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ABSTRACT

Large language models (LLMs) have demonstrated impressive reasoning abilities
yet remain unreliable on knowledge-intensive, multi-hop questions—they miss
long-tail facts, hallucinate when uncertain, and their internal knowledge lags be-
hind real-world change. Knowledge graphs (KGs) offer a structured source of re-
lational evidence, but existing KGQA methods face fundamental trade-offs: com-
piling complete SPARQL queries without knowing available relations proves brit-
tle, retrieving large subgraphs introduces noise, and complex agent frameworks
with parallel exploration exponentially expand search spaces. To address these
limitations, we propose Search-on-Graph (SoG), a simple yet effective framework
that enables LLMs to perform iterative informed graph navigation using a single,
carefully designed SEARCH function. Rather than pre-planning paths or retriev-
ing large subgraphs, SoG follows an “observe, then navigate” principle: at each
step, the LLM examines actual available relations from the current entity before
deciding on the next hop. This approach further adapts seamlessly to different
KG schemas and handles high-degree nodes through adaptive filtering. Across six
KGQA benchmarks spanning Freebase and Wikidata, SoG achieves state-of-the-
art performance without fine-tuning. We demonstrate particularly strong gains on
Wikidata benchmarks (+15% improvement over previous best methods) alongside
consistent improvements on Freebase benchmarks.

1 INTRODUCTION

Large language models (LLMs) achieve impressive results across diverse NLP tasks through ex-
tensive pre-training on vast corpora, but not when confronted with knowledge-intensive, multi-step
reasoning challenges. They frequently generate plausible but factually unsupported hallucinations,
lack domain-specific knowledge absent from pre-training data, and suffer from rapidly outdated
parametric knowledge necessitating expensive retraining or fine-tuning. These limitations are par-
ticularly pronounced for questions requiring multi-hop reasoning capabilities (Brown et al., 2020;
Kojima et al., 2022; Wei et al., 2022; Dubey et al., 2024).

To address these challenges, augmenting LLMs with external structured knowledge, specifically
knowledge graphs (KGs), has emerged as a promising approach (Sun et al., 2023; Chen et al., 2024;
Zhu et al., 2025b). KGs encode billions of factual assertions as typed relational edges between en-
tities, providing structured evidential foundations for multi-hop reasoning across diverse domains
while enabling dynamic knowledge maintenance through efficient graph updates. However, knowl-
edge graph question answering (KGQA) faces significant challenges, such as navigating massive,
intricate graph structures and accommodating continuously evolving schemas. Freebase (Bollacker
et al., 2008), for instance, encompasses over 1.9 billion triples spanning diverse domains, while
Wikidata (Vrandečić & Krötzsch, 2014) contains over 13 billion constantly-evolving triples. The
heterogeneous nature of KG schemas across different repositories makes developing generalizable
KGQA methodologies particularly challenging.

Existing approaches exhibit inherent limitations. Semantic parsing methods synthesize executable
logical forms (SPARQL, S-expressions, etc.) but require extensive schema knowledge and demon-
strate limited transferability across different KG architectures (Ye et al., 2021; Yu et al., 2022; Zhang
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Figure 1: SoG workflow for “What is the capital of Vincent van Gogh’s birth country?” The LLM
navigates iteratively: (left) showing reasoning and SEARCH calls, (right) showing KG navigation.
The path follows Van Gogh → Zundert (place of birth) → Netherlands (contained by) → Amsterdam
(capital). Solid boxes indicate selected entities; dotted boxes show unselected retrieved neighbours.
Tables below each step display the markdown output returned by SEARCH, revealing available rela-
tions at each node.

et al., 2023; Luo et al., 2023a; Zhao et al., 2025b; Fang et al., 2024; Zhang et al., 2025; Wulamu
et al., 2025). Subgraph retrieval techniques expand entity neighborhoods but frequently extract large,
noisy subgraphs that obscure relevant information (Shi et al., 2021; Das et al., 2022; He et al., 2024;
Tan et al., 2025; Sun et al., 2018; 2019; Jiang et al., 2022; Zhang et al., 2022). Many employ sep-
arate embedding modules for semantic similarity-based subgraph selection (Sun et al., 2018; 2019;
Zhang et al., 2022; Ding et al., 2024), yet semantic representations can be misleading—for the query
“What awards did the director of Inception win?”, similarity-based retrievers may include extrane-
ous movie metadata when only the director-award relational pathway is relevant. Recent agentic
LLM approaches attempt more targeted path exploration (Sun et al., 2023; Chen et al., 2024; Dong
et al., 2024; Luo et al., 2024; Jiang et al., 2024; Wang & Yu, 2025; Cheng et al., 2024; Sui et al.,
2024; Wang et al., 2025; Li et al., 2024b) but require complex architectural frameworks, compre-
hensive upfront planning, or parallel path exploration, thereby increasing computational complexity
and introducing failure modes when presumed relations are absent from the actual KG.

In response to these challenges, we propose Search-on-Graph (SoG), a fundamentally simpler
methodology where a single LLM orchestrates iterative KG traversal through one carefully engi-
neered SEARCH function executing 1-hop exploration. The key insight is the precedence of ob-
servation over speculation—rather than blind path planning or semantic similarity heuristics, the
LLM systematically observes actual available relational connections at each entity and formulates
informed navigational decisions grounded in question-specific reasoning.

