - Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. Pullnet: Open domain question answering with iterative retrieval on knowledge bases and text. *arXiv preprint arXiv:1904.09537*, 2019.
 - Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M Ni, Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large language model on knowledge graph. *arXiv preprint arXiv:2307.07697*, 2023.

- Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions. arXiv preprint arXiv:1803.06643, 2018.
 - Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, and Wenjie Zhang. Paths-over-graph: Knowledge graph empowered large language model reasoning. In *Proceedings of the ACM on Web Conference* 2025, pp. 3505–3522, 2025.
 - Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. *Communications of the ACM*, 57(10):78–85, 2014.
 - Shuai Wang and Yinan Yu. iquest: An iterative question-guided framework for knowledge base question answering. *arXiv* preprint arXiv:2506.01784, 2025.
 - Song Wang, Junhong Lin, Xiaojie Guo, Julian Shun, Jundong Li, and Yada Zhu. Reasoning of large language models over knowledge graphs with super-relations. *arXiv preprint arXiv:2503.22166*, 2025.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Aziguli Wulamu, Lyu Zhengyu, Kaiyuan Gong, Yu Han, Zewen Wang, Zhihong Zhu, and Bowen Xing. Html: Hierarchical topology multi-task learning for semantic parsing in knowledge base question answering. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 9307–9321, 2025.
 - Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang Liu, and Jun Zhao. Generate-on-graph: Treat llm as both agent and kg in incomplete knowledge graph question answering. *arXiv preprint arXiv:2404.14741*, 2024.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
 - Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. Rng-kbqa: Generation augmented iterative ranking for knowledge base question answering. *arXiv* preprint *arXiv*:2109.08678, 2021.
 - Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. The value of semantic parse labeling for knowledge base question answering. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 201–206, 2016.
 - Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu, William Wang, Zhiguo Wang, and Bing Xiang. Decaf: Joint decoding of answers and logical forms for question answering over knowledge bases. *arXiv preprint arXiv:2210.00063*, 2022.
 - Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, and Hong Chen. Subgraph retrieval enhanced model for multi-hop knowledge base question answering. *arXiv* preprint *arXiv*:2202.13296, 2022.
 - Lingxi Zhang, Jing Zhang, Yanling Wang, Shulin Cao, Xinmei Huang, Cuiping Li, Hong Chen, and Juanzi Li. Fc-kbqa: A fine-to-coarse composition framework for knowledge base question answering. *arXiv preprint arXiv:2306.14722*, 2023.
 - Zhiqiang Zhang, Liqiang Wen, and Wen Zhao. Rule-kbqa: rule-guided reasoning for complex knowledge base question answering with large language models. In *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 8399–8417, 2025.
 - Qi Zhao, Hongyu Yang, Qi Song, Xinwei Yao, and Xiangyang Li. Knowpath: Knowledge-enhanced reasoning via llm-generated inference paths over knowledge graphs. *arXiv preprint arXiv:2502.12029*, 2025a.

Ruilin Zhao, Feng Zhao, and Hong Zhang. Correcting on graph: Faithful semantic parsing over knowledge graphs with large language models. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 5364–5376, 2025b.

Jiajun Zhu, Ye Liu, Meikai Bao, Kai Zhang, Yanghai Zhang, and Qi Liu. Self-reflective planning with knowledge graphs: Enhancing Ilm reasoning reliability for question answering. *arXiv* preprint arXiv:2505.19410, 2025a.

Yihua Zhu, Qianying Liu, Akiko Aizawa, and Hidetoshi Shimodaira. Beyond chains: Bridging large language models and knowledge bases in complex question answering. *arXiv* preprint arXiv:2505.14099, 2025b.

A APPENDIX

648

649

650

651

652

653

654 655

656

657 658 659

660 661

662 663

695

A.1 TOOL DEFINITIONS

Listing 1: Freebase Tool Definition

```
664
        TOOLS_FREEBASE = [
665
666
                 "type": "function",
                 "function": {
667
                     "name": "search",
668
                     "description": (
669
                         "Build and execute a SPARQL query on Freebase that retrieves
670
                             adjacent properties, property labels,"
                         "values, and value labels in the specified direction for a given
671
                             entity."
672
673
                     "parameters": {
                         "type": "object",
674
                         "properties": {
675
                              "entity": {
    13
                                  "type": "string",
"description": "The entity (e.g., 'm.04yd0fh') whose
676
    14
    15
677
                                      adjacent relations and entities we want to fetch."
678
    16
                              "direction": {
679
                                  "type": "string",
680
                                  "enum": ["incoming", "outgoing"],
681
                                  "description": "Direction of relationship to consider"
    20
682 21
                              "properties_to_filter_for": {
683
                                  "type": "array",
684
    24
                                  "items": {"type": "string"},
                                  "description": "Optional list of specific properties to
685
   25
                                      filter by (e.g., ['people.person.place_of_birth',
686
                                      people.person.nationality'])."
687
    26
688 27
                         "required": ["question", "entity", "direction"],
689
    28
    29
                         "additionalProperties": False
690 30
                     },
691 31
692
693
    34
694
```

Listing 2: Wikidata Tool Definition

```
TOOLS_WIKIDATA = [

type": "function",

function": {

"name": "search",

"description": (

"Build and execute a SPARQL query on Wikidata that retrieves

adjacent properties, property labels,"
```

```
702
                          "values, and value labels in the specified direction for a given
703
                               entity.'
704
                      "parameters": {
705 10
                          "type": "object",
706 12
                          "properties": {
707 13
                               "entity": {
    14
                                   "type": "string",
708
                                   "description": "The entity (e.g., 'wd:Q187805') whose
709
                                       adjacent relations and entities we want to fetch.",
710 16
                               "direction": {
711
                                   "type": "string",
712 <sub>19</sub>
                                   "enum": ["incoming", "outgoing"],
                                    "description": "Direction of relationship to consider",
713 20
714 <sup>21</sup>
                               "properties_to_filter_for": {
    "type": "array",
715 <sub>23</sub>
716 24
                                   "items": {"type": "string"},
                                   "description": "Optional list of specific properties to
717 25
                                        filter by (e.g., ['people.person.place_of_birth',
718
                                        people.person.nationality'])."
719 26
                               }
720 27
                          "required": ["question", "entity", "direction"],
    28
721 29
                          "additionalProperties": False,
722 30
                     },
    31
723
                 },
724
    33
             },
725
726
```

A.2 TOOL INSTRUCTION PROMPT

727 728

729 730

731 732

733

734

735

736

737

739 740

741

742

743

744

745

746

747

748

749

750

751

752

753

```
Listing 3: Tool Instructions
You are a knowledgeable question-answering agent specializing in
   knowledge-graph question answering. You will receive a question and
   may call a tool to navigate the knowledge graph, collect information
   , and then formulate an answer.
You may call the tool search (entity, direction) to retrieve adjacent
   relations and 1-hop neighbouring entities to the entity given in the
    input. Additionally, direction must be incoming or outgoing.
When you want to call the tool:
  - Always follow the CORRECT format whenever you want to make a tool
     call.
  - Continue making tool calls until you arrive at a final textual
     answer. Then, and only then, stop making tool calls and provide
     your final answer in 'content'.
Furthermore,
  - Sometimes the 'search' tool returns an entity ID ('value') without
     a corresponding entity name ('valueLabel'). If that occurs,
     continue making the correct tool calls using the entity ID ('value
     ^{\prime} ) alone, if necessary, until you find the information needed to
     answer the question. Relevant details may appear in subsequent
     tool calls.
  - Whenever 'search' returns multiple entities for a single relevant
     relation, you must examine every single one of those entities,
     even if there are tens or hundreds. Do not skip any; each could be
      relevant to the question.
  - If the question happens to be a 'when' question, you must provide
     the final answer with the value of the entity as given (i.e., in
```

```
the format \{1889-04-20\} or \{1889-04-20-08:00\}) from the results of 'search'.
```

- If searching from one direction does not yield information that seems relevant to the question, you may try searching from the other direction (e.g., "incoming" instead of "outgoing", or " outgoing" instead of "incoming") of the starting entity if you think it makes sense to try.
- In your final answer, you must 1) write 'Final answer:' immediately before providing your final answer, 2) enclose the answer entity (or entities) in curly braces, and 3) use each entity name exactly as returned by the 'search' tool. For example, if the tool's output shows "English Language", you must produce {English Language} (keeping the exact phrase) rather than shortening it to "English.".
- If you cannot gather enough information using the tools to answer the question, rely on the information you already have, your reasoning abilities, and your own knowledge to produce the best possible answer(s).

A.3 SAMPLE EXEMPLARS

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771772773

774775776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793 794 795

796

797 798

799

800

801

802

803

804

805

806

807

808

809

Listing 4: SimpleQA Sample Exemplar

```
Question: where did the continental celtic languages originate? {'
   Continental Celtic languages': 'm.06v3q8'}
Outgoing relations from m.06v3q8 (Continental Celtic languages)
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
   name": "search", "arguments": {"entity": "m.06v3q8", "direction": "
   outgoing"}}}]
Suppose it returns:
property|propertyLabel|value|valueLabel
-- | -- | -- | --
language.language_family.member_of_language_families|member of language
     families | m. 01 sd8 | Celtic languages
language.language_family.geographic_distribution|geographic
   distribution | m. 02 j9z | Europe
kg.object_profile.prominent_type||language.language_family|Language
   Family
We see there is a language.language_family.geographic_distribution (
   geographic distribution) property that points to the object m.02j9z
    (Europe).
Final answer: The Continental Celtic languages originated in {Europe}.
```