For the query “What is the capital of Vincent van Gogh’s birth country?” illustrated in Figure 1,
the LLM executes iterative SEARCH calls while observing relational options at each step. From Van
Gogh, it identifies “Place of birth” and navigates to Zundert, subsequently discovers “Contained
by” to reach Netherlands, and finally selects “Capital” to arrive at Amsterdam. This methodology
adapts to heterogeneous schemas—if Van Gogh connected directly to Netherlands in an alternative
KG, the LLM would seamlessly adopt the shorter path. Our architectural simplicity stems from
deliberate design decisions: (1) an exploration function with optimized context utilization in the
returned results, (2) a dynamic filtering mechanism that returns only unique relation types for large
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neighbourhoods, and (3) systematically engineered prompts that guide effective reasoning processes.
These seemingly simple design choices prove crucial across diverse KG schemas and question types.

Empirically, SoG delivers strong and consistent gains across six KGQA benchmarks spanning Free-
base and Wikidata. Our method achieves state-of-the-art performance on all six datasets, with par-
ticularly notable improvements on Wikidata-based benchmarks where we see average gains of over
15% compared to previous best methods. On Freebase datasets, SoG consistently outperforms ex-
isting approaches with meaningful improvements across different reasoning complexities. These
results demonstrate that our simple, observation-driven design can match or exceed more elaborate
architectures while maintaining computational efficiency and broad applicability across different
KG schemas.

Our main contributions are:

• Propose our Search-on-Graph (SoG) framework, a general KGQA framework that uses a sin-
gle LLM with an iterative 1-hop SEARCH function to navigate diverse graph schemas reliably.

• Analyze several design choices (function output format, relation filtering, few-shot examples
and models) and show how careful content engineering improves both accuracy and efficiency.

• Execute extensive experiments revealing that SoG attains SOTA results across six widely-used
KGQA benchmarks, while keeping the system simple and plug-and-play.

2 RELATED WORK

Semantic Parsing Methods. Semantic parsing techniques transform natural language questions
into executable logical forms before KG querying. RNG-KBQA (Ye et al., 2021) enumerates can-
didate logical forms through KG path searches, then employs ranking and generation models for
executable form composition. A different approach is taken by DecAF (Yu et al., 2022), which
linearizes KBs into text documents, enabling retrieval-based joint decoding of both logical forms
and direct answers. Fine-to-coarse component detection drives FC-KBQA (Zhang et al., 2023),
generating executable S-expressions with connectivity constraints.

LLM-based methods have since emerged to leverage language models’ capabilities for logical
form generation. ChatKBQA (Luo et al., 2023a) utilizes generate-then-retrieve pipelines, where
instruction-tuned LLMs produce candidate logical forms subsequently grounded through phrase-
level retrieval. By contrast, CoG (Zhao et al., 2025b) generates fact-aware queries through para-
metric knowledge output, then corrects hallucinated entities via KG alignment. DARA (Fang et al.,
2024) introduces dual mechanisms for high-level task decomposition and low-level task grounding.
Meanwhile, Rule-KBQA (Zhang et al., 2025) employs learned rules guiding generation through
induction and deduction phases with symbolic agents. HTML (Wulamu et al., 2025) proposes hier-
archical multi-task learning with auxiliary tasks for entities, relations, and logical forms.

While these approaches provide interpretable traces and some incorporate sophisticated error re-
covery, they still fundamentally operate by generating logical forms or query plans that are then
validated or corrected against the KG. This generate-then-verify paradigm, even with iterative re-
finement, differs from navigating based solely on locally available relations at each step.

Subgraph Retrieval Methods. This category of approaches first retrieves relevant graph por-
tions around topic entities, then proceeds with reasoning over the induced subgraph. GRAFT-Net
(Sun et al., 2018) exemplifies early neural approaches by constructing heterogeneous subgraphs that
merge KB entities with Wikipedia text, utilizing graph networks with directed propagation for multi-
hop inference. PullNet (Sun et al., 2019) employs iterative subgraph expansion using graph CNNs
to determine which nodes to “pull” next. TransferNet (Shi et al., 2021) transfers entity scores along
activated edges through attention mechanisms while attending to question spans.

More sophisticated retrieval strategies have been proposed to address coverage and noise issues.
UniKGQA (Jiang et al., 2022) uses question-relation score propagation along KG edges for unified
retrieval-reasoning. SR+NSM (Zhang et al., 2022) employs trainable subgraph retrievers decoupled
from reasoning to enable plug-and-play enhancement. CBR-SUBG (Das et al., 2022) dynamically
retrieves similar k-NN training queries with structural similarity. G-Retriever (He et al., 2024) for-
mulates subgraph selection as Prize-Collecting Steiner Tree problems, while EPR (Ding et al., 2024)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

models structural dependencies through atomic adjacency patterns. Paths-over-Graph (Tan et al.,
2025) uses multi-hop path expansion with graph reduction and pruning.

These methods face fundamental trade-offs: larger subgraphs boost recall but introduce noise, while
smaller ones risk missing critical edges. Furthermore, answer quality is solely dependent on retrieval
completeness—key relations filtered during construction cannot be recovered by reasoning modules.

Agentic LLM Methods. This paradigm is characterized by interactive KG exploration through
LLM agents. Think-on-Graph (Sun et al., 2023) performs iterative beam search maintaining top-
N partial paths with pruning. Plan-on-Graph (Chen et al., 2024) decomposes questions into sub-
objectives with trajectory memory and reflection mechanisms.