Listing 5: WebQSP Sample Exemplar

```
Question: what is cher's son's name {'Cher': 'm.01vtj38', 'Male': 'm
'm.01vtj38' ('Cher') is the topic entity of the question. Look for
   outgoing edges from 'm.01vtj38' and look for relations and entities
   related to Cher's son. Any linked object entities are potential
   candidates.
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
   name": "search", "arguments": {"entity": "m.01vtj38", "direction": "
   outgoing"}}}]
Suppose it returns:
property|propertyLabel|value|valueLabel
-- | -- | -- | --
base.schemastaging.context_name.official_name|Official_name|Cherilyn
   Sarkisian|
people.person.children|Children|m.01w4bt1|Elijah Blue Allman
people.person.children|Children|m.Obr66|Chaz Bono
people.person.parents|Parents|m.0kmhsk2|Gilbert Hartmann LaPiere
```

```
810
        We see there is the people.person.children (Children) property that
811
            points to entities m.01w4bt1 (Elijah Blue Allman) and m.0br66 (Chaz
812
            Bono).
813
        To specifically look for son(s) of Cher, we check the gender of each of
             those entities
814
        Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
815
            name": "search", "arguments": {"entity": "m.01w4bt1", "direction": "
816
            outgoing"}}}]
817
        Suppose it returns:
818
        property|propertyLabel|value|valueLabel
        -- | -- | -- | --
819
        people.person.parents|Parents|m.01vtj38|Cher
820
        people.person.gender|Gender|m.05zppz|Male
821
        people.person.sibling_s|Siblings|m.0w4gdrb|
822
        people.person.sibling_s|Siblings|m.0vvfthw|
        We see that Elijah Blue Allman's gender is Male.
823
        Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
824
            name": "search", "arguments": {"entity": "m.Obr66", "direction": "
825
            outgoing"}}}]
826
        Suppose it returns:
827
        property|propertyLabel|value|valueLabel
828
        -- | -- | -- | --
        people.person.parents|Parents|m.01vtj38|Cher
829
        people.person.sibling_s|Siblings|m.0w4gdrb|
830
        people.person.gender|Gender|m.05zppz|Male
831
        We see that Chaz Bono's gender is Male.
832
        Final answer: Cher's sons' names are {Elijah Blue Allman} and {Chaz
833
            Bono } .
834
```

Listing 6: CWQ Sample Exemplar

```
836
        Question: What structure build on June 5, 2007 is Charlotte, North
837
            Carolina known for? {'Charlotte': 'm.Ofsb8'}
838
        'm.Ofsb8' ('Charlotte') is the topic entity of the question. Look for
            outgoing edges from 'm.0fsb8' and look for relations and entities
839
            related to structures built in Charlotte. Any linked object entities
840
             are potential candidates.
841
        Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
842
            name": "search", "arguments": {"entity": "m.0fsb8", "direction": "
843
            outgoing"}}}]
        Suppose it returns:
844
        property|propertyLabel|value|valueLabel
845
        -- | -- | -- | --
846
        common.topic.topical_webpage|Topical webpage|http://www.charmeck.org/|
847
        travel.travel_destination.tourist_attractions|Tourist attractions|m.09
848
            k6h_2|Bechtler Museum of Modern Art
        travel.travel_destination.tourist_attractions|Tourist attractions|m.02
849
            vnhrq|Billy Graham Library
850
        travel.travel_destination.tourist_attractions|Tourist attractions|m.05
851
            g_v01|Bojangles' Coliseum
852
        travel.travel_destination.tourist_attractions|Tourist attractions|m.0
853
            cq5c0|Carolinas Aviation Museum
        We see the property travel.travel_destination.tourist_attractions (
854
            Tourist attractions), which points to m.09k6h_2 (Bechtler Museum of
855
            Modern Art), m.02vnhrq (Billy Graham Library), and m.05g_v01 (
856
            Bojangles' Coliseum). These are all tourist attractions in Charlotte
857
            , North Carolina.
858
        Get outgoing relations and entities from each candidate entity to find
            information on the date that it was built:
859
        Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
860
            name": "search", "arguments": {"entity": "m.09k6h_2", "direction": "
861
            outgoing"}}}]
862
        Suppose it returns:
863
        property|propertyLabel|value|valueLabel
        -- | -- | -- | --
```