Multi-model approaches are motivated by the need to balance planning and efficiency. EffiQA
(Dong et al., 2024) employs LLM global planning combined with lightweight model exploration.
KELDaR (Li et al., 2024b) introduces question decomposition trees for atomic KG retrieval. Fi-
DeLiS (Sui et al., 2024) combines Path-RAG with deductive beam search, ReKnoS (Wang et al.,
2025) uses super-relations enabling bidirectional reasoning, and iQUEST (Wang & Yu, 2025) inte-
grates iterative decomposition with GNNs.

While enabling flexible exploration without complete upfront queries, these approaches often intro-
duce complex multi-component architectures requiring separate modules for planning, memory, and
pruning. Most critically, parallel path exploration using beam search exponentially expands search
space, potentially overwhelming LLMs with irrelevant information.

3 PRELIMINARIES

3.1 KNOWLEDGE GRAPHS

A knowledge graph (KG) G = {(e, r, e′) | e, e′ ∈ E , r ∈ R} represents structured factual knowl-
edge, where E and R denote the entity and relation sets, respectively. Each triple (e, r, e′) encodes
a factual relationship r between head entity e and tail entity e′. Entities are uniquely identified by
specific IDs (e.g., m.07 m2 represents Vincent van Gogh in Freebase) and may possess associated
textual labels and semantic types for human interpretation. For any entity e, its neighborhood struc-
ture comprises both outgoing and incoming relations. We formally define the neighboring relations
as Re = {r | (e, r, e′) ∈ G} ∪ {r | (e′, r, e) ∈ G}, encompassing relations where e serves as
either subject or object. This bidirectional connectivity enables flexible traversal during reasoning,
allowing navigation in either direction along relational edges.

3.2 REASONING PATH

Multi-hop reasoning over KGs requires constructing connected sequences of triples that link topic
entities to answer entities. A reasoning path P of length k from entity e0 to entity ek is formally
defined as:

P = [(e0, r1, e1), (e1, r2, e2), . . . , (ek−1, rk, ek)]

where each consecutive pair of triples shares an entity, creating a connected traversal through the
graph structure. Intermediate entities e1, . . . , ek−1 serve as stepping stones.

Consider the reasoning path illustrated in Figure 1: Vincent van Gogh Place of birth−−−−−−−→ Zundert
Contained by−−−−−−−→ Netherlands

Capital−−−→ Amsterdam. This 3-hop path demonstrates how complex questions
requiring decompositional reasoning can be decomposed into sequential relational steps, each build-
ing upon previous entities to reach the final answer.

3.3 KNOWLEDGE GRAPH QUESTION ANSWERING

Knowledge Graph Question Answering (KGQA) addresses the challenge of answering natural lan-
guage questions using structured knowledge representations. Given a natural language question q, a
KG G, and topic entities Tq ⊆ E mentioned in q, the objective is to identify answer entitiesAq ⊆ E .
As per prior work (Luo et al., 2023b; Sun et al., 2023; Chen et al., 2024), we use the gold entity
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annotations provided in the datasets, where entity mentions in questions are already linked to their
KG identifiers, thus bypassing the need for entity linking.

4 METHODOLOGY

4.1 THE SEARCH FUNCTION

We carefully design a single SEARCH function (Algorithm 1) that enables incremental KG naviga-
tion by retrieving the 1-hop neighbourhood of a specified entity. This function serves as the LLM’s
sole interface for KG exploration via tool calls, accepting three parameters:

• entity: The target entity identifier (e.g., m.07 m2 for Vincent van Gogh)
• direction: Either outgoing (entity as subject) or incoming (entity as object)
• properties (optional): Specific properties to filter results for focused exploration

The function returns results in a space-efficient markdown table format, prefixed with a row count
that provides the LLM with immediate context about the result size. Each row contains four
columns—property ID, property label, value ID, and value label—providing both machine-readable
identifiers and human-readable labels. As demonstrated in Figure 1, calling the function to get
Vincent van Gogh’s outgoing neighbours returns:

594 rows:
property propertyLabel value valueLabel
people.person.profession Profession m.0n1h Artist
visual art.visual artist.art forms Art forms m.05qdh Painting
people.person.place of birth Place of birth m.0vlxv Zundert
people.person.date of birth Date of birth 1853-03-30 -
... ... ... ...

4.2 HANDLING HIGH-DEGREE NODES

KGs often contain high-degree nodes—entities with thousands or millions of connections such as
countries, celebrities, or major organizations. Naively retrieving all neighbours of such nodes would
overwhelm the LLM’s context window and introduce excessive noise. We address this through a
two-stage filtering mechanism formalized in Algorithm 1.

Algorithm 1: ADAPTIVE NEIGHBOURHOOD RETRIEVAL

Input: entity id, direction, properties; thresholds k, p
Output: 1-hop neighbours of entity id in markdown table format

R← GET ALL NEIGHBOURS(entity id,direction,properties)

if |R| > k and properties is empty then
U ← EXTRACT UNIQUE PROPERTIES(R)
return FORMAT AS TABLE (U)

if |R| > p then
R← R[0:p]

return FORMAT AS TABLE (R)

When the function encounters an entity with more than k connected neighbours without specified
properties, our function returns only the unique properties rather than all neighbour instances. As
shown in Figure 1, querying for the Netherlands outgoing neighbours returns:

5
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property propertyLabel
location.country.form of government Form of government
location.country.official language Official language
location.country.capital Capital
... ...