895

```
864
        type.object.type|Type|common.topic|Topic
865
        type.object.type|Type|architecture.building|Building
866
        type.object.type|Type|architecture.structure|Structure
867
        There is no property that indicates the build date of m.09k6h_2 (
            Bechtler Museum of Modern Art).
868
        Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
869
            name": "search", "arguments": {"entity": "m.02vnhrq", "direction": "
870
            outgoing"}}}]
871
        Suppose it returns:
872
        property|propertyLabel|value|valueLabel
         -- | -- | -- | --
873
        \verb|common.topic.notable_types| Notable types| \verb|m.01y2hbz| Museum| \\
874
        architecture.structure.opened|Opened|2007-06-05-08:00|
875
        type.object.type|Type|base.type_ontology.abstract|Abstract
876
        We see that there is the property architecture.structure.opened (Opened
            ), which points to the date 2007-06-05-08:00. This indicates an
877
            opening date of 2007-06-05 (June 5, 2007), which matches our target
878
            date.
879
        Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
880
            name": "search", "arguments": {"entity": "m.05g_v01", "direction": "
881
            outgoing"}}}]
882
        Suppose it returns:
        property|propertyLabel|value|valueLabel
883
        -- | -- | -- | --
884
        architecture.structure.opened|Opened|1955-08:00|
885
        common.topic.social_media_presence|Social media presence|http://www.
886
            facebook.com/pages/Bojangles-Coliseum/196122978761
887
        common.topic.social_media_presence|Social media presence|https://
            twitter.com/BojanglesCol|
888
        We see that there is the property architecture.structure.opened (Opened
            ), which points to the date 1955-08:00. This indicates an opening
290
            date of 1955 at 8am, which does not match our target date of June 5,
891
             2007.
892
        Final answer: Charlotte, North Carolina is known for the structure {
            Billy Graham Library} that is built on June 5, 2007.
893
```

Listing 7: GrailQA Sample Exemplar

```
896
        Question: what is the language regulator of basque? {'basque': 'm.017k6
897
        'm.017k6' ('basque') is the topic entity of the question. Look for
898
            incoming edges from 'm.017k6' and look for relations and entities
899
            related to language regulators of Basque. Any linked object entities
900
             are potential candidates.
901
        Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
            name": "search", "arguments": {"entity": "m.017k6", "direction": "
902
            incoming" } } ]
903
        Suppose it returns:
904
        property|propertyLabel|value|valueLabel
905
         -- | -- | -- | --
906
        base.rosetta.rosetta_document.refers_to|Refers To|m.05tr3c6|Basque
907
            Numbers
        language.language_regulator.language|Language|m.057xsn|Euskaltzaindia
908
        type.type.instance|Instance|language.languoid|
909
        We see the property language.language_regulator.language (Language),
910
            which points to m.057xsn (Euskaltzaindia). This may be the language
911
            regulator of Basque. Let's double check by calling the tool to look
912
            at its outgoing edges.
        Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
913
            name": "search", "arguments": {"entity": "m.057xsn", "direction": "
914
            outgoing"}}}]
915
        Suppose it returns:
916
        property|propertyLabel|value|valueLabel
917
        type.object.type|Type|common.topic|Topic
```

```
type.object.type|Type|base.type_ontology.agent|Agent
type.object.type|Type|language.language_regulator|Language Regulator
We see that there is the property type.object.type (Type), which points
    to language.language_regulator (Language Regulator). This confirms
    that m.057xsn (Euskaltzaindia) is indeed a language regulator.
Final answer: The language regulator of Basque is {Euskaltzaindia}.
```

Listing 8: QALD Sample Exemplar

```
Question: In which country does the Ganges start? {'Ganges': 'wd:Q5089
wd:Q5089' ('Ganges') is the topic entity of the question. Look for
   outgoing edges from 'wd:Q5089' and look for relations and entities
   related to which country the Ganges starts in. Any linked subjects
   are potential candidates.
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
   name": "search", "arguments": {"entity": "wd:Q5089", "direction": "
   outgoing"}}}]
Suppose it returns:
property|propertyLabel|value|valueLabel
-- | -- | -- | --
wdt:P885|origin of the watercourse|wd:Q691557|Gangotri Glacier
wdt:P974|tributary|wd:Q3635865|Punpun River
wdt:P30|continent|wd:Q48|Asia
We see the property wdt:P885 (origin of the watercourse) that links to
   the entity wd:Q691557 (Gangotri Glacier).
Look at each candidate entity's outgoing relations for information
   regarding its country
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
   name": "search", "arguments": {"entity": "wd:Q691557", "direction": "
   outgoing"}}}]
Suppose it returns:
property|propertyLabel|value|valueLabel
-- | -- | -- | --
wdt:P4552|mountain range|wd:Q3777888|Gangotri Group
wdt:P31|instance of|wd:Q35666|glacier
wdt:P17|country|wd:Q668|India
We see the property wdt:P17 (country) that links to the entity wd:Q668
    (India).
Final Answer: The Ganges starts in {India}.
```