This property-only view allows the LLM to first survey available relation types without context
overflow. The LLM then makes a targeted second call using the properties parameter to retrieve
only relevant relations. This transforms high-degree node navigation from an intractable problem
into two manageable steps: property discovery followed by selective retrieval.

Even with filtering, results may exceed practical limits. Algorithm 1 shows that when filtered results
exceed p triples, we truncate to the first p results to ensure the response fits within context limits.

4.3 SEARCH-ON-GRAPH PROMPTING

To guide the LLM’s navigation strategy, we employ few-shot prompting with navigation exemplars
that demonstrate effective KG traversal patterns. For each dataset, we construct five diverse exem-
plars covering three key aspects:

• Initial exploration: strategically making the first SEARCH call based on the question’s focus.
• Iterative traversal: analyzing retrieved neighbours, selecting relevant relations, and chaining

SEARCH calls to construct reasoning paths.
• Answer extraction: recognizing completion conditions and extracting final answers from accu-

mulated results.

These exemplars demonstrate to the LLM how to navigate the KG through systematic observation
and decision-making. The resulting traces remain fully interpretable as each navigation step is
explicitly recorded through tool calls. Appendix A provides the tool definitions, detailed instructions
given to the LLM, and representative exemplars for each dataset. Due to space constraints, we
include sample exemplars rather than the complete sets used in our experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metric. We evaluate SoG on six KGQA benchmarks spanning two major
knowledge graphs, Freebase (Bollacker et al., 2008) and WikiData (Vrandečić & Krötzsch, 2014).
For SimpleQuestions (SimpleQA) (Bordes et al., 2015), WebQuestionsSP (WebQSP) (Yih et al.,
2016), ComplexWebQuestions (CWQ) (Talmor & Berant, 2018), and GrailQA (Gu et al., 2021),
we use Freebase. For QALD-9 (Perevalov et al., 2022) and QALD-10 (Perevalov et al., 2022), we
use Wikidata. For SimpleQuestions and GrailQA, we evaluate on the same 1,000-sample test subset
adopted by ToG (Sun et al., 2023) to manage computational costs while enabling direct comparison
with prior work. For other datasets, we use the full test sets. As per prior work (Li et al., 2023; Sun
et al., 2023; Chen et al., 2024), we report exact match accuracy (Hits@1).

Models. We evaluate three off-the-shelf LLMs without fine-tuning two open-source models—
Qwen3-30B-A3B-Thinking-2507 and Qwen3-235B-A22B-Thinking-2507-FP8 Yang et al. (2025)
(abbreviated as Qwen3-30B and Qwen3-235B), and a proprietary model—GPT-4o. SoG is designed
as a plug-and-play framework compatible with any LLM supporting tool calling. For GPT-4o, we
use the OpenAI API. For Qwen3-235B, we follow recommended settings (temperature=0.6,
top p=0.95, top k=20, min p=0).

Few-shot Prompting. For each dataset, we manually construct five few-shot exemplars covering di-
verse reasoning patterns, including single-hop retrieval, multi-hop traversal, constraint verification,
and aggregation. These exemplars are derived from training set questions.

6
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Table 1: Exact match accuracy (%) of KGQA methods across six benchmarks. Bold and underlined
values indicate best and second-best results per dataset, respectively. Datasets are grouped by under-
lying KG: Freebase (SimpleQA, WebQSP, CWQ, GrailQA) and Wikidata (QALD-9, QALD-10).

Method Freebase Wikidata
SimpleQA WebQSP CWQ GrailQA QALD-9 QALD-10

Subgraph Retrieval Methods

GRAFT-Net (Sun et al., 2018) - 66.4 32.8 - - -
PullNet (Sun et al., 2019) - 68.1 47.2 - - -
TransferNet (Shi et al., 2021) - 71.4 48.6 - - -
UniKGQA (Jiang et al., 2022) - 77.2 51.2 - - -
EWEK-QA + GPT-3.5 (Dehghan et al., 2024) 50.9 71.3 52.5 60.4 - -
SubgraphRAG + GPT-4o (Li et al., 2024a) - 90.9 67.5 - - -

LLM Baselines

IO Prompting + Qwen3-30B 24.8 61.1 39.0 26.7 65.1 47.2
IO Prompting + Qwen3-235B 30.3 61.1 51.0 32.3 62.7 48.7
IO Prompting + GPT-4o 48.8 61.0 51.2 35.8 65.9 46.9

Agentic LLM Methods

Think-on-Graph + GPT-4 (Sun et al., 2023) 66.7 82.6 69.5 81.4 - 54.7
Generate-on-Graph + GPT-4 (Xu et al., 2024) - 84.4 75.2 - - -
Plan-on-Graph + GPT-4 (Chen et al., 2024) - 87.3 75.0 84.7 - -
Readi + GPT-4 (Cheng et al., 2024) - 78.7 67.0 - - -
Spinach + GPT-4o (Liu et al., 2024) - - - - 58.3 63.1
FiDeLiS + GPT-4-Turbo (Sui et al., 2024) - 84.4 71.5 - - -
EffiQA + GPT-4 (Dong et al., 2024) 76.5 82.9 69.5 78.4 - 51.4
KELDaR + GPT-3.5-Turbo (Li et al., 2024b) - 79.4 53.6 - - -
ReKnoS + GPT-4o-mini (Wang et al., 2025) 67.2 83.8 66.8 80.5 - -
iQUEST + GPT-4o (Wang & Yu, 2025) - 88.9 73.9 73.5 - -
ORT + GPT-4o (Liu et al., 2025) - 87.7 65.4 - - -
Debate-on-Graph + GPT-4 (Ma et al., 2025) - 91.0 56.0 80.0 - -
SRP + GPT-4.1-mini (Zhu et al., 2025a) - 83.6 69.0 78.8 - -
KnowPath + DeepSeek-V3 (Zhao et al., 2025a) 65.3 89.0 73.5 - - -

SoG + Qwen3-30B (Ours) 86.2 88.2 70.0 81.4 81.0 77.5
SoG + Qwen3-235B (Ours) 86.4 89.3 77.1 83.9 82.5 79.8
SoG + GPT-4o (Ours) 84.8 91.3 75.1 86.9 79.4 74.4

Baselines and Parameters. We compare SoG with 23 baselines, grouped into subgraph retrieval
methods, LLM baselines, and agentic LLM methods. Semantic parsing methods are excluded due
to their reliance on task-specific fine-tuning, which is orthogonal to our training-free paradigm. For
all experiments, we set the high-degree threshold k = 50 and the maximum result size p = 1000,
balancing information completeness with context window constraints.

5.2 MAIN RESULTS

Table 1 presents the performance of SoG and competing methods across all six benchmarks. Our
approach consistently achieves state-of-the-art or highly competitive results using only off-the-shelf
LLMs, without any task-specific fine-tuning or retraining. SoG + GPT-4o achieves the highest
scores on WebQSP (91.3%) and GrailQA (86.9%), while SoG + Qwen3-235B leads on Simple-
Questions (86.4%), CWQ (77.1%), QALD-9 (82.5%), and QALD-10 (79.8%). Notably, SoG +
GPT-4o outperforms all prior systems on 5 of 6 datasets, trailing only Generate-on-Graph on CWQ
by 0.1%. Similarly, SoG + Qwen3-235B also surpasses previous bests on 4 of 6 datasets, with nar-
row margins of 0.7% and 0.8% behind the previous best on WebQSP and GrailQA, respectively.
The improvements over previous best methods range from incremental to substantial. On Freebase
datasets, we improve by +0.3% on WebQSP, +1.9% on CWQ, +2.2% on GrailQA, and +9.9% on
SimpleQuestions. The improvements are particularly striking on Wikidata benchmarks, where we
achieve double-digit gains: +16.6% on QALD-9 (82.5% vs. 65.9% for IO Prompting) and +16.7%
on QALD-10 (79.8% vs. 63.1%).

The strong performance across both Freebase (SimpleQuestions, WebQSP, CWQ, GrailQA) and
Wikidata (QALD-9, QALD-10) benchmarks validates our schema-agnostic design. While Freebase
uses compound value types (CVTs) for complex relations and Wikidata employs qualifiers, SoG
adapts to both structures without modification, confirming that our single function approach gener-
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Figure 2: Impact of few-shot exemplar quantity on exact match accuracy (%) for Qwen3-30B-A3B-
Thinking/Instruct-2507 across four Freebase datasets, SimpleQuestions, WebQSP, CWQ, GrailQA.

alizes across different KG schemas. Furthermore, SoG demonstrates balanced effectiveness across
both single-hop (SimpleQuestions) and multi-hop (WebQSP, CWQ, GrailQA, QALD-9, QALD-
10) datasets. This contrasts with methods like Think-on-Graph, EffiQA, ReKnoS, and KnowPath,
which show stronger relative performance only on multi-hop tasks. Our consistent performance
across complexity levels likely stems from our focused exploration strategy—by selecting one rela-
tion per hop rather than exploring multiple paths in parallel, we avoid the noise accumulation that
can overwhelm simpler questions while maintaining expressiveness for complex reasoning chains.

5.3 ABLATION STUDIES AND ANALYSIS

We conduct a series of ablation studies to analyze key design choices in SoG, examining the impact
of few-shot exemplar quantity, reasoning-optimized models versus standard instruction models, and
different output formatting on performance. All ablations use 20% samples from each Freebase-
based test set. We evaluate on Qwen3-30B-A3B-Thinking/Instruct-2507 two models.

Effect of Few-shot Exemplars. Figure 2 shows the performance of Thinking and Instruct models
across varying exemplar quantities. The black and gray dashed lines represent the average exact
match accuracy across the four datasets for the Thinking and Instruct models respectively. Both
models show dramatic improvements when transitioning from IO prompting to 0-shot with tool in-
structions, demonstrating that LLMs can perform structured navigation once they understand the
SEARCH function interface. Adding a single navigation exemplar (1-shot) produces another sub-
stantial boost across all datasets—from SimpleQuestions to complex multi-hop tasks—confirming
that a single demonstration benefits tasks of any complexity. Performance plateaus at 3-shot with
minimal gains thereafter, indicating that a small set of diverse exemplars sufficiently demonstrates
effective navigation strategies.

Thinking vs. Non-Thinking Models. The Thinking variant consistently outperforms the Instruct
variant across all settings in Figure 2, with the gap most pronounced on multi-hop datasets (We-
bQSP, CWQ, GrailQA) compared to single-hop SimpleQuestions. This performance difference
reveals that model architecture and inherent reasoning capabilities are critical for SoG’s effective-
ness. The reasoning-optimized model better leverages our iterative observation-decision frame-
work—analyzing available relations and making informed navigation choices based on reasoning
rather than question semantics or pattern-matching against exemplars. While both models benefit
from additional exemplars, the Thinking variant extracts more value from navigation demonstra-
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Table 2: Comparison of output formats for SimpleQuestions (20% sample) using Qwen3-30B-A3B-
Thinking-2507 with 5 exemplars. We report the average number of main interaction tokens, average
number of reasoning tokens, average number of total tokens, average number of turns, and exact
match (EM) accuracy. “Markdown + Property Filter” denotes our concise format with an additional
filtering round, which achieves the best accuracy and efficiency.

Format Avg. Main Tok. Avg. Reason Tok. Avg. Total Tok. Avg. Turns EM
JSON 9312.2 2735.2 12047.3 3.06 76.5
Markdown 6028.1 1953.7 7981.8 3.05 74.5
Markdown + Property Filter (Ours) 3715.9 1906.6 5622.5 3.93 78.0

tions, indicating that SoG’s performance ceiling depends on the model’s capacity for structured
reasoning over KGs.

Output Format and Filtering. Table 2 compares the impact of different output formats on per-
formance and efficiency. While the original JSON format that the SPARQL execution returns yields
strong accuracy, it uses significantly more tokens than the other two formats. Switching to Mark-
down format reduces token usage considerably but slightly impacts accuracy. Our optimized ap-
proach adds a property filtering stage—when encountering high-degree nodes, we first retrieve avail-
able properties, then make a targeted second call with relevant properties only. Despite requiring
additional turns, this strategy achieves the lowest total token usage while simultaneously deliver-
ing the highest accuracy. The efficiency gain stems from avoiding redundant information in dense
neighborhoods, while the accuracy improvement suggests that focused retrieval helps the LLM iden-
tify relevant paths more effectively. These results highlight how careful output engineering directly
impacts both computational efficiency and task performance in LLM-based KGQA systems.

6 CONCLUSION

We present Search-on-Graph (SoG), a simple yet effective KGQA framework that achieves SOTA
results by enabling LLMs to navigate KGs through iterative, informed navigation rather than upfront
path planning or parallel search. Using only a single LLM with one carefully designed SEARCH
function, SoG demonstrates consistent improvements across six benchmarks on Freebase and Wiki-
data data sources. Our analysis reveals that effective graph navigation depends critically on three
factors: providing LLMs with actual available relations at each decision point, using reasoning-
optimized models that can leverage navigation demonstrations effectively, and engineering output
formats that balance information completeness with computational efficiency. The simplicity and
generality of our approach—requiring no task-specific training and adapting seamlessly to different
KG schemas—suggests that many perceived LLM limitations on structured reasoning tasks stem
from problem presentation rather than fundamental model deficiencies. By aligning task structure
with LLM strengths through iterative observation and decision-making, we achieve superior per-
formance without the complex architectures, multiple modules, or extensive scaffolding assumed
necessary by prior work.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and ma-
terials. The complete prompts, tool schema definitions, and few-shot examples for all datasets are
included in Appendix A. Our supplementary materials contain the minimal experiment scripts with
test split data, where main.py implements the core processing logic and prompt.py contains the
system prompt concatenation functions (detailed at the end of the file). All hyperparameters, model
configurations, and evaluation procedures are explicitly documented in Section 5.1. The Search-on-
Graph framework is designed as a plug-and-play system that can be easily integrated with any LLM
supporting tool calling, making our approach straightforward to replicate and extend.

9
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A APPENDIX

A.1 TOOL DEFINITIONS

Listing 1: Freebase Tool Definition
1 TOOLS_FREEBASE = [
2 {
3 "type": "function",
4 "function": {
5 "name": "search",
6 "description": (
7 "Build and execute a SPARQL query on Freebase that retrieves

adjacent properties, property labels,"
8 "values, and value labels in the specified direction for a given

entity."
9 ),

10 "parameters": {
11 "type": "object",
12 "properties": {
13 "entity": {
14 "type": "string",
15 "description": "The entity (e.g., ’m.04yd0fh’) whose

adjacent relations and entities we want to fetch."
16 },
17 "direction": {
18 "type": "string",
19 "enum": ["incoming", "outgoing"],
20 "description": "Direction of relationship to consider"
21 },
22 "properties_to_filter_for": {
23 "type": "array",
24 "items": {"type": "string"},
25 "description": "Optional list of specific properties to

filter by (e.g., [’people.person.place_of_birth’, ’
people.person.nationality’])."

26 }
27 },
28 "required": ["question", "entity", "direction"],
29 "additionalProperties": False
30 },
31
32 }
33 },
34 ]

Listing 2: Wikidata Tool Definition
1 TOOLS_WIKIDATA = [
2 {
3 "type": "function",
4 "function": {
5 "name": "search",
6 "description": (
7 "Build and execute a SPARQL query on Wikidata that retrieves

adjacent properties, property labels,"

13
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8 "values, and value labels in the specified direction for a given
entity."

9 ),
10 "parameters": {
11 "type": "object",
12 "properties": {
13 "entity": {
14 "type": "string",
15 "description": "The entity (e.g., ’wd:Q187805’) whose

adjacent relations and entities we want to fetch.",
16 },
17 "direction": {
18 "type": "string",
19 "enum": ["incoming", "outgoing"],
20 "description": "Direction of relationship to consider",
21 },
22 "properties_to_filter_for": {
23 "type": "array",
24 "items": {"type": "string"},
25 "description": "Optional list of specific properties to

filter by (e.g., [’people.person.place_of_birth’, ’
people.person.nationality’])."

26 }
27 },
28 "required": ["question", "entity", "direction"],
29 "additionalProperties": False,
30 },
31
32 },
33 },
34 ]

A.2 TOOL INSTRUCTION PROMPT

Listing 3: Tool Instructions

You are a knowledgeable question-answering agent specializing in
knowledge-graph question answering. You will receive a question and
may call a tool to navigate the knowledge graph, collect information
, and then formulate an answer.

You may call the tool search(entity, direction) to retrieve adjacent
relations and 1-hop neighbouring entities to the entity given in the
input. Additionally, direction must be incoming or outgoing.

When you want to call the tool:
- Always follow the CORRECT format whenever you want to make a tool

call.
- Continue making tool calls until you arrive at a final textual

answer. Then, and only then, stop making tool calls and provide
your final answer in ’content’.

Furthermore,
- Sometimes the ’search’ tool returns an entity ID (’value’) without

a corresponding entity name (’valueLabel’). If that occurs,
continue making the correct tool calls using the entity ID (’value
’) alone, if necessary, until you find the information needed to
answer the question. Relevant details may appear in subsequent
tool calls.

- Whenever ’search’ returns multiple entities for a single relevant
relation, you must examine every single one of those entities,
even if there are tens or hundreds. Do not skip any; each could be
relevant to the question.

- If the question happens to be a ’when’ question, you must provide
the final answer with the value of the entity as given (i.e., in
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the format {1889-04-20} or {1889-04-20-08:00}) from the results of
’search’.

- If searching from one direction does not yield information that
seems relevant to the question, you may try searching from the
other direction (e.g., "incoming" instead of "outgoing", or "
outgoing" instead of "incoming") of the starting entity if you
think it makes sense to try.

- In your final answer, you must 1) write ’Final answer:’ immediately
before providing your final answer, 2) enclose the answer entity

(or entities) in curly braces, and 3) use each entity name exactly
as returned by the ’search’ tool. For example, if the tool’s

output shows "English Language", you must produce {English
Language} (keeping the exact phrase) rather than shortening it to
"English.".

- If you cannot gather enough information using the tools to answer
the question, rely on the information you already have, your
reasoning abilities, and your own knowledge to produce the best
possible answer(s).

A.3 SAMPLE EXEMPLARS

Listing 4: SimpleQA Sample Exemplar

Question: where did the continental celtic languages originate? {’
Continental Celtic languages’: ’m.06v3q8’}

Outgoing relations from m.06v3q8 (Continental Celtic languages)
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"

name": "search","arguments": {"entity": "m.06v3q8", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
language.language_family.member_of_language_families|member of language

families|m.01sd8|Celtic languages
language.language_family.geographic_distribution|geographic

distribution|m.02j9z|Europe
kg.object_profile.prominent_type||language.language_family|Language

Family
We see there is a language.language_family.geographic_distribution (

geographic distribution) property that points to the object m.02j9z
(Europe).

Final answer: The Continental Celtic languages originated in {Europe}.

Listing 5: WebQSP Sample Exemplar

Question: what is cher ’s son ’s name {’Cher’: ’m.01vtj38’, ’Male’: ’m
.05zppz’}

’m.01vtj38’ (’Cher’) is the topic entity of the question. Look for
outgoing edges from ’m.01vtj38’ and look for relations and entities
related to Cher’s son. Any linked object entities are potential
candidates.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "m.01vtj38", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
base.schemastaging.context_name.official_name|Official name|Cherilyn

Sarkisian|
people.person.children|Children|m.01w4bt1|Elijah Blue Allman
people.person.children|Children|m.0br66|Chaz Bono
people.person.parents|Parents|m.0kmhsk2|Gilbert Hartmann LaPiere
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We see there is the people.person.children (Children) property that
points to entities m.01w4bt1 (Elijah Blue Allman) and m.0br66 (Chaz
Bono).

To specifically look for son(s) of Cher, we check the gender of each of
those entities

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "m.01w4bt1", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
people.person.parents|Parents|m.01vtj38|Cher
people.person.gender|Gender|m.05zppz|Male
people.person.sibling_s|Siblings|m.0w4gdrb|
people.person.sibling_s|Siblings|m.0vvfthw|
We see that Elijah Blue Allman’s gender is Male.
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"

name": "search","arguments": {"entity": "m.0br66", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
people.person.parents|Parents|m.01vtj38|Cher
people.person.sibling_s|Siblings|m.0w4gdrb|
people.person.gender|Gender|m.05zppz|Male
We see that Chaz Bono’s gender is Male.
Final answer: Cher’s sons’ names are {Elijah Blue Allman} and {Chaz

Bono}.

Listing 6: CWQ Sample Exemplar
Question: What structure build on June 5, 2007 is Charlotte, North

Carolina known for? {’Charlotte’: ’m.0fsb8’}
’m.0fsb8’ (’Charlotte’) is the topic entity of the question. Look for

outgoing edges from ’m.0fsb8’ and look for relations and entities
related to structures built in Charlotte. Any linked object entities
are potential candidates.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "m.0fsb8", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
common.topic.topical_webpage|Topical webpage|http://www.charmeck.org/|
travel.travel_destination.tourist_attractions|Tourist attractions|m.09

k6h_2|Bechtler Museum of Modern Art
travel.travel_destination.tourist_attractions|Tourist attractions|m.02

vnhrq|Billy Graham Library
travel.travel_destination.tourist_attractions|Tourist attractions|m.05

g_v0l|Bojangles’ Coliseum
travel.travel_destination.tourist_attractions|Tourist attractions|m.0

cq5c0|Carolinas Aviation Museum
We see the property travel.travel_destination.tourist_attractions (

Tourist attractions), which points to m.09k6h_2 (Bechtler Museum of
Modern Art), m.02vnhrq (Billy Graham Library), and m.05g_v0l (
Bojangles’ Coliseum). These are all tourist attractions in Charlotte
, North Carolina.

Get outgoing relations and entities from each candidate entity to find
information on the date that it was built:

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "m.09k6h_2", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
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type.object.type|Type|common.topic|Topic
type.object.type|Type|architecture.building|Building
type.object.type|Type|architecture.structure|Structure
There is no property that indicates the build date of m.09k6h_2 (

Bechtler Museum of Modern Art).
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"

name": "search","arguments": {"entity": "m.02vnhrq", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
common.topic.notable_types|Notable types|m.01y2hbz|Museum
architecture.structure.opened|Opened|2007-06-05-08:00|
type.object.type|Type|base.type_ontology.abstract|Abstract
We see that there is the property architecture.structure.opened (Opened

), which points to the date 2007-06-05-08:00. This indicates an
opening date of 2007-06-05 (June 5, 2007), which matches our target
date.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "m.05g_v0l", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
architecture.structure.opened|Opened|1955-08:00|
common.topic.social_media_presence|Social media presence|http://www.

facebook.com/pages/Bojangles-Coliseum/196122978761|
common.topic.social_media_presence|Social media presence|https://

twitter.com/BojanglesCol|
We see that there is the property architecture.structure.opened (Opened

), which points to the date 1955-08:00. This indicates an opening
date of 1955 at 8am, which does not match our target date of June 5,
2007.

Final answer: Charlotte, North Carolina is known for the structure {
Billy Graham Library} that is built on June 5, 2007.

Listing 7: GrailQA Sample Exemplar
Question: what is the language regulator of basque? {’basque’: ’m.017k6

’}
’m.017k6’ (’basque’) is the topic entity of the question. Look for

incoming edges from ’m.017k6’ and look for relations and entities
related to language regulators of Basque. Any linked object entities
are potential candidates.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "m.017k6", "direction": "
incoming"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
base.rosetta.rosetta_document.refers_to|Refers To|m.05tr3c6|Basque

Numbers
language.language_regulator.language|Language|m.057xsn|Euskaltzaindia
type.type.instance|Instance|language.languoid|
We see the property language.language_regulator.language (Language),

which points to m.057xsn (Euskaltzaindia). This may be the language
regulator of Basque. Let’s double check by calling the tool to look
at its outgoing edges.

Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "m.057xsn", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
type.object.type|Type|common.topic|Topic
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type.object.type|Type|base.type_ontology.agent|Agent
type.object.type|Type|language.language_regulator|Language Regulator
We see that there is the property type.object.type (Type), which points

to language.language_regulator (Language Regulator). This confirms
that m.057xsn (Euskaltzaindia) is indeed a language regulator.

Final answer: The language regulator of Basque is {Euskaltzaindia}.

Listing 8: QALD Sample Exemplar
Question: In which country does the Ganges start? {’Ganges’: ’wd:Q5089

’}
wd:Q5089’ (’Ganges’) is the topic entity of the question. Look for

outgoing edges from ’wd:Q5089’ and look for relations and entities
related to which country the Ganges starts in. Any linked subjects
are potential candidates.

Tool Call:[{"id": "some_unique_id", "type": "function", "function": {"
name": "search","arguments": {"entity": "wd:Q5089", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
wdt:P885|origin of the watercourse|wd:Q691557|Gangotri Glacier
wdt:P974|tributary|wd:Q3635865|Punpun River
wdt:P30|continent|wd:Q48|Asia
We see the property wdt:P885 (origin of the watercourse) that links to

the entity wd:Q691557 (Gangotri Glacier).
Look at each candidate entity’s outgoing relations for information

regarding its country
Tool Call: [{"id": "some_unique_id", "type": "function", "function": {"

name": "search","arguments": {"entity": "wd:Q691557", "direction": "
outgoing"}}}]

Suppose it returns:
property|propertyLabel|value|valueLabel
--|--|--|--
wdt:P4552|mountain range|wd:Q3777888|Gangotri Group
wdt:P31|instance of|wd:Q35666|glacier
wdt:P17|country|wd:Q668|India
We see the property wdt:P17 (country) that links to the entity wd:Q668

(India).
Final Answer: The Ganges starts in {India}.
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